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1 Introduction

Among the main goals of the current and future runs of the CERN Large Hadron Col-
lider (LHC) is tightening the constraints on the trilinear Higgs boson self-coupling, λHHH .
Measurements of the Higgs boson pair cross section at ATLAS currently set an upper
limit of µHH < 2.4 at 95% confidence level, giving a bound on the self-coupling modifier,
κλ = λHHH/λSM

HHH , of −1.4 < κλ < 6.1 [1, 2] (−0.4 < κλ < 6.3 when combining both single
and double Higgs production), while measurements at CMS place a limit of µHH < 3.4,
giving −1.24 < κλ < 6.49 [3] (−1.2 < κλ < 7.5 when combining both single and double
Higgs production [4]). The high-luminosity LHC run is expected to shrink this constraint to
0.1 < κλ < 2.3 [5], thereby ruling out the scenario of κλ = 0 where the Higgs boson does not
couple to itself via a cubic coupling. Higgs boson pair production in gluon fusion is the prime
process to consider in order to constrain the trilinear coupling because λHHH already enters at
the leading order (LO) and the gluon fusion production channel is dominant at the LHC. Most
physics models beyond the Standard Model (SM) predict modified Higgs boson self-couplings,
particularly those where electroweak symmetry breaking occurred through a first-order phase
transition, which is a prerequisite for generating the observed baryon asymmetry. Therefore,
it is crucial to have precise predictions for this process within the SM, such that potential
discrepancies between data and theory can be clearly identified as signposts of new physics.
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The LO cross section for the process gg → HH has been calculated in refs. [6, 7], NLO
QCD corrections including the full top-quark mass dependence are also available [8–12],
increasing the total cross section by about 60%. The real corrections, entering the NLO
QCD cross section, have recently been obtained in a compact analytic form [13]. NLO
matching to parton showers has been performed in [14–17], later also including anomalous
couplings within an Effective Field Theory (EFT) framework [18–20]. QCD corrections
beyond NLO have been calculated in the heavy-top-limit [21–23], or in a combination of
large-mt and high-energy expansions [24]. Partial three-loop results also have been obtained
recently [25, 26]. The full NLO QCD corrections have been included in calculations where
even higher orders have been evaluated, e.g. including the top mass dependence in the real
corrections at NNLO [27], or N3LO corrections [28, 29] and N3LO+N3LL corrections [30] in
the heavy-top-limit. The N3LO results have a residual scale uncertainty of about 3%, therefore
other uncertainties, such as missing electroweak (EW) corrections, become an important part
in the uncertainty budget. Currently, the top-mass renormalisation scheme uncertainties are
the largest uncertainties for this process [17, 31], they are estimated to be of the order of 20%.
However, the electroweak corrections also introduce a renormalisation scheme dependence,
and its interplay with the scheme dependence of the QCD corrections is currently unknown.
Furthermore, it is well-known that EW corrections can significantly affect the shape of
kinematic distributions. For example, the EW corrections to single Higgs boson production
are of the order of +5% for mH = 125GeV, dominated by the light fermion contributions,
but, for larger values of mH , the corrections become negative and the light quark contribution
ceases to dominate the correction [32–34]. First partial NLO EW corrections to Higgs boson
pair production have been calculated in refs. [35–37], the full NLO EW corrections in the
large top-quark mass expansion up to 1/m8

t have been calculated in ref. [38]. The possibility
to constrain the quartic Higgs boson coupling indirectly through EW corrections to Higgs
boson pair production has been explored in refs. [35, 39, 40]. Total and differential cross
sections including the full NLO EW corrections have been presented in ref. [41], finding a
decrease by −4% of the total cross section after inclusion of the NLO EW corrections.

As the first order EW corrections to double Higgs production factorise from the NLO
QCD corrections to this process, mixed QCD-EW corrections would only play a role at even
higher orders. The latter are relevant for single Higgs production, where the experimental
uncertainties are very small; contributions to these mixed corrections have been calculated
in refs. [42–49].

In this paper, we calculate the electroweak corrections to the process gg → HH in the
scalar sector, i.e. the corrections which are Yukawa-enhanced or are of Higgs self-coupling
type (with the quartic coupling λHHHH also now entering at NLO), while corrections due to
the exchange of virtual electroweak gauge bosons are not included. The calculation involves
four-point, two-loop integrals with up to two mass scales (mt, mH) and two independent
Mandelstam variables (s, t), which we retain fully symbolically in our amplitude. The
master integrals are evaluated in two ways: with the method of sector decomposition
using pySecDec [50–53] and by solving differential equations via series expansions using
DiffExp [54, 55].

The outline of this article is as follows: in section 2, we give details of the calculation,
describing the projection onto form factors, the reduction to master integrals and their
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evaluation; the UV renormalisation of the amplitude is also described in detail. In section 3
we provide values for the bare and renormalised amplitude at a selected phase-space point
and present our results for the Higgs boson pair invariant mass and Higgs boson transverse
momentum distributions in addition to the impact of these corrections on the total cross
section. Our conclusions are presented in section 4.

2 Calculation

In this section, we describe the details of our calculation of the NLO electroweak corrections
to Higgs boson pair production including only the top-Yukawa and Higgs boson self-coupling
contributions. We start by specifying the parts of the SM Lagrangian relevant for computing
these corrections in section 2.1, followed by a detailed description of the amplitude structure
for gg → HH in section 2.2. The remaining sections give details of our computational setup,
starting from diagram generation in section 2.3, continuing with the reduction to master
integrals in section 2.4, and closing with the master integral evaluation in section 2.5. In
section 2.6, we describe the renormalisation of our amplitudes. For a review of the standard
methods for the computation and renormalisation of one-loop electroweak corrections in
the Standard Model see refs. [56, 57].

2.1 Lagrangian & input-parameter scheme

To precisely define the corrections we wish to compute — i.e. only those induced by the
Yukawa coupling and Higgs self-couplings — and to derive their renormalisation, we do
not start from the general SM Lagrangian. Instead, we start from a more accessible subset
corresponding to a Yukawa model with only one up-type fermion (the top quark) and one
scalar field (the Higgs boson). Indeed, employing a series of simplifications, we can see
it truly is a subset of the SM: firstly, we remove the Yang-Mills part for the electroweak
gauge bosons so that they only appear in the covariant derivative. Additionally, all leptons,
light quarks and the bottom quark are dropped since their coupling to the Higgs field is
negligibly small compared to that of the top quark. Prior to electroweak symmetry breaking
(EWSB), this leads to the bare Lagrangian

L0 = − 1
4G0,µνGµν

0 + (DµΦ0)†(DµΦ0) + µ2
0Φ

†
0Φ0 +

λ0
4 (Φ†

0Φ0)2

+ iQ̄L,0 /DQL,0 + it̄R,0 /DtR,0 − (yt,0Q̄L,0Φc
0tR,0 + h.c.),

(2.1)

with
QL,0 =

(
tL,0
0

)
, (2.2)

and the gluon field strength tensor Gµν
0 . Taking the gaugeless limit for the EW sector

corresponds to the limit (g, g′) → (0, 0), which removes the electroweak gauge bosons (as well
as their associated ghost fields) entirely, such that the covariant derivatives have the form

Dµ = ∂µ − igs,0Ga
0,µta (2.3)

where ta are the generators of SU(3)colour and Ga
0,µ are the gluon fields. Through EWSB the

Higgs field Φ0 acquires a vacuum expectation value (vev) v0. Expanding the Higgs field around
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its vev and using unitary gauge to decouple the Goldstone bosons we obtain the Lagrangian

L0 = − 1
4G0,µνGµν

0 + 1
2(∂µH0)†(∂µH0) +

µ2
0
2 (v0 + H0)2 + λ

16(v0 + H0)4

+ it̄0 /Dt0 − yt,0
v0 + H0√

2
t̄0t0 + constant

= − 1
4G0,µνGµν

0 + 1
2(∂µH0)†(∂µH0)−

m2
H,0
2 H2

0 −
m2

H,0
2v0

H3
0 −

m2
H,0

8v2
0

H4
0

+ it̄0 /Dt0 − mt,0t̄0t0 −
mt,0
v0

H0t̄0t0 + constant (2.4)

with the identifications,

m2
H,0 = 2µ2

0 , mt,0 = yt,0v0√
2

and v2
0 = −

2m2
H,0

λ0
. (2.5)

The constant term in the Lagrangian is neglected from now on as it does not contribute to
observables. For later convenience, we also introduce the labels gt,0, g3,0, g4,0 (and gt, g3, g4)
for the bare (and renormalised) top-Yukawa (Htt) coupling, trilinear Higgs (H3) self-coupling
and quartic Higgs (H4) self-coupling, respectively. In the SM and in our Yukawa model, they
are related to the top-quark mass, Higgs boson mass and vev via

gt,0 ≡ mt,0
v0

, g3,0 ≡
3m2

H,0
v0

, g4,0 ≡
3m2

H,0
v2

0
. (2.6)

We present the set of Feynman rules for this Lagrangian, relevant to our calculation, in
appendix A.2. For the Yang-Mills part they are equivalent to the standard QCD rules and
can be taken from the literature (e.g. ref. [58] with ηG = 1, ηs = −1). Details of the derivation
of the electroweak counterterms and renormalisation are presented in appendix A.

To evaluate our predictions, we must also specify a consistent electroweak input-parameter
scheme. We take the top-quark mass and Higgs boson mass in the on-shell (OS) scheme as
inputs to our calculation. The renormalised top-quark Yukawa coupling, gt, depends on the
top-quark mass and the vev, it is fixed via the relation given in eq. (2.6) after renormalising
the top-quark mass and the vev. Similarly, the renormalised trilinear, g3, and quartic, g4,
Higgs boson self-couplings depend on the Higgs mass and the vev and are fixed via eq. (2.6)
after renormalising the Higgs mass and the vev. In the gaugeless limit, we can consider the
Z and W bosons (which do not appear directly in our computation) to be massless particles;
therefore, it is natural to pick MZ = 0 and MW = 0 as input parameters. Finally, we must
specify the value of the electromagnetic coupling constant. The most natural choice in our
parameterisation would be to specify the value of the vev, v, after renormalisation. However,
to simplify the connection to more commonly used input schemes, we instead take GF as an
input parameter and derive from it the value of the vev in the Gµ (a.k.a. αµ) scheme. That is
to say, we require that the relation v = (

√
2GF )−

1
2 holds to all orders in perturbation theory.

We circumvent the complication that the muon decay vertex employed for the matching
in the Gµ scheme is not present in our model by relying on external calculations from e.g.
ref. [59] to fix the finite parts of the vev renormalisation; for further details, see section 2.6
and appendix A.1. In summary, the input-parameter scheme of our calculation is therefore
{MZ = 0, MW = 0, GF } + {mt, mH}, where all masses are specified in the on-shell scheme.
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2.2 Amplitude structure

We compute the amplitude for the process ga
µ(p1)gb

ν(p2) → H(−p3)H(−p4), with all momenta
defined as incoming. The amplitude may be parametrised in terms of the usual Mandelstam
invariants,

s = (p1 + p2)2, t = (p1 + p3)2, u = (p2 + p3)2, (2.7)

with p2
1 = p2

2 = 0 and p2
3 = p2

4 = m2
H . Due to momentum conservation, p1 + p2 + p3 + p4 = 0,

the invariants obey the additional relation s + t + u = 2m2
H .

As described in section 2.1, we will consider only the subset of electroweak corrections
appearing in the SM, involving the top-quark Yukawa coupling and the Higgs boson trilinear
and quartic couplings. The electroweak W and Z gauge bosons do not appear in our
calculation, therefore, no axial-vector couplings are present in the amplitude. Using QCD
gauge invariance, the amplitude may be written in terms of only two independent form factors,

Mab = ε1,µε2,νMµν
ab = ε1,µε2,νδab (F1T µν

1 + F2T µν
2 ) , (2.8)

where ε1,µ, ε2,ν are the gluon polarisation vectors, a, b are colour indices in the adjoint
representation and F1, F2 are scalar form factors. The tensor structures can be chosen to be

T µν
1 = gµν− pµ

2 pν
1

p1 ·p2
, (2.9)

T µν
2 = gµν+ 1

p2
T (p1 ·p2)

[
m2

Hpµ
2 pν

1−2(p1 ·p3)pµ
2 pν

3−2(p2 ·p3)pµ
3 pν

1+2(p1 ·p2)pµ
3 pν

3

]
, (2.10)

where p2
T = (ut − m4

H)/s and T1 · T1 = T2 · T2 = D − 2, T1 · T2 = D − 4, where D = 4− 2ϵ is
the number of space-time dimensions, such that the individual form factors correspond to
helicity amplitudes: M++ = M−− = −F1 and M+− = M−+ = −F2. The form factors are
individually gauge invariant and can be separately renormalised, see section 2.6, meaning that
the interference contribution between the renormalised form factors vanishes in the limit ϵ → 0.

The scalar form factors, Fi, can be extracted from the amplitude, Mµν
ab , using projectors

defined to obey the relations,∑
pol

P µν
i,ab ε∗1,µε∗2,νε1,µ′ε2,ν′δaa′

δbb′Mµ′ν′

a′b′ = P µν
i,abM

ab
µν = Fi (2.11)

with
∑

pol ε∗1,µε1,µ′ = −gµµ′ . The projectors are given explicitly by,

P µν
1,ab =

δab

N2
c − 1

1
4(D − 3) [(D − 2)T µν

1 + (4− D)T µν
2 ] , (2.12)

P µν
2,ab =

δab

N2
c − 1

1
4(D − 3) [(4− D)T µν

1 + (D − 2)T µν
2 ] , (2.13)

where the N2
c − 1 (with Nc = 3) appearing in the denominator cancels the colour factor

appearing from the δab in the projector contracting with the δab in the decomposed amplitude.
Each of the bare form factors can be expanded in terms of the bare electroweak couplings

as follows,

Fi = F
(0)
i + F

(1)
i , (2.14)

F
(0)
i = g2

s,0

(
g3,0 gt,0 F

(0)
i,g3gt

+ g2
t,0 F

(0)
i,g2

t

)
, (2.15)
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F
(1)
i = g2

s,0

(
g3,0 g4,0 gt,0 F

(1)
i,g3g4gt

+ g3
3,0 gt,0 F

(1)
i,g3

3gt
+ g4,0 g2

t,0 F
(1)
i,g4g2

t

+ g2
3,0 g2

t,0 F
(1)
i,g2

3g2
t
+ g3,0 g3

t,0 F
(1)
i,g3g3

t
+ g4

t,0 F
(1)
i,g4

t

)
, (2.16)

where gs =
√
4παs is the strong coupling. The bare form factors correspond to the coefficients

of the bare couplings, we suppress the 0 subscript of the bare couplings in the labels of the
form factors for brevity. The form factors F

(0)
i,j correspond to the leading-order one-loop

triangle and box contributions, while F
(1)
i,j correspond to the 6 possible coupling structure

combinations appearing at two loops. We expand our bare form factors in the electroweak
coupling, α0 ∝ 1/v0

2, such that the products of couplings entering at LO scale as 1/v0
2 while

the products of couplings entering at NLO scale as 1/v0
4.

The bare form factors may be further decomposed into sets of one-particle-irreducible
(1PI) and one-particle-reducible (1PR) diagrams. At leading order, the form factors, split
according to combinations of the EW couplings (gt,0, g3,0, g4,0), are either entirely 1PI or 1PR,

F
(0)
i,g3gt

= F
(0),1PR
i,g3gt

, F
(0)
i,g2

t
= F

(0),1PI
i,g2

t
. (2.17)

Starting from NLO, the form factors contain a mixture of 1PI and 1PR contributions,

F
(1)
i,g3

3gt
= F

(1),1PR
i,g3

3gt
, F

(1)
i,g3g4gt

= F
(1),1PR
i,g3g4gt

, (2.18)

F
(1)
i,g2

3g2
t
= F

(1),1PI
i,g2

3g2
t

+ F
(1),1PR
i,g2

3g2
t

, F
(1)
i,g4g2

t
= F

(1),1PI
i,g4g2

t
+ F

(1),1PR
i,g4g2

t
, (2.19)

F
(1)
i,g3g3

t
= F

(1),1PI
i,g3g3

t
+ F

(1),1PR
i,g3g3

t
, F

(1)
i,g4

t
= F

(1),1PI
i,g4

t
+ F

(1),1PR
i,g4

t
. (2.20)

We compute each of the bare form factors F
(0)
i,j and F

(1)
i,j separately and obtain results for

both the 1PI and 1PR contributions separately.
At leading order, the partonic cross section can be written as

σ̂(0) = 1
16πs2

∫ t+

t−
dt
∣∣∣M(0)∣∣∣2 = 1

512πs2

∫ t+

t−
dt

(∣∣∣F (0)
1

∣∣∣2 + ∣∣∣F (0)
2

∣∣∣2) (2.21)

where

t± = m2
H − s

2

1∓
√
1− 4m2

H

s

 (2.22)

are the boundaries in t of the physical region for a given s ≥ 4m2
H . The averaged matrix

element squared
∣∣∣M(0)∣∣∣2 contains a symmetry factor for the two final state Higgs bosons,

spin and colour averaging for the incoming gluons, a factor of D − 2 from the square of
the tensor structures (D − 4 from the interference between the tensor structures does not
contribute as explained above) and another factor of N2

c − 1 from the sum over the adjoint
colour indices of δab in eq. (2.8). To obtain the total cross section, the partonic cross section
must be convoluted with the parton distribution functions (PDFs) in the usual way.

At NLO in the electroweak expansion, the bare form factors can have UV divergences
which give rise to poles of order 1/ϵ which are treated by renormalising the masses and fields
of the Higgs boson and top quark along with the vacuum expectation value. We perform the
UV renormalisation by computing explicit counterterm amplitudes, separated on couplings
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Type g3g4gt g3
3gt g4g2

t g2
3g2

t g3g3
t g4

t

1PI 0 0 3 6 24 60
1PR 12 6 1 6 24 26
Total 12 6 4 12 48 86

Table 1. Number of Feynman diagrams (one-particle-irreducible, one-particle-reducible and total),
excluding tadpole diagrams, which contribute to each of the bare coupling structures at NLO.

(a) g3g4gt (b) g3
3gt

(c) g4g2
t (d) g2

3g2
t

(e) g3g3
t (f) g4

t

Figure 1. Example diagrams contributing to each of the 6 coupling structures on which we separate
the bare two-loop amplitude.

structures, as described in section 2.6. In this way, we retain the complete dependence of our
amplitudes on the individual couplings which facilitates changing the electroweak input scheme
or supplementing our calculation with higher-dimensional effective field theory operators. The
subset of corrections that we consider here consists of corrections involving the emission of
additional massive particles from massive particle lines and is therefore free of IR singularities.

2.3 Diagram & amplitude generation

We generate Feynman diagrams using qgraf [60] and find a total of 168 diagrams, after
excluding tadpole diagrams and diagrams present in the full Standard Model but not in
our reduced Yukawa Model. We generate the amplitude using two independent tool chains
based on either a) alibrary [61], a Mathematica and Form [62] package for computing
multi-loop amplitudes, or b) Reduze 2 [63]. The resulting amplitudes agree up to sector
relations and symmetries before applying Integration-By-Parts identities.

The number of diagrams contributing to each of the coupling structures entering our
subset of NLO EW corrections are given in table 1, and example Feynman diagrams for each

– 7 –
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of these structures are shown in figure 1. The coupling structures g3g4gt and g3
3gt have only a

single Yukawa coupling and therefore consist of diagrams that contain loop corrections to the
Higgs propagator or trilinear vertex, they are therefore entirely 1PR (see figures 1(a) and 1(b)).
The 1PR contribution to the g4g2

t coupling structure consists of a diagram containing a triple
gluon vertex with a single gluon connected to the fermion loop and thus has a vanishing colour
factor. The g4g2

t coupling structure, therefore, receives only a 1PI contribution, see figure 1(c).
The remaining coupling structures receive contributions from both 1PI and 1PR diagrams.

The complete EW corrections, obtained using the large-mt limit in ref. [38] and fully
using AMFlow in ref. [41], contain within them all coupling structures presented in this
work, as well as additional contributions from diagrams containing W and Z bosons and
their ghosts, as well as the Goldstone bosons. The coupling structures g3g4gt and g3

3gt consist
of factorisable one-loop contributions and are comparatively straightforward to compute,
they have appeared previously in the literature e.g. refs. [35, 39, 40]. The coupling structure
g4g2

t contains only three-point integrals, the relevant integrals are known analytically in
a large top mass expansion [33, 64], the complete structure was computed numerically in
ref. [35]. The g2

3g2
t coupling structure was also computed numerically in ref. [35]. To the best

of our knowledge, the g3g3
t contribution has not been computed separately so far. The 1PI

contribution to g4
t was computed in the high-energy limit in ref. [37].

As a cross-check of one of the more challenging pieces of our calculation, we compare
the 1PI piece of our bare g4

t structure to ref. [37]1 and find good agreement for points at
sufficiently high energy s ≳ 4m2

t , with points at s ≳ 9m2
t differing by less than 2% and less

than 1% for s ≳ 16m2
t . The other parts of our calculation are performed systematically using

an identical setup to this structure and so are partially checked by this comparison. Further
checks on our final result are described in section 3.

2.4 Reduction

The loop integrals are written as a list of exponents νj for the denominators Pj of the
corresponding integral family f as defined in table 2. In our calculation each loop integral
is defined as

If
ν⃗ (s, t) =

(
µ4−D

)L
∫ L∏

i=1

dDℓi

iπD/2

N∏
j=1

1
P

νj

j

, (2.23)

in a general dimension D, where L is the number of loops and N is the number of propagators.
When reporting bare form factors, our integrals are multiplied by an additional factor of
CD =

(
iπD/2/(2π)D

)
per loop, which is required to recover the physical normalisation as

dictated by the Feynman rules.
After identifying momentum mapping symmetries with Feynson [65], we use a total

of 7 integral families (along with permutations of the external legs for 5 of the families)
to encode the scalar integrals appearing in all form factors. The two-loop families used in
this calculation are shown in table 2.

To perform the Integration-By-Parts (IBP) reduction [66], we begin by identifying a
suitable basis of master integrals. Retaining all masses, we find that at two-loop a total of

1We thank the authors of ref. [37] for performing a detailed comparison of our results.
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F1 F2 F3 F4
l21 − m2

t l21 − m2
t l21 − m2

H l21 − m2
t

l22 − m2
t l22 − m2

t (l1 − l2)2 − m2
t l22 − m2

H

(l1 − l2)2 − m2
H (l1 − l2)2 − m2

H (l1 + p1)2 − m2
H (l1 − l2)2 − m2

t

(l1 + p1)2 − m2
t (l1 + p1)2 − m2

t (l2 + p1)2 − m2
t (l1 + p1)2 − m2

t

(l2 + p1)2 − m2
t (l2 + p1)2 − m2

t (l1 − p2)2 − m2
H (l2 + p1)2 − m2

H

(l1 − p2)2 − m2
t (l1 − p3)2 − m2

t (l2 − p2)2 − m2
t (l1 − p2)2 − m2

t

(l2 − p2)2 − m2
t (l2 − p3)2 − m2

t (l2 − p2 − p3)2 − m2
t (l2 − p2)2 − m2

H

(l1 − p2 − p3)2 − m2
t (l1 − p2 − p3)2 − m2

t (l1 + p1 + p3)2 − m2
H (l1 − p2 − p3)2 − m2

t

(l2 − p2 − p3)2 − m2
t (l2 − p2 − p3)2 − m2

t (l2 + p1 − p2)2 − m2
H (l2 − p2 − p3)2 − m2

H

F5 F6 F7
l21 − m2

H l21 − m2
H l21 − m2

t

l22 − m2
t l22 − m2

t l22 − m2
t

(l1 − l2)2 − m2
t (l1 − l2)2 − m2

t (l1 − l2)2 − m2
H

(l1 + p1)2 − m2
H (l1 − p3)2 − m2

H (l1 + p1)2 − m2
t

(l2 + p1)2 − m2
t (l2 − p3)2 − m2

H (l2 + p1)2 − m2
t

(l1 − p3)2 − m2
H (l2 + p2)2 − m2

t (l1 − p2)2 − m2
t

(l2 − p3)2 − m2
t (l1 + p1 + p2)2 − m2

H (l2 − p2)2 − m2
t

(l1 − p2 − p3)2 − m2
H (l1 − l2 + p1)2 − m2

t (l1 − l2 + p3)2 − m2
H

(l2 − p2 − p3)2 − m2
t (l1 − l2 − p2 − p3)2 − m2

H (l2 − p2 − p3)2 − m2
t

Table 2. Integral families used in the reduction (up to permutations of the external legs).

494 master integrals are required to represent both the NLO amplitude and a closed system
of differential equations. We observe that up to 11 master integrals are required within a
single sector, namely, a 6-propagator non-planar sector belonging to family F7 (sector 413
using the ID notation of Reduze 2).

Initially, we choose a finite basis of integrals [67] with D-factorising denominiators [68, 69],
preferring dots over numerators. Using this basis, the time to numerically evaluate all form
factors to a precision of 10−3 using pySecDec is O(100h) on a single GPU. The evaluation
time can be decreased by 2–3 orders of magnitude by further optimising the basis choice.
Focusing on the integrals dominating the run time, specifically, the top-level sectors in all
integral families and especially those in the most complicated non-planar families (F6 and
F7), we searched for a basis in which the masters in the top level (t = 7) sectors and, where
possible, next-to-top level (t = 6) sectors had coefficients free of poles in the dimensional
regulator, ϵ. To obtain a basis with the required properties we found it necessary to employ
both dots and dimensional recurrence relations [70–72].

During the basis search, we found it of practical use to reduce individual sectors neglecting
subsectors, thereby avoiding the reconstruction of the vastly more complicated subsector
master coefficients, for a large number of different possible basis choices. With the pole-
free coefficient criterion satisfied, we only need to expand the top-level master integrals to
leading order in the regulator, vastly reducing the time required to evaluate them numerically.
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Furthermore, since we will use the same basis for the evaluation with pySecDec and for the
differential equations, we must also avoid poles of the regulator in the “diagonal” elements of
the differential equation system (as these cannot be removed by similarity transformations
of the partial derivative matrices Axi later).

Our final basis choice consists of integrals with up to three dots expressed in D in the
set {2− 2ϵ, 4− 2ϵ, 6− 2ϵ, 8− 2ϵ}. We could eliminate 1/ϵ poles in the amplitude coefficients
for all t = 7 master integrals and many of the t = 6 integrals while retaining finiteness and
D-factorising coefficients for the new basis of integrals.2 Crucially, to obtain a basis with
these properties, we found it necessary to select integrals in different numbers of dimensions
within a single sector.

Having settled on an improved basis, we generate the dimensional recurrence relations and
differential equations of the master integrals using Reduze 2, firstly with all in D0 = 4− 2ϵ.
We generate IBP equations with Kira [73, 74] covering all integrals appearing in the amplitude,
differential equations and dimensional recurrence relations, again in D0. Next, we replicate
these equations with the relevant shifts of D0 (that is to say, ±2n) to cover the entire
system, such that we have enough information to express integrals in any of our equations in
terms of masters in any of the relevant dimensions. We can load this entire set of equations
along with the unreduced amplitude split on coupling structures into Ratracer [75] and,
defining our choice of masters, we can solve this system of equations using Kira, Ratracer,
and Firefly [76, 77] to express our amplitude and differential equations in terms of our
preferred basis of integrals.

We stress that the reduction is obtained fully symbolically, retaining all masses and
invariants (mt is set to 1 in our reduction, but can be restored by dimensional analysis).
Using the same setup, we also obtain a reduction with m2

H/m2
t = 12/23. We find the total

size of the rational coefficients in the reduced amplitude to be 99Gb for the fully symbolic
reduction and 8.5Gb with the numeric mass ratio inserted, when separated on coupling
structures as in eq. (2.16).

As a cross-check of the reduction and our amplitude, we independently perform a reduction
to a different set of masters with the Higgs boson mass set to a numerical constant and confirm
the value of our amplitude after the numerical evaluation of the master integrals. We further
checked the integral reduction by obtaining reductions for individual phase-space points, by
substituting all kinematic invariants and masses with randomly selected rational values.

2.5 Evaluation of the master integrals

To evaluate the master integrals appearing in our two-loop amplitudes, we rely on the method
of sector decomposition, as implemented in the latest version of pySecDec. We first generate
expressions for the reduced amplitudes in terms of the 494 master integrals, as described
in section 2.4. The amplitudes along with the definitions of the integral families are passed
to pySecDec, which generates a single code capable of evaluating all bare form factors

2In our final basis, we have a total of 25 6-propagator master integrals (+25 obtained by crossing) belonging
to F1, F2 and F4 with a 1/ϵ present in their coefficient in the amplitude. The integrals IF5,D=6−2ϵ

(0,1,1,1,1,0,2,1,0)(s, t)
and IF5,D=6−2ϵ

(0,1,1,1,1,0,2,1,0)(s, u) are also present in our final basis, though they are neither finite nor quasi-finite,
starting at order 1/ϵ. We find that these integrals do not contribute significantly to the evaluation time and
did not attempt to improve our basis of master integrals further. However, this would be possible in principle.
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F
(1)
i,j , with i = 1, 2 and j = {g3g4gt, g2

3gt, g4g2
t , g2

3g2
t , g3g3

t , g4
t }. The code is automatically

generated such that the master integrals are numerically evaluated only once per phase-space
point and then used to generate results for each of the form factors and coupling structures.

Our amplitude code is generated by retaining the full symbolic dependence on s, t, mt,
mH and expanding in ϵ. When evaluating phase-space points, in order to obtain numerically
stable coefficients, it is necessary to insert the Mandelstam invariants and masses in a precision
higher than the usual floating point double precision. In our code, the input values for the
Mandelstam invariants and masses are cast to rational numbers by picking the smallest
fraction which reproduces s/m2

t and t/m2
t to a precision of 10−5, we also set m2

H = 12/23,
with m2

t = 1. We stress, however, that since we have retained the full symbolic dependence
on the masses in the integral reduction and the generation of our code, we can therefore
arbitrarily vary the value of the Higgs boson and top-quark masses.

Due to the significant size of the rational coefficients present in our fully symbolic
amplitude, the evaluation of the master integral coefficients can itself be time-consuming,
taking a few minutes to obtain the numeric value of all of the master integral coefficients.
We, therefore, find it beneficial to generate a second code with the specific value for the
Higgs boson mass pre-inserted into the coefficients, this reduces the time taken to evaluate
the master integral coefficients significantly.

Upon integration, with the master integral basis we have chosen, we observe spurious poles
up to order ϵ−4 in the coupling structures g2

3g2
t , g3g3

t and g4
t . Upon integration, the coefficient

of the ϵ−4, ϵ−3 and ϵ−2 poles vanish within the precision of the numerical integration, leaving
a non-zero ϵ−1 pole (for structures {g3g4gt, g3

3gt, g3g3
t , g4

t } in form factor F
(1)
1 and for g4

t in
F

(1)
2 ) and finite part. The remaining UV ϵ−1 pole is cancelled against the corresponding

counter-term amplitude only after integration.
When evaluating the amplitude, pySecDec adaptively adjusts the precision with which

each integral is obtained in order to reach a given precision for the amplitude (more specifically,
each form factor, F

(k)
i,j ) in the minimum time. This means that complicated (slow to evaluate

or slow to converge) integrals are typically sampled less by the algorithm unless they dominate
the uncertainty estimate on the amplitude. In contrast, the algorithm may spend more time
evaluating simple integrals precisely, if their contribution to the amplitude is large. In our
production runs, we request a relative precision of 10−3 on the finite part of each two-loop
form factor for each coupling structure, F

(1)
i,j .

For a typical bulk phase-space point, with s ≈ 561/130 · m2
t and t ≈ −566/217 · m2

t , the
integration takes approximately five minutes on four GPUs.3 For the selected phase-space
point, the algorithm spends the most time evaluating the integrals IF4

(1,0,1,1,1,1,1,0,1)(s, t) and
IF4

(1,0,1,1,1,2,0,0,1)(s, t) and uses the most integrand evaluations for IF4
(1,0,1,1,1,1,1,0,1)(s, t) and

IF4
(1,0,1,1,1,1,1,0,1)(s, u). The least precisely known integrals are IF4

(1,0,1,1,1,1,1,0,0)(s, t) with an
uncertainty of O(3× 10−4) and IF1

(1,0,1,1,1,1,1,0,0)(s, t) with an uncertainty of 1× 10−4, followed
by IF4

(1,0,0,1,2,1,1,0,0)(s, t) with an uncertainty around 6× 10−5. For a point in the high energy
regime with s ≈ 123 · m2

t and t ≈ −7/5 · m2
t we find that the integrals IF4

(1,0,1,0,2,1,0,1,1)(s, t)
and IF4

(1,0,1,0,2,1,0,1,1)(s, t) are the least precisely known after an integration time of two
hours. Up to this point, the most time was spent on the integrals IF4

(1,0,1,1,1,2,0,0,1)(s, u)

3Nvidia A100-PCIE-40GB, CUDA v12040.
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and IF1
(0,1,1,1,1,0,2,1,0)(s, u), which are also sampled the most. We remark that all of these

integrals are planar.
As a cross-check of the numerical evaluation of our master integrals, we have also obtained

a set of differential equations which are symbolic in s and t and have the aforementioned
numeric values for the masses. The differential equations are obtained for the same master
integral basis as selected for the numerical evaluation described above and are therefore not
in canonical form. They are then rescaled by rational functions of ϵ to eliminate poles in ϵ

in the differential equation matrices. To verify our numerical evaluation, we use pySecDec
to generate a number of boundary points at high precision along a contour of increasing s

in the s-t plane as in figure 2. We then run smaller contours in DiffExp between these
boundary points to obtain results for the entire contour (except for the ttH threshold where
we run very close to the threshold above and below without ever crossing it). We check at
given benchmark points that the evaluations from DiffExp and pySecDec are consistent
and plots of a selection of rescaled master integrals are shown in figure 3. The real and
imaginary parts of the coefficients of the required orders of ϵ in the expansion of the rescaled
master integrals are plotted along with the corresponding boundary and benchmark points.
A ratio of the pySecDec result to the DiffExp result is given in the lower subplot. For
completeness, we list the rescalings of the selected master integrals here:

c5(ϵ) =
ϵ

(ϵ − 1)2(2ϵ − 3)(2ϵ − 1)2(2ϵ + 1)(3ϵ − 2)(3ϵ − 1)(4ϵ − 3)(4ϵ − 1) ,

c155(ϵ) =
ϵ2

2ϵ − 1 , c353(ϵ) =
ϵ4

2ϵ − 1 , c464(ϵ) =
ϵ4

2ϵ − 1 .

Details of the analytic continuation procedure for the master integrals are given in appendix B.

2.6 Electroweak renormalisation

At higher orders in electroweak theory, a tadpole renormalisation has to be performed on top
of the usual field, mass and vertex renormalisation. Since the gaugeless limit removes the
coupling α from the theory, conventional input parameter schemes that involve α cannot be
used. As described in section 2.1, we fix the input parameters mH and mt in the on-shell
scheme and use the Gµ scheme for the vev. Tadpole contributions are treated within the
Fleischer-Jegerlehner tadpole scheme (FJTS) [78].

The Gµ scheme imposes the renormalisation condition that the expression for muon
decay corresponds at all orders to the effective four-fermion tree-level interaction in Fermi’s
theory, thereby fixing the relation between Gµ and the renormalised vev, and determining
the relation between the bare, v0, and renormalised vev, v, at each order. In the Yukawa
model utilised here, the vertex required for muon decay is not present, therefore it is not
possible to directly derive the Gµ scheme relation between the bare and renormalised vev. In
principle, the renormalisation constant for the vev can be fixed from any electroweak vertex
in the theory, for example, the triple and quartic Higgs self-interaction vertices or the Yukawa
vertex, by requiring that the higher order electroweak corrections to the vertices are finite.
The consistency of the electroweak theory means that the pole part of the vev renormalisation
constant matches in all schemes and independently of which vertex is used to fix it, only
the finite part differs. However, to facilitate the use of our result and its interpretation, we

– 12 –



J
H
E
P
1
1
(
2
0
2
4
)
0
4
0

−20 −15 −10 −5 0
t/m2

t

0

5

10

15

20

s/
m

2 t

s = 4m2
H

s = 4m2
t

s = (2mt +mH)
2

Contour

Boundary Point

Benchmark Point

Figure 2. The physical region in the s-t plane with the physical thresholds corresponding to s-channel
cuts shown with dotted lines. Our test contour increasing in s is shown in blue with boundary points
plotted along with benchmark points verified in pySecDec.

present our main results using the Gµ scheme, we obtain the finite parts of the vev counter
term using the complete expression for the vev counterterm presented in ref. [59] in the limit
MW → 0, MZ → 0. In appendix A.1 we derive the vev renormalisation constants from each
of the vertices in our theory and discuss this point in further detail. With the chosen schemes
and conditions, the renormalised quantities and counterterms

H0 =
√

ZHH =
√
1 + δHH, (2.24)

t0 =
√

Ztt =
√
1 + δtt, (2.25)

m2
H,0 = m2

H(1 + δm2
H), (2.26)

mt,0 = mt(1 + δmt), (2.27)
v0 +∆v = v(1 + δv) + ∆v, (2.28)

can be fixed. Note that the vev renormalisation condition contains one contribution, ∆v, from
the FJTS for the shift of the vev and another contribution, δv, from the vertex correction. For
a detailed description of the procedure, please refer to appendix A. The explicit expressions
used in this work are listed in appendix A.2 and a comparison to expressions in the literature
is presented in appendix A.3.

A gluon field renormalisation factor, Zg, or strong coupling renormalisation is not needed,
since it would only receive electroweak corrections at O(αsα), i.e. at a higher order in the
strong interaction as a mixed correction, which we do not consider here.

The renormalised amplitude Mren can now be calculated from the sum of the LO matrix
element M(0), with the bare fields and parameters expressed in terms of the renormalised
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Figure 3. Real and imaginary parts of coefficients in the ϵ-expansion of selected rescaled
master integrals taken along the contour shown in figure 2. (a)) Rescaled master #5:
c5(ϵ) IF1

(0,0,3,2,0,1,0,0,0)(s, t), (b)) rescaled master #155: c155(ϵ) IF1
(0,0,1,0,2,1,0,2,1)(s, t), (c)) rescaled mas-

ter #353: c353(ϵ) IF4
(1,0,0,1,1,1,1,0,1)(s, t) and (d)) rescaled master #464: c464(ϵ) IF4,D=6−2ϵ

(2,0,1,1,1,1,1,0,2)(s, u).
The lower panel of each figure shows the ratio of the pySecDec result to the DiffExp result for the
real part of the coefficient of ϵ4 which contributes to the amplitude at finite order.

quantities, and the NLO matrix element M(1),

Mren = ZH ·
[
M(0)

(
mt (1 + δmt) , m2

H

(
1 + δm2

H

)
, v (1 + δv) + ∆v

)
+M(1)

(
mt, m2

H , v
)]

,

(2.29)
where we have suppressed the gluon colour indices of the matrix element appearing in
eq. (2.8). The matrix element M(0) contains all one-loop contributions as well as diagrams
with counterterm insertions. All occurring parameters are the renormalised ones. Expanding
to first order in δX with X = {H, t, m2

H , mt, v} and including the tadpole corrections to the
vev, ∆v, we may rewrite the renormalised amplitude as,

Mren = M(0)(mt, m2
H , v) +M(1)

δX(mt, m2
H , v) +M(1)(mt, m2

H , v) +O(δX2), (2.30)
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with

M(1)
δX = δHM(0)(mt, m2

H , v) + δmtM(0)
δmt

(mt, m2
H , v) + δm2

HM(0)
δm2

H
(mt, m2

H , v)

+ δvM(0)
δv (mt, m2

H , v) + ∆vM(0)
∆v(mt, m2

H , v). (2.31)

In practice, we separate the counterterm amplitudes, M(1)
δX , according to the form factor,

i = 1, 2, and the coupling structure, j = g3gt, g2
t , appearing in the amplitude as well as the

additional coupling structures appearing in the counterterms δX themselves. We obtain the
finite one-loop and two-loop renormalised form factors by taking the combination,

F
(0),fin
i = F

(0)
i , (2.32)

F
(1),fin
i = F

(1)
i + F

(1),δX
i , (2.33)

respectively, where F
(1),δX
i collects the counterterm contribution obtained by applying the

projectors (given in eqs. (2.12) and (2.13)) to the counterterm amplitude in eq. (2.31).
The counterterm amplitudes are generated by inserting the counterterm vertices given in
appendix A.2 into the one-loop amplitude, leaving the counterterms δX and ∆v symbolic,
then factoring them out of the amplitude. The counterterms δX and the tadpole terms ∆v

contain 1/ϵ divergences, therefore, the counterterm amplitudes must be expanded up to and
including O(ϵ) in order to obtain correct results for M(1)

δX at finite order. We evaluate the
counterterm amplitudes numerically in pySecDec, and insert the A0 and B0 (tadpole and
bubble) integrals appearing in the counterterms symbolically.

We remark that, when considering the form factors separated by individual coupling
structures, the sum of the two-loop and corresponding counter term contribution is not finite
for all form factors, i.e. the sums F

(1)
i,j + F

(1),δX
i,j are not individually finite. The reason for

this is that, in the SM, the couplings gt, g3, and g4 are not independent quantities, they
must obey the relations given in eq. (2.6) for the ϵ poles of the renormalised amplitude to
cancel. As a result, the Higgs boson trilinear, g3, and quartic, g4, couplings can not be naively
varied without also modifying the underlying theory, for example by adding mass dimension-6
(and/or dimension-8) operators, see e.g. ref. [79], or additional particles/symmetries.

A further complication arises when considering the renormalised form factors separated
by individual coupling structures in Gµ scheme. As described above, in this scheme the δv

counterterm is derived using the muon decay process, which requires the presence of W and
Z bosons and their associated couplings in the theory. Using results from the literature
for this counter term, it is not straightforward to separate the contributions to δv in the
Gµ scheme according to the couplings g3, g4 and gt. The contributions of different coupling
structures to the δv counterterm also depend on the choice of the renormalisation conditions,
as described in appendix A.1. In this work, we therefore do not attempt this separation
and report only the finite renormalised form factors F

(1),fin
i constructed employing the SM

values/relations for the various couplings.

3 Results

In this section, we present the results of our computation. We begin by discussing both the
bare, F1 and F2, and renormalised, F fin

1 and F fin
2 , form factors, before presenting results for

the total cross section and differential distributions at NLOEW, including only the Yukawa
and self-coupling contributions.
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j: ϵ# F
(1)
1,j F

(1)
2,j

g3g4gt : ϵ−1 +7.317018424938384 · 10−5

+3.530994674708006 · 10−5 i
0

g3g4gt : ϵ0 +3.273276184619130 · 10−4

+2.941949902790170 · 10−4 i
0

g3
3gt : ϵ−1 +4.035301063033099 · 10−6

+1.947326866890242 · 10−6 i
0

g3
3gt : ϵ0 +3.494986290012938951 · 10−5

−4.477006613201774340 · 10−5 i
0

g4g2
t : ϵ0 +1.4701555653754324 · 10−4

−3.1468546340616729 · 10−4 i
0

g2
3g2

t : ϵ0 −3.0041895984712 · 10−4

+1.3620861846296 · 10−4 i

−1.067808312 · 10−6

+4.825510899 · 10−6 i

g3g3
t : ϵ−1 +9.620868816878 · 10−5

−1.157183797579 · 10−4 i
0

g3g3
t : ϵ0 +7.72339132021 · 10−4

+1.22972663623 · 10−4 i

+5.94722962 · 10−5

+6.54646767 · 10−5 i

g4
t : ϵ−1 −4.509709135223640 · 10−3

−1.009026289053441 · 10−3 i

−5.41141411126 · 10−5

+7.83375122326 · 10−5 i

g4
t : ϵ0 −2.119575532656 · 10−2

−8.827769663982 · 10−3 i

−3.3656913 · 10−4

+4.6338899 · 10−4 i

Table 3. Numeric results for the bare form factors, F
(1)
i,j , for each coupling structure on the phase-

space point: {s = 799/125, t = −519/500, m2
H = 12/23, m2

t = 1}. Boldface digits represent the error
on the final two stated digits and where there are none, the stated digits are accurate to the given
precision. Missing ϵ orders are understood to be identically zero.

In table 3, we provide explicit numbers for the NLOEW contributions of each of the
coupling structures to the bare amplitude form factors F1 and F2. We note that these
numbers are the coefficients of the coupling structures (and so need to be multiplied by the
coupling structures themselves as in eq. (2.16)). We make a number of comments about
these results. Firstly, we note that F1 and F2 correspond to the M++ and M+− helicity
amplitudes, respectively. Therefore, contributions to F1 have an initial state with a total
spin of zero, whilst F2 receives contributions from initial states with total spin two. For the
structures g3g4gt and g3

3gt, the contributions to F
(1)
2 are zero because these diagrams are

entirely one-particle-reducible (1PR) via a cut through a Higgs boson propagator (see table 1
and figure 1), therefore the initial states have total spin zero. Similarly, the contribution
from structure g4g2

t to F
(1)
2 is zero since diagrams with this structure can only contribute

to spin zero due to their symmetry. Finally, there is no 1/ϵ pole contribution to F
(1)
2 from

structure g3g3
t because the only 1PI counterterm diagrams (which must topologically be LO

box diagrams to contribute to F
(1)
2 ) which could correspond to this coupling structure have

counterterm insertions in the Yukawa vertex, the relevant part of the correction is given in
figure 6(e) in appendix A.1. This particular contribution to the Yukawa vertex correction
is ϵ-finite, hence this structure’s contribution to F

(1)
2 is also finite.
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Figure 4. The UV-renormalised form factors F
(1),fin
1 (left panel) and F

(1),fin
2 (right panel) divided by

g2
s . Note that the spread of points, which is due to the t-dependence, is milder in F

(1)
1 than in F

(1)
2 .

The uncertainty of each phase-space point due to the limited precision of the numerical integration is
indicated with an error bar.

In figure 4 we display the finite, UV-renormalised, form factors as a function of the
Mandelstam invariant s. Examining the F

(1),fin
1 form factor we observe that it has both a real

and imaginary part for all physically accessible values of s, even close to the HH production
threshold, this is because it receives a large contribution from diagrams with a two-particle
cut through a pair of Higgs bosons (i.e. with a HH threshold), see e.g. figures 1(a)–1(d). The
t-dependence, visible in the spread of points at a given s value, is much milder for F

(1),fin
1 than

F
(1),fin
2 . Considering the F

(1),fin
2 form factor, we note that it is also complex-valued in the

entire physically accessible region of phase-space. However, only a small imaginary part exists
between the HH and tt thresholds. As discussed, the F

(1),fin
2 form factor receives contributions

only from 1PI diagrams, the only class of diagrams contributing with a HH threshold in the
s-channel are those of figure 1(d). We find that numerically the contribution of these diagrams
to F

(1),fin
2 at low invariant mass is much smaller than that of other coupling structures. In

appendix C we present plots of the finite term of the individual bare form factors F
(1)
i,j .

In order to verify our results, we carried out a number of checks. Firstly, we checked that
our two independently generated amplitudes (before reduction to masters) were symbolically
identical up to sector relations and symmetries. Secondly, we confirmed that the amplitude is
symmetric under the exchange of t and u by comparing the numerical results of multiple pairs
of phase-space points wherein the first point’s t-value is substituted by u = 2m2

H − s − t in
the second and observing that these are identical within the stated numerical error. Thirdly,
for the two-loop contribution, we observed that before UV renormalisation the only poles
appearing were 1/ϵ (spurious poles up to order 1/ϵ4 cancel). After UV renormalisation, all
poles cancel which simultaneously corroborates our expectation that there are neither soft nor
collinear IR singularities. We also checked that poles of the bare form factors F

(1)
i,j are purely

real below the tt threshold for a selection of phase-space points in this kinematic region.
For the presentation of our final results, we use the PDF4LHC21_40 [80] distribution

functions interfaced via LHAPDF [81] and set the factorisation and renormalisation scale to
µr = µf = mHH/2. The masses of the Higgs boson and top quark are set to mH = 125 GeV,
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√
s 13 TeV 13.6 TeV 14 TeV

LO [fb] 16.45 18.26 19.52
NLOEW [fb] 16.69 18.52 19.79
NLOEW/LO 1.01 1.01 1.01

Table 4. Inclusive cross section for Higgs boson pair production for different centre-of-mass energies
at LO and NLOEW including only the Yukawa and self-coupling type corrections. The QCD renor-
malisation and factorisation scales are set to µr = µf = mHH/2.
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Figure 5. Invariant mass and transverse momentum distributions for Higgs boson pair production at
LO and NLOEW including only the Yukawa and self-coupling type corrections. The QCD renormali-
sation and factorisation scales are set to µr = µf = mHH/2.

mt =
√
23/12mH = 173.055 GeV, respectively, and we set GF = 1.1663787 · 10−5 GeV−2,

corresponding to v = 246.22 GeV.
Results for the total and differential cross section at the LHC with a centre-of-mass energy

of
√

s = 13TeV, 13.6TeV and 14TeV are given in table 4 and shown differentially in mHH and
pT,H in figure 5, respectively. These results are obtained by reweighting ∼ 7000 unweighted
LO events with the NLOEW contribution. We observe that the partial NLOEW corrections
computed here increase the total cross section by ∼ 1%. This is comparable to the size of the
QCD scale uncertainty of ∼ 3% obtained at N3LO in the heavy top-quark limit [28, 29].

For the invariant mass distribution, shown in figure 5, the corrections introduce very
large shape distortions, ∼ 30% with the binning we select, close to the Higgs pair production
threshold, compatible with the observations of ref. [36]. In ref. [41], it was found that
the full EW corrections lead to an enhancement of the mHH spectrum close to the Higgs
boson pair production threshold of up to 15%. Reproducing the binning used in ref. [41] we
find an enhancement of ∼ 25%, suggesting that the gauge boson contributions included in
their full results partly cancel the enhancement we see at low mHH values. This appears
plausible when looking at individual contributions to the EW corrections for single Higgs
boson production [32–34]. The shape distortions in the pT,H distribution of our results are
less localised, with a significant 5% enhancement just below the top-quark pair production
threshold and at high-pT,H , along with suppression at the level of 2% just above the top-quark
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pair production threshold. In our results, we see a general enhancement at high mHH and
pT,H not present in the full EW corrections, this suggests that the gauge boson contribution
dominates at high-energy and is negative.

We have also evaluated our results using the NNPDF31_nlo_as_0118 PDF set as used in
ref. [41]. Using this PDF set, we obtain a total NLOEW cross section of 20.19 fb including
only the Yukawa and self-coupling type corrections, which is a 1% enhancement compared to
the LO. In comparison, the full NLOEW total cross section presented in ref. [41] is 19.12(6) fb,
which is a 4.2% decrease relative to the LO. This discrepancy suggests that the gauge boson
contribution, appearing in the complete EW calculation, dominates the corrections and has
the opposite sign to the corrections computed here.

4 Conclusions

We have presented the calculation of the electroweak corrections to Higgs boson pair production
in gluon fusion in the gaugeless limit. In total, these partial NLO electroweak corrections
increase the cross section by about 1%. The corrections impact the Higgs boson pair
production invariant mass and transverse momentum distributions, giving an enhancement
of up to 30% at low mHH values due to the Yukawa-type corrections, which is larger than
in the case of the full corrections presented in ref. [41], where the enhancement is found to
be 15%. This suggests that the gauge boson contributions are negative for mHH values
below the 2mt threshold. We also observe almost no correction for higher values of mHH ,
in contrast to −10% found in ref. [41], suggesting again that this region is dominated by
negative contributions from diagrams containing W and Z bosons.

In our calculation, we retain the full symbolic dependence on the top-quark and Higgs
boson masses in the reduction to master integrals of the two-loop amplitude. All integrals
are calculated using sector decomposition and cross-checked by evaluating them using the
series expansion of differential equations. We provide results for the bare amplitude divided
into individual form factors separated according to the Yukawa, Higgs trilinear and quartic
couplings. We present results for the UV-renormalised form factors, the di-Higgs invariant
mass and the Higgs boson transverse momentum distribution. The renormalisation of partial
electroweak corrections in the Yukawa model is discussed in detail, this provides relevant
input for the interpretation of results presented elsewhere in the literature for non-Standard
Model values of the Higgs boson self-couplings.

The results presented here, and the techniques used to obtain them, provide an important
cross-check and benchmark for further analysing and interpreting the complete electroweak
corrections. For example, the fully symbolic reduction obtained here allows for the study of
mass scheme uncertainties. Our results also facilitate investigating the effects of anomalous
couplings, for example, anomalous trilinear and quartic Higgs boson couplings. These
couplings can be varied consistently within an Effective Field Theory framework, for example
the non-linear Effective Field Theory (HEFT), where the fact that the Higgs boson is an
EW singlet decorrelates the trilinear and quartic Higgs couplings at leading order in the
EFT expansion. Although not the main focus of this work, our complete set of differential
equations, which can be evaluated using series expansion methods, may also provide useful
semi-analytic insights into the structure of the electroweak corrections.
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A Details of renormalisation

From the Lagrangian of eq. (2.4) one arrives at a fully renormalised theory by first including
the vev shift v0 → v0 + ∆v to obtain

L′ = 1
2(∂µH0)†(∂µH0) +

µ2
0
2 (v0 +∆v + H0)2 + λ0

16(v0 +∆v + H0)4

+ it̄0 /Dt0 − yt,0
v0 +∆v + H0√

2
t̄0t0 (A.1)

= 1
2(∂µH0)†(∂µH0) + H0

(
µ2

0v0 +
λ0v3

0
4 + ∆v(µ2

0 +
3
4λ0v2

0)
)

+ H2
0

(
µ2

0
2 + 3v2

0λ0
8 + 3

4λ0v0∆v

)
+ H3

0

(
λ0v0
4 + ∆v

λ0
4

)
+ H4

0
λ0
16

+ it̄0 /Dt0 − mt,0t̄0t0 −
mt,0
v0

∆vt̄0t0 −
mt,0
v0

H0t̄0t0 . (A.2)

This step is required to keep the value of v0 at the minimum of the Higgs potential, which
is shifted at NLO compared to LO. On a diagrammatic level, the shift of the minimum of
the Higgs potential is caused by diagrams containing tadpole sub-diagrams.

The definition of the vev upon renormalisation is therefore related to the treatment
of tadpole contributions. Tadpole counterterms can be generated in two different ways in
the Lagrangian: through parameter renormalisation [56, 82, 83], or via Higgs field redefini-
tions [78, 82, 84, 85], see ref. [57] for a review. The latter is also called Fleischer-Jegerlehner
scheme (FJTS). A new scheme for tadpole renormalisation, dubbed Gauge-Invariant Vac-
uum expectation value Scheme (GIVS), has been suggested recently [86], which is a hybrid
scheme of the two schemes mentioned above, with the benefits of being gauge independent
while avoiding large corrections in MS-type schemes. The effects of certain input parameter
schemes in SMEFT have been studied in ref. [59].
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When using OS renormalisation in unitary gauge, the FJTS is a suitable choice yielding
the vev shift prescription and thereby the Lagrangian of eq. (A.2). The emerging term linear
in the Higgs field is identified with the tadpole counterterm

δT =
(

µ2
0v0 +

λ0v3
0

4 + ∆v(µ2
0 +

3
4λ0v2

0)
)

= −∆vm2
H , (A.3)

where the first two terms in the brackets cancel upon using eq. (2.5) and, in the second equality,
the bare quantities have been expressed in terms of their renormalised counterparts, neglecting
higher-order terms of O(δ2

X ,∆vδX , (∆v)2). The renormalisation condition is that the sum of
the tadpoles, T H , and the tadpole counterterm, δT , should vanish at the given order,

0 != δT + T H ⇔ δT = −T H = −
[

+
]
. (A.4)

With this condition, all contributions from tadpole subdiagrams are integrated out and
collected in the counterterm δT . Inserting eq. (A.3) as well as the field, parameter, and vertex
renormalisations from eqs. (2.24) through (2.28) into eq. (A.2) yields the fully renormalised
Lagrangian

L = 1
2(1 + δH)(∂µH)†(∂µH) + HδT −

(
m2

H

2
(
1 + δm2

H + δH

)
− 3δT

2v

)
H2

−
(

g3
3!

(
1 + δm2

H + 3
2δH − δv

)
− δT

2v2

)
H3 − g4

4!
(
1 + δm2

H + 2δH − 2δv

)
H4

+ i(1 + δt)t̄ /Dt − mt

(
1 + δmt + δt −

δT

vm2
H

)
t̄t − gt

(
1 + δmt +

δH

2 + δt − δv

)
Ht̄t,

(A.5)

where the couplings g3, g4 and gt are the renormalised counterparts of the bare couplings,
g3,0, g4,0 and gt,0. They obey eq. (2.6) after substituting the bare quantities with their
renormalised values. Since the explicit tadpole insertions into each diagram now cancel
with the corresponding explicit tadpole counterterm insertions, we can neglect both of these
explicit contributions. Tadpole contributions will therefore only appear implicitly due to the
terms δT appearing in the counterterm insertions, given in appendix A.2 (see also ref. [57]
section 3.1.7, where they use the notation δt to denote what we call δT in the present work).

We perform an on-shell renormalisation, which fixes δH , δt, δm2
H and δmt via the

renormalisation conditions

0 =
[
Σ(/p)

]
/p=m

, 0 =
[
d
d/p

Σ(/p)
]

/p=m

. (A.6)

The masses m and self-energies Σ are those of the top quark and the Higgs boson, respec-
tively. For the top self-energy Σt, only the mixed top-Higgs bubble and the
counterterm insertion contribute whereas for the Higgs self-energy ΣH , there are
three diagrams and the counterterm insertion. The resulting renormalisation constants are
given in appendix A.2.
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(d) (e) (f)
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Figure 6. Example diagrams contributing to the fixing of δv from the Higgs cubic vertex ((a), (b),
(c)), the Yukawa vertex ((d), (e)) and the Higgs quartic vertex ((f), (g), (h), (i)).

The vev counterterm can be fixed using any of the Yukawa, triple, or quartic Higgs self-
interaction vertices. For consistency with much of the literature on EW corrections, we employ
the Gµ scheme and use the counterterm as given in ref. [59] in the limit MW → 0, MZ → 0,
as detailed in section A.1.

Finally, we note that the top-quark wave function renormalisation counterterm δt enters
in multiple vertices, but since there are only closed top loops occurring, the final result
should not contain any dependence on this quantity. Every top vertex counterterm insertion
∝ δt is cancelled by the top propagator insertion ∝ δ−1

t . This also serves as a crosscheck
of the renormalised amplitude and, indeed, we do not observe any dependence on δt in
our final expression.

A.1 Vacuum expectation value counterterm

The vev counterterm can be fixed by demanding the finiteness of the higher-order electroweak
corrections to an electroweak vertex of the theory. For determining the poles of the countert-
erm, it does not matter which vertex is picked, and we are free to use either the Yukawa,
Higgs cubic or Higgs quartic vertex. By explicit calculation, we find that all three vertices
give the same UV divergent part for the vev counterterm,

δv|UV = −3m4
H + 2m2

Hm2
t Nc − 8m4

t Nc

32π2m2
Hv2ϵ

, (A.7)
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upon demanding that NLO electroweak virtual contributions do not correct the tree-level
expression for the vertex. For example, for the Yukawa coupling, we may require that

−igt
!= ΓHt̄t, (A.8)

at NLO with the diagrams in figures 6(d) and 6(e) contributing to ΓHt̄t. This fixes the vev
counterterm and we find that the divergent part in our theory is given by

δgt
v (gt, g3, g4)|UV = −g3gtm

2
H + 2g2

t mt
(
m2

H − 4m2
t

)
Nc

32π2m2
Hmtϵ

(A.9)

where g4 is included as an argument because δgt
v can, in principle, have a g4-dependence

at higher-orders (but the UV part at NLO explicitly does not). If instead we fix the vev
counterterm from the Higgs cubic self-coupling by requiring that

−ig3
!= ΓHHH (A.10)

holds to NLO in our theory — contributions include the diagrams in figures 6(a), 6(b)
and 6(c) — then we obtain,

δg3
v (gt, g3, g4)|UV =− 1

32π2g3m4
Hϵ

[
g3g4m4

H + 8g4gtm
2
Hm3

t Nc − 8g2
3gtm

3
t Nc

+ 2g3g2
t m2

H

(
m2

H + 12m2
t

)
Nc − 48g3

t m4
HmtNc

]
.

(A.11)

Similarly, from the requirement

−ig4
!= ΓHHHH , (A.12)

we obtain

δg4
v (gt,g3,g4) |UV =−2gtg4Nc(gt(m4

H+6m2
Hm2

t )−2g3m3
t )+g2

4m4
H−24g4

t m4
HNc

32π2g4m4
Hϵ

(A.13)

whose derivation includes contributions from the diagrams in figures 6(f), 6(g), 6(h) and 6(i).
Upon insertion of the SM coupling values of eq. (2.6), all of our calculations of the divergent
part of δv coincide. That is to say,

δgt
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣
UV

= δg3
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣
UV

= δg4
v

(
mt

v
,
3m2

H

v
,
3m2

H

v2

)∣∣∣∣∣
UV

!= δv|UV

(A.14)
as they must since the pole cancellation has to occur independently of the scheme choice.
The finite terms, on the other hand, differ. To obtain a result comparable with other authors’
works, we choose the Gµ scheme. The pole structure also agrees in this case; to fix the finite
part we use the result of ref. [59] which is obtained from the full SM contributions in Gµ

scheme. After application of the same limits as in the Lagrangian, namely MW , MZ → 0,
we arrive at the counterterm in eq. (A.20).
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i
p2−m2

H
−i

[
(m2

H − p2)δH + m2
Hδm2

H − g3
m2

H
δT

]
i(/p+mt)
p2−m2

t
−i

[
(mt − /p)δt + mtδmt − gt

m2
H

δT

]
igstaγµ igsδtt

aγµ

−igt −igt

(
δmt + δH

2 + δt − δv

)
−ig3 −ig3

(
δm2

H + 3
2δH − δv

)
+ i g4

m2
H

δT

−ig4 −ig4(δm2
H + 2δH − 2δv)

Table 5. Feynman rules and counterterm insertions for the renormalised theory.

A.2 Feynman rules & counterterm expressions

The Lagrangian of Eq. (A.5) yields the Feynman rules for renormalised quantities and
counterterm insertions given in table 5.

We do not list the rules for the gluon self-interactions, since any diagrams involving
these vertices are identically zero by colour. The analytic expressions for the counterterm
insertions δX are as follows:

δmt =− gt

2m2
t

[(g3mt

m2
H

− gt

)
Ã0(m2

H) + gt

(
1− 8 m2

t

m2
H

Nc

)
Ã0(m2

t )

+ gt(m2
H − 4m2

t )B̃0(m2
t , m2

H , m2
t )
] (A.15)

δt =+ g2
t

2m2
t

[(
(3− 2ϵ) + 4(ϵ − 1) m2

t

m2
H

)
Ã0(m2

H) + (2ϵ − 3)Ã0(m2
t )

+ (2ϵ − 3)(m2
H − 2m2

t )B̃0(m2
t , m2

H , m2
t )
] (A.16)

δm2
H =− 1

2m2
H

[( g2
3

m2
H

− g4
)
Ã0(m2

H) + 8gtNc
(
gt − g3

mt

m2
H

)
Ã0(m2

t )

− g2
3B̃0(m2

H , m2
H , m2

H)− 4g2
t (m2

H − 4m2
t )NcB̃0(m2

H , m2
t , m2

t )
] (A.17)

δH =+ 1
3m2

H

[ g2
3

m2
H

(ϵ − 1)Ã0(m2
H) + 12g2

t Nc(1− ϵ)Ã0(m2
t )

+ g2
3
2 (2− ϵ)B̃0(m2

H , m2
H , m2

H)

− 6g2
t ((1− ϵ)m2

H + 2m2
t )NcB̃0(m2

H , m2
t , m2

t )
] (A.18)

δT = −g3
2 Ã0(m2

H) + 4gtmtNcÃ0(m2
t ) (A.19)

δv = 1
2DπD/2

1
2v2

(
−m2

H

2 + Ncm
2
t − 2NcA0(m2

t )− 3A0(m2
H) + 8Nc

m2
t

m2
H

A0(m2
t )
)

(A.20)
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As explained in appendix A.1, δv cannot be split up in different coupling structures, since
we obtain the full expression from [59], where this is not provided.

The scalar integrals are defined to be

Ã0
(
m2

1

)
:= 1

2DπD/2 A0
(
m2

1

)
= µ4−D

2DπD/2

∫ dDℓ

iπD/2
1

ℓ2 − m2
1

(A.21)

B̃0
(
p2, m2

1, m2
2

)
:= 1

2DπD/2 B0
(
p2, m2

1, m2
2

)
= µ4−D

2DπD/2

∫ dDℓ

iπD/2
1

(ℓ2 − m2
1)((ℓ + p)2 − m2

2)

(A.22)

with the t’Hooft scale, µ, to repair the dimensionality and the causal iδ Feynman prescription
understood implicitly.

A.3 Comparison of counterterms and renormalization procedures

In this section, we briefly compare the renormalisation procedure used for the vev in our
work, given in eq. (2.28) and eq. (A.20), to the schemes presented in ref. [59] and ref. [57].

After dropping all non-SM terms, the vev renormalization in eq. (2.18) of ref. [59] reads

1
v2

T,0
= 1

v2
µ

[
1− 1

v2
µ

∆v(4,1,µ)
µ

]
= 1

v2
µ

[
1− 1

v2
µ

∆ṽ(4,1,µ)
µ − 1

v2
µ

∆v
(4,1,µ)
µ,tad

]
, (A.23)

where we have used eq. (A.14) of the same reference to collect all contributions not associated
with tadpoles in ∆ṽ

(4,1,µ)
µ and the remaining tadpole contributions in ∆v

(4,1,µ)
µ,tad . Using the

relations,

vT,0|[59] ≡ v0 +∆v, (A.24)
vµ|[59] ≡ v (A.25)

and inserting eq. (2.28), we obtain,

1
v2

T,0
= 1

(v0 +∆v)2 ≈ 1
v2(1 + 2δv + 2∆v

v )
≈ 1

v2 (1− 2δv − 2∆v

v
) (A.26)

where, in the last two manipulations, we retain only terms linear in δv and ∆v. By comparison,
we can identify

∆v(4,1,µ)
µ |[59] ≡ 2v2(δv +

∆v

v

)
, (A.27)

∆v
(4,1,µ)
µ,tad |[59] ≡ 2v∆v . (A.28)

The comparison of our counterterms to those given in ref. [57], is less straightforward,
as they instead use the renormalisation constants δM2

W , δsw, δZe to parametrise the renor-
malisation, where e is the electric charge, sw = sin θw, and θw is the Weinberg angle. Using
the tree level relation for the bare vev,

2MW,0sw,0
e0

= v0 (A.29)

– 25 –



J
H
E
P
1
1
(
2
0
2
4
)
0
4
0

we obtain
δM2

W |[57]
2M2

W

+
δsw|[57]

sw
− δZe|[57] = δv, (A.30)

where the extra factors of MW and sw in the denominator are due to their definition
M2

i,0 = M2
i + δM2

i , for i = W, Z rather than e.g. M2
i,0 = M2

i (1 + δM2
i ), see eq. (98) of

ref. [57]. This allows us to express our counter terms, given in section A.2, in terms of their
renormalisation constants. To match our counterterm expressions exactly, we additionally set
δtPRTS|[57] = 0 and δtFJTS|[57] = δT in their expressions, i.e. we select the Fleischer-Jegerlehner
tadpole scheme. Finally, to recover the counterterm insertions we give in eq. (A.20), the δZe

expression should be derived in the Gµ scheme, as described in section 5.1.1 of ref. [57].

B Analytic continuation of the master integrals

In order to determine how we should perform the analytic continuation of the master integrals
from the Euclidean region to the physical region, we first remark that the Feynman “iδ”
prescription in momentum space corresponds, in Feynman parameter space, to the following
replacement in the second Symanzik polynomial F :

F −→ F − iδ (B.1)

where we have used the postive-definiteness of the first Symanzik polynomial U . This
prescription must be applied consistently in order to obtain valid results when crossing
threshold singularities. From the diagram-constructable definition of the second Symanzik
polynomial F , this corresponds to sending all the (squared) momenta flowing between two
2-forests, s(T1, T2), to s(T1, T2) + iδ and internal masses squared, m2

i , to m2
i − iδ [54].

In DiffExp, we encounter segments centred on threshold singularities and their ex-
pansions may involve multi-valued functions such as logarithms or square roots. At these
points, the δ-prescription supplied as an input by the user is applied. Given that s(T1, T2)
are linear combinations of the Mandelstam variables and external masses (which also obey
conservation relations), DiffExp instead takes as input a list of irreducible polynomials
(“DeltaPrescriptions”) in the dimensionless variables of the problem which are zero on these
threshold singularities and an additional term ±iδ to prescribe the branch choice. For physical
threshold singularities, the correct choice of ±iδ is essential to obtain accurate results but
DiffExp also requires a choice to be made for polynomials which go to zero on non-physical
singularities and this choice can be freely made without affecting results.

In practice, similarly to [87], we construct the power sets of both the external momenta
and the internal masses and generate a list of δ-prescriptions of the form s − m2 + iδ where
s is a generalised squared sum of momenta and m2 is a generalised squared sum of internal
masses. We obtain a list of irreducible polynomials which are zero on singularities of our
partial derivative matrices Axi and then see which correspond directly to prescriptions in
our constructed list and give them the correct sign of iδ by expanding the given irreducible
polynomial about that point. The remaining singularities are non-physical and we arbitrarily
assign +iδ. This method generates correct results for all points checked so far with pySecDec
and changing the sign of a prescription for a polynomial corresponding to a physical singularity
can be explicitly seen to give the wrong result.
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C Bare form factors

In figure 7, we plot the bare form factors separated on coupling structures as in eq. (2.16).
The spread of points, which is due to t-dependence, is more pronounced in the contributions
to F
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2 than in the contributions to F
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Figure 7. Plots of the ϵ0 coefficient of the bare form factors separated on coupling structure, F
(1)
i,j .
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