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Abstract
Global developments such as climate change, a growing world population and the depletion of fossil resources make 
the sustainable use of biogenic resources in chemical production inevitable. This would also provide a final product 
with a higher added value than just utilizing the raw materials for applications in energy generation. In recent years, 
many researchers have shown that e.g., grass clippings, carrots and potato peels can be biotechnologically converted 
into high-value chemicals thereby increasing resource efficiency. A particular challenge, however, is the decentralized 
production of such biogenic raw materials as well as degradation affecting the composition and quality within short 
periods of time. Therefore, appropriate logistics concepts must be developed and evaluated to economically valorize 
biogenic raw materials. Such concepts differ significantly in terms of material utilization for the production of chemicals, 
composting or energetic valorization. This overview presents relevant examples of the conversion of biogenic residues 
into chemicals investigating basic logistic concepts and highlighting major challenges along bio-based value chains.

1 � Highlights

•	 Many waste and residual materials can be converted into valuable bioproducts.
•	 Logistics are essential for profitable conversion routes.
•	 Techno-economic, environmental and social criteria need to be addressed to solve trade-offs in bio-based value 

chains.

2 � Available biological feedstock for bioconversions

Agriculture, industry and municipalities generate a variety of biogenic waste streams that have not been economically 
viable for further valorization. With the growing interest in bioeconomy, it is desirable to utilize all waste streams as 
profitably and sustainably as possible. This is particularly important in view of increasing climate change, global popula-
tion growth and urbanization. According to the European Commission’s updated bioeconomy strategy, EU cities should 
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become key hubs for the circular bioeconomy to make use of urban biowaste [1]. Due to the depletion of fossil resources 
and pressing environmental issues, biogenic raw material, in general, are becoming an increasingly attractive feedstock, 
not only for the energy sector but also for the chemical industry. Agricultural waste, industrial by-products and even 
urban wastes contain valuable organic materials that can be extracted or converted into high-value products. Waste or 
by-products from various bio-sources can be considered abundant, cheap and renewable. These biogenic materials are 
currently used as substrate in anaerobic digestion to produce biogas or as fertilizer. Large quantities are deposited in 
landfills resulting in the release of large amounts of CO2 during decomposition. The information on available quantities 
of biogenic materials is rather uncertain, but there are fairly reliable estimations both at the global level of total materials 
and for individual material flows. The amount of organic waste was estimated to be in excess of 13 × 109 tons per year [2]. 
Organic waste accounts for a third of global food production, with 1 × 109 tons being wasted annually [3]. Three types 
of organic waste are discussed in more detail below: green waste, carrots and potatoes. One of the largest untapped 
urban biomass waste streams is green waste [4]. Green waste is heterogeneous lignocellulosic biomass with low lignin 
content that does not originate from agricultural processes or purposeful cultivation and is therefore mainly generated 
in urban areas. As an example, more than 120 × 103 tons of green waste are collected annually in the districts of Berlin 
(Germany) [4]. Carrots are one of the most important crops with a global distribution. More than 4 × 107 million tons are 
produced worldwide every year. After industrial processing, carrot waste represents up to 50% of the raw material still 
holding large amounts of valuable compounds in its waste streams [5]. Potatoes are produced with an annual quantity 
of more than 370 × 106 tons worldwide [6]. Depending on the peeling process, residuals represent 15–40% of the initial 
potato weight [7].

3 � Value‑adding bioconversions: an exemplary overview

There are several excellent reviews on (bio)-conversion of different residues and by-products (e.g. agro-industrial, crop-
residues and food-processing wastes in general [2, 8–12], green waste [4], sugar beet pulp [13, 14], grape pomace [15], 
carrots or potato peels and wastes [5, 16]). On the one hand, these review articles or original publications describe in 
detail a large number of raw material-based production routes. On the other hand, they also depict the pre-treatments 
or supplements. Table 1 shows examples of feedstocks and products, clearly showing that many products are made from 
different materials. Further, it highlights the wide variety of potential bio-conversion routes starting at the biogenic raw 
material. For example, biopolymers such as polyhydroxyalkanoates can be produced with many organisms and on vari-
ous substrates. In addition, many products can be made from a single feedstock, such as grass clippings.

4 � Logistic concepts

It is obvious that many biogenic raw materials are available and a variety of conversion routes have already been devel-
oped. However, there are still a number of limitations to value-adding bio-based conversion routes for residues and by-
products. Firstly, the processes need to be improved, for example in terms of final product concentrations or carbon yields. 
Secondly, the scalability of the processes has often not been investigated. Thirdly, seasonal fluctuations in quantities and 
qualities need to be addressed [41]. However, logistics and transportation must also be taken into account, as the residual 
materials and by-products often have special properties that need to be considered. Fossil resources are characterized 
by high energy densities, homogeneous composition, and stable, continuous availability from concentrated deposits. 
In contrast, renewable resources are spatially distributed and seasonally available, have a heterogeneous composition 
and typically a high moisture content as well as a low energy density due to elevated oxygen content, which contributes 
to increased degradability and challenges in conversion efficiency and transportability [42]. Biogenic raw materials are 
typically sourced from a wide array of locations, including agricultural fields, urban areas, and processing industries. 
This widespread distribution significantly increases the complexity and cost of logistics and transportation compared 
to fossil resources. This characteristic is referred to as the Diseconomies of Supply (“the less feedstock, the cheaper the 
provision”), which contrasts with the Economies of Scale (“the higher the capacity, the cheaper the conversion”) achieved 
when converting biogenic raw materials in large plants [43].
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In general, the composition of raw materials, whether lignocellulosic, sugar- and starch-based, oil- and protein-rich, 
or organic waste, along with their temporal and spatial availability, as well as the quantity, quality, and feedstock price, 
affects the design of the logistical system. Starting with the provision of feedstock through processes such as harvesting, 
collection, and conditioning, followed by transshipment, transportation, and storage, the feedstock is converted into 
various products through the so-called Biomass-to-X (BtX) pathways. The conversion processes, which are biochemical 
like anaerobic digestion and fermentation or thermochemical like combustion, gasification or pyrolysis, yield energy, 
biofuels, and/or chemicals to meet specific product demands. In facilities such as biomass CHP (Combined Heat and 
Power) plants and biogas plants bioenergy (electricity and heat) is generated. In contrast, biorefineries focus on the 
material valorization, producing high-value chemicals. Integrated biorefinery concepts combine multiple conversion 
processes to produce a diverse range of products, capitalizing on the principle of Economies of Scope, which posits,”the 
broader the product portfolio, the lower the average production costs “ [44].

When designing logistic systems for sustainable bio-based value chains, the tradeoff between increasing transpor-
tation costs with higher supply quantities and the lower conversion costs associated with greater capacities must be 
addressed. This design process may result in structures where biogenic raw materials such as grass clippings are har-
vested and either processed locally at low transportation costs in decentralized small-scale plants with low capacities 
or transported over long distances to centralized plants with high capacities. Depending on the configuration of the 
BtX valorization pathway, the design may result in differentiated structures, such as the decentralized refining of grass 
clippings via fermentation in the first step, followed by centralized refining via enzymatic hydrolysis in the second step 
and downstream processing in subsequent steps to obtain products like acids. Such designs benefit from the charac-
teristics of intermediate products, which have a higher energy and value density and are therefore more transportable 
and storable than the original raw material feedstock [45]. Herein, the main challenge noted by research literature is to 
maximize the economic impact by minimizing logistic costs whilst increasing the revenue streams of the products [46].

In summary, the appropriate design of logistical systems for bio-based value chains integrates the type of biogenic 
raw material, its costs and market value for the intermediates and final products, as well as temporal and spatial avail-
ability to accurately assess suitable BtX valorization pathways. This requires well-founded decisions regarding technology 
selection, capacity planning, process and system configuration, and plant siting to ensure the development of bio-based 
value chains that are economically, environmentally, and socially viable. Advanced multi-method approaches combine 
Geographic Information Systems (GIS) for estimating biomass potentials with Techno-Economic Analysis (TEA) and Life 
Cycle Assessment (LCA) for evaluating valorization pathways with Operations Research (OR) techniques for identifying 
optimal logistic systems. Whereas GIS models provide the input data such as the spatial potentials of biogenic resources 
(sources) as well as candidate locations for conversion facilities (sinks), TEA and LCA deliver economic and ecological 
parameters for the mathematical OR models to optimally link the sources and sinks [47, 48]. In combination with Multi-
Criteria Decision Analysis (MCDA) for incorporating social factors such as technological acceptance and green premi-
ums, such multi-method approaches provide a robust toolbox for supporting the complex decision-making process of 
designing efficient logistical systems for implementing innovative value chains while minimizing ecological impacts and 
maximizing economic returns and social effects. Figure 1 summarizes the processes and decisions along the biomass 
value chain and illustrates the challenge to master the tradeoff of designing logistical system.

5 � Conclusion

In regard of the global challenges that we are facing, new sustainable value chains need to be established. One possibility 
is to improve the recycling and utilization of residual materials and by-products of biogenic waste streams. Several pro-
cesses have been developed in recent years, but they still need to be economically implemented. This requires not only 
improved process performance, but also integrated value chain concepts. It also means a shift from an all-encompassing 
centralized production to a bioeconomy which is adjusted to all factors like e.g., biomass, seasonal changes, and especially 
logistics. Eventually, it is economically, environmentally, and socially worthwhile to implement decentralized plants to 
convert the waste streams to intermediates and then transport these to centralized plants for further utilization of the 
intermediates. It is likely more efficient to transport intermediates or end products than residues and by-products while 
solving the tradeoff between the Diseconomies of Supply and the Economies of Scale. With this comment, we hope to 
motivate scientists in biotechnology and related fields to collaborate with logistics experts at an early stage of process 
development and to develop more decentralized production methods. Closer collaboration in the process development 
would speed up the transfer to real applications.
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