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A B S T R A C T

Monitoring programs require more advanced data management for the registered time series. Classical temporal 
series decomposition cannot fulfil current needs regarding adequate data representation, optimization of the 
spatial-temporal sampling resolution and predictive power. In the manuscript at hand, we will demonstrate that 
Gaussian process regression (GPR) models are a vital machine-learning tool to interpret temporal series, 
improving understanding of geochemical cycles, providing input data for geochemical models and acting as a 
guide for future decisions in environmental monitoring. Firstly, we explore the impacts of sampling frequency in 
the GPR performance for temporal series with variable lengths and sampled frequencies of water discharges. On a 
second approach, we present the strengths and weaknesses between classical decomposition of temporal series 
and GPR results for a case study: a 14-year record of water discharge, suspended particulate matter and antimony 
concentrations in the Garonne River. Our results suggest that (i) even short temporal series with low sampling 
resolution can be accurately characterized by GPR when presenting well defined seasonal patterns, and (ii) GPR 
provides more detailed and robust support than classical statistics to identify processes responsible for multi- 
scale geochemical signals. This work provides a reference for researchers, engineers, and stakeholders for 
more reliable monitoring, understanding, and managing aquatic ecosystems.

1. Introduction

Monitoring programs of environmental physical-chemical parame
ters in aquatic systems (e.g., water discharge, temperature, pH, trace 
element concentrations, etc.) are designed to assess water quality. These 
programs often monitor identified contaminated sites (i.e., dispersion of 
the contamination, bioavailability and potential socio-economic impact 
of the contaminant, effectiveness of remediation measures, system 
resilience, etc.) or have been designed to understand a particular system 
in the context of Climate Change (e.g., ocean acidification, variations in 
water discharges, groundwater levels, etc.). Overall, monitoring pro
grams produce long-term temporal series of several parameters. 
Advanced data processing of these series is necessary and of utmost 
importance to allow researchers and policy makers to (i) identify 
adequate monitoring frequency without missing dominating local/ 
regional processes and/or anomalies, (ii) obtain tools for early warning 
or extreme event identification, and (iii) predict interpolated data be
tween sampled points, helping quantify flux transfers of biogeochemical 
cycles and/or future conditions/scenarios, for watershed management. 

The key points required to achieve these goals involve having a repre
sentative dataset, allowing to characterize properly the site, and 
selecting the appropriate mathematical approach for the data process
ing. In this work specifically, we will address points (i) and (iii).

1.1. Options for time series analysis: classical vs modern approaches

Over time, several mathematical models have been used for data 
treatment of temporal series. The biggest gap concerning computational 
power and output reliability exists between classical statistic methods (i. 
e., also known as traditional statistics or linear correlation and regres
sion analyses; Khalil and Ouarda, 2009, Zhu and Piotrowski, 2020) and 
machine learning (ML) approaches. Classical statistics based on 
decomposition of temporal series (e.g., methods identifying a linear 
trend via Sen’s slope, periodicity via a seasonal factor, and random error 
as noise in the series) was and is still commonly used, given its simple 
application and fast overview of the data (Houston, 1983, Gil-Díaz et al., 
2018. Fourier analysis, Multiple Regression Analysis, ARIMA, etc., 
constitute examples of classical statistic approaches used for time series 
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decomposition and analysis (e.g., Kovač-Andrić et al., 2009). Never
theless, classical statistics range widely in generalisability, precision, 
and realism, meaning that we still need to identify under which condi
tions classical statistics, or rather other approaches, accurately predict 
observational data and provide understanding of system behaviour 
(Nielsen, 2019; Robson, 2014).

With increasing computational power and accessibility of resources, 
new methods are becoming available to improve on the limitations and 
restraints of classical statistics. Statistical models commonly require 
normality or non-serial correlation for non-parametric approaches that 
environmental datasets do not always satisfy. Even more importantly, 
describing datasets by fitting the best static functions imposed by the 
modeller (e.g., linear regression) biases not only the understanding of 
the system but also the further validity and application of the model for 
predicting scenarios. To gain a deeper understanding of parameter 
correlation, environmental studies nowadays apply more frequently ML 
approaches, often for other applications such as clustering of variables 
(Di et al., 2019) and sometimes for temporal series analyses (Ding et al., 
2023; Hanson et al., 2020). In any case, ML allows a wider flexibility in 
terms of data conditions (input/constraints) and deals in a proficient 
way with bigger datasets presenting complex non-linear issues, 
providing more reliable and powerful predictive tools (Nielsen, 2019). 
Deep learning or artificial neural network models are generally popular, 
and some works have already been published showing applications in 
aquatic studies, e.g., for predicting long-term groundwater levels 
(Wunsch et al., 2022), for detecting anomalies in multimodal time series 
showing both spatial and temporal dependence (Ding et al., 2023), 
identifying water treatment plant resilience to an organic contaminant 
(Gheibi et al., 2022) and even for predicting dissolved oxygen or 137Cs 
dynamics from other hydrodynamic variables (i.e., complicated 
encoder-decoder approaches, Hu et al., 2024, Pelé et al., 2024). How
ever, data availability often causes inaccuracies in the performance of 
neural networks (Pelé et al., 2024). In addition, neural networks rarely 
provide interpretable trends that shed light on the underlying data 
correlation due to their complex neural structure and need big amounts 
of data for training (Bonakdari et al., 2019)

1.2. Time series analysis with GPR models

Another ML technique, Gaussian Process Regression (GPR; Rasmus
sen and Williams, 2006), allows a different approach to time series. GPR 
is an advanced ML approach which excels at flexible non-parametric 
modelling, accommodating multimodal data while finding functional 
relationships (i.e., kernel parameters; Zhu and Piotrowski, 2020). These 
kernels (e.g., long-term, seasonal/decay and short-term events) describe 
the covariance of a priori dispersal functions over the target data points. 
GPR computes a likelihood function based on the training information 
and assumes that the joint probability distribution of the model output is 
Gaussian. Samples of these stochastic processes give rise to an average 
mean function which then can be used for interpolations between 
sampled points and/or predictions for future trends (Elbeltagi et al., 
2021; Zhu and Piotrowski, 2020). The models also include uncertainty 
and hyperparameter estimates for the predictions (Camps-Valls et al., 
2019), which is one of the major advantages of GPR compared to other 
ML methods (Zhu and Piotrowski, 2020), converting GP-based models 
one of the most popular tools for acquiring valid and useful predictions 
(Vu, 2023). In fact, out of several forecasting techniques applied to wind 
speed prediction, GPR has been highlighted as an improved approach 
capable of accounting for the impact of data stability on prediction ac
curacy (Hoolohan et al., 2018). Compared to neural networks, GPR 
models suffer less from over-fitting issues (Lin et al., 2019).

In addition to the evolving computer hardware capacities and the 
explosion of the machine learning community, GPR nowadays can be 
scaled up to further account for the computational cost growing cubic (O 
(N3)) with the data size (i.e., a comprehensive review on scalable GPs 
can be found in Liu et al., 2020). Furthermore, advancements in 

techniques have been made such as Deep Gaussian Processes (DGPs), 
which constitute a combination of GPs in a layer structure, allowing to 
model highly complex data structures. DGPs have been employed in 
some studies over the recent years, directly as a ‘surrogate model’ or 
‘emulator’, alternative to the original model (e.g., to support model- 
based Climate Change mitigation, Nortier et al., 2024) or for alterna
tive approaches (e.g., in autoencoders, Domingues et al., 2018, Camas
tra et al., 2023). However, there are some disadvantages of DGPs. 
Mainly, interpretability as for neural networks is difficult, as deeper 
layers lose correlation to the actual input data. Hence, given the lack of 
comparison with linear regression approaches (classical statistics) and 
the additional high computational demand of DGPs, we refrained from 
applying DGPs in this study.

1.3. Objectives, novelty and impact

Despite GPR being a powerful technique, its main drawback is its 
computational complexity, explaining its scarce application in the sci
entific literature. Most applications of GPR in environmental observa
tion systems until now are related to fields of research related to green 
energies (e.g., solar radiation, wind speed), where GPR is commonly 
used in hybrid forms with other tools such as clustering analyses and/or 
artificial neural networks (e.g., Hoolohan et al., 2018; Vu, 2023; Zhang 
et al., 2021). Other disciplines at the water-soil interface have also used 
GPR models for identifying the optimal number of physical parameters 
that describe the water footprint in the River Nile (Elbeltagi et al., 2021), 
or to obtain model uncertainty estimates for topsoil physical properties 
(Ballabio et al., 2019). Thus, until now, few studies have applied GPR 
models per se to characterize time series of aquatic systems.

Most of the available studies in aquatic systems have used GPR for 
forecasting physical parameters (e.g., water temperature, conductivity, 
water level, etc.) from direct or remote-sensing data (Camps-Valls et al., 
2019), for predicting e.g., water level in canals (Bonakdari et al., 2019) 
or long-term dam deformation (Lin et al., 2019), and for forecasting 
river water temperature (Zhu and Piotrowski, 2020). Only one study has 
highlighted that, out of eight machine learning algorithms, GPR ap
proaches show superior performance in predicting water quality scores 
(i.e., Sajib et al., 2024). However, to the best of our knowledge, no study 
has tried to provide a systematic approach and comparison on the 
characterization of hydro-geochemical time series with GPR, applicable 
to several sites in a given area, particularly for the area of study of this 
work. This means that current models evaluating trace element time 
series and predicting future concentrations for estimated long-term 
fluxes are often based on linear trend decomposition and temporal 
compartmentalization (Pougnet et al., 2019; Pougnet et al., 2022). A 
study on the adequacy of GPR is still missing and could offer better 
opportunities for more appropriate mass balance calculations in a given 
aquatic system, allowing to characterize more precisely the system 
resilience to geogenic vs anthropogenic impacts (i.e., useful for 
biogeochemical cycles and watershed management). In addition, GPR 
can also be applied for characterizing and predicting temporal series 
that are currently derived from more demanding fluid dynamics (e.g., 
Navier-Stokes equations; Ranjbar et al., 2020), simplifying the compu
tation time and applicability of aquatic models.

Therefore, the core of this work is a proof of concept regarding the 
use of GPR for time series analyses in aquatic systems, applied for the 
first time in the context of environmental monitoring of geochemical 
parameters in a dynamic river system. We aim at (i) evaluating the 
performance of GPR as a tool for identifying temporal sampling reso
lution, and (ii) identifying via GPR the local/regional processes domi
nating geochemical reactivity and behaviour compared to classical 
statistics. For the latter, a comparison with classical statistics will be 
included to highlight and validate the advantages of GPR and the 
environmental implications of such approaches.
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2. Material and methods

2.1. Gaussian processes

In the following we present a short introduction to Gaussian pro
cesses (GPs). For detailed information, the reader can consult Rasmussen 
and Williams (2006).

The target of a GP is to model a functional mapping consisting of the 
underlying input-output correlation (f(x)) as well as the noise related to, 
e.g., uncertainties in measurements: 

y = f(x)+N
(
0, τ2) (1) 

Here y represents the measured target values and the noise is 
assumed to follow a gaussian distribution with mean zero (N(0,τ2)). GPs 
can hence be interpreted as an infinite set of prior probability distribu
tions with a certain mean function m(x) and a covariance function k(x, 
x’) with x and x’ being input data to the function of interest. 

f(x) ∼ GP(m(x) , k(x, xʹ) ) (2) 

To evaluate a GP on an input x* given a set of known inputs X, a joint 
gaussian distribution is formed to the output y* according to: 
(

y
y*

)

∼ N
(

0,
[

K(X,X) + τ2Іn K(X, x*)

K(x*,X) K(x*, x*) + τ2

])

(3) 

with K being the covariance matrix, i.e. the kernel of the GP, defined by 
the mutual covariances between all data points. This leads to posterior 
predictive mean E[y*] and variance V[y*] given by: 

E[y*] = K(x*,X)
[
K(X,X) + τ2Іn

]− 1y (4) 

V[y*] = K(x*, x*) − K(x*,X)
[
K(X,X) + τ2Іn

]− 1K(X, x*)+ τ2 (5) 

The set of hyperparameters ϴ (lengthscales, variance, period, etc.) of 
the kernel functions are optimized by maximizing the marginal likeli
hood of the predictions ℙ = p(y|X, ϴ), commonly written as: 

logℙ = −
1
2
yT ( K(X,X) + τ2Іn

)− 1y −
1
2
log
⃒
⃒K(X,X) + τ2Іn

⃒
⃒ −

N
2

log2π (6) 

where N is the number of samples.

2.2. Model approach

To obtain a predictive and interpretable model that can be also 
transferred and compared to similar systems the employed GPR models 
consist of 4 parts that describe environmental phenomena. A squared 
exponential (SE) kernel Klong (e.g., timescales >1y, Eq. (7)) to describe 
long-term trends, a periodic kernel Kseasonal modelling seasonality (Eq. 
(8)), a SE kernel Kdecay capturing seasonal decay (Eq. (7)) and a SE 
kernel Kevent (timescale <60 days, Eq. (7)) describing flood events. After 
successive inclusion of the kernels in the order described above, the 
complete kernel for the GP model is K = Klong + Kseasonal ⋅ Kdecay + Kevent. 
This is the classical composition of a kernel, where functions are selected 
according to the expected, logical distribution of each component of the 
dataset (e.g., composition of the GPR for the Mauna Loa atmospheric 
CO2 long-term record, Rasmussen and Williams, 2006). For more in
formation on typical kernel functions used in Earth observation ana
lyses, the reader can consult Camps-Valls et al. (2016). Overall, kernels 
provide information via three main parameters: the variance (i.e., 
related to the amplitude and spread of the values), the lengthscale (i.e., 
timespan within which points correlate significantly), and the period
icity (i.e., how long it takes for the time series to repeat its pattern). All 
models are obtained according to the same protocol, which constructs 
the total kernel K sequentially in the four steps. The models were 
implemented as described in the GPFlow library (Matthews et al., 2017). 

KSE(x, xʹ) = σ2exp

(

−
(x − xʹ)2

2l2

)

(7) 

Kseasonal(x, xʹ) = σ2exp
(

−
2sin2(π|x − xʹ|/p )

l2

)

(8) 

2.3. Datasets and data treatment

To proof the concept, we used data from two long-term monitoring 
programs performed at the Garonne River (SW France), displaying both 
periodicity as well as short-lived flood events in several variables. The 
first monitoring program belongs to the National Hydrographic Bank 
(DIREN, http://www.hydro.eaufrance.fr/), reporting online historical 
records of daily river discharges (Q) at several locations, some over >50 
years long. For this study, we extracted an average daily Q dataset of 21 
years (Supplementary Fig. S1). The second database used in this work is 
a published time series (Gil-Díaz et al., 2018, Supplementary Fig. S2 and 
S3) that combines the river discharges (Q) with transported suspended 
particle matter (SPM), and antimony (Sb) concentrations in both, dis
solved (Sbd) and particulate (Sbp) phases (i.e., more specifically, Th- 
normalized Sbp to avoid particle grain size effects, as explained in Gil- 
Díaz et al., 2018). The latter dataset is over 14 years long with a sam
pling frequency of 24 days (as defined in Coynel et al., 2004). Overall, 
five sampling sites along the Garonne River watershed are evaluated, 
accounting for the Pyrenean source (i.e., Port-Sainte-Marie – PSM site), 
the main tributary of the Garonne (i.e., Temple – T, Boisse-Penchot – BP 
and a historically contaminated site in Riou Mort – RM, in the Lot River 
watershed), and its overall contribution to the incoming flow into the 
Gironde Estuary (i.e., La Réole – LR). More details about the dataset 
characteristics can be found in Gil-Díaz et al. (2018). For further use and 
comparison between sites, the data of the time series was normalized 
using the quartile normalization with the 0–75 % quartile range, being 
mapped to the (0,1] interval. Thus, this normalization is not disturbed 
by extreme events such as floods (i.e., outliers beyond the 75 % quar
tile), as they do not impact the overall dataset distribution. Appropriate 
normalization is a prerequisite to avoid degeneration of ML models 
(Passalis et al., 2020) and allows a better comparison between models 
for different systems/sample sites.

3. Results

3.1. Model performance

3.1.1. Sampling frequency
As a first approach, a selected time series of 21 years at the Garonne 

River (at site LR, Supplementary Fig. S1) was extracted from the DIREN 
database to test the impact of sampling frequency and amount of data on 
the performance of the ML algorithm. The full 21-year long time series 
was used to construct a model according to the protocol defined earlier 
considering every 32nd, 24th, 16th, 8th, 4th, and 2nd point in the 
dataset. No contribution of seasonal decay or long-term trends were 
found for this dataset and hence not mentioned in the following dis
cussion. Results (Table 1, complete parameters shown in Supplementary 
Table S1) show fast convergence for the seasonal part with stable values 
starting from the LR_Q_32 model. Hence, our GPR models are robust 
when identifying the seasonal component of the series, independent of 
the sampling frequency (i.e., tested for up to monthly frequencies for 
temporal series with periodicity of one year). Due to the smoothness of 
the measured data, the lengthscale of the events decreases with the 
sampling frequency. The sampling frequency governs how certain GPR 
models can determine and quantify the periodicity/correlation of 
existing events in the river (e.g., flood events for the case of Q time se
ries). This is in line with the improved accuracy of the GPR prediction (i. 
e., increased coefficient of determination, r2, with sample frequency). 
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Noteworthy, the computing time of the model scaling O(N3) with the 
number of samples N.

3.1.2. Dataset length
Another important feature is the length of the time series, as certain 

correlations only appear sporadically, which can prevent the model 
from learning their characteristics. To this end we selected the full 21- 
year long time series based on an 8-day sampling frequency 
(LR_Q_8_21y) and cropped it to include only the most recent 21, 14, 8, 4 
and 2 years (Table 2, complete parameters shown in Supplementary 
Table S2). The periodicity of the seasonal event is only consistently 
identified for this Q timeseries from a length of the dataset longer than 4 
years. Nevertheless, the accuracy of the prediction (r2) seems less 
dependent on the length of the dataset. However, this cannot be 
generalized to all timeseries, and a case-by-case study should be done to 
rule out the relevance of the dataset length. Despite different time pe
riods, the event kernel is stable in all cases within the uncertainty. Based 
on this analysis we determine an accuracy of ±40 days for the periodic 
kernel and ± 2 days for the modelled event correlation. This shows that 
the accuracy of the models later (i.e., database of 14 years with a 24-day 
sampling frequency) is sufficient to get Kevent lengthscales with errors of 
several days, whereas the period is more robust in both dimensions (cf. 
Tables 1 and 2) and can be determined within 2 % error.

3.2. Model application for geochemical data

GPR model parameters for the second database used in this work, 
containing the full 14 years long geochemical time series with a sam
pling frequency of 24 days, for Q, SPM, Sbd and Sbp/Thp concentrations 
at five sampling sites along the Garonne River watershed are presented 
in Table 3. Details on complete parameters are shown in Supplementary 
Table S3. A kernel is considered to have no contribution (− ) when the 
variance (σ2) of the kernel hyperparameters is zero after optimization. 
This is generally the case for the Trend (and some seasonal patterns), 
indicating that the long-term pattern of the datasets is not explained by a 
long-term correlation of the data, but rather by the other components (e. 
g., environmental processes dominated by the seasonal variability or 

sporadic events caused the observed pattern).
Overall, all sites and variables have been adequately characterized 

via GPR models, showing similar orders of magnitude for the model 
accuracies (r2), despite the variable temporal patterns of each site (e.g., 
natural sites vs sites showing anthropogenic influence). In addition, 
model accuracies show improved values compared to the expected 
performance of a 24-day frequency time series, as indicated from the 
water discharge systematic analyses (Tables 1 and 2). The fact that GPR 
did not find a systematic seasonality for all variables suggests that the 
periodicity in the GPR is not an artifact of the method. No significant 
contribution of the seasonal decay was found for any dataset in this 
study. More comments on the implications of these GPR models are 
found in the discussion.

4. Discussion

4.1. GPR for monitoring geochemical systems

4.1.1. Insights to understanding environmental timeseries: linear 
decomposition vs GPR

Classical statistics from Gil-Díaz et al. (2018), i.e., non-parametric 
Mann-Kendall test for the trend, combined with Sen’s slope and signif
icance of changes with Pettitt’s test, was applied to the 14-year time 
series for all geochemical data (Q, SPM, Sbd and Sbp) and five sites at the 
Garonne River. Supplementary Table S4 resumes the outcomes from Q 
and SPM time series analysis whereas Supplementary Table S5 presents 
the outcomes for Sbd and Sbp. Supplementary Fig. S4 and S5 show the 
graphical representations of the time series decomposition for Sbd and 
Sbp, including the model accuracies (r2) regarding their predictive ca
pacity (measured vs modelled results). In summary, these results re
ported no significant trends for Q and SPM (except BP), whereas all Sbd 
and Sbp time series had significant decreasing trends over time for all 
sites, with a change in slope around 2008 (except at RM, Gil-Díaz et al., 
2018). In the lack of further evidence, such Sb linear trends, common 
among sites and independent of Q and SPM, were hypothesized to be 
related to potential atmospheric influence (e.g., a potential combination 
of anthropogenic releases with climatic oscillation patterns), 

Table 1 
Resulting GPR model parameters for the 21-y time series of water discharge (Q) at La Réole (LR) with varying dataset temporal frequencies. Simulated sampling 
frequencies of the dataset varies from every day (“_1”) to every 32 days (“_32”). Parameters: Lengthscales (l), variance (σ2), period (p), and estimated dataset noise 
variance (τ2). Time scales: years (y) or days (d). Measured model accuracies: mean absolute error (MAE), root mean square deviation (RMSD), the log marginal 
likelihood (log(ℙ)) and the coefficient of determination between the measured and modelled data (r2).

Model Seasonality Events Noise Model accuracy

σ2 p (y) σ2 l (d) τ2 MAE RMSD -log(ℙ) r2

LR_Q_32 0.89 1.01 0.04 164 0.36 0.36 0.59 236 0.38
LR_Q_24 0.63 1.00 0.11 38 0.22 0.30 0.53 272 0.50
LR_Q_16 0.54 1.00 0.12 26 0.24 0.28 0.51 428 0.55
LR_Q_8 0.79 1.00 0.17 15 0.16 0.22 0.43 727 0.68
LR_Q_4 0.54 1.00 0.21 11 0.14 0.18 0.37 1293 0.76
LR_Q_2 0.51 1.00 0.28 4 0.07 0.10 0.22 2078 0.92
LR_Q_1 2.26 1.00 0.30 2 0.01 0.04 0.08 1097 0.99

Table 2 
Resulting GPR model parameters for the 21-y time series of water discharge (Q) at La Réole (LR) with varying dataset lengths. Dataset lengths vary from the complete 
dataset of 21 years (“_21y”) to only include the last 2 years (“_2y”), at a sampling frequency of every 8 days (“_8_”). Parameters: Lengthscales (l), variance (σ2), period 
(p), and estimated dataset noise variance (τ2). Time scales: years (y) or days (d). Measured model accuracies: mean absolute error (MAE), root mean square deviation 
(RMSD), the log marginal likelihood (log(ℙ)), and the coefficient of determination between the measured and modelled data (r2).

Model Seasonality Events Noise Model accuracy

σ2 p (y) σ2 l (d) τ2 MAE RMSD -log(ℙ) r2

LR_Q_8_2y 1.48 0.95 0.26 15 0.31 0.27 0.52 99 0.65
LR_Q_8_4y 0.83 1.00 0.23 16 0.11 0.20 0.40 126 0.70
LR_Q_8_8y 0.71 0.99 0.14 17 0.15 0.20 0.41 256 0.65
LR_Q_8_14y 0.94 1.00 0.18 15 0.19 0.20 0.40 522 0.66
LR_Q_8_21y 0.79 1.00 0.17 15 0.16 0.22 0.43 727 0.68
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dominating the long-term Sb signal in the Garonne watershed. When 
applying the GPR model to the same time series for all geochemical data 
and five sites at the Garonne River, results show contrasting outcomes 
per variable and studied site (Table 3, Supplementary Table S3). For 
example, there are no systematic, common parameters for Sbd and Sbp/ 
Thp time series for all sites (except for the periodic factor at LR and RM, 
and the Trend at BP). However, given the better representation of the 
measured variables via GPR (e.g., Sbd at LR, Fig. 1; for all sites see 
Supplementary Fig. S6) and the significant improvement of the model 
accuracy (r2; Supplementary Fig. S4 and S5 vs S6) one can safely 
interpret this as the most certain outcome compared to classical 

statistics.
As with classical statistics, Q and SPM show no particular long-term 

trend over time at all sites with GPR, and the common exception for SPM 
at BP (i.e., variable with a significant trend in both classical statistics and 
GPR). Nevertheless, Sbd and Sbp/Thp trends show different long-term 
lengthscales. Since the lengthscale is a measure of the correlation time 
of data points, the sites having different long-term lengthscales dis
courages the idea of a single anthropogenic discharge in 2008 as the sole 
source of the observed long-term decontamination trend (Gil-Díaz et al., 
2018). In addition to the given model parameters (e.g., Table 3), the 
Bayesian probability averages and uncertainties of GPR models (e.g., 

Table 3 
Resulting GPR model parameters for geochemical, 14-y time series in the Garonne River. Lack of contribution of a kernel are shown with a dash (− ). Sites: La Réole 
(LR), Port-Sainte-Marie (PSM), Temple (T), Boisse-Penchot (BP) and Riou Mort (RM). Data series: water discharge (Q), suspended particulate matter (SPM), dissolved 
Sb (Sbd) and Th-normalized particulate Sb (Sbp/Thp). Parameters: Lengthscales (l), period (p), and estimated dataset noise variance (τ2). Time scales: years (y) or days 
(d). Measured model accuracies: mean absolute error (MAE), root mean square deviation (RMSD), the log marginal likelihood (log(ℙ)) and the coefficient of deter
mination between the measured and modelled data (r2).

Site Variable Trend Seasonality Events Noise Model accuracy

l (y) l (y) p (y) l (d) τ2 MAE RMSD -log(ℙ) r2

LR

Q – 0.61 1.01 33 0.67 0.38 0.69 337 0.73
SPM – – – 1 1.83 0.18 0.47 648 1.00
Sbd – 1.49 1.00* 113 0.06 0.14 0.22 42 0.99
Sbp/Thp 6.35 3.16 0.99 30 0.22 0.28 0.43 171 0.52

PSM

Q – 1.29 1.01 48 0.73 0.41 0.80 317 0.48
SPM – – – 2 6.88 0.43 1.26 729 0.98
Sbd 4.33 0.77 1.01 53 0.05 0.11 0.21 40 0.81
Sbp/Thp 3.44 – – 23 0.14 0.17 0.26 181 0.87

T

Q – 1.44 1.01 29 0.21 0.25 0.39 203 0.75
SPM – – – 67 0.19 0.23 0.30 140 0.52
Sbd 5.00 1.61 0.99 90 0.11 0.18 0.32 100 0.63
Sbp/Thp 10.4 – – 34 0.08 0.18 0.24 65 0.66

BP

Q – 1.79 1.00* 34 0.18 0.24 0.36 160 0.74
SPM 3.02 – – 5 0.57 0.44 0.64 269 0.72
Sbd 14.4 0.63 0.99 44 0.22 0.23 0.42 167 0.59
Sbp/Thp 14.8 – – 38 0.10 0.18 0.27 99 0.73

RM

Q – 3.17 1.01 9 0.74 0.33 0.58 332 0.88
SPM – 2.99 1.00 8 0.28 0.23 0.40 185 0.93
Sbd – 1.01 1.01 58 0.38 0.37 0.57 238 0.50
Sbp/Thp 1.09 2.56 1.00* 42 0.12 0.22 0.23 116 0.68

* Period fixed after optimization of the periodic kernel.

Fig. 1. Example of the GPR performance. Comparison of the 14-year temporal series of Sbd at La Réole and the GPR visual output. The GPR uncertainty corresponds 
to the 2σ interval of f(x) including the noise (Eq. (1)). For details on GPR performance, see Table 3.
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Fig. 1) provide a more logical understanding of Sb dynamics and future 
predictions compared to the linear trends obtained with classical sta
tistics. That is, classical statistics do not allow (i) to obtain reliable Sbd 
and Sbp concentrations for intermediate instants in time between 
sampled dates (e.g., interpolations), (ii) nor to predict future values in 
the aquatic system, as the current decreasing trends are assumed to 
remain constant in the future (which need not be the case), implying 
that at some point there will be a time where there is no more Sb in the 
system (i.e., not suitable model for predictions). In fact, it is not the first 
time that GPR has shown to be an improved tool for time series pre
diction compared to linear regression (e.g., Camps-Valls et al., 2016). 
However, out of the literature using GPR in aquatic systems, none of the 
cited works (Bonakdari et al., 2019; Ding et al., 2023; Gheibi et al., 
2022) show the GPR predicted timeseries as we do (e.g., Fig. 1 and 
Supplementary Fig. S6), hampering further discussions about the gen
eral potential of GPR performance in aquatic systems.

4.1.2. More precise seasonal quantification
Classical statistics showed that the seasonal factor (SF, Supplemen

tary Fig. S4 and S5) had recurrent patterns along the year for both Sbd 
and Sbp in all sites (except BP). Overall, Sbd concentrations were higher 
than the average concentrations in August and lower in February 
(Supplementary Fig. S4) whereas for Sbp it was highest in January and 
lowest in July (Supplementary Fig. S5). This detailed information 
geochemically corresponds to the dilution effect of the seasonal varia
tions of Q along the year. However, GPR detects yearly periodicities for 
all variables except generally for SPM and for Sbp/Thp at PSM, T and BP 
(Table 3). Decoupled periodicities between Q and SPM at all sites except 
RM, suggest a random component for the SPM and Sbp/Thp dynamics 
from the common Q and Sbd seasonality (i.e., a detachment between 
erosion and Q dynamics on a regular basis, potentially related to the 
influence of dams) particularly for large watersheds: Lot (BP - T) and 
Garonne (PSM - LR) Rivers vs the smaller Riou Mort River (RM).At RM, 
common periodicities between Q and SPM show linked hydro- 
sedimentary dynamics, which influence Sb temporal trends at a local 
scale, only characterized by the GPR model. The overall independent 
character of Sbd and Sbp/Thp dynamics could be related to the impact of 
biological activities, as suggested in Gil-Díaz et al. (2018) for the Lot 
River, and/or to Sb solid-liquid partitioning (Kd) kinetics (e.g., Sbp 
discharge and dissolution is not retraced in the Sbd dynamics). Thus, 
despite classical statistics finding a reasonable fit for the Sbp seasonality, 
GPR shows little periodic correlation, which is a more logical outcome 
given the seasonal character of the Kd along the year (c.f., Section 4.2.1). 
All these outcomes already provide further information and improve the 
interpretation of the geochemical system compared to the original re
sults from classical statistics (e.g., Gil-Díaz et al., 2018).

4.2. Environmental implications

4.2.1. Estimating solid-liquid partitioning (Kd)
The solid-liquid partitioning coefficient (Kd, L kg− 1) indicates the 

degree of affinity of an element for the particulate phase, thus it is 
defined as the Sbp/Sbd ratio for the case of this work. Field-based Kd 
values are assumed to reflect the environmental thermodynamic equi
librium of the target element in the system (Sung, 1995). For this reason, 
Kd values are generally used as reference values for geochemical 
dispersion models to predict trace element fate in case of accidental 
releases to the environment or changes in the hydrodynamic regime 
(Laissaoui et al., 1998; Zheleznyak et al., 2022). In many cases, these 
values are obtained from onsite, point field campaigns, or from tabu
lated generalized values in guidelines (TRS 422, International Atomic 
Energy Agency, 2004). Monitoring programs could also fulfil this 
requirement, not only based on measured data, but also on interpolated 
data (i.e., between unmeasured sampling dates or predicted estima
tions), a point that can be easily provided with GPR models like in this 
study.

In addition to data interpretation, well characterized GPR models 
allow further data treatment such as (i) data interpolation, due to correct 
long-term characterization of the time series (c.f. Section 4.1.1), and (ii) 
calculating site-specific Kd values. For instance, the outcomes from the 
GPR models correctly represent the seasonal character of the Kd values 
observed for Sb in the Garonne River (e.g., case of LR, Fig. 2). This is an 
outcome that classical statistics could provide (e.g., after applying Sen’s 
slope defined in Table S4 and the seasonal factor of Fig. S5), given the 
definition of the Kd ratio, but with lower precision and interannual 
variability. The validity of the classical statistics approach is lower than 
that of the GPR approach, given the accuracy of the modelled results (see 
r2 in Fig. S4 – S6).

4.2.2. More detailed process identification
Another advantage of the GPR approach is that developed models of 

temporal series can be combined. For instance, when adding the 
modelled mean processes at LR for Q and SPM, we obtain a timeseries 
with two wave-like trends of different period (Supplementary Fig. S7). 
When creating a GPR model of this new timeseries based on two periodic 

Fig. 2. Comparison between monitored and model derived log Kd values. Re
sults are shown for LR, where the values of solid-liquid partitioning (Kd) were 
obtained from (a) monitored Sbd / Sbp concentrations, (b) extracted Sbd / Sbp 
concentrations from the classical linear decomposition, and (c) extracted Sbd / 
Sbp concentrations from GPR models. Dashed lines are positioned exactly at the 
same position in each graph and are there to guide the eye.
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kernels (i.e., two seasonal components), newly optimized, independent 
parameters show a long-term period of 4.9 y additionally to the yearly 
short-term period (Supplementary Fig. S7). One could hypothesize that 
this long-term periodicity corresponds to a signal from atmospheric- 
hydrological coupling processes. In fact, when applying similar models 
to oscillation indices such as the North Atlantic Oscillation (NAO, NAO, 
2024) or the Oceanic Niño Index (i.e., ONI, a proxy for classifying El 
Niño vs La Niña events in the eastern tropical Pacific; ONI, 2024), we 
obtain long-term periodicities of ~6.2 y, i.e., different to those observed 
in our dataset (Table 3). Therefore, Q + SPM series in the Garonne 
watershed might reflect climatic patterns affecting watershed erosion/ 
rainfall-related processes which are not directly linked to the ONI. 
These results, together with the inconsistent long-term trends for the Sb 
series at all sites, discourage the potential dominance of atmospheric 
deposition influencing Sb dynamics in the Garonne watershed, and 
support the idea of a more hydrological-dominated system, a concept 
that had not been evidenced until now.

4.3. Applications of GPR models to other geochemical studies in aquatic 
systems

This work has provided supporting evidence on the robustness and 
advantages of GPR model performance compared to linear decomposi
tion for the data treatment of geochemical variables in a specific 
watershed. Nevertheless, the GPR approach can be extended to any 
temporal series in aquatic systems and its applications are wide, high
lighted but not exclusive to the following points: 

- GPR models for system resilience and mass balance characterization. 
Well characterized GPR models allow completing in a robust and 
reliable manner datasets which are measured at low frequency. For 
example, the GPR model can calculate missing Sb concentrations 
between the 24-day sampling times, providing more accurate esti
mations and comprehensible parameters than current approaches 
that compartmentalize time series and work with averages (Pougnet 
et al., 2019) or use modern neural networks (e.g., Vu et al., 2022). 
These estimations with GPR models would allow calculating more 
accurate daily fluxes of trace elements, providing more precise sys
tem mass balance evaluations (net vs gross fluxes). Such calculations 
would allow to obtain a fast overview on the system resilience 
(geogenic vs anthropogenic impacts, e.g., Pougnet et al., 2022), 
improving and advancing at the same time on the knowledge of the 
geochemical cycles of trace elements, particularly relevant for less 
studied elements (e.g., Mitra and Sen, 2017). This approach could 
and should be applied to current monitoring programs worldwide.

- GPR models for input variables in predictive geochemical models. Kd 
values are used as a reference parameter for geochemical dispersion 
models in post-accidental management studies to predict the fate of 
trace elements in a given aquatic environment (Laissaoui et al., 1998; 
Zheleznyak et al., 2022). In many occasions, Kd values are used in an 
indiscriminate manner, as they either come from a one-time onsite 
measurement (assuming stationary systems, International Atomic 
Energy Agency, 2004), from another aquatic system (e.g., Kd values 
from quality guidelines applied to the Eastern Mediterranean Sea, 
Tsabaris et al., 2022) or even from another trace element, as sug
gested for geochemical pairs by certain pre-established guidelines (e. 
g., TRS 422, International Atomic Energy Agency, 2004). However, 
Kd values depend on several environmental factors and its magni
tude can vary for a given element (e.g., Tomczak et al., 2019). The 
use of GPR models on local datasets would provide with a simple 
calculation a better estimation of the element-dependent and local- 
dependent Kd values, improving the reliability of the geochemical 
outputs for watershed management. In the presence of complemen
tary SPM datasets, GPR models would additionally help identifying 
which trace elements and aquatic systems suffer from particle con
centration effects (e.g., Zhu et al., 2022), providing more sound 

knowledge on the use of generalized or local Kd values for decision 
making.

- GPR models for atmosphere-hydrosphere coupling dynamics. Trace 
element dynamics in aquatic systems may be linked or impacted by 
atmospheric patterns (Climate Change, atmospheric oscillations, 
etc.). However, evidence of the influence of atmospheric oscillations 
and teleconnections on river discharges and/or precipitations are 
generally shown via correlation coefficients (e.g., Pociask-Karteczka, 
2006; Xiao et al., 2015), which is a less powerful approach to GPR. 
Additionally, the predictive character of the ENSO has been 
attempted through deep machine learning techniques (e.g., Derot 
et al., 2024), whereas combinations of GPR models could provide a 
more interpretable and alternative approach for future studies. Thus, 
our study (as shown in Section 4.2.2) provides a generalized 
approach and an example to follow in future works of aquatic sys
tems for simple identification of atmosphere-hydrosphere coupling 
dynamics.

5. Conclusions

In this work, GPR has proven to be a powerful tool for both time 
series analysis and understanding of geochemical data. That is, GPR can 
help evaluate the effect and limitations of environmental sampling fre
quencies on the predictive power of a model from a given time series. 
Our systematic analysis on water discharge time series showed that 
dataset frequency rather than dataset length plays a greater role for 
accurately characterizing the aquatic system via GPR models. This 
means that, GPR is a robust model that can identify trends and seasonal 
patterns from time series of variable lengths, allowing to have a deeper 
insight of aquatic geochemical patterns/correlations which are not 
evident to other non-parametric approaches. Once temporal series of 
geochemical data are characterized, they can be used to derive other 
parameters such as trace element concentrations and the solid/liquid 
partitioning of trace elements, often required for system mass balance 
calculations and used as inputs for post-accidental management strate
gies. Overall, the use of GPR models can be extended to any temporal 
series and its applications are wide, providing a more accurate approach 
than simple, linear compartmentalization of the time series. Future 
studies will explore the potential of combining GPR models to further 
understand inter-site dependence and/or intercorrelations between the 
dynamics of different geochemical parameters in aquatic systems.
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