
Received: 12 December 2022 Revised: 15 August 2024 Accepted: 9 October 2024

DOI: 10.1112/topo.70007

Journal of TopologyRESEARCH ARTICLE

Metrics of positive Ricci curvature on
simply-connected manifolds of dimension 𝟔𝒌

Philipp Reiser

Institut für Algebra und Geometrie,
Karlsruher Institut für Technologie (KIT),
Germany

Correspondence
Philipp Reiser, Department of
Mathematics, University of Fribourg,
Fribourg, Switzerland.
Email: philipp.reiser@unifr.ch

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Number: 281869850 (RTG
2229)

Abstract
A consequence of the surgery theorem of Gromov
and Lawson is that every closed, simply-connected 6-
manifold admits a Riemannian metric of positive scalar
curvature. For metrics of positive Ricci curvature, it is
widely open whether a similar result holds; there are
no obstructions known for those manifolds to admit
a metric of positive Ricci curvature, while the num-
ber of examples known is limited. In this article, we
introduce a new description of certain 6𝑘-dimensional
manifolds via labeled bipartite graphs and use an ear-
lier result of the author to construct metrics of positive
Ricci curvature on these manifolds. In this way, we
obtain many new examples, both spin and nonspin, of
6𝑘-dimensionalmanifoldswith ametric of positive Ricci
curvature.

MSC 2020
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1 INTRODUCTION ANDMAIN RESULTS

Determining which manifolds admit a complete Riemannian metric of positive Ricci curvature
remains a long-standing open problem. In this article, we consider this problem for closed and
simply-connected manifolds. Under this assumption, the only known obstructions for the exis-
tence of a Riemannian metric of positive Ricci curvature already vanish for the (potentially)
weaker condition of positive scalar curvature. In particular, it is an open question whether any
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closed, simply-connected manifold with a Riemannian metric of positive scalar curvature also
admits a Riemannian metric of positive Ricci curvature.
When considering low dimensions, the first nontrivial case is dimension 4 as any closed,

simply-connectedmanifold in dimensions 2 and 3 is a standard sphere. Here, it was shown by Sha
and Yang [26] that any closed, simply-connected 4-manifold that admits a metric with positive
scalar curvature is homeomorphic to a manifold with positive Ricci curvature, and in particu-
lar completely classified the intersection forms that can be realized by such a manifold. Further,
in dimension 5, Sha and Yang [25] proved that any closed, simply-connected 5-manifold with
torsion-free homology admits a metric of positive Ricci curvature by constructing such metrics
on connected sums of sphere bundles over spheres. In this article, we consider dimension 6 and
construct new examples of closed, simply-connected 6-manifolds with torsion-free homology that
admit ametric of positive Ricci curvature.Moreover, we extend our construction to all dimensions
6𝑘, 𝑘 ∈ ℕ.
As a result of the surgery theorem of Gromov and Lawson [10], any closed, simply-connected

6-manifold admits a metric of positive scalar curvature. For positive Ricci curvature, while there
is no obstruction known for the existence of metrics with this curvature condition, there are only
relatively few known examples, see [20, Section 5.1]. In particular, the only examples where we
have arbitrarily large Betti numbers are connected sums of sphere bundles.
The main tool to construct metrics of positive Ricci curvature will be the theorem below. It

constructs so-called core metrics, a notion introduced by Burdick [4]. The main property of a core
metric is that it has positive Ricci curvature and that the connected sum of manifolds with core
metrics admits a metric of positive Ricci curvature, see Subsection 2.1 below.

Theorem 1.1 [20, Theorem B]. Let𝑊 be the manifold obtained by plumbing linear disc bundles
𝐸𝑖 → 𝐵𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘, with compact base manifolds according to a simply-connected graph. If all 𝐵𝑖
admit a core metric with dim(𝐵1) ⩾ 3 and the fiber dimension of 𝐸1 is at least 4, then 𝜕𝑊 admits a
core metric.

To state our result, given a closed, simply-connected and oriented 6𝑘-dimensional manifold
𝑀 with torsion-free homology, we have a symmetric trilinear form 𝜇𝑀 ∶ 𝐻

2𝑘(𝑀) × 𝐻2𝑘(𝑀) ×

𝐻2𝑘(𝑀) → ℤ defined by

𝜇𝑀(𝑥, 𝑦, 𝑧) = ⟨𝑥 ⌣ 𝑦 ⌣ 𝑧, [𝑀]⟩.
Further invariants we will consider are the 𝑘th power of the second Stiefel–Whitney class

𝑤2(𝑀)
𝑘 ∈ 𝐻2𝑘(𝑀;ℤ∕2) ≅ 𝐻2𝑘(𝑀) ⊗ ℤ∕2

and the 𝑘th Pontryagin class

𝑝𝑘(𝑀) ∈ 𝐻
4𝑘(𝑀) ≅ Hom(𝐻2𝑘(𝑀), ℤ).

In particular, these invariants are all defined on the cohomology group 𝐻2𝑘(𝑀). For 𝑘 = 1, by
the classification of Jupp [13], see also Theorem 4.1, these invariants already determine the dif-
feomorphism type of𝑀 up to connected sums with copies of 𝑆3 × 𝑆3. Given a finitely generated
free abelian group 𝐻, a symmetric trilinear form 𝜇 on 𝐻, an element 𝑤 ∈ 𝐻 ⊗ℤ∕2, and a linear
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form 𝑝 on𝐻, we call the system (𝐻, 𝜇, 𝑤, 𝑝) admissible in dimension 6𝑘, if it can be realized as the
invariants of a closed, simply-connected 6𝑘-dimensional manifold with torsion-free homology.
Let 𝐺 = (𝑈,𝑉, 𝐸, (𝛼, 𝑘+, 𝑘−)) be a bipartite graph, where 𝑈 and 𝑉 are the sets of vertices and

𝐸 ⊆ 𝑈 × 𝑉 is the set of edges, with a labeling (𝛼, 𝑘+, 𝑘−)∶ 𝑈 → ℤ × ℕ2
0
for vertices in 𝑈. We call

such a graph an algebraic plumbing graph. We draw vertices 𝑢 ∈ 𝑈 as follows:

If one of 𝑘+(𝑢) and 𝑘−(𝑢) vanishes, then we will omit it. Vertices in 𝑉 will simply be drawn as
dots. An example for such a graph is given as follows:

By assigning a suitable disc bundle to each vertex of an algebraic plumbing graph 𝐺, we will
define for each 𝑘 ∈ ℕ a geometric plumbing graph, denoted as 𝐺

𝑘
, see Definition 4.4 (and note

that for 𝑘 > 2, there can be multiple such graphs, see Remark 4.5), which, in turn, defines a
6𝑘-dimensional manifold𝑀

𝐺
𝑘 , see Definition 3.1. Important invariants, such as the cohomology

group𝐻2𝑘(𝑀
𝐺
𝑘), the trilinear form𝜇𝑀

𝐺
𝑘
, and characteristic classes can be computed directly from

the data provided by the algebraic plumbing graph if it is simply-connected. For example, if no
vertex in𝑉 is a leaf, then𝐻2𝑘(𝑀

𝐺
𝑘) has rank |𝑈| − |𝑉| and𝑀

𝐺
𝑘 is spin if and only if 𝑘− = 𝑘+ ≡ 0.

The fact that the invariants can be obtained from the graph data if 𝐺 is simply-connected moti-
vates defining invariants (𝐻𝐺, 𝜇𝑘𝐺, 𝑤𝐺, 𝑝

𝑘
𝐺
) in a similar way for any algebraic plumbing graph 𝐺,

see Definition 4.2. We set 𝜇𝐺 = 𝜇1𝐺 and 𝑝𝐺 = 𝑝
1
𝐺
.

Theorem A. Let 𝐺 be an algebraic plumbing graph.

(1) If 𝑘 = 1, then the system of invariants (𝐻𝐺, 𝜇𝐺, 𝑤𝐺, 𝑝𝐺) is admissible in dimension 6.
(2) If every connected component of 𝐺 is simply-connected, then the system of invariants

(𝐻𝐺, 𝜇
𝑘
𝐺
, 𝑤𝐺, 𝑝

𝑘
𝐺
) is admissible in dimension 6𝑘 and realized by themanifold𝑀

𝐺
𝑘 . Further,𝑀

𝐺
𝑘

admits a core metric.
(3) If 𝑘 = 1 and every connected component of 𝐺 is simply-connected, then any closed,

simply-connected 6-manifold with torsion-free homology, whose invariants are equivalent to
(𝐻𝐺, 𝜇𝐺, 𝑤𝐺, 𝑝𝐺), admits a core metric.

Since different algebraic plumbing graphs can have equivalent systems of invariants, it is not
clear a priori, how large the class ofmanifolds is that we obtain in this way. To analyze this further,
we introduce a reduced form in Subsection 4.3 and conjecture that systems of invariants obtained
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fromdifferent reduced forms are indeed not equivalent, seeQuestion 4.10. The difficulty lies in the
problem that, in general, it is hard to determine whether two given trilinear forms are equivalent
or not. We prove the conjecture for graphs 𝐺 with rank(𝐻𝐺) ⩽ 2, see Propositions 3.3 and 3.5,
except for the case where rank(𝐻𝐺) = 2 and 𝑤𝐺 = 0 where we obtain a partial result by using
invariant theory of SL(2, ℂ). This result is sufficient to show that infinitely many of the graphs in
the latter case define new examples of 6-manifolds with ametric of positive Ricci curvature and of
6-manifolds with core metrics, see Remark 4.18. An interesting subfamily of these graphs is given
by certain graphs for which the corresponding 6-manifolds split as a connected sumwhere one of
the summands is a homotopy ℂ𝑃3, see Proposition 4.20.
For larger Betti numbers, using Theorem A, we have the following result.

TheoremB. For every 𝑘 ∈ ℕ and for every odd 𝑙 ∈ ℕ sufficiently large, there exists an infinite family
𝑀6𝑘
𝑗
of pairwise nondiffeomorphic closed 6𝑘-dimensionalmanifoldswith torsion-free homologywith

the following properties:

∙ 𝑀𝑗 is (2𝑘 − 1)-connected with 𝑏2𝑘(𝑀𝑗) = 𝑙,
∙ 𝑀𝑗 does not split nontrivially as a connected sum,
∙ 𝑀𝑗 is not diffeomorphic to the total space of a linear sphere bundle, a homogeneous space, a
biquotient, a cohomogeneity one manifold, or a Fano variety,

∙ 𝑀𝑗 admits a core metric.

Further, if 𝑘 = 1 or 𝑘 is even, then we can replace the condition that𝑀𝑗 is (2𝑘 − 1)-connected by𝑀𝑗

being simply-connected and nonspin.

It follows that the manifolds𝑀6
𝑗
are new examples of manifolds with a metric of positive Ricci

curvature and, to the best of our knowledge, this also holds for the manifolds𝑀6𝑘
𝑗
.

This article is organized as follows. In Section 2, we recall core metrics and establish basic
results on the topology of certain linear sphere bundle. We proceed in Section 3 by considering
plumbing graphs and the topology of the resulting manifolds. Finally, in Section 4, we consider
applications in dimension 6𝑘. Here, we introduce the concept of algebraic plumbing graphs and
give the proof of Theorem A in Subsection 4.2. In Subsection 4.3, we consider reduced forms for
algebraic plumbing graphs and give applications in Subsection 4.4. In the Appendix, we recall
basic facts about the adjacency and incidence matrix of a directed graph needed in Section 3.

2 PRELIMINARIES

All manifolds and maps between manifolds will be assumed to be smooth. For a manifold𝑀, we
will write 𝑀𝑛 to indicate that 𝑀 has dimension 𝑛. By 𝐷𝑛, we denote the closed 𝑛-dimensional
disc and by 𝑀 ⧵ 𝐷𝑛 the manifold 𝑀 with some embedded disc removed, where we require the
embedding to be orientation preserving if𝑀 is oriented. If𝑀 is connected, then the embedding is
unique up to isotopy, see [17, Theorem 5.5], so the expression𝑀 ⧵ 𝐷𝑛 is well defined up to diffeo-
morphism. If𝑀 is oriented, then−𝑀 denotes𝑀with the reversed orientation. If𝑀 is oriented and
has nonempty boundary, we use the convention that the induced orientation on 𝜕𝑀 is obtained
by inserting the inward normal 𝜈 first, that is, a basis of tangent vectors (𝑒1, … , 𝑒𝑛−1) tangent to 𝜕𝑀
is oriented in 𝜕𝑀 if (𝜈, 𝑒1, … , 𝑒𝑛−1) is oriented in𝑀. If not stated otherwise, we use homology and
cohomology with coefficients in ℤ. We will use the convention that 0 ∉ ℕ and set ℕ0 = ℕ ∪ {0}.
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 5 of 50

For a closed, oriented, and connected manifold𝑀𝑛, we have𝐻𝑛(𝑀;ℤ) ≅ ℤ and𝐻𝑛−1(𝑀;ℤ) ≅
𝐻1(𝑀;ℤ) is torsion-free, hence, by the universal coefficient theorem, for a commutative ring 𝑅,

𝐻𝑛(𝑀; 𝑅) ≅ 𝐻𝑛(𝑀;ℤ) ⊗ 𝑅 ≅ 𝑅.

It follows that we obtain a fundamental class [𝑀; 𝑅] ∈ 𝐻𝑛(𝑀; 𝑅) from the orientation class
[𝑀;ℤ] ∈ 𝐻𝑛(𝑀;ℤ), which induces an orientation of𝑀 in the homological sense with coefficients
in 𝑅. In particular, Poincaré duality with coefficients in 𝑅 can be applied for𝑀.

2.1 Core metrics

In this section, we introduce core metrics. We refer to the work of Burdick [3–6] and the author
[20] for further details.

Definition 2.1 (Burdick [4], based on work by Perelman [18]). Let 𝑀𝑛 be a manifold. A Rie-
mannian metric g on𝑀 is called a core metric if it has positive Ricci curvature and if there is an
embedding 𝜑∶ 𝐷𝑛 ↪ Int(𝑀) such that the induced metric g|𝜑(𝑆𝑛−1) is the round metric of radius
1 and such that the second fundamental form II𝜑(𝑆𝑛−1) is positive semidefinite with respect to the
inward pointing normal vector of 𝑆𝑛−1 ⊆ 𝐷𝑛.

Our definition differs fromBurdick’s original definition, as he requires the second fundamental
form to be positive definite. However, the two definitions are equivalent: a metric with positive
semidefinite second fundamental form can always be deformed into ametricwith positive definite
fundamental formwhile keeping the Ricci curvature positive, for example, by a deformation as in
[3, Proposition 1.2.11].
There exist different sign conventions for the second fundamental form, here we use the sign

convention so that, after possibly rescaling the metric, the round metric on 𝑆𝑛 is a core metric,
where the embedded disc can be any geodesic ball that contains a hemisphere.
The main interest for core metrics comes from the following fact.

Theorem 2.2 [4, Theorem B]. Let𝑀𝑛
𝑖
, 1 ⩽ 𝑖 ⩽ 𝑘 bemanifolds that admit core metrics. If 𝑛 ⩾ 4, then

#𝑖𝑀𝑖 admits a metric of positive Ricci curvature.

So far, the following closed manifolds are known to admit a core metric:

∙ 𝑆𝑛, if 𝑛 ⩾ 2,
∙ the complex projective space ℂ𝑃𝑛, the quaternionic projective space ℍ𝑃𝑛 and the Cayley plane
𝕆𝑃2 (see [18] and [4]),

∙ 𝑀𝑛
1
#𝑀𝑛

2
, if 𝑛 ⩾ 4 and𝑀1,𝑀2 admit core metrics (see [6]),

∙ total spaces of linear 𝑆𝑝-bundles 𝐸𝑛 → 𝐵𝑞 if 𝐵 admits a core metric and 𝑛 ⩾ 6, 𝑝, 𝑞 ⩾ 2 (see [5]
and [20]),

∙ yhe manifolds obtained in Theorem 1.1.

2.2 Linear sphere bundles

Let 𝐸
𝜋
J→ 𝐵𝑞 be a fiber bundle with fiber 𝐹𝑝 and structure group 𝐺. We suppose that 𝜋 is oriented,

that is, the manifold 𝐹 is oriented and the action of 𝐺 on 𝐹 is orientation-preserving. If the base 𝐵
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6 of 50 REISER

is oriented, then the product orientation on every local trivialization𝑈 × 𝐹,𝑈 ⊆ 𝐵 open, induces
an orientation on the total space 𝐸.

If 𝐹 has nonempty boundary and 𝐵 has no boundary, then 𝜕𝐸
𝜋|𝜕𝐸
JJJJ→ 𝐵 is a fiber bundle with

fiber 𝜕𝐹 and structure group 𝐺. We have two orientations on 𝜕𝐸: The induced orientation from 𝐸

as a boundary and the induced orientation from 𝐵 and 𝜕𝐹 when viewed as a fiber bundle. It can
be seen in local trivializations that these two orientations coincide if and only if 𝑞 is even.
We will be interested in the case where 𝐹 = 𝐷𝑝 and 𝐺 = SO(𝑝) acts linearly. Then, 𝜕𝐹 = 𝑆𝑝−1.

These bundles are called linear disc bundles and linear sphere bundles, respectively. In the follow-
ing, if 𝐸

𝜋
J→ 𝐵 is a linear sphere bundle, we denote by 𝐸

𝜋
J→ 𝐵 its corresponding disc bundle. In

particular, 𝜕𝐸 = 𝐸.
Let 𝐸

𝜋
J→ 𝐵𝑞 be an oriented linear sphere bundle with fiber 𝑆𝑝−1 and connected base 𝐵. To

describe the cohomology ring of 𝐸, we fix a commutative ring 𝑅 (which we assume to be unital).
To simplify notation, when no coefficients for (co-)homology are indicated, we assume in this
section that the coefficient ring is given by 𝑅. We denote by 𝜌𝑅 ∶ 𝐻∗(−; ℤ) → 𝐻∗(−) the map
induced by the ring homomorphism ℤ → 𝑅, 𝑧 ↦ 𝑧 ⋅ 1𝑅.
Let 𝑒(𝜋) ∈ 𝐻𝑝(𝐵; ℤ) be the Euler class of the bundle𝜋 (see, e.g., [15, Chapter 9] for its definition)

and set 𝑒𝑅(𝜋) = 𝜌𝑅(𝑒(𝜋)) ∈ 𝐻𝑝(𝐵). Thenwe have a long exact sequence, called theGysin sequence,

…
⋅⌣𝑒𝑅(𝜋)
JJJJJJJ→ 𝐻𝑖(𝐵)

𝜋∗

JJ→ 𝐻𝑖(𝐸)
𝜓
J→ 𝐻𝑖−𝑝+1(𝐵)

⋅⌣𝑒𝑅(𝜋)
JJJJJJJ→ 𝐻𝑖+1(𝐵)

𝜋∗

JJ→ … , (2.1)

see, for example, [15, Corollary 12.2] for 𝑅 = ℤ and note that the proof carries over in the same
way for arbitrary 𝑅 (see also [19, Lemma B.3.1]). The map 𝜓 is defined by

𝜓 = Φ−1◦𝛿, (2.2)

whereΦ = ⋅⌣ 𝑢𝑅(𝜋)∶ 𝐻
∗−𝑝(𝐵) → 𝐻∗(𝐸, 𝐸) is the Thom isomorphism and 𝑢𝑅(𝜋) ∈ 𝐻𝑝(𝐸, 𝐸) is

the Thom class, and 𝛿∶ 𝐻∗−1(𝐸) → 𝐻∗(𝐸, 𝐸) is the connecting homomorphism in the long exact
sequence in cohomology for the pair (𝐸, 𝐸).
Now assume that the Euler class 𝑒𝑅(𝜋) vanishes, so we obtain from the Gysin sequence short

exact sequences

0⟶ 𝐻𝑖(𝐵)
𝜋∗

JJ→ 𝐻𝑖(𝐸)
𝜓
J→ 𝐻𝑖−𝑝+1(𝐵)⟶ 0. (2.3)

As in [20, Section 5.3], for any 𝑎 ∈ 𝐻𝑝−1(𝐸) that maps to 1 ∈ 𝑅 ≅ 𝐻0(𝐵) under 𝜓, we obtain by
[14, Lemma 1] a splitting 𝜃𝑎 ∶ 𝐻∗(𝐵) → 𝐻∗+𝑝−1(𝐸) of (2.3) defined by

𝜃𝑎(𝑥) = (−1)
𝑖𝑝𝑎 ⌣ 𝜋∗(𝑥)

for 𝑥 ∈ 𝐻𝑖(𝐵). Hence, we have

𝐻𝑖(𝐸) = 𝜋∗(𝐻𝑖(𝐵)) ⊕ 𝜃𝑎(𝐻
𝑖−𝑝+1(𝐵)). (2.4)

It follows from (2.2) that 𝑢𝑅 = Φ(1) = 𝛿(𝑎). Hence, since the Thom class satisfies

𝜄
∗
𝑢𝑅 = [𝐷

𝑝, 𝑆𝑝−1]∗ (2.5)
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for any fiber inclusion 𝜄 ∶ 𝐷𝑝 ↪ 𝐸, it follows that

𝜄∗𝑎 = [𝑆𝑝−1]∗ (2.6)

for any fiber inclusion 𝜄 ∶ 𝑆𝑝−1 ↪ 𝐸.

Remark 2.3. The Thom class 𝑢𝑅 is uniquely determined by the property (2.5), see, for example, [15,
Theorem 10.4]. For linear sphere bundles we see that, while 𝑎 satisfies the corresponding property
(2.6), it is not uniquely determined by it as the choice of 𝑎 is not unique, provided that the map
𝜋∗ ∶ 𝐻𝑝−1(𝐵) → 𝐻𝑝−1(𝐸) is nontrivial.

To determine the cohomology ring structure of 𝐸, if 𝑝 is odd, two characteristic classes are
important: The Stiefel–Whitney class 𝑤𝑝−1(𝜋) ∈ 𝐻𝑝−1(𝐵; ℤ∕2) and the Pontryagin class 𝑝𝑖(𝜋) ∈
𝐻4𝑖(𝐵; ℤ) for 𝑖 = 2𝑝−2

4
. As a consequence of the Wu formula for the bundle 𝜋, see, for example,

[27, Theorem C], we have
2(𝑤𝑝−1(𝜋)) ≡ 𝑝𝑖(𝜋) mod 4, (2.7)

where 2 ∶ 𝐻𝑗(𝐵; ℤ∕2) → 𝐻2𝑗(𝐵; ℤ∕4) is the Pontryagin square operation.

Proposition 2.4. Let 𝐸
𝜋
J→ 𝐵 be an oriented linear sphere bundle with fiber 𝑆𝑝−1, 𝑝 odd, whose

Euler class 𝑒𝑅(𝜋) ∈ 𝐻𝑝(𝐵; 𝑅) vanishes and assume that 𝐵 is connected. Let𝑊 ∈ 𝐻𝑝−1(𝐵; ℤ) so that
𝜌ℤ∕2𝑊 = 𝑤𝑝−1(𝜋) and suppose that 𝐻2𝑝−2(𝐵; ℤ) has no element of order 2. Define (using (2.7))
𝑃 = 1

4
(𝑝𝑖(𝜋) −𝑊

2) for 𝑖 = 2𝑝−2

4
. Then, there is an element 𝑎 ∈ 𝐻𝑝−1(𝐸; 𝑅), so that

The isomorphism is given by 𝑥 ⊗ 𝑎𝑖 ↦ 𝜋∗(𝑥) ⌣ 𝑎𝑖 .

Proof. By (2.4), every 𝑦 ∈ 𝐻𝑖(𝐸) can be written as 𝑦 = 𝜋∗(𝑥1) + 𝜋∗(𝑥2) ⌣ 𝑎 for unique elements
𝑥1 ∈ 𝐻

𝑖(𝐵), 𝑥2 ∈ 𝐻𝑖−𝑝+1(𝐵). In particular, there are 𝛼 ∈ 𝐻2𝑝−2(𝐵) and 𝛽 ∈ 𝐻𝑝−1(𝐵) so that

𝑎 ⌣ 𝑎 = 𝜋∗(𝛼) + 𝜋∗(𝛽) ⌣ 𝑎.

Thus,𝐻∗(𝐸) is isomorphic to

For the values of 𝛼 and 𝛽, first consider the case 𝑅 = ℤ. Then, by [14, Theorem III], we can choose
𝑎 so that 𝛽 = 𝑊. Further, by [14, Theorem IV], we have

𝑝𝑖(𝜋) = 4𝛼 + 𝛽
2.

Since𝐻2𝑝−2(𝐵) has no element of order 2, this equation determines 𝛼 uniquely, and we canwrite

𝛼 =
1

4
(𝑝𝑖(𝜋) − 𝛽

2) =
1

4
(𝑝𝑖(𝜋) −𝑊

2) = 𝑃.
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For an arbitrary commutative ring 𝑅, first note that 𝜓◦𝜌𝑅 = 𝜌𝑅◦𝜓. This follows by (2.2) and
from the fact that the Thom classes 𝑢ℤ and 𝑢𝑅 with coefficients in ℤ and 𝑅, respectively, satisfy
𝜌𝑅𝑢ℤ = 𝑢𝑅, cf. [15, Remark on p. 111].
Thus, for any 𝑎 ∈ 𝐻𝑝−1(𝐸)with 𝜓(𝑎) = 1, we have 𝜓(𝜌𝑅𝑎) = 𝜌𝑅𝜓(𝑎) = 1 and we denote 𝜌𝑅𝑎 ∈

𝐻𝑝−1(𝐸; 𝑅) again by 𝑎. Hence, 𝛼 = 𝜌𝑅𝑃 and 𝛽 = 𝜌𝑅𝑊. □

Recall that a stable characteristic class is a sequence of elements 𝑐 ∈ 𝐻𝑖(BO(𝑝); 𝑅) for all 𝑝 ∈ ℕ0
(and we denote all these elements by 𝑐) satisfying (𝐵𝑗𝑝)∗𝑐 = 𝑐 for all 𝑝, where 𝐵𝑗𝑝 ∶ BO(𝑝) →
BO(𝑝 + 1) denotes the map obtained from the inclusion O(𝑝) ↪ O(𝑝 + 1). For a vector bun-
dle 𝜉 ∶ 𝐸 → 𝐵 of rank 𝑝 with classifying map 𝑓∶ 𝐵 → BO(𝑝), the class 𝑐(𝜉) ∈ 𝐻𝑖(𝐵; 𝑅) is then
defined by 𝑐(𝜉) = 𝑓∗𝑐. The property (𝐵𝑗𝑝)∗𝑐 = 𝑐 implies 𝑐(𝜉 ⊕ ℝ𝐵) = 𝑐(𝜉) for any vector bundle
𝜉 ∶ 𝐸 → 𝐵, where ℝ𝐵 denotes the trivial line bundle over 𝐵. If one considers vector bundles with
an additional structure, such as an orientation or a spin structure, the orthogonal group O(𝑝)
is replaced by the corresponding structure group, such as SO(𝑝) or Spin(𝑝). Examples of stable
characteristic classes are the Pontryagin classes 𝑝𝑖 (with 𝑅 = ℤ) and the Stiefel–Whitney classes
𝑤𝑖 (with 𝑅 = ℤ∕2).
The following is well known. We include the proof for convenience.

Proposition 2.5. Let 𝐸
𝜋
J→ 𝐵 be a linear sphere bundle and let 𝑐 ∈ 𝐻𝑖(BO(𝑝); 𝑅) be a stable

characteristic class. Denote the vector bundle corresponding to 𝜋 by 𝜉. Then,

𝑐(𝑇𝐸) = 𝜋∗𝑐(𝑇𝐵 ⊕ 𝜉).

Proof. Let 𝜄 ∶ 𝐸 ↪ 𝐸 be the inclusion. Then, 𝜄∗𝑇𝐸 ≅ 𝑇𝐸 ⊕ ℝ𝐸 , the trivial factor corresponds to
the normal bundle of 𝐸 = 𝜕𝐸. Further, 𝑇𝐸 ≅ 𝜋∗𝑇𝐵 ⊕ 𝜋∗𝜉, which can be verified by turning the
bundle into a Riemannian submersion, since then the horizontal distribution is isomorphic to
𝜋∗𝑇𝐵 and the vertical distribution is isomorphic to 𝜋∗𝜉.
It follows that

𝑐(𝐸) = 𝑐(𝑇𝐸 ⊕ ℝ𝐸) = 𝑐(𝜄
∗𝑇𝐸) = 𝜄∗𝑐(𝜋∗(𝑇𝐵 ⊕ 𝜉)) = 𝜄∗𝜋∗𝑐(𝑇𝐵 ⊕ 𝜉) = 𝜋∗𝑐(𝑇𝐵 ⊕ 𝜉). □

For 𝑞 = 4𝑘, 𝑝 = 2𝑘 + 1, Propositions 2.4 and 2.5 yield the following corollary.

Corollary 2.6. Let 𝐸
𝜋
J→ 𝐵4𝑘 be an oriented linear 𝑆2𝑘-bundle with 𝑒(𝜋) = 0, where 𝐵 is closed,

connected, and oriented. Then, for any 𝑊 ∈ 𝐻2𝑘(𝐵; ℤ) with 𝜌ℤ∕2𝑊 = 𝑤2𝑘(𝜋), there exists 𝑎 ∈
𝐻2𝑘(𝐸; ℤ) so that

𝐻2𝑘(𝐸; ℤ) = 𝜋∗(𝐻2𝑘(𝐵; ℤ)) ⊕ ℤ𝑎

and for 𝑥1, 𝑥2, 𝑥3 ∈ 𝐻2𝑘(𝐵; ℤ), we have

𝜇𝐸(𝜋
∗𝑥1, 𝜋

∗𝑥2, 𝜋
∗𝑥3) = 0,

𝜇𝐸(𝜋
∗𝑥1, 𝜋

∗𝑥2, 𝑎) = ⟨𝑥1 ⌣ 𝑥2, [𝐵]⟩,
𝜇𝐸(𝜋

∗𝑥1, 𝑎, 𝑎) = ⟨𝑥1 ⌣ 𝑊, [𝐵]⟩,
𝜇𝐸(𝑎, 𝑎, 𝑎) =

1

4
⟨3𝑊2 + 𝑝𝑘(𝜋), [𝐵]⟩.

 17538424, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.70007 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [12/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 9 of 50

Further, for 𝑥 ∈ 𝐻2𝑘(𝐵; ℤ), we have

2𝑝𝑘(𝐸)(𝜋
∗𝑥) = 0,

𝑝𝑘(𝐸)(𝑎) = ⟨𝑝𝑘(𝑇𝐵 ⊕ 𝜉), [𝐵]⟩.
For the proof of Theorem B, we will need the following lemma to show that certain spaces

cannot be the total space of a linear sphere bundle.

Lemma 2.7. Let 𝐸
𝜋
J→ 𝐵𝑞 be a linear 𝑆𝑝−1-bundle with 𝐵 closed, oriented, and connected.

(1) For the Euler characteristic, we have 𝜒(𝐸) = 𝜒(𝐵)𝜒(𝑆𝑝−1). In particular, 𝜒(𝐸) vanishes if 𝑝 is
even and 𝜒(𝐸) is even if 𝑝 is odd.

(2) If all cohomology groups of 𝐸 in odd degrees vanish, then 𝑏𝑗(𝐸) is even for 𝑗 =
𝑝+𝑞−1

2
.

(3) If 𝑝 + 𝑞 − 1 = 6𝑘 and 𝑝𝑘(𝐸) ≠ 0 and
∙ 2𝑘 + 1 ⩽ 𝑝 ⩽ 6𝑘, or
∙ 1 < 𝑝 ⩽ 2𝑘 and 𝐸 is (2𝑘 − 1)-connected,
then 𝜇𝐸 is trivial on ker(𝑝𝑘(𝐸)) × ker(𝑝𝑘(𝐸)) × ker(𝑝𝑘(𝐸)).

Proof. The first claim is well known and holds more generally for arbitrary fiber bundles, see
[23]. For the second claim, first note that, since 𝐸 only has cohomology in even degrees, its Euler
characteristic is positive. Hence, by item (1), we have that 𝑝 is odd, so𝜒(𝐸) is even. Then, it follows
by Poincaré duality, that

𝜒(𝐸) = 2

𝑗−1∑
𝑖=0

𝑏𝑖(𝐸) + 𝑏𝑗(𝐸),

and hence 𝑏𝑗(𝐸) is even.
Now suppose that 𝑝 + 𝑞 − 1 = 6𝑘 and 𝑝𝑘(𝐸) ≠ 0. We will consider coefficients in ℤ. If 𝑝 ⩾

2𝑘 + 1, that is, 𝑞 ⩽ 4𝑘, it follows from Proposition 2.5 that 𝑝𝑘(𝐸) ∈ 𝐻4𝑘(𝐸) can only be nontrivial
if 𝑝 = 2𝑘 + 1, since otherwise 𝐻4𝑘(𝐵) is trivial. Then, by Corollary 2.6, the trilinear form is triv-

ial on ker(𝑝𝑘(𝐸)) provided 𝑒(𝜋) vanishes. If 𝑒(𝜋) is nontrivial, the map 𝐻2𝑘(𝐵)
𝜋∗

JJ→ 𝐻2𝑘(𝐸) is an
isomorphism by the Gysin sequence, so 𝜇𝐸 vanishes on all of𝐻2𝑘(𝐸).
Finally, we assume that 4𝑘 < 𝑞 < 6𝑘 and that𝐸 is (2𝑘 − 1)-connected. Then, for 0 < 𝑖 + 𝑝 < 2𝑘,

by the Gysin sequence, we have an isomorphism

𝐻𝑖(𝐵)
⋅⌣𝑒(𝜋)
JJJJJJ→ 𝐻𝑖+𝑝(𝐵).

Hence, we have for 0 < 𝑖 < 2𝑘

𝐻𝑖(𝐵) ≅

{
ℤ, 𝑝 ∣ 𝑖,

0, else.

Again, from the Gysin sequence, we obtain the following exact sequence.

𝐻2𝑘(𝐵)
𝜋∗

JJ→ 𝐻2𝑘(𝐸)
𝜓
J→ 𝐻2𝑘−𝑝+1(𝐵).
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We have 𝐻2𝑘−𝑝+1(𝐵) ≅ ℤ or 0. Let 𝑦 ∈ 𝐻4𝑘(𝐵) so that 𝜋∗𝑦 = 𝑝𝑘(𝐸) (which exists by Proposi-
tion 2.5). Then, for every 𝑥 ∈ 𝐻2𝑘(𝐵), we have

𝜋∗(𝑥) ⌣ 𝑝𝑘(𝐸) = 𝜋
∗(𝑥 ⌣ 𝑦) = 0.

Hence, if𝑝𝑘(𝐸) ≠ 0, we have𝐻2𝑘−𝑝+1(𝐵) ≅ ℤ and𝜓 is nontrivial, otherwise𝑝𝑘(𝐸)would be trivial
on𝐻2𝑘(𝐸), which would imply 𝑝𝑘(𝐸) = 0 by Poincaré duality. Hence, if 𝑎 ∈ 𝐻2𝑘(𝐸) is a preimage
of a generator of im𝜓, every 𝑦 ∈ 𝐻2𝑘(𝐸) can bewritten as 𝑦 = 𝜋∗𝑥 + 𝜆𝑎, where 𝑥 ∈ 𝐻2𝑘(𝐵). Since
𝑝𝑘(𝐸) is trivial on 𝜋∗𝐻2𝑘(𝐵), it follows that ker(𝑝𝑘(𝐸)) = 𝜋∗𝐻2𝑘(𝐵), on which 𝜇𝐸 is trivial. □

We now construct linear 𝑆2𝑘-bundles over a closed, oriented 4𝑘-dimensional base 𝐵4𝑘. For
that, recall that a collapse map 𝐵 → 𝑆4𝑘 ≅ 𝐷4𝑘∕𝜕𝐷4𝑘 for an embedding 𝐷4𝑘 ↪ 𝐵 is defined as
the identity on 𝐷4𝑘◦ and maps all other points to 𝜕𝐷4𝑘. Since any two orientation-preserving
embeddings𝐷4𝑘 ↪ 𝐵 are isotopic [17, Theorem 5.5], any two orientation-preserving collapsemaps
are homotopic.
Further, we set

𝜈𝑘 =

⎧⎪⎨⎪⎩
2, 𝑘 = 1, 4,

8, 𝑘 = 2,

1, 𝑘 = 3 or 𝑘 > 4.

Definition 2.8. Let 𝐵4𝑘 be a closed, oriented 4𝑘-dimensional manifold and let 𝛼 ∈ ℤ. We define
the linear 𝑆2𝑘-bundle 𝜋𝛼,𝐵 ∶ 𝐸 → 𝐵 as the bundle classified by the composition of an orientation-
preserving collapse map 𝐵 → 𝑆4𝑘 and a preimage of 𝜈𝑘𝛼 ∈ ℤ ≅ 𝜋4𝑘(BSO) in 𝜋4𝑘(BSO(2𝑘 + 1)).

The existence of such a preimage is guaranteed by [9, Theorem 1.1 and Proposition 2.1]. For 𝑘 =
1, 2 this preimage is unique since 𝜋4(BSO(3)) ≅ 𝜋8(BSO(5)) ≅ ℤ, and for 𝑘 > 2, it is nonunique in
general. For example, we have 𝜋12(BSO(7)) ≅ ℤ ⊕ ℤ∕2 and 𝜋16(BSO(9)) ≅ ℤ ⊕ (ℤ∕2)3 (see, e.g.,
[1, App. A, Table 6.VII]), showing that for 𝑘 = 3, 4, there exist 2, resp. 8, preimages. We note that
the choice of preimage is not relevant for the results of this article.

Lemma 2.9. Set 𝜆𝑘 = 𝜈𝑘
3−(−1)𝑘

2
(2𝑘 − 1)!. Then, the bundle 𝜋𝛼,𝐵 satisfies the following:

𝑤𝑖(𝜋𝛼,𝐵) =

{
1, 𝑖 = 0,

0, else,

𝑝𝑖(𝜋𝛼,𝐵) =

⎧⎪⎨⎪⎩
1, 𝑖 = 0,

𝛼𝜆𝑘[𝐵]
∗, 𝑖 = 𝑘,

0, else,

𝑒(𝜋𝛼,𝐵) = 0.

Proof. We first consider the bundle𝜋𝛼,𝑆4𝑘 over 𝑆4𝑘. By [2, Theorem 26.5], the 𝑘0th Pontryagin class
𝑝𝑘 of a stable vector bundle corresponding to a generator of the group 𝜋4𝑘(BSO) ≅ ℤ is given by
3−(−1)𝑘

2
(2𝑘 − 1)![𝑆4𝑘]∗. Further, since 𝑆4𝑘 has nonvanishing cohomology groups only in degrees 0
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and 4𝑘 and since 𝜋𝛼,𝑆4𝑘 has rank (2𝑘 + 1) < 4𝑘, all of the characteristic classes 𝑤𝑖(𝜋𝛼,𝑆4𝑘 ) (𝑖 ≠ 0),
𝑝𝑖(𝜋𝛼,𝑆4𝑘 ) (𝑖 ≠ 0, 𝑘) and 𝑒(𝜋𝛼,𝑆4𝑘 ) vanish.
For arbitrary base𝐵4𝑘, the bundle𝜋𝛼,𝐵 is the pull-back of𝜋𝛼,𝑆4𝑘 along an orientation-preserving

collapsemap ℎ∶ 𝐵 → 𝑆4𝑘, since an orientation-preserving collapsemap of 𝑆4𝑘 is homotopic to the
identity. The claim now follows from the naturality properties of 𝑤𝑖 , 𝑝𝑖 , and 𝑒 and the fact that ℎ
has degree 1, so ℎ∗[𝑆4𝑘]∗ = [𝐵]∗. □

Remark 2.10. Note that for 𝑘 ⩾ 3, we have(
2𝑘 + 1

𝑘

)
=
(2𝑘 + 1)!

𝑘!(𝑘 + 1)!
= (2𝑘 − 1)!

2𝑘(2𝑘 + 1)

𝑘!(𝑘 + 1)!

and

2𝑘(2𝑘 + 1)

𝑘!(𝑘 + 1)!
⩽
2𝑘(2𝑘 + 2)

𝑘!(𝑘 + 1)!
=

4

(𝑘 − 1)!𝑘!
< 1,

showing that
(2𝑘+1

𝑘

)
< (2𝑘 − 1)! ⩽ 𝜆𝑘. Since 𝜆1 = 4 and 𝜆2 = 48, the inequality

(2𝑘+1
𝑘

)
< 𝜆𝑘 holds

for all 𝑘 ∈ ℕ. This fact will be useful in the proof of Theorem B.

Remark 2.11. When 𝑘 = 1 and 𝐵 = 𝑆4, the linear 𝑆2-bundles over 𝐵 constructed in Lemma 2.9
cover, in fact, all possible linear 𝑆2-bundles over 𝑆4, see, for example, [20, Corollary 5.2].
If 𝐵 = ±ℂ𝑃2, then, by [20, Corollary 5.2], isomorphism classes of linear 𝑆2-bundles over 𝐵
are in bijection with ℤ × {0, 1}, where the bijection assigns to (𝛼, 𝛽) the linear 𝑆2-bundle
𝜋 with 𝑝1(𝜋) = (4𝛼 ± 𝛽)[𝐵]

∗ and 𝑤2(𝜋) = 𝛽𝑏, where 𝑏 ∈ 𝐻2(ℂ𝑃2; ℤ∕2) denotes a genera-
tor. Hence, the bundles constructed in Lemma 2.9 are precisely those corresponding to
(𝛼, 0) ∈ ℤ × {0, 1}.

We will now restrict to the following base manifolds.

Definition 2.12. Let 𝑘,𝑚 ∈ ℕ and for 𝛾 = (𝛾1, … , 𝛾𝑚) ∈ {±1}𝑚, we define the manifold 𝐵𝛾4𝑘
by

𝐵4𝑘
𝛾
= 𝛾1ℂ𝑃

2𝑘#…#𝛾𝑚ℂ𝑃
2𝑘.

Let 𝐵 = 𝐵4𝑘
𝛾
and let 𝑏𝑖 ∈ 𝐻2(𝛾𝑖ℂ𝑃

2𝑘) be a generator of 𝐻∗(𝛾𝑖ℂ𝑃
2𝑘) so that 𝛾𝑖𝑏𝑘𝑖 = [𝛾𝑖ℂ𝑃

2𝑘]∗.
Then, we have a ring isomorphism

given by mapping each 𝑏𝑖 ∈ 𝐻2(𝛾𝑖ℂ𝑃
2𝑘) (considered as an element of 𝐻2(𝐵) via the collapse

𝐵 → 𝛾𝑖ℂ𝑃
2𝑘) to the generator 𝑏𝑖 on the right-hand side. This also determines 𝐻∗(𝐵; 𝑅) via

𝐻∗(𝐵; 𝑅) ≅ 𝐻∗(𝐵) ⊗ 𝑅 (as ℂ𝑃2𝑘, and thus 𝐵, has a cell decomposition with only cells in even
dimensions).
If 𝐸

𝜋
J→ 𝐵 is a linear sphere bundle, we will denote the images 𝜋∗𝑏𝑖 in𝐻∗(𝐸) again by 𝑏𝑖 .
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12 of 50 REISER

Further,

𝑤𝑗(𝐵) =

⎧⎪⎨⎪⎩
( 2𝑘+1

𝑗∕2
∑
𝑖 𝜌ℤ∕2𝑏

𝑗∕2
𝑖
,

)
𝑗 even,

0, else,

and

𝑝𝑗(𝐵) =

(
2𝑘 + 1

𝑗

)∑
𝑖

𝑏
2𝑗
𝑖
,

see [15, Corollary 11.15 and Example 15.6].
The following corollary is now an immediate consequence of Propositions 2.4 and 2.5 and

Lemma 2.9. To simplify notation, we will again write 𝑏𝑖 for 𝜌𝑅𝑏𝑖 .

Corollary 2.13. Let 𝐸
𝜋
J→ 𝐵4𝑘

𝛾
be an oriented linear 𝑆2𝑘-bundle corresponding to 𝛼 ∈ ℤ in

Lemma 2.9. Then,

where 𝑎 has degree 2𝑘 and 𝑏1, … , 𝑏𝑚 have degree 2. Further,

𝑤𝑗(𝐸) =

⎧⎪⎨⎪⎩
( 2𝑘+1

𝑗∕2
∑
𝑖 𝑏
𝑗∕2
𝑖
,

)
𝑗 even,

0, else,

𝑝𝑗(𝐸) =

⎧⎪⎨⎪⎩
((2𝑘+1

𝑘

)∑
𝑖 𝛾𝑖 + 𝛼𝜆𝑘

)
𝛾1𝑏

2𝑘
1
, 𝑗 = 𝑘,(2𝑘+1

𝑗

)∑
𝑖 𝑏
2𝑗
𝑖
, else.

In particular, we have

𝐻2𝑘(𝐸; ℤ) =
⨁
𝑖

ℤ𝑏𝑘𝑖 ⊕ ℤ𝑎

and

𝜇𝐸

(
𝑏𝑘𝑖 ⌣ 𝑏𝑘𝑗 ⌣ 𝑏𝑘𝑚

)
= 0,

𝜇𝐸

(
𝑏𝑘𝑖 ⌣ 𝑏𝑘𝑗 ⌣ 𝑎

)
= 𝛿𝑖𝑗𝛾𝑖,

𝜇𝐸
(
𝑏𝑘𝑖 ⌣ 𝑎 ⌣ 𝑎

)
= 0,

𝜇𝐸(𝑎 ⌣ 𝑎 ⌣ 𝑎) =
𝜆𝑘
4
𝛼,
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 13 of 50

𝑤2(𝐸)
𝑘 =

∑
𝑖

𝑏𝑘
𝑖
,

𝑝𝑘(𝐸)(𝑏𝑖) = 0,

𝑝𝑘(𝐸)(𝑎) =

(
2𝑘 + 1

𝑘

)∑
𝑖

𝛾𝑖 + 𝜆𝑘𝛼.

3 PLUMBINGS ACCORDING TO A BIPARTITE GRAPH

Let 𝐺 be a labeled bipartite graph, that is, 𝐺 = (𝑈,𝑉, 𝐸, 𝜋, 𝛿), where 𝑈 and 𝑉 are the sets of ver-
tices, which are assumed to be finite,𝐸 ⊆ 𝑈 × 𝑉 is the set of edges, 𝛿∶ 𝐸 → {±1} is a function, and
𝜋 assigns to each vertex an oriented linear disc bundle in the following way: For fixed 𝑝, 𝑞 ∈ ℕ,
we assign to each 𝑢 ∈ 𝑈 an oriented linear disc bundle 𝐷𝑝 ↪ 𝐸𝑢

𝜋𝑢
JJ→ 𝐵

𝑞
𝑢 and to each 𝑣 ∈ 𝑉 an

oriented linear disc bundle 𝐷𝑞 ↪ 𝐸𝑣
𝜋𝑣
JJ→ 𝐵

𝑝
𝑣 . We assume that all base spaces are connected and

oriented. We call such a graph 𝐺 a geometric plumbing graph. We refer to [20, Section 2.1] and the
references therein for an introduction to plumbing and we use the notation established there.

Definition 3.1. For a geometric plumbing graph 𝐺, we define 𝑀𝐺 as the boundary connected
sum of the manifolds obtained by plumbing the bundles 𝜋𝑢 and 𝜋𝑣 according to each connected
component of the graph 𝐺, where each edge 𝑒 corresponds to plumbing with sign 𝛿(𝑒). We set
𝑀𝐺 = 𝜕𝑀𝐺 .

We equip each total space 𝐸𝑢 and 𝐸𝑣 with the orientation induced from the base manifolds
and the fiber orientations (cf. Subsection 2.2). Then, recall from [20, Section 2.1] that𝑀𝐺 can be
oriented so that the orientation agrees with that of 𝐸𝑢 and 𝐸𝑣 if 𝑝 or 𝑞 is even and with that of
−𝐸𝑢 and 𝐸𝑣 if 𝑝 and 𝑞 are odd. Further, recall from Subsection 2.2 that the induced orientation
of 𝐸𝑢 (𝐸𝑣) as a boundary coincides with the induced orientation from the bundle structure if and
only if 𝑞 is even (𝑝 is even). Thus, the induced orientation on𝑀𝐺 as a boundary coincides with the
orientations of𝐸𝑢 and𝐸𝑣 induced from the bundle structures if and only if 𝑝 and 𝑞 are even, and if
one of 𝑝 and 𝑞 is odd, then𝑀𝐺 can be oriented so that the orientation agrees with the orientations
of −𝐸𝑢 and 𝐸𝑣. We will always choose these orientations in the following.

3.1 Modifications of graphs

Let 𝐺 be a geometric plumbing graph. Our goal in this section is to simplify the graph data as
much as possibly without changing the diffeomorphism type of𝑀𝐺 .

Proposition 3.2 (Sign of a separating edge). Suppose that 𝐺 is of the form

with subgraphs 𝐺1 and 𝐺2 of 𝐺. Let 𝐺′ be the graph obtained from 𝐺 by reversing the sign of 𝑒 and
by reversing all base and fiber orientations of the bundles associated to vertices in 𝐺2. Then, 𝑀𝐺 is
diffeomorphic to𝑀𝐺′ .
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14 of 50 REISER

Proposition 3.3 (Vertex of Degree 1). Suppose that 𝐺 is of the form

with subgraphs 𝐺1,… , 𝐺𝑛 of 𝐺. Let 𝐺0 be the graph

with corresponding restrictions of 𝛿 and 𝜋. If 𝜋𝑣 is trivial with 𝐵𝑣 = 𝑆𝑝, then𝑀𝐺 is diffeomorphic to
𝑀𝐺0

#𝑀𝐺1
#…#𝑀𝐺𝑛

, that is, we can replace 𝐺 by the disjoint union of the subgraphs 𝐺0,… , 𝐺𝑛.

Proposition 3.4. Let 𝐺 be the graph

where 𝜋𝑣 is trivial with 𝐵𝑣 = 𝑆𝑝 and 𝐵𝑢 = 𝑆𝑞 . Then,𝑀𝐺 ≅ 𝑆
𝑝+𝑞−1.

Proposition 3.5 (Vertex of degree 2). Suppose that 𝐺 is of the following form:

Suppose that 𝜋𝑣 is trivial with 𝐵𝑣 = 𝑆𝑝 and 𝛿(𝑒) = 1, 𝛿(𝑒′) = −1. Define 𝜋𝑢̂ as the fiber-connected
sum of 𝜋𝑢 and 𝜋𝑢′ . Then we can replace 𝐺 by the following graph without changing the
diffeomorphism type of𝑀𝐺 .

Remark 3.6.

(1) Proposition 3.3 generalizes [7, Proposition 2.6] and [21, Satz 5.9 (A)].
(2) By Proposition 3.2, we can, after possibly reversing base and fiber orientations in the cor-

responding subgraphs, apply Proposition 3.5 without any condition on the signs of 𝑒 and
𝑒′.

Proposition 3.2 directly follows from the fact that, by reversing the orientations as assumed, the
gluing maps for the plumbings do not change. Proposition 3.5 follows from [7, Lemma 2.10]. For
convenience, we give the proof below.
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 15 of 50

Proof of Proposition 3.5, cf. [7, Lemma 2.10]. Denote the graph

by 𝐺′. Then,

𝑀𝐺′ ≅ 𝜋
−1
𝑢 (𝐵𝑢 ⧵ 𝐷

𝑞◦) ∪𝑆𝑞−1×𝑆𝑝−1 (𝑆
𝑝 ⧵ (𝐷𝑝 ⊔ 𝐷𝑝)◦) × 𝑆𝑞−1 ∪𝑆𝑞−1×𝑆𝑝−1 𝜋

−1
𝑢′
(𝐵𝑢′ ⧵ 𝐷

𝑞◦)

≅ 𝜋−1𝑢 (𝐵𝑢 ⧵ 𝐷
𝑞◦) ∪𝑆𝑞−1×𝑆𝑝−1 (𝑆

𝑝−1 × 𝐼) × 𝑆𝑞−1 ∪𝑆𝑞−1×𝑆𝑝−1 𝜋
−1
𝑢′
(𝐵𝑢′ ⧵ 𝐷

𝑞◦)

≅ 𝜋−1𝑢 (𝐵𝑢 ⧵ 𝐷
𝑞◦) ∪𝑆𝑞−1×𝑆𝑝−1 𝜋

−1
𝑢′
(𝐵𝑢′ ⧵ 𝐷

𝑞◦).

Here, we identify the boundaries of 𝜋−1𝑢 (𝐵𝑢 ⧵ 𝐷
𝑞◦) and 𝜋−1

𝑢′
(𝐵𝑢′ ⧵ 𝐷

𝑞◦)with 𝑆𝑞−1 × 𝑆𝑝−1 via local
trivializations 𝐷𝑞 × 𝑆𝑝−1 ↪ 𝐸𝑢, 𝐸𝑢′ and consider gluings to different connected components of
the boundaries of (𝑆𝑝 ⧵ (𝐷𝑝 ⊔ 𝐷𝑝)◦) × 𝑆𝑞−1 and (𝑆𝑝−1 × 𝐼) × 𝑆𝑞−1 that can both be identified
canonically with the disjoint union of two copies of 𝑆𝑝−1 × 𝑆𝑞−1 ≅ 𝑆𝑞−1 × 𝑆𝑝−1.
Since the induced orientations on the boundary components of 𝑆𝑝−1 × 𝐼 are opposite to each

other, and by the assumption on the signs, the gluing map reverses the orientation on the 𝑆𝑞−1-
factor and preserves the orientation on the 𝑆𝑝−1-factor. Hence, the claim follows. □

Proof of Proposition 3.4. By possibly reversing the orientations on the base and fibers of 𝜋𝑣, we
can assume that 𝛿(𝑒) = 1. Let 𝑇∶ 𝑆𝑞−1 → SO(𝑝) be the clutching function for 𝜋𝑢. Then, we have

𝑀𝐺 ≅ (𝑆
𝑞−1 × 𝐷𝑝) ∪𝑇̃ (𝐷

𝑞 × 𝑆𝑝−1),

where 𝑇̃ ∶ 𝑆𝑞−1 × 𝑆𝑝−1 → 𝑆𝑞−1 × 𝑆𝑝−1 is defined by

𝑇̃(𝑥, 𝑦) = (𝑥, 𝑇𝑥(𝑦)).

We extend this map to 𝑆𝑞−1 × 𝐷𝑝, that is, we define the diffeomorphism 𝑇̄ ∶ 𝑆𝑞−1 × 𝐷𝑝 → 𝑆𝑞−1 ×

𝐷𝑝 by 𝑇̄(𝑥, 𝑦) = (𝑥, 𝑇𝑥(𝑦)), so by definition, 𝑇̄|𝑆𝑞−1×𝑆𝑝−1 = 𝑇̃. Hence,
𝑀𝐺 ≅ 𝑇̄(𝑆

𝑞−1 × 𝐷𝑝) ∪𝑇̃ (𝐷
𝑞 × 𝑆𝑝−1) = (𝑆𝑞−1 × 𝐷𝑝) ∪id (𝐷

𝑞 × 𝑆𝑝−1) ≅ 𝑆𝑝+𝑞−1,

where the last isomorphism follows by identifying 𝐷𝑞 × 𝐷𝑝 with 𝐷𝑝+𝑞 by smoothing corners and
considering the boundaries of each space. □

For the proof of Proposition 3.3, we need the following notion.

Definition 3.7. An embedding 𝜑∶ 𝐷𝑞 × 𝑆𝑝−1 ↪ 𝑀𝑝+𝑞−1 into a manifold 𝑀 is called trivial, if
there is an embedding 𝜑̄ ∶ 𝐷𝑞−1 × 𝐷𝑝 ↪ 𝑀 so that 𝜑|𝐷𝑞−1×𝑆𝑝−1 = 𝜑̄|𝐷𝑞−1×𝑆𝑝−1 .
Here, we consider 𝐷𝑞−1 ⊆ 𝐷𝑞 according to the embedding ℝ𝑞−1 ≅ ℝ𝑞−1 × {0} ⊆ ℝ𝑞.

Lemma 3.8. Let𝑀 be connected. Then, any two trivial embeddings𝜑1, 𝜑2 ∶ 𝐷𝑞 × 𝑆𝑝−1 ↪ 𝑀, which
are orientation-preserving with respect to the same orientation of𝑀 if𝑀 is orientable, are isotopic.
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16 of 50 REISER

F IGURE 1 A trivial embedding of 𝐷3 × 𝑆0.

Proof. First note that we can assume that both 𝜑̄1 and 𝜑̄2 are orientation preserving if 𝑀 is
orientable, since otherwise we can replace 𝜑̄𝑖 by the map

(𝑥1, … , 𝑥𝑞−1, 𝑦) ↦ 𝜑̄𝑖(𝑥1, … , 𝑥𝑞−2, −𝑥𝑞−1, 𝑦),

where (𝑥1, … , 𝑥𝑞−1) ∈ 𝐷𝑞−1 and 𝑦 ∈ 𝐷𝑝, and 𝜑𝑖 by the map

(𝑥1, … , 𝑥𝑞, 𝑦) ↦ 𝜑𝑖(𝑥1, … , 𝑥𝑞−2, −𝑥𝑞−1, −𝑥𝑞, 𝑦),

where (𝑥1, … , 𝑥𝑞) ∈ 𝐷𝑞 and 𝑦 ∈ 𝑆𝑝−1, which is clearly isotopic to 𝜑𝑖 .
By the disc theorem of Palais [17, Theorem 5.5], any two embeddings of 𝐷𝑝 into𝑀 are ambient

isotopic, where we require them to be orientation-preserving if𝑀 is orientable and 𝑝 = dim(𝑀).
It follows that, after applying an ambient isotopy, we can assume that 𝜑̄1|{0}×𝐷𝑝 = 𝜑̄2|{0}×𝐷𝑝 .
If𝑀 is nonorientable, we can introduce a local orientation by enlarging the image of one of 𝜑̄𝑖

to a ball 𝐷𝑝+𝑞−1, so that 𝜑𝑖 , 𝜑̄𝑖 are all contained in this ball. If one of 𝜑𝑖 is orientation-reversing
with respect to the orientation of 𝐷𝑝+𝑞−1, we can apply an isotopy of this ball that reverses the
orientation, which exists by the disc theorem of Palais. If one of 𝜑̄𝑖 is orientation-reversing, we
modify it as in the beginning of the proof. Hence, we can assume that 𝜑𝑖 , 𝜑̄𝑖 are all orientation-
preserving.
By the uniqueness of tubular neighborhoods, see, for example, [12, Theorem 4.5.3], after

applying an isotopy to one of 𝜑̄𝑖 , there is a smooth map 𝜙∶ 𝐷𝑝 → GL+(𝑞), so that 𝜑̄1(𝑥, 𝑦) =
𝜑̄2(𝜙𝑦(𝑥), 𝑦). Since 𝐷𝑝 is contractible, there exists a smooth homotopy of 𝜙 to the constant map
𝜙 ≡ idℝ𝑞 . This yields an isotopy of 𝜑̄2 so that we can assume 𝜑̄1 = 𝜑̄2. By the isotopy extension the-
orem, see, for example, [12, Theorem 8.1.3], this isotopy extends to a diffeotopy of𝑀, in particular,
we can assume that after the isotopy, the assumption 𝜑𝑖|𝐷𝑞−1×𝑆𝑝−1 = 𝜑̄𝑖|𝐷𝑞−1×𝑆𝑝−1 still holds.
Again, by the uniqueness of tubular neighborhoods, there is 𝜙∶ 𝑆𝑝−1 → GL+(𝑞) so that, after

applying an isotopy, 𝜑1(𝑥, 𝑦) = 𝜑2(𝜙𝑦(𝑥), 𝑦). This isotopy can be chosen so that the condition
𝜑1|𝐷𝑞−1×𝑆𝑝−1 = 𝜑2|𝐷𝑞−1×𝑆𝑝−1 is preserved (cf. [12, Proof of Theorem 4.5.3]), hence 𝜙𝑦 fixes ℝ𝑞−1 ⊆
ℝ𝑞 pointwise for all 𝑦 ∈ 𝑆𝑝−1. The subspace of GL+(𝑞) fixing ℝ𝑞−1 pointwise can be identified
with ℝ𝑞−1 × ℝ+ by considering the image of the last standard basis vector (0, … 0, 1). Since this
space is convex, there is a smooth homotopy of 𝜙 to the constant map idℝ𝑞 within this space, so
𝜑1 is isotopic to 𝜑2. □

Lemma 3.9. Let 𝜑1 ∶ 𝐷𝑞 × 𝑆𝑝−1 ↪ 𝑀
𝑝+𝑞−1
1

, 𝜑2 ∶ 𝐷𝑝 × 𝑆𝑞−1 ↪ 𝑀
𝑝+𝑞−1
2

be embeddings into
connected manifolds and let𝑀 be the manifold

𝑀 = 𝑀1 ⧵ im(𝜑1)
◦ ∪𝑆𝑝−1×𝑆𝑞−1 𝑀2 ⧵ im(𝜑2)

◦,
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 17 of 50

where for the gluing, we identify the boundaries of𝑀1 ⧵ im(𝜑1)
◦ and𝑀2 ⧵ im(𝜑2)

◦ with 𝑆𝑝−1 × 𝑆𝑞−1
via𝜑1 and𝜑2, respectively. Suppose that one of𝜑1, 𝜑2 is trivial and that, after choosing an orientation,
both𝜑1 and𝜑2 are orientation-preserving if both𝑀1 and𝑀2 are orientable. Then,𝑀 is diffeomorphic
to𝑀1#𝑀2 if one of𝑀1 and𝑀2 is nonorientable and to𝑀1#(−1)

𝑝𝑞−𝑝−𝑞𝑀2 otherwise.

Proof. By possibly interchanging the roles of 𝜑1 and 𝜑2, we can assume that 𝜑1 is trivial. We
decompose

𝑀1 ≅ 𝑀1#𝑆
𝑝+𝑞−1 ≅ 𝑀1#((−1)

𝑞(𝑆𝑞−1 × 𝐷𝑝) ∪𝜕 (𝐷
𝑞 × 𝑆𝑝−1)), (3.1)

the orientation on 𝑆𝑞−1 × 𝐷𝑝 is chosen so that the induced orientations on the boundary of 𝑆𝑞−1 ×
𝐷𝑝 and 𝐷𝑞 × 𝑆𝑝−1 are opposite to each other, so that after gluing both pieces together, we have a
well-defined orientation.
The embedding 𝜑∶ 𝐷𝑞 × 𝑆𝑝−1 ↪ (𝑆𝑞−1 × 𝐷𝑝) ∪𝑆𝑞−1×𝑆𝑝−1 (𝐷

𝑞 × 𝑆𝑝−1) of the second factor is
trivial: The map 𝜑̄ is given by

𝐷𝑞−1 × 𝐷𝑝 ≅ (𝐷𝑞−1 × 𝐷𝑝) ∪𝐷𝑞−1×𝑆𝑝−1 (𝐷
𝑞
+ × 𝑆

𝑝−1) ↪ (𝑆𝑞−1 × 𝐷𝑝) ∪𝑆𝑞−1×𝑆𝑝−1 (𝐷
𝑞 × 𝑆𝑝−1),

where 𝐷𝑞+ ⊆ 𝐷
𝑞 denotes the upper half-ball and we embed 𝐷𝑞−1 ⊆ 𝑆𝑞−1 as the upper half-sphere

into the first factor (and note that in this way, we obtain an embedding 𝐷𝑞−1 ⊆ 𝑆𝑞−1 ⊆ 𝐷𝑞 that
differs from the standard embedding 𝐷𝑞−1 ⊆ 𝐷𝑞).
By Lemma 3.8, the embeddings 𝜑 and 𝜑1 are isotopic, where we consider both 𝜑 and 𝜑1

as embeddings into 𝑀1 via (3.1) and assume that the discs removed in the connected sum
construction of𝑀1 and 𝑆𝑝+𝑞−1 are disjoint from the images of 𝜑, 𝜑1 and 𝜑̄. Hence,

𝑀1 ⧵ im(𝜑1)
◦ ∪𝑆𝑝−1×𝑆𝑞−1 𝑀2 ⧵ im(𝜑2)

◦ ≅ 𝑀1#((−1)
𝑞𝑆𝑞−1 × 𝐷𝑝) ∪𝑆𝑞−1×𝑆𝑝−1 𝑀2 ⧵ im(𝜑2)

◦.

The map 𝑆𝑝−1 × 𝑆𝑞−1 → 𝑆𝑞−1 × 𝑆𝑝−1, (𝑥, 𝑦) ↦ (𝑦, 𝑥), is orientation-preserving if and only if
(𝑝 − 1)(𝑞 − 1) is even. Hence, if 𝑀2 is orientable, and if we equip it with the orientation
−(−1)(𝑝−1)(𝑞−1) = (−1)𝑝𝑞−𝑝−𝑞, we have a well-defined orientation after gluing, so we obtain

𝑀1 ⧵ im(𝜑1)
◦ ∪𝑆𝑝−1×𝑆𝑞−1 𝑀2 ⧵ im(𝜑2)

◦

≅ 𝑀1#((−1)
𝑞𝑆𝑞−1 × 𝐷𝑝 ∪𝑆𝑞−1×𝑆𝑝−1 (−1)

𝑝𝑞−𝑝−𝑞𝑀2 ⧵ im(𝜑2)
◦)

≅ 𝑀1#(−1)
𝑝𝑞−𝑝−𝑞𝑀2. □

Proof of Proposition 3.3. First note that, by reversing the base and fiber orientations of the bundles
associated to vertices in 𝐺𝑖 (resp. 𝑣) and setting 𝛿(𝑒𝑖) = 1 whenever 𝛿(𝑒𝑖) = −1 for 𝑖 ∈ {1, … , 𝑛}
(resp. 𝑖 = 0), we obtain a new graph (which we also denote by 𝐺) that satisfies 𝛿(𝑒0) = 𝛿(𝑒1) =
⋯ = 𝛿(𝑒𝑛) = 1 and leaves the diffeomorphism type of 𝑀𝐺 unchanged by Proposition 3.2. Then,
we have

𝑀𝐺0
≅ 𝜋−1𝑣 (𝐵𝑣 ⧵ 𝐷

𝑝◦) ∪𝑆𝑝−1×𝑆𝑞−1 𝜋
−1
𝑢 (𝐵𝑢 ⧵ 𝐷

𝑞◦)

≅ 𝐷𝑝 × 𝑆𝑞−1 ∪𝑆𝑝−1×𝑆𝑞−1 𝜋
−1
𝑢 (𝐵𝑢 ⧵ 𝐷

𝑞◦)

≅ 𝐷𝑝 × 𝑆𝑞−1 ∪𝑆𝑝−1×𝑆𝑞−1 ([0, 1] × 𝑆
𝑞−1 × 𝑆𝑝−1) ∪𝑆𝑞−1×𝑆𝑝−1 𝜋

−1
𝑢 (𝐵𝑢 ⧵ 𝐷

𝑞◦), (3.2)
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18 of 50 REISER

F IGURE 2 The embeddings 𝜑𝑖 are trivial.

where we use similar conventions for the gluing as in the proof of Proposition 3.5. Since we can
view the mid-part as part of the bundle 𝜋𝑢, the manifold 𝑀𝐺 is now obtained from 𝑀𝐺0

by cut-
ting out embeddings 𝜑𝑖 ∶ 𝐷𝑞 × 𝑆𝑝−1 ↪ (0, 1) × 𝑆𝑞−1 × 𝑆𝑝−1 of the form 𝜄𝑖 × id𝑆𝑝−1 for embeddings
𝜄𝑖 ∶ 𝐷

𝑞 ↪ (0, 1) × 𝑆𝑞−1, and gluing in the corresponding parts of 𝑀𝐺𝑖
. We now show that all of

these embeddings are trivial.
For that, we isotope 𝜄𝑖 so that 𝜄𝑖|𝐷𝑞−1 ∶ 𝐷𝑞−1 ↪ {𝑡𝑖} × 𝐷

𝑞−1
𝑖

for an embedded disc 𝐷𝑞−1
𝑖

⊆ 𝑆𝑞−1.
We choose the discs 𝐷𝑞−1

𝑖
so that they do not intersect. Then, we define 𝜑̄𝑖 ∶ 𝐷𝑞−1 × 𝐷𝑝 ↪ 𝑀𝐺0

by identifying

𝐷𝑞−1 × 𝐷𝑝 ≅ 𝐷
𝑞−1
𝑖

× 𝐷𝑝 ∪
𝐷
𝑞−1
𝑖

×𝑆𝑝−1
([0, 𝑡𝑖] × 𝐷

𝑞−1
𝑖

× 𝑆𝑝−1)

and mapping it to

𝑆𝑞−1 × 𝐷𝑝 ∪𝑆𝑞−1×𝑆𝑝−1
(
[0, 1] × 𝑆𝑞−1 × 𝑆𝑝−1

)
via the obvious inclusions on each part, cf. Figure 2.
Since the discs 𝐷𝑞−1

𝑖
do not intersect each other, the maps 𝜑̄𝑖 have pairwise disjoint image.

Hence, if we equip each 𝑀𝐺𝑖
with the orientation induced from each 𝐸𝑣, which equals the

orientation induced from (−1)𝑝𝑞−𝑝−𝑞𝐸𝑢, it follows from Lemma 3.9 that

𝑀𝐺 ≅ 𝑀𝐺0
#𝑀𝐺1

#…#𝑀𝐺𝑛
. □

3.2 Fundamental group, cohomology, and characteristic classes

The goal of this section is to determine the fundamental group, the cohomology ring, and the
characteristic classes of𝑀𝐺 . As in the previous section, we fix a geometric plumbing graph 𝐺.

Lemma 3.10. Suppose 𝑝, 𝑞 > 2 and that every connected component of 𝐺 and every 𝐵𝑢 and 𝐵𝑣 are
simply-connected. Then,𝑀𝐺 is simply-connected.

Proof. If𝐺1,… , 𝐺𝑛 denote the connected components of𝐺, then𝑀𝐺 ≅ 𝑀𝐺1
#…#𝑀𝐺𝑛

and hence

𝜋1(𝑀𝐺) ≅ 𝜋1(𝑀1) ∗ ⋯ ∗ 𝜋1(𝑀𝑛).
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 19 of 50

Thus, we can restrict to the case where 𝐺 is connected.
The manifold 𝑀𝐺 is obtained by gluing the spaces 𝜋−1𝑢 (𝐵𝑢 ⧵ (

⨆
deg(𝑢) 𝐷

𝑞)◦) and 𝜋−1𝑣 (𝐵𝑣 ⧵
(
⨆
deg(𝑣) 𝐷

𝑝)◦) according to 𝐺. These spaces are fiber bundles with base spaces 𝐵𝑢 or 𝐵𝑣 with a
finite number of discs removed. Since, 𝑝, 𝑞 > 2, it follows from the long exact sequence for fiber
bundles that all these spaces are simply-connected.
The graph is simply-connected, hence, after choosing a root, it is a tree. If𝑀𝑘 is the manifold

obtained by gluing according the subgraph of𝐺 consisting of all vertices of distance atmost 𝑘 from
the root, then it follows inductively from vanKampen’s theorem, that𝑀𝑘 is simply-connected. For
𝑘 large enough, we have𝑀𝑘 = 𝑀𝐺 , and hence𝑀𝐺 is simply-connected. □

Remark 3.11. If one does not require that 𝐺 is simply-connected in Lemma 3.10, then, if 𝐺 is
connected, one can show, by using the groupoid version of van Kampen’s theorem, that𝜋1(𝑀𝐺) ≅

𝜋1(𝐺).

For the cohomology, we fix a commutative unital ring 𝑅. For 𝑢 ∈ 𝑈 recall from (2.4) that if
𝑒𝑅(𝜋𝑢) = 0, then we have

𝐻𝑖(𝐸𝑢) = 𝜋
∗
𝑢(𝐻

𝑖(𝐵𝑢)) ⊕ 𝜃𝑎𝑢(𝐻
𝑖−𝑝+1(𝐵𝑢))

for an element 𝑎𝑢 ∈ 𝐻𝑝−1(𝐸𝑢) with 𝜓(𝑎𝑢) = 1. We make the following assumption:

(3.3)

Theorem 3.12. Let𝐺 be a geometric plumbing graph with 𝑝 > 1 satisfying (3.3), so that 𝑒𝑅(𝜋𝑢) = 0
and𝐵𝑢 is closed for all 𝑢 ∈ 𝑈, and each bundle𝜋𝑣 is trivial with𝐵𝑣 ≅ 𝑆𝑝. Then, the cohomology ring
𝐻∗(𝑀𝐺) is a quotient of a subring of

⨁
𝑢∈𝑈 𝐻

∗(𝐸𝑢) as follows:

if 𝑞 ≠ 𝑝 − 1, and
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20 of 50 REISER

if 𝑞 = 𝑝 − 1. The cup product structure is induced from
⨁

𝑢∈𝑈 𝐻
∗(𝐸𝑢).

Remark 3.13. If, in the situation of Theorem 3.12, we merely require that 𝐺 has simply-connected
connected components instead of (3.3), we can apply Proposition 3.3 to split it into a dis-
joint union of subgraphs that all either satisfy (3.3), or consist of a single vertex in 𝑉. Thus,
we can compute the cohomology ring of 𝑀𝐺 by applying Theorem 3.12 to the correspond-
ing components of 𝐺 (provided that the assumptions on the bundles as in Theorem 3.12 are
satisfied).

Theorem 3.14. Let 𝑐 be a stable characteristic class. Let𝐺 be a geometric plumbing graph satisfying
the assumptions of Theorem 3.12. If 𝜉𝑢 denotes the vector bundle corresponding to the bundle 𝜋𝑢,
then

𝑐(𝑇𝑀𝐺) =
∑
𝑢∈𝑈

𝜋∗𝑢𝑐(𝜉𝑢 ⊕ 𝑇𝐵𝑢),

wherewe identified𝐻∗(𝑀𝐺)with a quotient of a subring of
⨁

𝑢∈𝑈 𝐻
∗(𝐸𝑢)according toTheorem3.12.

Applying Theorems 3.12 and 3.14 in dimension 6𝑘 yields the following corollary.

Corollary 3.15. In the setting of Theorem 3.12, let 𝑝 = 2𝑘 + 1, 𝑞 = 4𝑘, that is, 𝑀𝐺 has dimen-
sion 6𝑘. Let every 𝐵𝑢 be simply-connected with torsion-free homology. Then, the following assertions
hold:

(1) If𝐺 is the graph , then𝑀𝐺 is a simply-connected 6𝑘-dimensionalmanifoldwith torsion-
free homology and invariants

(𝐻2𝑘(𝑀𝐺; ℤ), 𝜇𝑀𝐺
, 𝑤2(𝑀𝐺)

𝑘, 𝑝𝑘(𝑀𝐺)) = (𝐻
2𝑘(𝐵𝑢; ℤ), 0, (𝑤2(𝐵𝑢) + 𝑤2(𝜋𝑢))

𝑘, 0).

If 𝑘 = 1, then 𝑏3(𝑀𝐺) = 0.
(2) If 𝐺 has no vertex in 𝑉 that is a leaf, then 𝑀𝐺 is a simply-connected 6𝑘-dimensional man-

ifold with torsion-free homology. Further, define 𝐴 =
⨁

𝑢∈𝑈 𝐻
2𝑘(𝐸𝑢; ℤ), 𝜇 =

∑
𝑢∈𝑈 𝜇𝐸𝑢 and
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 21 of 50

𝑝 =
∑
𝑢∈𝑈 𝑝𝑘(𝐸𝑢) (viewed as a linear form on 𝐴). Then,𝐻2𝑘(𝑀𝐺; ℤ) is given by⨁

𝑢∈𝑈

𝜋∗𝑢𝐻
2𝑘(𝐵𝑢; ℤ) ⊕

{ ∑
𝑢∈𝑈

𝜆𝑢 ⋅ 𝑎𝑢
||||| 𝜆𝑢 ∈ ℤ ∀𝑢 ∈ 𝑈,

∑
𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉

}
⊆ 𝐴,

and we have 𝑤2(𝑀𝐺)
𝑘 =

∑
𝑢∈𝑈 𝜋

∗
𝑢(𝑤2(𝐵𝑢) + 𝑤2(𝜋𝑢))

𝑘 and 𝜇𝑀𝐺
and 𝑝𝑘(𝑀𝐺) are the restric-

tions of 𝜇 and 𝑝 to𝐻2𝑘(𝑀𝐺; ℤ), respectively. If 𝑘 = 1, then 𝑏3(𝑀𝐺) = 0.

The rest of this section consists of the proofs of Theorems 3.12 and 3.14.

Lemma 3.16. Let 𝑆𝑛
𝑘
= 𝑆𝑛 ⧵ (

⨆
𝑘 𝐷

𝑛)◦ with 𝑛 ⩾ 2. Then, the inclusion 𝜄 ∶
⨆
𝑘 𝑆

𝑛−1 ↪ 𝑆𝑛
𝑘
of the

boundary induces an injective map

with image generated by the elements 𝑎𝑗 − 𝑎𝑖 , where 𝑎𝑖 is a positively oriented generator of the 𝑖th
copy of𝐻𝑛−1(𝑆𝑛−1) with respect to the orientation induced by 𝑆𝑛

𝑘
.

Proof. We use Lefschetz duality to obtain the following commutative diagram with exact rows
and where the vertical arrows are isomorphisms:

If 𝑛 ⩾ 3, then 𝑆𝑛
𝑘
is simply-connected. If 𝑛 = 2, then the map𝐻1(𝑆2𝑘) → 𝐻1(𝑆

2
𝑘
,
⨆
𝑘 𝑆

1) is trivial as
any closed loop in 𝑆2

𝑘
is homologous to the sum of loops in

⨆
𝑘 𝑆

1 it encloses. Hence, the map 𝜄∗
is injective. To compute the image, it suffices to determine the kernel of the map𝐻0(

⨆
𝑘 𝑆

𝑛−1) →

𝐻0(𝑆
𝑛
𝑘
). The claim now follows from the fact that we can join any two boundary components by a

path and that the vertical map𝐻𝑛−1(
⨆
𝑘 𝑆

𝑛−1) → 𝐻0(
⨆
𝑘 𝑆

𝑛−1) is given by Poincaré duality. □

For each 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we denote the embeddings along which the spaces 𝐸𝑢 and 𝐸𝑣 get glued
by 𝜑(𝑢,𝑣) ∶ 𝐷𝑞 × 𝐷𝑝 ↪ 𝐸𝑢 and 𝜑(𝑣,𝑢) ∶ 𝐷𝑝 × 𝐷𝑞 ↪ 𝐸𝑣, respectively, and by 𝐼±𝑝,𝑞 ∶ 𝐷

𝑝 × 𝐷𝑞 → 𝐷𝑞 ×

𝐷𝑝 the diffeomorphism

𝐼±𝑝,𝑞(𝑥1, … , 𝑥𝑝, 𝑦1, … , 𝑦𝑞) = (±𝑦1, 𝑦2, … , 𝑦𝑞, ±𝑥1, 𝑥2, … , 𝑥𝑝),

so that𝑀𝐺 is the result of the following pushout:
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Now let

𝑋 = 𝑀𝐺 ⧵
⋃
𝑢∈𝑈

Int(𝐸𝑢) =
⋃
𝑣∈𝑉

𝐸𝑣 ⧵

( ⋃
(𝑢,𝑣)∈𝐸

𝜑(𝑣,𝑢)(𝐷
𝑝◦ × 𝐷𝑞)

)
∪

⋃
𝑢∈𝑈

𝐸𝑢,

where we considered the spaces 𝐸𝑣 and 𝐸𝑢 as subspaces of𝑀𝐺 . Alternatively, the space 𝑋 is the
result of the following pushout:

(3.4)

For every 𝑣 ∈ 𝑉, by assumption, themanifold𝐸𝑣 ⧵ (
⋃
(𝑢,𝑣)∈𝐸 𝜑(𝑣,𝑢)(𝐷

𝑝◦ × 𝐷𝑞)) can be identified
with 𝑆𝑝

deg(𝑣)
× 𝐷𝑞.

Lemma 3.17. Suppose that𝐺 satisfies (3.3). Then, the inclusion
⨆
𝑢∈𝑈 𝐸𝑢 ↪ 𝑋 induces an injective

map𝐻𝑖(𝑋) →
⨁

𝑢∈𝑈 𝐻
𝑖(𝐸𝑢) for every 𝑖 with image given by

∙

( ∑
𝑢∈𝑈

1𝐻0(𝐸𝑢)

)
𝑅 ≅ 𝑅, if 𝑖 = 0;

∙
⨁
𝑢∈𝑈

𝜋∗𝑢𝐻
𝑝−1(𝐵𝑢) ⊕

{ ∑
𝑢∈𝑈

𝜆𝑢 ⋅ 𝑎𝑢
||||| 𝜆𝑢 ∈ 𝑅 ∀𝑢 ∈ 𝑈, ∑

(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉

}
, if 𝑖 = 𝑝 − 1;

∙
⨁
𝑢∈𝑈

𝐻𝑖(𝐸𝑢), else.

We will henceforth identify the cohomology of 𝑋 with its image in
⨁

𝑢∈𝑈 𝐻
∗(𝐸𝑢).

Proof. The Mayer–Vietoris sequence for the pushout (3.4) is given as follows:

⋯⟶𝐻𝑖(𝑋)⟶
⨁
𝑣∈𝑉

𝐻𝑖(𝑆
𝑝

deg(𝑣)
)
⨁
𝑢∈𝑈

𝐻𝑖(𝐸𝑢)⟶
⨁
𝑒∈𝐸

𝐻𝑖(𝑆𝑝−1)⟶ 𝐻𝑖+1(𝑋)⟶ ⋯

To simplify notation, we will write 𝑢, 𝑣, or 𝑒 for a canonical generator of a group 𝐻𝑖(𝑀𝑛) (e.g.,
[𝑀]∗ if 𝑖 = 𝑛 or 1 if 𝑖 = 0), where𝑀 is related to 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 or 𝑒 ∈ 𝐸 (e.g., as the fiber, base, or
total space of 𝜋𝑢 or 𝜋𝑣).
For 𝑖 = 0, the middle map of the sequence is given by⨁

𝑣∈𝑉

𝑅𝑣
⨁
𝑢∈𝑈

𝑅𝑢⟶
⨁
𝑒∈𝐸

𝑅𝑒, 𝑣 ↦
∑

𝑒=(𝑢,𝑣)∈𝐸

𝑒, 𝑢 ↦ −
∑

𝑒=(𝑢,𝑣)∈𝐸

𝑒.

This is the linear map associated to the incidence matrix 𝑄(𝐺), when we view 𝐺 as a directed
graph with edges originating from vertices in 𝑉 and ending in vertices in 𝑈. Since 𝐺 is simply-
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connected, it follows from Lemmas A.1 and A.2 that this map is surjective with kernel generated
by

∑
𝑢∈𝑈 𝑢 +

∑
𝑣∈𝑉 𝑣. In particular, the image of𝐻0(𝑋) in

⨁
𝑢∈𝑈 𝐻

0(𝐸𝑢) is generated by∑
𝑢∈𝑈

𝑢 =
∑
𝑢∈𝑈

1𝐻0(𝐸𝑢).

For 1 ⩽ 𝑖 < 𝑝 − 1 or 𝑖 ⩾ 𝑝, the groups 𝐻𝑖(𝑆
𝑝

𝑘
) and 𝐻𝑖(𝑆𝑝−1) vanish. By exactness, the map

𝐻𝑖(𝑋) →
⨁

𝑢∈𝑈 𝐻
𝑖(𝐸𝑢) is an isomorphism for 1 ⩽ 𝑖 < 𝑝 − 1 and for 𝑖 > 𝑝 (for 𝑖 = 1, this follows

from the surjectivity of the map in degree 0).
Finally, we have to investigate the following part of the sequence:

0⟶ 𝐻𝑝−1(𝑋)⟶
⨁
𝑣∈𝑉

𝐻𝑝−1(𝑆
𝑝

deg(𝑣)
)
⨁
𝑢∈𝑈

𝐻𝑝−1(𝐸𝑢)⟶
⨁
𝑒∈𝐸

𝐻𝑝−1(𝑆𝑝−1)

⟶ 𝐻𝑝(𝑋)⟶
⨁
𝑢∈𝑈

𝐻𝑝(𝐸𝑢)⟶ 0.

By (2.4) and by writing 𝑒 = [𝑆𝑝−1] ∗∈ 𝐻𝑝−1(𝑆𝑝−1), viewed as the summand corresponding to 𝑒 ∈
𝐸, we can write the third map in this sequence as⨁

𝑣∈𝑉

𝐻𝑝−1(𝑆
𝑝

deg(𝑣)
)
⨁
𝑢∈𝑈

𝜋∗𝑢(𝐻
𝑝−1(𝐵𝑢)) ⊕ 𝑅𝑎𝑢 ⟶

⨁
𝑒∈𝐸

𝑅𝑒.

We denote this map by 𝜙. By Lemma 3.16, for every 𝑣 ∈ 𝑉, there are generators 𝑎𝑣𝑢1𝑢2 , 𝑢1, 𝑢2 ∈ 𝑈
with (𝑢1, 𝑣), (𝑢2, 𝑣) ∈ 𝐸, of𝐻𝑝−1(𝑆

𝑝

deg(𝑣)
) (note that they are not linearly independent), so that we

have

𝜙(𝑎𝑣𝑢1𝑢2
) = 𝛿(𝑢1, 𝑣)(𝑢1, 𝑣) − 𝛿(𝑢2, 𝑣)(𝑢2, 𝑣), for 𝑣 ∈ 𝑉,

𝜙(𝑥) = 0, for 𝑥 ∈ 𝜋∗𝑢(𝐻
𝑝−1(𝐵𝑢)), 𝑢 ∈ 𝑈,

𝜙(𝑎𝑢) =
∑

𝑒=(𝑢,𝑣)∈𝐸

𝑒, for 𝑢 ∈ 𝑈.

The last line follows from (2.6).
If 𝐺 is the graph , then 𝑆𝑝

deg(𝑣)
is contractible, so 𝐻𝑝−1(𝑆

𝑝

deg(𝑣)
) is trivial and 𝜙(𝑎𝑢) = 𝑒.

Hence, the map 𝜙 is surjective with kernel 𝜋∗𝑢(𝐻
𝑝−1(𝐵𝑢)).

Now suppose that no vertex in 𝑉 is a leaf. Then, for any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, that is connected
to a leaf 𝑢 ∈ 𝑈, we have 𝜙(𝑎𝑢) = 𝑒. Hence, for any edge 𝑒′ = (𝑢′, 𝑣) ∈ 𝐸 connected to 𝑣, we have

𝜙(𝛿(𝑢′, 𝑣)𝑎𝑣
𝑢′𝑢

+ 𝛿(𝑢, 𝑣)𝑎𝑢) = 𝑒
′.

Hence, by induction over the distance to the root, we see that the map 𝜙 is surjective.
We have that

⨁
𝑢∈𝑈 𝜋

∗
𝑢(𝐻

𝑝−1(𝐵𝑢)) is contained in the kernel of 𝜙. Further, the image of the
restriction

⨁
𝑣∈𝑉 𝐻

𝑝−1(𝑆
𝑝

deg(𝑣)
)⟶

⨁
𝑒∈𝐸 𝑅𝑒 of 𝜙 is given by{∑

𝑒∈𝐸

𝜆𝑒𝑒
||||| 𝜆𝑒 ∈ 𝑅 ∀𝑒 ∈ 𝐸,

∑
𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜆𝑒 = 0 ∀𝑣 ∈ 𝑉

}
.
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24 of 50 REISER

Thus, to determine the kernel of 𝜙, we need to determine all elements
∑
𝑢∈𝑈 𝜆𝑢𝑎𝑢 ∈

⨁
𝑢∈𝑈 𝑅𝑎𝑢,

that get mapped into this set via 𝜙. This is precisely the set{ ∑
𝑢∈𝑈

𝜆𝑢𝑎𝑢

||||| 𝜆𝑢 ∈ 𝑅 ∀𝑢 ∈ 𝑈,
∑

𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉

}
,

which is the projection of the kernel of 𝜙 to
⨁

𝑢∈𝑈 𝑅𝑎𝑢. This finishes the proof. □

Lemma 3.18. Suppose that 𝐺 satisfies (3.3). Then, the inclusion𝑀𝐺 ↪ 𝑋 induces a surjective map
𝐻𝑖(𝑋) → 𝐻𝑖(𝑀𝐺) with kernel given by

ker(𝐻𝑖(𝑋) → 𝐻𝑖(𝑀𝐺)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⨁
𝑣∈𝑉

( ∑
𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜋∗𝑢[𝐵𝑢]
∗

)
𝑅, 𝑖 = 𝑞;{ ∑

𝑢∈𝑈
𝜆𝑢[𝐸𝑢]

∗
||||| 𝜆𝑢 ∈ 𝑅 ∀𝑢 ∈ 𝑈, ∑

𝑢∈𝑈
𝜆𝑢 = 0

}
, 𝑖 = 𝑝 + 𝑞 − 1;

0, else.

Proof. By excision, the cohomology of the pair (𝑋,𝑀𝐺) is isomorphic to the cohomology of the
pair (⨆

𝑣∈𝑉

𝐷𝑞 × 𝑆
𝑝

deg(𝑣)
,
⨆
𝑣∈𝑉

𝑆𝑞−1 × 𝑆
𝑝

deg(𝑣)

)
.

By the long exact sequence, this pair only has nonvanishing cohomology groups in degrees
𝑞 and 𝑝 + 𝑞 − 1. We first consider degree 𝑞. The inclusion 𝑋 ↪ 𝑀𝐺 then gives the following
commutative square:

For this commutative diagram, we will now prove the following claims:

(1) 𝐻𝑞(𝑀𝐺,𝑀𝐺) ≅
⨁

𝑢∈𝑈 𝐻𝑝(𝐵𝑢)
⨁

𝑣∈𝑉 𝑅𝑣 and𝐻𝑞(𝑀𝐺) ≅
⨁

𝑢∈𝑈 𝑅𝑢
⨁

𝑣∈𝑉 𝐻
𝑞(𝑆𝑝).

(2) The map𝐻𝑞(𝑀𝐺,𝑀𝐺) → 𝐻𝑞(𝑋,𝑀𝐺) restricted to
⨁

𝑣∈𝑉 𝑅𝑣 is an isomorphism.
(3) The map𝐻𝑞(𝑀𝐺,𝑀𝐺) → 𝐻𝑞(𝑀𝐺)maps 𝑣 ∈ 𝑉 to

∑
𝑒=(𝑢,𝑣)∈𝐸 𝛿(𝑒)𝑢.

(4) The map𝐻𝑞(𝑀𝐺) → 𝐻𝑞(𝑋)maps 𝑢 ∈ 𝑈 to 𝜋∗𝑢[𝐵𝑢]
∗.

(1) By Lefschetz duality, we have𝐻𝑞(𝑀𝐺,𝑀𝐺) ≅ 𝐻𝑝(𝑀𝐺), so both isomorphisms follow from the
fact that𝑀𝐺 is homotopy equivalent to

⋁
𝑢∈𝑈 𝐵𝑢

⋁
𝑣∈𝑉 𝑆

𝑝.
(2) We have the following commutative diagram of inclusions:

(3.5)
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and Lefschetz duality gives the following commutative square:

The elements 𝑣 ∈ 𝐻𝑞(𝑀𝐺,𝑀𝐺) in (1) are represented by 𝐵𝑣 ≅ 𝑆𝑝 ⊆ 𝑀𝐺 in 𝐻𝑝(𝑀𝐺) ≅

𝐻𝑞(𝑀𝐺,𝑀𝐺). Each class [𝐵𝑣] also represents a generator of

𝐻𝑝

(
𝑆
𝑝

deg(𝑣)
× 𝐷𝑞,

⨆
deg(𝑣)

𝑆𝑝−1 × 𝐷𝑞
)
≅ 𝐻𝑝

(
𝑆𝑝,

⨆
deg(𝑣)

𝐷𝑝
)
≅ 𝐻𝑝(𝑆

𝑝).

Hence, when restricted to
⨁

𝑣∈𝑉 𝑅𝑣, the lower horizontal map is an isomorphism. The claim
now follows from the commutativity of (3.5) and that the map(⨆

𝑣∈𝑉

𝑆
𝑝

deg(𝑣)
× 𝐷𝑞,

⨆
𝑣∈𝑉

𝑆
𝑝

deg(𝑣)
× 𝑆𝑞−1

)
↪ (𝑋,𝑀𝐺)

induces an isomorphism on cohomology by excision.
(3) By Lefschetz duality, we have the following commutative diagram:

By (1), for each 𝑣 ∈ 𝑉, the element 𝑣 ∈ 𝐻𝑞(𝑀𝐺,𝑀𝐺)maps to the homology class that is rep-
resented by 𝐵𝑣 ≅ 𝑆𝑝 ⊆ 𝑀𝐺 . By isotoping the embedding of the zero-section 𝐵𝑣 ⊆ 𝐸𝑣 ⊆ 𝑀𝐺

to the boundary of the disc bundle (which is possible as the bundle 𝜋𝑣 is trivial), we see
that the class of this embedding in 𝐻𝑝(𝑀𝐺,𝑀𝐺) is represented by the sum of embeddings
of fibers of all 𝐸𝑢 for which (𝑢, 𝑣) ∈ 𝐸, each class multiplied by the sign 𝛿(𝑢, 𝑣). Each embed-
ding of a fiber of 𝐸𝑢 represents the dual to the class represented by the embedding of the
zero-section 𝐵𝑢 ⊆ 𝐸𝑢. By commutativity of the diagram, it follows that 𝑣 ∈ 𝐻𝑞(𝑀𝐺,𝑀𝐺) gets
mapped to

∑
𝑒=(𝑢,𝑣)∈𝐸 𝛿(𝑒)𝑢 ∈ 𝐻

𝑞(𝑀𝐺).
(4) The diagram of maps

induces the following commutative diagram, where the lower horizontal map is injective by
Lemma 3.17.
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26 of 50 REISER

For each 𝑢 ∈ 𝑈, the element 𝑢 ∈ 𝐻𝑞(𝑀𝐺) gets mapped to [𝐵𝑢]∗ ∈ 𝐻𝑞(𝐵𝑢), which, in turn,
gets mapped to 𝜋∗𝑢[𝐵𝑢]

∗ ∈ 𝐻𝑞(𝐸𝑢). This proves the claim.

Combining claims (1)–(4), it follows that the map𝐻𝑞(𝑋,𝑀𝐺)⟶ 𝐻𝑞(𝑋) is given by⨁
𝑣∈𝑉

𝑅𝑣⟶𝐻𝑞(𝑋) ⊆
⨁
𝑢∈𝑈

𝐻𝑞(𝐸𝑢)

𝑣⟼
∑

𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜋∗𝑢[𝐵𝑢]
∗.

This map is injective; this is clear if𝐺 is of the form . If no vertex is a leaf, then this follows
from Lemma A.3.
To summarize, we showed for 𝑖 < 𝑝 + 𝑞 − 1 that the map𝐻𝑖(𝑋) → 𝐻𝑖(𝑀𝐺) is surjective except

possibly for 𝑖 = 𝑝 + 𝑞 − 2 and only has a nontrivial kernel when 𝑖 = 𝑞, which is then generated
by the elements

∑
𝑒=(𝑢,𝑣)∈𝐸(𝛿(𝑒)𝜋

∗
𝑢[𝐵𝑢]

∗) for 𝑣 ∈ 𝑉.
It remains to consider the case 𝑖 = 𝑝 + 𝑞 − 1. For each 𝑢 ∈ 𝑈, we have the following

commutative diagram of maps of pairs:

The maps not involving 𝑋 are all orientation-preserving maps that induce isomorphisms on
𝐻𝑝+𝑞−1 by excision and the long exact sequence. Hence, each [𝐸𝑢]∗ ∈ 𝐻𝑝+𝑞−1(𝑋) gets mapped
to the dual of the fundamental class of𝑀𝐺 under the induced map𝐻𝑝+𝑞−1(𝑋)⟶ 𝐻𝑝+𝑞−1(𝑀𝐺).
In particular, the kernel of this map is given by{ ∑

𝑢∈𝑈

𝜆𝑢[𝐸𝑢]
∗
||||| 𝜆𝑢 ∈ 𝑈 ∀𝑢 ∈ 𝑈,

∑
𝑢∈𝑈

𝜆𝑢 = 0

}
.

Further, by the long exact sequence of the pair(⨆
𝑣∈𝑉

𝑆
𝑝

deg(𝑣)
× 𝐷𝑞,

⨆
𝑣∈𝑉

𝑆
𝑝

deg(𝑣)
× 𝑆𝑞−1

)
,
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the 𝑅-module𝐻𝑝+𝑞−1(𝑋,𝑀𝐺) is free of rank |𝐸| − |𝑉|. Since the kernel of the map
𝐻𝑝+𝑞−1(𝑋)⟶ 𝐻𝑝+𝑞−1(𝑀𝐺),

which is the image of themap𝐻𝑝+𝑞−1(𝑋,𝑀𝐺) → 𝐻𝑝+𝑞−1(𝑋), has rank |𝑈| − 1, and since in a tree,
we have |𝑈| + |𝑉| = |𝐸| + 1, that is, |𝐸| − |𝑉| = |𝑈| − 1, it follows that 𝐻𝑝+𝑞−1(𝑋,𝑀𝐺) injects
into𝐻𝑝+𝑞−1(𝑋) as any surjective 𝑅-module homomorphism 𝑅|𝑈|−1 → 𝑅|𝑈|−1 is necessarily injec-
tive. This shows that the boundary map𝐻𝑝+𝑞−2(𝑀𝐺) → 𝐻𝑝+𝑞−1(𝑋,𝑀𝐺) is trivial, and hence, the
map𝐻𝑝+𝑞−2(𝑋) → 𝐻𝑝+𝑞−2(𝑀𝐺) is surjective. This finishes the proof. □

We are now ready to prove Theorems 3.12 and 3.14 and Corollary 3.15.

Proof of Theorem 3.12. This directly follows from Lemmas 3.17 and 3.18. □

Proof of Theorem 3.14. For 𝑢 ∈ 𝑈, we have the inclusion𝐸𝑢 ↪ 𝑀𝐺 , and, by naturality, the induced
map on cohomology maps 𝑐(𝑇𝑀𝐺) to 𝑐(𝑇𝐸𝑢). If 𝜉𝑢 denotes the vector bundle corresponding to
𝜋𝑢, then the tangent bundle of 𝐸𝑢 decomposes as

𝑇𝐸𝑢 ≅ 𝜋
∗
𝑢(𝜉𝑢 ⊕ 𝑇𝐵𝑢),

cf. Proposition 2.5. Hence,

𝑐(𝑇𝐸𝑢) = 𝜋
∗
𝑢𝑐(𝜉𝑢 ⊕ 𝑇𝐵𝑢).

Since𝑀𝐺 ≃
⋁
𝑢∈𝑈 𝐵𝑢

⋁
𝑣∈𝑉 𝐵𝑣 and all bundles 𝜋𝑣 are trivial, it follows that

𝑐(𝑇𝑀𝐺) =
∑
𝑢∈𝑈

𝑐(𝑇𝐸𝑢) =
∑
𝑢∈𝑈

𝜋∗𝑢𝑐(𝜉𝑢 ⊕ 𝑇𝐵𝑢).

Now𝑀𝐺 = 𝜕𝑀𝐺 , and we denote the inclusion𝑀𝐺 ↪ 𝑀𝐺 by 𝜄. Then,

𝜄∗𝑇𝑀𝐺 ≅ 𝑇𝑀𝐺 ⊕ ℝ𝑀𝐺
,

the trivial factor corresponding to the normal bundle of 𝑀𝐺 in 𝑀𝐺 . Hence, by the stability of 𝑐,
we have

𝑐(𝑇𝑀𝐺) = 𝜄
∗

(∑
𝑢∈𝑈

𝜋∗𝑢𝑐(𝜉𝑢 ⊕ 𝑇𝐵𝑢)

)
.

To determine this element in 𝐻∗(𝑀𝐺), consider the following commutative diagram:
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By Theorem 3.12, we need to determine the image of 𝑐(𝑇𝑀𝐺) in the cohomology of
⨆
𝑢∈𝑈 𝐸𝑢. This

is given by ∑
𝑢∈𝑈

𝜋∗𝑢𝑐(𝜉𝑢 ⊕ 𝑇𝐵𝑢) ∈
⨁
𝑢∈𝑈

𝐻∗(𝐸𝑢; 𝑅).

□

Proof of Corollary 3.15. In both cases,𝑀𝐺 is simply-connected by Lemma 3.10. By (2.4), we have
that

⨁
𝑢∈𝑈 𝐻

∗(𝐸𝑢; ℤ) has torsion-free homology. Since, by Lemma A.4, the subspace

⨁
𝑣∈𝑉

( ∑
𝑒=(𝑢,𝑣)∈𝐸

𝛿(𝑒)𝜋∗𝑢[𝐵𝑢]
∗

)
ℤ

is a direct summand in
⨁

𝑢∈𝑈 𝐻
𝑞(𝐸𝑢; ℤ), the same is true for 𝐻∗(𝑀𝐺;ℤ) by Theorem 3.12. The

remaining claims directly follow from Theorems 3.12 and 3.14. □

4 SIMPLY-CONNECTED 𝟔𝒌-DIMENSIONALMANIFOLDS

In this section, we consider manifolds obtained by plumbing in dimension 6𝑘.

4.1 The classification of Jupp

Recall from the introduction that we consider systems of invariants (𝐻2𝑘(𝑀), 𝜇𝑀,𝑤2(𝑀)
𝑘, 𝑝𝑘(𝑀))

of a closed, simply-connected 6𝑘-dimensional manifold𝑀 with torsion-free homology.
Two systems of invariants (𝐻, 𝜇, 𝑤, 𝑝) and (𝐻′, 𝜇′, 𝑤′, 𝑝′) are equivalent if there is an iso-

morphism 𝜙∶ 𝐻 → 𝐻′ such that 𝜙∗𝜇′ = 𝜇, 𝜙(𝑤) = 𝑤′ and 𝜙∗𝑝′ = 𝑝. It is then clear that two
manifolds that are orientation-preserving diffeomorphic have equivalent systems of invariants.
A system of invariants is called admissible in dimension 6𝑘 if it is the system of invariants of

a closed, simply-connected and oriented 6𝑘-dimensional manifold with torsion-free homology.
With this terminology, for 𝑘 = 1, the classification of Jupp is then given as follows.

Theorem 4.1 [13, Theorem 1]. Two oriented closed simply-connected 6-manifolds 𝑀 and 𝑀′ are
orientation-preserving diffeomorphic if and only if 𝑏3(𝑀) = 𝑏3(𝑀′) and their systems of invariants
are equivalent. A system of invariants (𝐻, 𝜇, 𝑤, 𝑝) is admissible in dimension 6 if and only if

𝜇(𝑊) ≡ 𝑝(𝑊) mod 48 (4.1)

holds for all𝑊 ∈ 𝐻 whose reduction to𝐻 ⊗ℤ∕2 is 𝑤.

For 𝑘 > 1, due to the much larger range of (co-)homology groups, one needs to consider and
since there can exist exotic spheres, there is no such classification possible.
Theorem 4.1 is commonly referred to as the classification of closed, simply-connected 6-

manifolds with torsion-free homology. It should be noted that the term “classification” can
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be misleading in this context: in fact, Jupp’s result shows that the classification of closed,
simply-connected 6-manifolds with torsion-free homology is equivalent to the classification of
equivalence classes of systems of invariant that satisfy (4.1) and there is no classification known
of the latter, except if rk(𝐻) = 1 (this is obvious) or if rk(𝐻) = 2, in which case there exists a partial
classification by Schmitt [22].
We also note that Jupp’s classification extends the classification of Wall [28], which requires

the manifolds to be spin, and is a special case of the classification of Zhubr [29], which does not
require the manifolds to have torsion-free homology.

4.2 Algebraic plumbing graphs

In this section, we introduce the notion of algebraic plumbing graphs and give the proof of
Theorem A.
Let 𝐺 = (𝑈,𝑉, 𝐸, (𝛼, 𝑘+, 𝑘−)) be a bipartite graph, which has a labeling (𝛼, 𝑘+, 𝑘−)∶ 𝑈 → ℤ ×

ℕ2
0
for vertices in 𝑈. We call such a graph an algebraic plumbing graph. We will draw vertices

𝑢 ∈ 𝑈 as

If one of 𝑘+(𝑢) and 𝑘−(𝑢) vanishes, then we will omit it. Vertices in 𝑉 will be drawn as dots (as
they do not have any labeling). An example for such a graph is the graph given in the introduction.
For every 𝑢 ∈ 𝑈, we introduce the symbols 𝑢−𝑘−(𝑢), … , 𝑢𝑘+(𝑢) and define the free abelian group

𝐴 =
⨁
𝑢∈𝑈

𝑘+(𝑢)⨁
𝑖=−𝑘−(𝑢)

ℤ𝑢𝑖.

For 𝑘 ∈ ℕ, we define the symmetric trilinear form 𝜇𝑘 ∶ 𝐴3 → ℤ by defining it for each 𝑢 ∈ 𝑈 on⨁𝑘+(𝑢)

𝑖=−𝑘−(𝑢)
ℤ𝑢𝑖 by

𝜇𝑘(𝑢0, 𝑢0, 𝑢0) =
𝜆𝑘
4
𝛼(𝑢),

𝜇𝑘(𝑢0, 𝑢0, 𝑢𝑙) = 0,

𝜇𝑘(𝑢0, 𝑢𝑗, 𝑢𝑙) =

{
sgn(𝑗), 𝑗 = 𝑙,

0, 𝑒𝑙𝑠𝑒,

𝜇𝑘(𝑢𝑖, 𝑢𝑗, 𝑢𝑙) = 0

for 𝑖, 𝑗, 𝑙 ∈ {−𝑘−(𝑢), … , 𝑘+(𝑢)} ⧵ {0}, where 𝜆𝑘 ∈ ℕ is the constant from Lemma 2.9 (note that it is
a multiple of 4 by definition). Then extend 𝜇𝑘 to 𝐴 by setting

𝜇𝑘(𝑢𝑖𝑚, 𝑢
𝑗
𝑛, 𝑢

𝑘
𝑟 ) = 0
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whenever any two of 𝑢𝑚, 𝑢𝑛, 𝑢𝑟 are not equal.
Next, we define a linear form 𝑝𝑘 ∶ 𝐴 → ℤ by

𝑝𝑘(𝑢𝑗) =

{
𝜆𝑘𝛼(𝑢) +

(2𝑘+1
𝑘

)
(𝑘+(𝑢) − 𝑘−(𝑢)), 𝑗 = 0,

0, else,

and we define 𝑤𝐺 ∈ 𝐴⊗ ℤ∕2 by

𝑤𝐺 =
∑
𝑢∈𝑈,
𝑖≠0

𝑢𝑖 mod 2.

Finally, we set

𝐻𝐺 =
⨁
𝑢∈𝑈
𝑖≠0

ℤ𝑢𝑖 ⊕

{ ∑
𝑢∈𝑈

𝜆𝑢 ⋅ 𝑢
0
||||| 𝜆𝑢 ∈ ℤ ∀𝑢 ∈ 𝑈,

∑
𝑒=(𝑢,𝑣)∈𝐸

𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉

}
⊆ 𝐴

and denote the restrictions of 𝜇𝑘 and 𝑝𝑘 to 𝐻𝐺 by 𝜇𝑘
𝐺
and 𝑝𝑘

𝐺
, respectively (and note, that, by

definition, we have 𝑤𝐺 ∈ 𝐻𝐺 ⊗ ℤ∕2). Further, we set 𝜇𝐺 = 𝜇1𝐺 and 𝑝𝐺 = 𝑝
1
𝐺
.

Definition 4.2. We call 𝐻𝐺 , 𝜇𝑘𝐺 , 𝑤𝐺 , and 𝑝
𝑘
𝐺
the invariants of 𝐺 and we define the rank

of 𝐺 by rank(𝐻𝐺). We say that 𝐺 is spin if 𝑘+ = 𝑘− ≡ 0. Two algebraic plumbing graphs 𝐺
and 𝐺′ are 𝑘-equivalent, denoted as 𝐺 ∼𝑘 𝐺′, if the systems of invariants (𝐻𝐺, 𝜇𝑘𝐺, 𝑤𝐺, 𝑝

𝑘
𝐺
) and

(𝐻𝐺′ , 𝜇
𝑘
𝐺′
, 𝑤𝐺′ , 𝑝

𝑘
𝐺′
) are equivalent.

Remark 4.3. In the spin case, if two algebraic plumbing graphs are 𝑘-equivalent for one 𝑘, then
they are 𝑘-equivalent for all 𝑘, since then𝜇𝑘

𝐺
=

𝜆𝑘
4
𝜇𝐺 and𝑝𝑘𝐺 =

𝜆𝑘
4
𝑝𝐺 (recall that 𝜆1 = 4). However,

in the nonspin case, it is not clear if 𝑘-equivalence for one 𝑘 implies 𝑘-equivalence for other, or
all, 𝑘.

Definition 4.4. We define a geometric plumbing graph 𝐺
𝑘
= (𝑈,𝑉, 𝐸, 𝜋, 𝛿)with the same set of

vertices and edges as 𝐺 as follows. For 𝑢 ∈ 𝑈, set

𝐵𝑢 = #𝑘+(𝑢)ℂ𝑃
2𝑘#𝑘−(𝑢)(−ℂ𝑃

2𝑘)

(note that the empty connected sum is defined as 𝑆4𝑘) and define 𝜋𝑢 as the disc bundle of the
bundle𝜋𝛼(𝑢),𝐵𝑢 of Definition 2.8. For 𝑣 ∈ 𝑉, set 𝐵𝑣 = 𝑆

2𝑘+1 and define𝜋𝑣 as the trivial𝐷4𝑘-bundle
over 𝑆2𝑘+1, that is, 𝐸𝑣 = 𝑆2𝑘+1 × 𝐷4𝑘 and 𝜋𝑣 is given by the projection onto the first factor. Finally,
we define 𝛿(𝑒) = 1 for all 𝑒 ∈ 𝐸. We set 𝐺 = 𝐺

1
.

Remark 4.5. For 𝑘 > 2, the definition of each bundle 𝜋𝛼(𝑢),𝐵𝑢 , and therefore the definition of 𝐺
𝑘
,

depends on a choice of preimage in Definition 2.8. As noted after Definition 2.8, the results of this
article hold for any choice of such preimage.
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Lemma 4.6. Let𝐺 = (𝑈,𝑉, 𝐸, (𝛼, 𝑘+, 𝑘−)) be an algebraic plumbing graph for which all connected
components are simply-connected and set𝑀 = 𝑀

𝐺
𝑘 . Then,

(1) 𝑀 is a closed, simply-connected 6𝑘-dimensional manifold with torsion-free homology and the
systems of invariants (𝐻2𝑘(𝑀), 𝜇𝑀,𝑤

𝑘
2
(𝑀), 𝑝𝑘(𝑀)) and (𝐻𝐺, 𝜇𝑘𝐺, 𝑤𝐺, 𝑝

𝑘
𝐺
) are equivalent. In

particular, the system (𝐻𝐺, 𝜇
𝑘
𝐺
, 𝑤𝐺, 𝑝

𝑘
𝐺
) is admissible in dimension 6𝑘.

(2) There exists a 𝑘-equivalent subgraph 𝐺′ of 𝐺 so that for 𝑀′ = 𝑀
𝐺′
𝑘 , the same as in (1) holds

and additionally the odd Betti numbers of𝑀′ vanish and𝑀 = 𝑀′#𝑟(𝑆
2𝑘+1 × 𝑆4𝑘−1) for some

𝑟 ∈ ℕ0.
(3) 𝑏2𝑘(𝑀′) = 𝑏2𝑘(𝑀) = |𝑈′| − |𝑉′| +∑

𝑢∈𝑈′ 𝑘
+(𝑢) + 𝑘−(𝑢).

(4) 𝑀 is spin if and only if 𝐺 is spin, and the same holds for𝑀′ and 𝐺′ (and note that𝑀 is spin if
and only if𝑀′ is spin by (2)).

Proof. We use Proposition 3.3 to split 𝐺
𝑘
into connected components that either satisfy the

hypotheses of Theorem 3.12 or consist of a single vertex in 𝑉 as follows: For any 𝑢 ∈ 𝑈 that is
connected to a leaf, we remove all edges connected to 𝑢 except one that connects 𝑢 to a leaf, this
is precisely the modification in Proposition 3.3. The corresponding modification of 𝐺 does not
change its invariants, since for such 𝑢, we always have that 𝑢0 has coefficient zero in every ele-
ment of𝐻𝐺 . We repeat this process until all connected components of𝐺

𝑘
satisfy the hypotheses of

Theorem 3.12 and we denote the graph we obtain from 𝐺 in this way after additionally removing
all isolated vertices in 𝑉 by 𝐺′. Then, 𝐺 and 𝐺′ have the same invariants, since isolated vertices
in 𝑉 do not make any contribution, and the manifolds 𝑀 and 𝑀′ then only differ by connected
sums of copies of 𝑆2𝑘+1 × 𝑆4𝑘−1.
By Corollary 3.15, the cohomology group𝐻2𝑘(𝑀) is given by

𝐻2𝑘(𝑀) =
⨁
𝑢∈𝑈

𝜋∗𝑢𝐻
2𝑘(𝐵𝑢) ⊕

{ ∑
𝑢∈𝑈

𝜆𝑢 ⋅ 𝑎𝑢
||||| 𝜆𝑢 ∈ ℤ ∀𝑢 ∈ 𝑈,

∑
𝑒=(𝑢,𝑣)∈𝐸′

𝛿(𝑒)𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉
′

}
,

and we define the isomorphism 𝜙∶ 𝐻2𝑘(𝑀) → 𝐻𝐺′ by mapping a generator of the 𝑖th summand
in the first component of the right-hand side of

𝐻2𝑘(𝐵𝑢) =
⨁
𝑘+(𝑢)

𝐻2𝑘(ℂ𝑃2𝑘)
⨁
𝑘−(𝑢)

𝐻2𝑘(−ℂ𝑃2𝑘)

to 𝑢𝑖 and a generator of the 𝑖th summand in the second component of the right-hand side to 𝑢−𝑖 .
Further, we define

𝜙

(∑
𝑢∈𝑈

𝜆𝑢 ⋅ 𝑎𝑢

)
=

∑
𝑢∈𝑈

𝜆𝑢𝑢
0.

It now follows fromTheorem 3.12 and Corollary 2.13, that this isomorphism preserves the remain-
ing invariants. Moreover, it follows from (2.4) that

⨁
𝑢∈𝑈 𝐻

∗(𝐸𝑢) is trivial in odd degrees, and by
Theorem 3.12, the same holds for𝐻∗(𝑀′).
For (3), we need to determine the rank of{ ∑

𝑢∈𝑈

𝜆𝑢 ⋅ 𝑢
0
||||| 𝜆𝑢 ∈ ℤ ∀𝑢 ∈ 𝑈,

∑
𝑒=(𝑢,𝑣)∈𝐸′

𝜆𝑢 = 0 ∀𝑣 ∈ 𝑉
′

}
⊆ 𝐻𝐺′ .
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The condition for the coefficients 𝜆𝑢 is equivalent to (𝜆𝑢)𝑢∈𝑈 being an element of the kernel of
𝐵(𝐺′)⊤ (see the Appendix). By Lemma A.3, the matrix 𝐵(𝐺′) has rank |𝑉′| (as |𝑈′| ⩾ |𝑉′|), hence
its kernel has rank |𝑈′| − |𝑉′|.
Finally, for (4), note that by (1), 𝑤𝐺 (and 𝑤𝐺′) vanishes if and only if 𝑤2(𝑀)𝑘 (and 𝑤2(𝑀′)𝑘)

vanishes, which is the case if and only if 𝑤2(𝑀) (and 𝑤2(𝑀′)) vanishes by the cohomology ring
structure of each 𝐸𝑢. □

We can now prove Theorem A.

Proof of Theorem A. First consider an arbitrary algebraic plumbing graph 𝐺. By construction, the
group𝐻𝐺 is a subgroup of𝐴 and the invariants 𝜇𝐺 and 𝑝𝐺 are the restrictions of the invariants 𝜇1
and 𝑝1. Let 𝐺0 be the graph obtained from 𝐺 be removing all edges. Then, the invariants of 𝐺0 are
precisely𝐴, 𝜇1,𝑤𝐺 , and 𝑝1 and the system of invariants (𝐴, 𝜇1, 𝑤𝐺, 𝑝1) is realized by𝑀𝐺0

by (1) of
Lemma 4.6. It follows that (4.1) holds for all𝑊 ∈ 𝐴, and hence also for all𝑊 ∈ 𝐻𝐺 , that restrict
to 𝑤𝐺 . Thus, the system (𝐻𝐺, 𝜇𝐺, 𝑤𝐺, 𝑝𝐺) is admissible in dimension 6.
Now assume that every connected component of 𝐺 is simply-connected and let𝑀 = 𝑀

𝐺
𝑘 . We

apply Lemma 4.6 to obtain an equivalent subgraph 𝐺′ of 𝐺 and a manifold 𝑀′ = 𝑀
𝐺′
𝑘 with

vanishing odd cohomology. Since each connected component of 𝐺′ is simply-connected, we
can apply Theorem 1.1 to obtain a core metric on each summand of 𝑀′, hence 𝑀′ also admits
a core metric, but note that if 𝑘 = 1, then the restrictions on the dimensions in this theorem
require that every connected component contains a vertex in 𝑉. This can always be achieved by
introducing a new vertex according to Proposition 3.5. Since𝑀 = 𝑀′#𝑟(𝑆

2𝑘+1 × 𝑆4𝑘−1) for some
𝑟 ∈ ℕ0, and 𝑆2𝑘+1 × 𝑆4𝑘−1 admits a core metric (see the list in Subsection 2.1), 𝑀 admits a core
metric.
Finally, if 𝑘 = 1 and 𝑁 is a simply-connected 6-manifold with torsion-free homology, whose

invariants are equivalent to (𝐻𝐺, 𝜇𝐺, 𝑤𝐺, 𝑝𝐺), then, by Theorem 4.1, 𝑁 is diffeomorphic to
𝑀′#𝑟(𝑆

3 × 𝑆3) for some 𝑟 ∈ ℕ0, so 𝑁 admits a core metric. □

4.3 Reduced Graphs

A fixed system of invariants (𝐻, 𝜇, 𝑤, 𝑝) can potentially be realized by many different algebraic
plumbing graphs. To analyze this, we consider modifications of graphs that do not change the
invariants.

Lemma 4.7. We can modify algebraic plumbing graphs in the following ways without changing
their 𝑘-equivalence classes.

(1)
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(1′)

(2)

(2′)

(3)

(3′)

(4)

Here,𝐺𝑖 ,𝐺′𝑖 are (pairwise disjoint, and possibly empty) subgraphs, and−𝐺 denotes𝐺 with𝛼 replaced
by −𝛼 and (𝑘+, 𝑘−) replaced by (𝑘−, 𝑘+).

Proof. First note that −𝐺
𝑘
is obtained from 𝐺

𝑘
by reversing the orientations of all bases and

fibers (but not of the total spaces). Then, the equivalences (3) and (4) are clear and the remaining
equivalences follow from Propositions 3.2, 3.3, and 3.5 and Lemma 4.6, except (1) and (3′). For (1),
we additionally need to show that

holds. For that, denote the graph on the left-hand side by 𝐺 and the graph on the right-hand
side by 𝐺′. Denote the single element of 𝑈 by 𝑢 and the elements of 𝑈′ by 𝑢1, … , 𝑢𝑎+𝑏. Then, by
definition, we have

𝐻𝐺 =

𝑎⨁
𝑖=−𝑏
𝑖≠0

ℤ𝑢𝑖 and 𝐻𝐺′ =

𝑎+𝑏⨁
𝑖=1

ℤ𝑢1𝑖 ,
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34 of 50 REISER

and an isomorphism 𝐻𝐺 → 𝐻𝐺′ is given by mapping 𝑢𝑖 to 𝑢1𝑖 for 𝑖 > 0 and 𝑢
𝑖 to 𝑢1

𝑎−𝑖
for 𝑖 < 0. It

is now easily verified that 𝜇𝑘
𝐺
, 𝑝𝑘

𝐺
, 𝜇𝑘

𝐺′
and 𝑝𝑘

𝐺′
all vanish, and that

𝑤𝐺 =
∑
𝑢∈𝑈,
𝑖≠0

𝑢𝑖 mod 2, 𝑤𝐺′ =

𝑎+𝑏∑
𝑖=1

𝑢1𝑖 mod 2,

hence this isomorphism preserves all invariants.
For (3′), denote the graph on the left-hand side by 𝐺 and the one on the right-hand side by 𝐺′.

Let 𝑥0 ∈ 𝐻𝐺1 be a primitive element that restricts to𝑤𝐺1 (which exists since𝑤𝐺1 is nontrivial) and
extend it to a basis (𝑥0, … , 𝑥𝑛) of 𝐻𝐺1 . Let 𝑢1 be the additional vertex in 𝑈 and 𝑢2 the additional
vertex in 𝑈′. Then

𝑤𝐺 = 𝑢
1
1 + 𝑥0 mod 2, 𝑤𝐺′ = 𝑥0 mod 2.

Hence, by mapping 𝑢1
1
to 𝑢0

2
, 𝑥0 to 𝑥0 − 𝑢02 and 𝑥𝑖 to 𝑥𝑖 for 𝑖 > 0, we obtain an isomorphism𝐻𝐺 →

𝐻𝐺′ that maps 𝑤𝐺 to 𝑤𝐺′ . Since the linear and trilinear forms are only nontrivial on elements of
𝐻𝐺1 , they are also preserved under this isomorphism. □

These modifications will be used to bring a given graph into a reduced form.

Definition 4.8. Let𝐺 = (𝑈,𝑉, 𝐸, (𝛼, 𝑘+, 𝑘−)) be an algebraic plumbing graph.We call𝐺 reduced,
if it satisfies the following conditions:

∙ Every connected component of 𝐺 is simply-connected.
∙ The graph only appears as a connected component in 𝐺 if it is the only nonspin con-
nected component. Every 𝑣 ∈ 𝑉 not contained in this connected component has degree at least
3.

∙ Every 𝑢 ∈ 𝑈 with 𝛼(𝑢) = 𝑘+(𝑢) = 𝑘−(𝑢) = 0 has degree 0 or at least 3.

Given a reduced graph 𝐺, we define its reduced class as the set of isomorphism classes of reduced
graphs that are obtained from 𝐺 by multiplying each connected component by (±1). By (4) of
Lemma 4.7, two reduced graphs with the same reduced class are 𝑘-equivalent, so the notion of
𝑘-equivalence descends to an equivalence relation between reduced classes.

The following result is now a direct consequence of Lemmas 4.6 and 4.7.

Corollary 4.9. Let 𝐺 = (𝑈,𝑉, 𝐸, (𝛼, 𝑘+, 𝑘−)) be an algebraic plumbing graph. If every connected
component of 𝐺 is simply-connected, then 𝐺 is 𝑘-equivalent to a reduced graph 𝐺′. Further, we have
rank(𝐻𝐺) = |𝑈′| − |𝑉′| +∑

𝑢∈𝑈′ 𝑘
+(𝑢) + 𝑘−(𝑢).

It is now a natural question, how “good” this notion of reduced form is, that is, if any two
𝑘-equivalent reduced graphs are contained in the same reduced class.

Question 4.10. Let 𝐺1, 𝐺2 be reduced graphs that are 𝑘-equivalent for some 𝑘. Are their reduced
classes the same?
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 35 of 50

This question is open, but we will answer it affirmatively in some special cases. For that, we
first list the reduced graphs of low rank. Clearly, the only reduced graph of rank 0 is the empty
graph, which defines 𝑆6.

Proposition 4.11. Let 𝐺 be a reduced graph of rank 1. Then the following assertions hold:

∙ If 𝐺 is spin, then it is of the form . The manifold𝑀
𝐺
𝑘 is the total space of a linear 𝑆2𝑘-bundle

over 𝑆4𝑘 . Two graphs and are 𝑘-equivalent if and only if 𝛼1 = ±𝛼2.
∙ If 𝐺 is not spin, then it is given by . The graph 𝐺 has trivial trilinear form 𝜇𝑘

𝐺
and trivial

linear form 𝑝𝑘
𝐺
. If 𝑘 = 1, then the manifold𝑀

𝐺
is the unique nontrivial linear 𝑆4-bundle over 𝑆2.

Proposition 4.12. Let 𝐺 be a reduced graph of rank 2. Then, the following assertions hold:

∙ If 𝐺 is spin, then it is of the form

with 𝛼𝑖 ≠ 0 in the second case. For every such graph 𝐺, there is at most one reduced class that is
𝑘-equivalent but not equal to that of 𝐺.

∙ If 𝐺 is not spin, its reduced class is equal to that of a graph of the form

For every such graph 𝐺, every reduced class that is 𝑘-equivalent to that of 𝐺 is equal to that of 𝐺.

We refer to [19, Proposition 6.4.3] for a list of reduced graphs of rank 3.
The possibilities for the reduced graphs are a simple cobinatorial consequence of the following

lemma.

Lemma 4.13. Let𝐺′ be a nonempty connected component of a reduced graph that is not of the form
. Then,

2 ⋅ |𝑉′| + 1 ⩽ |𝑈′|.
Proof. If𝑉′ is empty, then the inequality holds trivially. If𝑉′ is nonempty, then, since𝐺′ is simply-
connected, we can choose a root 𝑣0 ∈ 𝑉′ and consider it as a tree. Then, the inequality follows
from the fact that, by definition, 𝑣0 has at least three descending vertices in𝑈′, while every other
𝑣 ∈ 𝑉′ has at least 2. □
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36 of 50 REISER

It follows from Lemma 4.13 and Corollary 4.9 that for a connected component 𝐺′ of a reduced
graph, which is not of the form , we have

rank(𝐻𝐺′) = |𝑈′| − |𝑉′| + ∑
𝑢∈𝑈′

𝑘+(𝑢) + 𝑘−(𝑢) ⩾ 1 + |𝑉′| + ∑
𝑢∈𝑈′

𝑘+(𝑢) + 𝑘−(𝑢).

Thus, rank(𝐻𝐺′) = 1 implies that𝑉′ is empty and 𝑘+ = 𝑘− ≡ 0. In a similar way, by going through
all possibilities,we obtain the reduced forms in Proposition 4.12. It remains to prove the statements
about 𝑘-equivalence in Propositions 4.11 and 4.12.

Proof of Proposition 4.11. If 𝐺 is not of the form , then 𝐺 is given by , which, by
construction, yields the linear 𝑆2𝑘-bundle over 𝑆4𝑘 corresponding to 𝛼.
For such a graph 𝐺, let 𝑢 ∈ 𝑈 be the unique element. Then,𝐻𝐺 = ℤ𝑢0 and

𝜇(𝑢0, 𝑢0, 𝑢0) =
𝜆𝑘
4
𝛼 = −𝜇(−𝑢0, −𝑢0, −𝑢0).

Since 𝑢0 and −𝑢0 are the only generators of𝐻𝐺 , this shows that for different absolute values of 𝛼,
we obtain nonequivalent trilinear forms.
In the nonspin case, the manifold𝑀

𝐺
is diffeomorphic to the unique nontrivial 𝑆4-bundle over

𝑆2 by [20, Lemma 4.2]. □

Proof of Proposition 4.12. In the nonspin case, the linear form 𝑝𝑘
𝐺
of the first graph is given by

𝑝𝑘
𝐺
(𝑢1
1
) = 0, 𝑝𝑘

𝐺
(𝑢0
2
) = 𝜆𝑘𝛼 (where 𝑢1 denotes the upper vertex and 𝑢2 the lower one), while the

linear form on the second graph is given by 𝑝𝑘
𝐺
(𝑢0) = 𝜆𝑘𝛼 +

(2𝑘+1
𝑘

)
, 𝑝𝑘

𝐺
(𝑢1) = 0, in particular, this

is always nonzero. Since 𝜆𝑘 >
(2𝑘+1

𝑘

)
, see Remark 2.10, this shows that for different (absolute)

values of 𝛼, we obtain nonequivalent graphs.
In the spin case, we first consider the case 𝑘 = 1. The first graph is 𝑘-equivalent to a graph of the

second form with 𝛼3 = 0; therefore, it is enough to consider graphs of the second form, allowing
𝛼𝑖 = 0. Let 𝐺 be such a graph. Then, 𝑒1 = 𝑢01 − 𝑢

0
3
and 𝑒2 = 𝑢02 − 𝑢

0
3
form a basis of 𝐻𝐺 (where 𝑢𝑖

denotes the vertex labeled by 𝛼𝑖) and we have

𝜇𝐺(𝑒1, 𝑒1, 𝑒1) = 𝛼1 − 𝛼3,

𝜇𝐺(𝑒1, 𝑒1, 𝑒2) = −𝛼3,

𝜇𝐺(𝑒1, 𝑒2, 𝑒2) = −𝛼3,

𝜇𝐺(𝑒2, 𝑒2, 𝑒2) = 𝛼2 − 𝛼3,

𝑝𝐺(𝑒1) = 4(𝛼1 − 𝛼3),

𝑝𝐺(𝑒2) = 4(𝛼2 − 𝛼3).

We define homogeneous polynomials 𝑓 and 𝑝 by setting 𝑓(𝑥1, 𝑥2) = 𝜇𝐺(𝑥, 𝑥, 𝑥), and 𝑝(𝑥1, 𝑥2) =
1

4
𝑝𝐺(𝑥), 𝑥 = 𝑥1𝑒1 + 𝑥2𝑒2 and 𝑥1, 𝑥2 ∈ ℂ. We obtain

𝑓(𝑥1, 𝑥2) = (𝛼1 − 𝛼3)𝑥
3
1 − 3𝛼3𝑥

2
1𝑥2 − 3𝛼3𝑥1𝑥

2
2 + (𝛼2 − 𝛼3)𝑥

3
2,

𝑝(𝑥1, 𝑥2) = (𝛼1 − 𝛼3)𝑥1 + (𝛼2 − 𝛼3)𝑥2.
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Given two systems of invariants (𝐻1, 𝜇1, 0, 𝑝1) and (𝐻2, 𝜇2, 0, 𝑝2) with rank(𝐻1) = rank(𝐻2) =
𝑛 for which there is an isomorphism 𝜙∶ 𝐻1 → 𝐻2 with 𝜙∗𝜇2 = 𝜇1 and 𝜙∗𝑝2 = 𝑝1, the associated
pairs of homogeneous polynomials (𝑓1, 𝑝1) and (𝑓2, 𝑝2) for fixed bases 𝐸1 and 𝐸2 of 𝐻1 and 𝐻2,
respectively, satisfy

𝑓1(𝑣) = 𝑓2(𝐴
⊤ ⋅ 𝑣) and 𝑝1(𝑣) = 𝑝2(𝐴

⊤ ⋅ 𝑣)

for all 𝑣 ∈ ℂ𝑛, 𝑛 = rank(𝐻𝐺1). Here,𝐴 ∈ ℂ𝑛×𝑛 is thematrix that transforms the basis𝐸2 into 𝜙∗𝐸1.
In particular, 𝐴 ∈ GL(𝑛, ℤ) ⊆ S̃L(𝑛, ℂ), where

S̃L(𝑛, ℂ) = {𝐴 ∈ GL(𝑛, ℂ) ∣ det(𝐴) = ±1}.

It follows that if two graphs are 1-equivalent, then the associated pairs of homogeneous
polynomials lie in the same orbit of the action of S̃L(𝑛, ℂ).
For a given pair (𝑓, 𝑝) of binary homogeneous polynomials, where 𝑓 has degree 3 and 𝑝 has

degree 1, by [22, Section 3.1], there are invariants, that is, homogeneous polynomials in the coeffi-
cients of 𝑓 and 𝑝 that are invariant under the action of S̃L(2, ℂ), given by 𝐷(𝑓), 𝑅(𝑓, 𝑝)2, 𝐼(𝑓 ⋅ 𝑝),
and 𝐽(𝑓 ⋅ 𝑝), where

∙ 𝐷(𝑓) is the discriminant of 𝑓,
∙ 𝑅(𝑓, 𝑝) is the resultant of the pair (𝑓, 𝑝), and
∙ 𝐼(𝑓 ⋅ 𝑝) and 𝐽(𝑓 ⋅ 𝑝) are binary quartic polynomials.

For the precise definition of these invariants, we refer to [22, Section 3.1]. In our case, these are
given as follows:

𝐷(𝑓) =𝛼21𝛼
2
2 + 𝛼

2
1𝛼

2
3 + 𝛼

2
2𝛼

2
3 − 2𝛼

2
1𝛼2𝛼3 − 2𝛼1𝛼

2
2𝛼3 − 2𝛼1𝛼2𝛼

2
3,

𝑅(𝑓, 𝑝) =(𝛼1 − 𝛼3)(𝛼2 − 𝛼3)(𝛼2 − 𝛼1)(𝛼1 + 𝛼2 + 𝛼3),

𝐼(𝑓 ⋅ 𝑝) =𝛼21𝛼
2
2 + 𝛼

2
1𝛼

2
3 + 𝛼

2
2𝛼

2
3 − 𝛼

2
1𝛼2𝛼3 − 𝛼1𝛼

2
2𝛼3 − 𝛼1𝛼2𝛼

2
3,

𝐽(𝑓 ⋅ 𝑝) = − 𝛼41𝛼
2
2 − 𝛼

2
1𝛼

4
2 − 𝛼

4
1𝛼

2
3 − 𝛼

2
1𝛼

4
3 − 𝛼

4
2𝛼

2
3 − 𝛼

2
2𝛼

4
3 + 2𝛼

4
1𝛼2𝛼3 + 2𝛼1𝛼

4
2𝛼3 + 2𝛼1𝛼2𝛼

4
3

+ 𝛼31𝛼
2
2𝛼3 + 𝛼

3
1𝛼2𝛼

2
3 + 𝛼

2
1𝛼

3
2𝛼3 + 𝛼1𝛼

3
2𝛼

2
3 + 𝛼

2
1𝛼2𝛼

3
3 + 𝛼1𝛼

2
2𝛼

3
3 − 6𝛼

2
1𝛼

2
2𝛼

2
3.

Note that 𝐷(𝑓), 𝑅(𝑓, 𝑝)2, 𝐼(𝑓 ⋅ 𝑝), and 𝐽(𝑓 ⋅ 𝑝) are symmetric when viewed as polynomials in
(𝛼1, 𝛼2, 𝛼3), hence we can express them in terms of the elementary symmetric polynomials

𝜎1 = 𝛼1 + 𝛼2 + 𝛼3,

𝜎2 = 𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼2𝛼3,

𝜎3 = 𝛼1𝛼2𝛼3,

and we obtain

𝐷(𝑓) = 𝜎22 − 4𝜎1𝜎3,

𝑅(𝑓, 𝑝)2 = 𝜎21(𝜎
2
1𝜎
2
2 − 4𝜎

3
2 − 4𝜎

3
1𝜎3 + 18𝜎1𝜎2𝜎3 − 27𝜎

2
3),
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38 of 50 REISER

𝐼(𝑓 ⋅ 𝑝) = 𝜎22 − 3𝜎1𝜎3,

𝐽(𝑓 ⋅ 𝑝) = −𝜎21𝜎
2
2 + 2𝜎

3
2 + 4𝜎

3
1𝜎3 − 9𝜎1𝜎2𝜎3.

Hence, the values of 𝜎2
2
, in particular, the value of 𝜎2 up to sign, and 𝜎1𝜎3 are determined by 𝐷(𝑓)

and 𝐼(𝑓 ⋅ 𝑝). We distinguish two cases.

Case 1. Assume that at least one of 𝐷(𝑓) and 𝐼(𝑓 ⋅ 𝑝) is nonzero. We now show that there are
at most two triples (𝛼1, 𝛼2, 𝛼3) (up to permutation and simultaneous multiplication by
(−1)) with invariants given by (𝐷(𝑓), 𝑅(𝑓, 𝑝)2, 𝐼(𝑓 ⋅ 𝑝), 𝐽(𝑓 ⋅ 𝑝)).
Indeed, from the expression for 𝐽(𝑓 ⋅ 𝑝), we obtain

(4𝜎1𝜎3 − 𝜎
2
2)𝜎

2
1 + 𝜎2(2𝜎

2
2 − 9𝜎1𝜎3) − 𝐽(𝑓 ⋅ 𝑝) = 0.

Since the values of 𝜎2
2
and 𝜎1𝜎3 are determined by 𝐷(𝑓) and 𝐼(𝑓 ⋅ 𝑝), we consider these

values as fixed and obtain a quadratic equation in𝜎1withno linear term.Hence, if𝐷(𝑓) ≠
0, then for every choice of sign for 𝜎2, we obtain, up to sign, at most one solution for 𝜎1. If
𝐷(𝑓) = 0 and 𝐼(𝑓 ⋅ 𝑝) ≠ 0, and thus, 𝜎2

2
, 𝜎1𝜎3 ≠ 0, then from the expression for 𝑅(𝑓, 𝑝)2,

we obtain

(2𝜎1𝜎2𝜎3)𝜎
2
1 − (27𝜎

2
1𝜎
2
3 + 𝑅(𝑓, 𝑝)

2) = 0

and as before, every choice of sign for 𝜎2 uniquely determines 𝜎1 up to sign. The values
for 𝛼1, 𝛼2, 𝛼3 are then obtained as the solutions of the equation

𝑦3 − 𝜎1𝑦
2 + 𝜎2𝑦 − 𝜎3 = 0

and choosing a different sign for𝜎1 (and thus also for𝜎3) results in a simultaneous change
of sign for the 𝛼𝑖 .

Case 2. Assume that 𝐷(𝑓) and 𝐼(𝑓 ⋅ 𝑝) both vanish. We now show that in this case, at least two
of the 𝛼𝑖 vanish and the third one can be determined up to sign from the S̃L(2, ℂ)-orbit
of (𝑓, 𝑝).
Indeed, we have 𝜎2

2
= 𝜎1𝜎3 = 0, which implies 𝜎1 = 0 or 𝜎3 = 0. If 𝜎1 = 0, then 𝛼3 =

−𝛼1 − 𝛼2, so

0 = 𝜎2 = −𝛼
2
1 − 𝛼1𝛼2 − 𝛼

2
2 = −

1

2
(𝛼21 + 𝛼

2
2 + (𝛼1 + 𝛼2)

2),

which implies 𝛼1 = 𝛼2 = 0 and hence also𝛼3 = 0. If 𝜎3 = 0, then one𝛼𝑖 , say𝛼3, vanishes.
Then, 𝜎2 = 𝛼1𝛼2, hence also one of 𝛼1, 𝛼2, say 𝛼2, vanishes.
To determine the value of 𝛼1 under the assumption 𝛼2 = 𝛼3 = 0, first note that 𝛼1

vanishes if and only if𝑓 is trivial. If𝑓 is nontrivial, we have that𝑓 divides𝑝3with quotient
𝛼2
1
. In particular, the value of 𝛼1 can be determined up to sign from the S̃L(2, ℂ)-orbit of

(𝑓, 𝑝).

Thus, we have shown that for any pair of binary homogeneous polynomials (𝑓, 𝑝), where 𝑓 has
degree 3 and 𝑝 has degree 1, there are at most two triples (𝛼1, 𝛼2, 𝛼3) (up to permutation and
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 39 of 50

simultaneous multiplication by (−1)) whose associated pairs of polynomials are in the S̃L(2, ℂ)-
orbit of (𝑓, 𝑝).
Since in the spin case (𝜇𝑘

𝐺
, 𝑝𝑘
𝐺
) =

𝜆𝑘
4
(𝜇𝐺, 𝑝𝐺) holds, this result carries over to 𝑘-equivalence for

all 𝑘. □

Remark 4.14. We conjecture that Proposition 4.12 can be improved to give a positive answer
to Question 4.10 for reduced graphs of rank 2. In fact, there are many special cases where for
given values (𝐷, 𝑅2, 𝐼, 𝐽) ∈ ℤ4 ⧵ {0} in the proof of Proposition 4.12, there exists only one triple
(𝛼1, 𝛼2, 𝛼3) ∈ ℤ3 with 𝐷(𝑓) = 𝐷, 𝑅(𝑓, 𝑝)2 = 𝑅2, 𝐼(𝑓 ⋅ 𝑝) = 𝐼 and 𝐽(𝑓 ⋅ 𝑝) = 𝐽, see [19, Remark
6.4.5]. As a result, we obtain an affirmative answer to Question 4.10 for graphs defined by these
values (𝛼1, 𝛼2, 𝛼3). These cases include the following:

(1) 𝛼1 + 𝛼2 + 𝛼3 = 0,
(2) 𝛼1𝛼2 + 𝛼1𝛼3 + 𝛼2𝛼3 = 0,
(3) One 𝛼𝑖 vanishes,
(4) Two of the 𝛼𝑖 equal −1.
(5) 𝛼1, 𝛼2, 𝛼3 ∈ [−1000, 1000].

On the other hand, the strategy of the proof of Proposition 4.12 cannot be extended to provide
a proof of Question 4.10 for reduced graphs of rank 2. In fact, there are triples (𝛼1, 𝛼2, 𝛼3) and
(𝛼′
1
, 𝛼′
2
, 𝛼′
3
), which are not related via a permutation or simultaneous multiplication by (−1), but

whose invariants 𝐷, 𝑅, 𝐼, and 𝐽 are all the same, see [19, Remark 6.4.5]. This occurs for example
for the triples

(4, 15, 30) and (−6, −5, 60).

By bringing the associated homogeneous polynomials in a canonical form as in [22, Section 3.4],
one sees that the corresponding systems of invariants are not equivalent; thus, they do not provide
counterexamples to Question 4.10.

Remark 4.15. The proof of Proposition 3.5, in fact, provides an algorithm to decide whether a given
closed, simply-connected spin 6-manifold 𝑀 with torsion-free homology and 𝑏2(𝑀) = 2 can be
constructed via an algebraic plumbing graph, see [19, Algorithm E.2].

4.4 Manifolds obtained from algebraic plumbing graphs

In this section, we give examples of manifolds that can or cannot be obtained from an algebraic
plumbing graph.
Given 𝑝, 𝑞 ∈ ℕ and a set𝑞 containing oriented diffeomorphism classes ofmanifolds of dimen-

sion 𝑞, we define 𝑝+𝑞−1(𝑞) as the set containing all diffeomorphism classes of manifolds
𝑀𝐺 , where 𝐺 = (𝑈,𝑉, 𝐸, 𝜋, 𝛿) is a geometric plumbing graph with simply-connected connected
components, so that 𝐵𝑣 ≅ 𝑆𝑝 and 𝜋𝑣 is trivial for all 𝑣 ∈ 𝑉, and 𝐵𝑢 ∈ 𝑞 for all 𝑢 ∈ 𝑈.
We will consider the case where 𝑝 = 3 and 𝑞 = 4, and where4 consists of all known examples

of 4-manifolds that admit a core metric, that is,

4 =
{
#𝑘𝑖=1𝜀𝑖ℂ𝑃

2 ||| 𝑘 ∈ ℕ0, 𝜀𝑖 ∈ {±1}
}
.
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40 of 50 REISER

Then, 6(4) consists of all manifolds on which we can construct a core metric using Theorem 1.1
with all known examples of 4-manifolds that admit a core metric. By construction, we have𝑀

𝐺
∈

6(4) for any algebraic plumbing graph 𝐺 with simply-connected connected components. We
will now show that also the converse holds.

Proposition 4.16. Let𝑀 ∈ 6(4). Then, there is an algebraic plumbing graph𝐺 so that𝑀 ≅ 𝑀
𝐺
.

For the proof, we need the following lemma.

Lemma 4.17. For 𝛼 ∈ ℤ, let 𝐺 be the reduced graph below.

Then𝑀
𝐺
is diffeomorphic to the total space of the linear 𝑆2-bundle over ℂ𝑃2 corresponding to (𝛼, 1)

in Remark 2.11.

Proof. The group𝐻𝐺 is generated by the elements 𝑒1 = 𝑢01 − 𝑢
0
2
and 𝑒2 = 𝑢03 − 𝑢

0
2
, wherewe denote

by 𝑢1 the vertex labeled by 𝛼. Then

𝜇𝐺(𝑒1, 𝑒1, 𝑒1) = 𝛼 + 1,

𝜇𝐺(𝑒1, 𝑒1, 𝑒2) = 1,

𝜇𝐺(𝑒1, 𝑒2, 𝑒2) = 1,

𝜇𝐺(𝑒2, 𝑒2, 𝑒2) = 0,

𝑝𝐺(𝑒1) = 4(𝛼 + 1),

𝑝𝐺(𝑒2) = 0.

Now the claim follows from [20, Corollary 5.8] and Theorem 4.1. □

Proof of Proposition 4.16. Let𝐺′ be a geometric plumbing graph so that𝑀 ≅ 𝑀𝐺′ .We have that any
linear sphere bundle over a connected sum of 4-manifolds is obtained by the fiber connected sum
of bundles over each summand as the gluing area of the connected sum, which is diffeomorphic
to 𝑆3, does not admit nontrivial vector bundles. Hence, we can apply Proposition 3.5 in reverse
iteratively to split all base manifolds that are connected sums into their summands. In this way,
we modify 𝐺′ so that all 𝐵𝑢 are given by 𝑆4 or ±ℂ𝑃2.
Further, by applying Proposition 3.2, we can achieve that 𝛿(𝑒) = 1 for all 𝑒 ∈ 𝐸. Now we turn

𝐺′ into an algebraic plumbing graph 𝐺 by reversing the construction in Subsection 4.2, except for
vertices 𝑢 for which 𝜋𝑢 is an 𝑆2-bundle over±ℂ𝑃2 with spin total space, that is, those correspond-
ing to (𝛼, 1) ∈ ℤ × {0, 1} in Remark 2.11, as these are the only linear 𝑆2-bundles over 𝑆4 and ±ℂ𝑃2
that do not arise in the construction of Subsection 4.2. Every such vertex 𝑢 gets replaced by a piece
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METRICS OF POSITIVE RICCI CURVATURE ON SIMPLY-CONNECTEDMANIFOLDS OF DIMENSION 6𝑘 41 of 50

of the form as in Lemma 4.17, multiplied by ±1, where all edges connected to 𝑢 get connected to
the vertex labeled by 𝛼. By using Corollary 3.15, we now obtain that𝑀

𝐺
has the same invariants

as𝑀, hence they are diffeomorphic. □

Remark 4.18. The bundles in Lemma4.17, togetherwith connected sums of 𝑆2-bundles over 𝑆4, are
the only known infinite families of closed, simply-connected spin 6-manifolds𝑀 with 𝑏2(𝑀) = 2
that admit a metric of positive Ricci curvature, see [20, Theorem C and Subsection 5.1]. Hence,
Proposition 4.12 and items (3) and (4) of Remark 4.14 yield an infinite number of new examples of
suchmanifolds and therefore an infinite number of new examples of 6-manifolds with ametric of
positive Ricci curvature and 𝑏2 = 2. To the best of our knowledge, the correspondingmanifolds in
dimension 6𝑘, which are (2𝑘 − 1)-connected, are also new examples of manifolds with a metric
of positive Ricci curvature.

Remark 4.19. It is worth noting that not all closed, simply-connected 6-manifolds with torsion-
free homology can be constructed via an algebraic plumbing graph. For graphs of rank 1, this
directly follows from Proposition 3.3 together with Theorem 4.1. For graphs of rank 2, this can be
seen by considering the normal forms of [22, Section 3.4]. This has been analyzed in detail in [19,
Proposition 6.5.4].
Further, one can show that anymanifold that is diffeomorphic to the total space of a linear 𝑆2𝑘-

bundle over 𝑆2𝑘 × 𝑆2𝑘 cannot be constructed via an algebraic plumbing graph, see [19, Proposition
6.5.7]. These manifolds are of special interest as it is known that they admit metrics of positive
Ricci curvature for all 𝑘 and core metrics if 𝑘 ⩾ 2. This shows that not all manifolds that admit a
metric of positive Ricci curvature can be constructed via algebraic plumbing graphs.

Next, we consider homotopy ℂ𝑃3’s. A closed manifold is a homotopy ℂ𝑃3, if it is homotopy
equivalent to ℂ𝑃3. In terms of invariants, a closed manifold𝑀 is a homotopy ℂ𝑃3 if and only if

∙ 𝑀 is a simply-connected 6-manifold with torsion-free homology,
∙ 𝑏3(𝑀) = 0 and 𝑏2(𝑀) = 1,
∙ 𝜇𝑀(𝑥, 𝑥, 𝑥) = 1 for a generator 𝑥 of𝐻2(𝑀), and
∙ 𝑤2(𝑀) = 0.

This follows for example from the homotopy classification for simply-connected 6-manifolds by
Zhubr [29].We note that the homotopy classification given byWall [28] and Jupp [13] is erroneous,
cf. [29, 5.14] or [16, Remark 2]. It can also be seen directly as follows: Let𝑀 be a simply-connected
manifold whose cohomology ring is isomorphic to that of ℂ𝑃𝑛 and let 𝑥 ∈ 𝐻2(𝑀) be a generator.
The element 𝑥 ∈ 𝐻2(𝑀) defines a map

𝑓𝑥 ∶ 𝑀 → 𝐾(ℤ, 2) = ℂ𝑃∞

with the property that the induced map on cohomology maps a generator of 𝐻∗(ℂ𝑃∞) to 𝑥. By
the cellular approximation theorem, we can assume that 𝑓𝑥 is cellular, so the image is contained
in ℂ𝑃𝑛 ⊆ ℂ𝑃∞. Then 𝑓𝑥 ∶ 𝑀 → ℂ𝑃𝑛 induces an isomorphism on cohomology and, since 𝑀 is
assumed to be simply-connected, it is therefore a homotopy equivalence by theHurewicz theorem
and Whitehead’s theorem. Note that we did not use the assumption on 𝑤2. In fact, since Stiefel–
Whitney classes are preserved under homotopy equivalences, it follows that 𝑤2(𝑀) vanishes if
and only if 𝑛 is odd (alternatively, this can also be seen by using Wu classes).
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42 of 50 REISER

From Theorem 4.1, it follows that there is an infinite family of homotopy ℂ𝑃3’s whose diffeo-
morphism types are distinguished by 𝑝1, which can take any value congruent to 4 mod 24 on the
generator 𝑥. By Proposition 4.11, the only homotopy ℂ𝑃3 that can be constructed via an algebraic
plumbing graph is the standard ℂ𝑃3 as only the graph , which defines the standard ℂ𝑃3, can
produce the cohomology ring of ℂ𝑃3. However, we have the following result.

Proposition 4.20. There is an infinite family𝑀𝑖 , 𝑖 ∈ ℕ0, of pairwise nondiffeomorphic homotopy
ℂ𝑃3’s, such that for each 𝑖 ∈ ℕ0, there is a closed, simply-connected 6-manifold𝑁𝑖 so that𝑀𝑖#𝑁𝑖 ∈

6(4). In particular,𝑀𝑖#𝑁𝑖 admits a core metric.

Proof. Let 𝐺 be the graph

with

𝛼1 = (2𝑖 + 1)(𝑖 + 1), 𝛼2 = (2𝑖 + 1)𝑖, 𝛼3 =
𝑖(𝑖 + 1)

2
.

Denote the vertices labeled by 𝛼𝑖 by 𝑢𝑖 . Then, a basis for 𝐻𝐺 is given by 𝑒1 = 𝑢01 + 𝑢
0
2
− 2𝑢0

3
, 𝑒2 =

𝑖𝑢0
1
+ (𝑖 + 1)𝑢0

2
− (2𝑖 + 1)𝑢0

3
, and we have

𝜇𝐺(𝑥1, 𝑥1, 𝑥1) = 1,

𝜇𝐺(𝑥1, 𝑥1, 𝑥2) = 0,

𝜇𝐺(𝑥1, 𝑥2, 𝑥2) = 0,

𝜇𝐺(𝑥2, 𝑥2, 𝑥2) =
𝑖(𝑖 + 1)(2𝑖 + 1)

2
,

𝑝𝐺(𝑥1) = 4 + 24
𝑖(𝑖 + 1)

2
,

𝑝𝐺(𝑥2) = 4
𝑖(𝑖 + 1)(2𝑖 + 1)

2
+ 24

𝑖(𝑖 + 1)(2𝑖 + 1)

6
.

Hence, 𝑀
𝐺
is diffeomorphic to 𝑀𝑖#𝑁𝑖 if we define 𝑀𝑖 and 𝑁𝑖 as the unique closed, oriented

simply-connected spin 6-manifolds with

∙ 𝑏3(𝑀𝑖) = 𝑏3(𝑁𝑖) = 0,
∙ 𝑏2(𝑀𝑖) = 𝑏2(𝑁𝑖) = 1,
∙ 𝜇𝑀𝑖

(𝑥, 𝑥, 𝑥) = 1 for a generator 𝑥 of𝐻2(𝑀𝑖),
∙ 𝑝1(𝑀𝑖)(𝑥) = 4 + 24

𝑖(𝑖+1)

2
,

∙ 𝜇𝑁𝑖 (𝑦, 𝑦, 𝑦) =
𝑖(𝑖+1)(2𝑖+1)

2
for a generator 𝑦 of𝐻2(𝑁𝑖), and

∙ 𝑝1(𝑁𝑖)(𝑦) = 4
𝑖(𝑖+1)(2𝑖+1)

2
+ 24 𝑖(𝑖+1)(2𝑖+1)

6
.
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The manifold 𝑀𝑖 is a homotopy ℂ𝑃3, and for different values of 𝑖, we obtain different values for
the divisibility of the first Pontryagin class; hence, all𝑀𝑖 are pairwise nondiffeomorphic. □

Finally, we consider the question, if a given manifold𝑀 can be decomposed into a connected
sum𝑀 = 𝑀1#𝑀2, where𝑀1,𝑀2 ≇ Σ

6𝑘 for any homotopy sphere Σ6𝑘. To analyze this on the level
of cohomology, let 𝐻 be a finitely generated free abelian group with a symmetric trilinear form
𝜇∶ 𝐻 × 𝐻 × 𝐻 → ℤ. Given a subspace 𝑌 ⊆ 𝐻, we say that 𝑌 is a direct summand in (𝐻, 𝜇), if
there is another subspace 𝑍 ⊆ 𝐻 such that𝐻 = 𝑌 ⊕ 𝑍 and

𝜇(𝑦1, 𝑧1, 𝑧2) = 𝜇(𝑧1, 𝑦1, 𝑦2) = 0

for all 𝑦1, 𝑦2 ∈ 𝑌, 𝑧1, 𝑧2 ∈ 𝑍.

Lemma 4.21. Let𝑚 be the rank of 𝑌 and let (𝑦1, … , 𝑦𝑚) be a basis of 𝑌. If 𝑌 is a direct summand
in (𝐻, 𝜇), then for any basis (𝑥1, … , 𝑥𝑛) of𝐻, the matrix

⎛⎜⎜⎝
𝜇(𝑥1, 𝑥1, 𝑦1) ⋯ 𝜇(𝑥1, 𝑥𝑛, 𝑦1) ⋯ ⋯ 𝜇(𝑥1, 𝑥1, 𝑦𝑚) ⋯ 𝜇(𝑥1, 𝑥𝑛, 𝑦𝑚)

⋮ ⋱ ⋮ ⋯ ⋯ ⋮ ⋱ ⋮
𝜇(𝑥𝑛, 𝑥1, 𝑦1) ⋯ 𝜇(𝑥𝑛, 𝑥𝑛, 𝑦1) ⋯ ⋯ 𝜇(𝑥𝑛, 𝑥1, 𝑦𝑚) ⋯ 𝜇(𝑥𝑛, 𝑥𝑛, 𝑦𝑚)

⎞⎟⎟⎠
has rank at most𝑚.

Proof. For each 𝑦𝑖 , we have a symmetric bilinear form 𝜇(⋅, ⋅, 𝑦𝑖). Let 𝐴𝑖 denote its matrix in the
basis (𝑥1, … , 𝑥𝑛), that is, the matrix we consider is given by

𝐴 =
(
𝐴1|… |𝐴𝑚) .

Since 𝑌 is a direct summand, there exists a subspace 𝑍 ⊆ 𝐻 so that 𝐻 = 𝑌 ⊕ 𝑍 and products
between elements of𝑌 and𝑍 vanish. Let (𝑧1, … , 𝑧𝑛−𝑚) be a basis of𝑍. Then a basis for𝐻 is given by
(𝑦1, … , 𝑦𝑚, 𝑧1, … , 𝑧𝑛−𝑚). Let 𝑆 denote the matrix that maps this basis to (𝑥1, … , 𝑥𝑛). Then, define

𝐴′ = 𝑆⊤
(
𝐴1|… |𝐴𝑚) ⎛⎜⎜⎝

𝑆 0

⋱
0 𝑆

⎞⎟⎟⎠ =
(
𝐴′
1
|… |𝐴′𝑚) ,

where 𝐴′
𝑖
is the matrix of 𝜇(⋅, ⋅, 𝑦𝑖) in the basis (𝑦1, … , 𝑦𝑚, 𝑧1, … , 𝑧𝑛−𝑚). The matrix 𝐴′ has rank at

most 𝑚, since it has (𝑛 − 𝑚) lines that vanish. Since 𝐴′ and 𝐴 are obtained from each other via
invertible matrices, also 𝐴 has rank at most𝑚. □

Proposition 4.22. Let 𝐺 be the graph

where each 𝐺𝑖 is one of
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and the edge is connected to the vertex labeled by 𝛼𝑖 . If 𝑙 ⩾ 2, then 𝑀
𝐺
𝑘 ≇ 𝑀1#𝑀2 for any

6𝑘-dimensional manifolds𝑀1,𝑀2 that are not homotopy spheres.

Proof. Set𝑀 = 𝑀
𝐺
𝑘 and let𝑀1,𝑀2 be 6𝑘-dimensionalmanifolds so that𝑀1#𝑀2 ≅ 𝑀. Then, both

𝐻2𝑘(𝑀1) and𝐻2𝑘(𝑀2) are direct summands in (𝐻2𝑘(𝑀), 𝜇𝑀). By choosing the subspace of smaller
rank, we obtain a direct summand 𝑌 in (𝐻2𝑘(𝑀), 𝜇𝑀) ≅ (𝐻𝐺, 𝜇

𝑘
𝐺
) of rank 𝑚 ⩽ ⌊𝑏2𝑘(𝑀)∕2⌋ =⌊(2𝑙 − 1)∕2⌋ = 𝑙 − 1.

Fix 𝑖 and let 𝑢1 be the vertex labeled by 𝛼𝑖 . If𝐺𝑖 consists of more than one vertex, denote the oth-
ers by 𝑢2 and 𝑢3. Then, either 𝑥𝑖 = 𝑢01, 𝑥

′
𝑖
= 𝑢±1

1
, or 𝑥𝑖 = 𝑢01 − 𝑢

0
2
, 𝑥′
𝑖
= 𝑢0

3
− 𝑢0

2
is a basis of𝐻𝐺𝑖 . We

define 𝛾𝑖 = 𝜇𝑘𝐺𝑖 (𝑥𝑖, 𝑥
′
𝑖
, 𝑥′
𝑖
) and 𝛽𝑖 = 𝜇𝑘𝐺𝑖 (𝑥𝑖, 𝑥𝑖, 𝑥

′
𝑖
)∕𝛾𝑖 , that is, we have the following possibilities:

A basis for 𝐻𝐺 is now given by (𝑥1 − 𝑥𝑙, … , 𝑥𝑙−1 − 𝑥𝑙, 𝑥′1, … , 𝑥
′
𝑙
). Let (𝑦1, … , 𝑦𝑚) be a basis of 𝑌.

Then, there exist 𝜆𝑖,𝑗 and 𝜇𝑖,𝑗 , so that

𝑦𝑖 =

𝑙−1∑
𝑗=1

𝜆𝑖,𝑗(𝑥𝑗 − 𝑥𝑙) +

𝑙∑
𝑗=1

𝜇𝑖,𝑗𝑥
′
𝑗.

Let 𝜆𝑖,𝑙 = −
∑𝑙−1
𝑗=1 𝜆𝑖,𝑗 . Then, the matrix 𝐴𝑖 in Lemma 4.21 is given as follows:
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By Lemma 4.21, the rank of𝐴 is at most𝑚 ⩽ 𝑙 − 1. Let𝐴𝑗
𝑖
denote the 𝑗th column of𝐴𝑖 . By consid-

ering𝐴𝑙
𝑖
, … , 𝐴2𝑙−1

𝑖
, it follows that either all 𝜆𝑖,𝑗 vanish, or there is 𝑗0 ∈ {𝑙, … , 2𝑙 − 1}, so that𝐴

𝑗0
𝑖
= 0

for all 𝑖. We first show that the second case implies the first one.
By symmetry reasons, we can assume that 𝑗0 = 2𝑙 − 1, that is, 𝜆𝑖,𝑙 = 𝜇𝑖,𝑙 = 0 for all 𝑖. In

particular,
∑𝑙−1
𝑗=1 𝜆𝑖,𝑗 = 0. Now consider the matrix

(
𝐴𝑙
1
|… |𝐴2𝑙−2

1
|… |𝐴𝑙𝑚|… |𝐴2𝑙−2𝑚

)
,

which then also has rank at most𝑚. By elementary row and column operations, we bring it into
the following form:

Then, the vectors

𝑤𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜇𝑖,1

⋮

𝜇𝑖,𝑙−1

𝜆𝑖,1

⋮

𝜆𝑖,𝑙−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
lie in the space generated by the columns of 𝐴′. Since 𝜇𝑖,𝑙 = 𝜆𝑖,𝑙 = 0, and since (𝑦1, … , 𝑦𝑚) is a
basis of𝑌, it follows that (𝑤1, … ,𝑤𝑚) is linearly independent. Hence, since𝐴′ has rank at most𝑚,
(𝑤1, … ,𝑤𝑚) is a basis (overℚ) of the space generated by the columns of𝐴′. Thus, since

∑𝑙−1
𝑗=1 𝜆𝑖,𝑗 =

0, every 𝑣 = (𝑣1, … , 𝑣2𝑙−1) in the space generated by the columns of 𝐴′ satisfies

2𝑙−2∑
𝑖=𝑙

𝑣𝑖 = 0.

In particular, 𝜆𝑖,𝑗 = 0 for all 𝑖, 𝑗.
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46 of 50 REISER

Hence, we can assume that all 𝜆𝑖,𝑗 vanish. Then define

𝑤′𝑖 =

𝑙−1∑
𝑗=1

1

𝛾𝑗
𝐴
𝑗
𝑖
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

⋮

𝜇𝑖,1
⋮

𝜇𝑖,𝑙−1
−(𝑙 − 1)𝜇𝑖,𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since (𝑦1, … , 𝑦𝑚) is a basis of𝑌, the elements𝑤′1, … ,𝑤
′
𝑚 are linearly independent andhence a basis

over ℚ of the space generated by the columns of 𝐴. But they also form a linearly independent set
together with the 𝑤𝑖 (which also lie in the space generated by the columns of 𝐴 since 𝜆𝑖,𝑗 = 0),
which is a contradiction unless𝑚 = 0.
Thus, one of the𝑀𝑖 , say 𝑀1, has vanishing cohomology in degree 2𝑘, so 𝐻2𝑘(𝑀) = 𝐻2𝑘(𝑀2).

By Corollary 2.13 and Theorem 3.12, any 𝑥 ∈ 𝐻2(𝑀) is nontrivial if and only if 𝑥𝑘 ∈ 𝐻2𝑘(𝑀)

is nontrivial and all other elements in 𝐻∗(𝑀) are obtained from powers of elements in 𝐻2(𝑀)

and multiplication by 𝑎 ∈ 𝐻2𝑘(𝑀). Thus, 𝐻∗(𝑀2) = 𝐻
∗(𝑀) and 𝑀1 has nontrivial cohomology

groups only in degrees 0 and 6𝑘. Hence,𝑀1 is a homology sphere and since it is simply-connected,
it is therefore a homotopy sphere. □

Remark 4.23. Since there do not exist exotic spheres in dimensions 6 and 12, we actually obtain
for 𝑘 = 1, 2 that 𝑀

𝐺
𝑘 does not split as a connected sum 𝑀1#𝑀2 for any 𝑀1,𝑀2 that are not

standard spheres.

For the proof of Theorem B, we need the following lemma to conclude that we obtain new
examples.

Lemma4.24. For any𝑛 ∈ ℕ, there exists a constant𝐶(𝑛) so that any closed𝑛-dimensionalmanifold
𝑀 that has the structure of a homogeneous space, a biquotient, a cohomogeneity one manifold, or a
Fano variety satisfies Gromov’s Betti number bound

𝑛∑
𝑖=0

𝑏𝑖(𝑀) ⩽ 𝐶(𝑛).

Proof. Every homogeneous space and,more general, every biquotient admits ametric of nonnega-
tive sectional curvature. This is well known and follows from the fact that for a compact Lie group
𝐺, any biinvariant metric has nonnegative sectional curvature and, by O’Neill’s formulas for Rie-
mannian submersions, this property descends to any biquotient 𝐺∕∕𝐻. Further, by [24, Theorem
A], any closed cohomogeneity one manifold admits a metric of almost nonnegative sectional cur-
vature. Thus, for these spaces, the claim follows from Gromov’s Betti number theorem [11]. For
Fano varieties, the claim follows from the fact that, by [8, Theorem 2.1], there exist only finitely
many diffeomorphism types in each dimension. □

Proof of Theorem B. Let𝑀 = 𝑀
𝐺
𝑘 with 𝐺 as in Proposition 4.22, where we choose each subgraph

𝐺𝑖 to be spin, that is, one of the third or fourth option. Then, by Proposition 4.22,𝑀 does not split
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nontrivially as a connected sum and we have that𝑀 is (2𝑘 − 1)-connected with 𝑏2𝑘(𝑀) = 2𝑙 − 1.
Further, 𝑀 admits a core metric by Theorem A and for 𝑙 sufficiently large, it is not diffeomor-
phic to a homogeneous space, a biquotient, a cohomogeneity one manifold, or a Fano variety by
Proposition 4.24.
To show that it is not diffeomorphic to the total space of a linear sphere bundle, note that, for

every 𝜆1, 𝜆2 ∈ ℤ, we have 𝜆1𝑥1 + 𝜆2𝑥2 − (𝜆1 + 𝜆2)𝑥3 ∈ 𝐻𝐺 (where we use the notation 𝑥𝑖, 𝑥′𝑖 as in
the proof of Proposition 4.22). Hence, there exist 𝜆1, 𝜆2 ∈ ℤ, with one of 𝜆𝑖 ≠ 0, so that

𝑝𝑘𝐺(𝜆1𝑥1 + 𝜆2𝑥2 − (𝜆1 + 𝜆2)𝑥3) = 0.

Then, for 𝑖 with 𝜆𝑖 ≠ 0, we have

𝜇𝑘
𝐺
(𝜆1𝑥1 + 𝜆2𝑥2 − (𝜆1 + 𝜆2)𝑥3, 𝑥

′
𝑖 , 𝑥

′
𝑖 ) = 𝜆𝑖𝛾𝑖 ≠ 0.

Hence, if 𝑝𝑘
𝐺
≠ 0, then 𝑀 is not diffeomorphic to the total space of a linear sphere bundle by

Lemma 2.7.
To obtain a nonspin manifold, we can alternatively choose some of the 𝐺𝑖 , say 𝑚, to be non-

spin, that is, one of the first and second options. Then,𝑀 is merely simply-connected, apart from
that the same conclusions hold as in the spin case, except that the fact that 𝜇𝑘

𝐺
is nontrivial on

ker 𝑝𝑘
𝐺
does not necessarily imply, that𝑀 is not diffeomorphic to the total space of a linear sphere

bundles, as in this case, this follows only for linear 𝑆𝑝−1-bundles with 𝑝 ⩾ 2𝑘 + 1. Hence, suppose
that𝑀 is diffeomorphic to the total space 𝐸 of a linear 𝑆𝑝−1-bundle with 1 < 𝑝 ⩽ 2𝑘. We consider
the Euler characteristic, which, by Corollary 2.6 and Theorem 3.12, is given by

𝜒(𝑀) = 2 + 2𝑚(𝑘 − 1) + (𝑙 − 1 + 𝑚)(𝑘 + 1).

Since 𝜒(𝑀) > 0, we have that 𝑝 is odd by Lemma 2.7. If 𝑘 = 1, this is a contradiction. If 𝑘 is even,
then 𝜒(𝑀) is odd for𝑚 ≡ 𝑙 mod 2, which is a contradiction by Lemma 2.7.
Finally, we need to determine when 𝑝𝑘

𝐺
vanishes. We have

𝑝𝑘
𝐺
(𝑥𝑖 − 𝑥𝑙) = 𝜆𝑘(𝛼𝑖 − 𝛼𝑙) +

(
2𝑘 + 1

𝑘

)
((1 − 𝛽𝑖)𝛾𝑖 − (1 − 𝛽𝑙)𝛾𝑙) + 4(𝛽𝑖𝛾𝑖 − 𝛽𝑙𝛾𝑙)

≡

(
2𝑘 + 1

𝑘

)
(𝛾𝑖(1 − 𝛽𝑖) − 𝛾𝑙(1 − 𝛽𝑙)) mod 𝜆𝑘

and 𝑝𝑘
𝐺
(𝑥′
𝑖
) = 0. Hence, 𝑝𝑘

𝐺
≡ 0 mod 𝜆𝑘 if and only if 𝛽𝑖 = 0 and 𝛾𝑖 = 𝛾𝑙 for all 𝑖, or 𝛽𝑖 = 1 for all

𝑖 (note that 2
(2𝑘+1

𝑘

)
< 𝜆𝑘 for 𝑘 ⩾ 3 and 𝜆1 = 4 and 12 ∣ 𝜆2 by Remark 2.10). It follows that 𝑝𝑘𝐺 = 0

if and only if 𝛽𝑖 = 0, 𝛾𝑖 = 𝛾𝑙 and 𝛼𝑖 = 𝛼𝑙 for all 𝑖, or 𝛽𝑖 = 1 and 𝛼𝑖 + 𝛾𝑖 = 𝛼𝑙 + 𝛾𝑙 for all 𝑖.
Thus, we can, for example, set 𝛼𝑖 = 0 for all 𝑖 > 1 and 𝛼1 = 𝑗 to define the manifold𝑀𝑗 for all

𝑗 > 1. □

APPENDIX: ADJACENCY AND INCIDENCEMATRIX OF A DIRECTED GRAPH
In this appendix, we recall some well-known facts about the adjacency and incidence matrices of
a directed graph. For convenience, we also include self-contained proofs.
Let 𝑅 be a commutative ring and let𝐺 = (𝑉, 𝐸) be a directed graph, where𝑉 = {𝑣1, … , 𝑣𝑛} is the

set of vertices and 𝐸 = {𝑒1, … , 𝑒𝑚} ⊆ 𝑉 × 𝑉 is the set of edges. The incidence matrix of 𝐺, denoted
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48 of 50 REISER

by 𝑄(𝐺), is the 𝑛 × 𝑚-matrix with entries in 𝑅 defined by

𝑄(𝐺)𝑖𝑗 =

⎧⎪⎨⎪⎩
1, if there is 𝑘 so that 𝑒𝑗 = (𝑣𝑖, 𝑣𝑘),
−1, if there is 𝑘 so that 𝑒𝑗 = (𝑣𝑘, 𝑣𝑖),
0, else.

Lemma A.1. Suppose that 𝐺 is connected. Then, the matrix 𝑄(𝐺)⊤ has kernel generated by
(1, … , 1)⊤. In particular, 𝑄(𝐺) has rank 𝑛 − 1.

Proof. Let 𝑥 ∈ 𝑅𝑛 such that 𝑥⊤𝑄(𝐺) = 0. Then, for every 𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, we have 𝑥𝑖 − 𝑥𝑗 = 0,
that is, 𝑥𝑖 = 𝑥𝑗 . Since 𝐺 is connected, for any 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, there is a path between 𝑣𝑖 and 𝑣𝑗 , so
𝑥𝑖 = 𝑥𝑗 for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛. □

LemmaA.2. Suppose that the underlying undirected graph of𝐺 is simply-connected, that is, a tree.
Then the matrix 𝑄(𝐺)⊤, when considered as a linear map 𝑅𝑛 → 𝑅𝑚, is surjective.

Proof. Let 𝑒𝑖 ∈ 𝐸. Since 𝐺 is simply-connected, the edge 𝑒𝑖 divides 𝐺 into two subtrees. Let 𝐺′ be
the subtree from which 𝑒𝑖 originates with root the vertex connected to 𝑒𝑖 . Then define 𝑥 ∈ 𝑅𝑛 by
𝑥𝑗 = 1 whenever 𝑣𝑗 is contained in 𝐺′ and 𝑥𝑗 = 0 otherwise. Then it follows that 𝑄(𝐺)⊤𝑥 is the
𝑖th standard basis vector of 𝑅𝑚 and hence 𝑄(𝐺)⊤ is surjective. □

Now let 𝐺 = (𝑈,𝑉, 𝐸), be a bipartite graph, where 𝑈 = {𝑢1, … , 𝑢𝑟} and 𝑉 = {𝑣1, … , 𝑣𝑠} are the
sets of vertices and 𝐸 ⊆ 𝑈 × 𝑉 is the set of edges. Let 𝛿∶ 𝐸 → {±1} be a labeling of the edges. The
biadjacency matrix of 𝐺, denoted by 𝐵(𝐺), is the 𝑟 × 𝑠-matrix with entries in 𝑅 defined by

𝐵(𝐺)𝑖𝑗 =

{
𝛿(𝑒), 𝑒 = (𝑢𝑖, 𝑣𝑗) ∈ 𝐸,

0, else.

Lemma A.3. Suppose that 𝐺 is a tree so that no 𝑣 ∈ 𝑉 is a leaf. Then, 𝐵(𝐺) has full rank.

Proof. We show that 𝐵(𝐺), when considered as a linear map 𝑅𝑠 → 𝑅𝑟, is injective. Let 𝑥 ∈ 𝑅𝑠
with 𝐵(𝐺)𝑥 = 0 and let 𝑢𝑖 ∈ 𝑈 be a leaf. Then there is a unique 𝑣𝑗 ∈ 𝑉 so that (𝑢𝑖, 𝑣𝑗) ∈ 𝐸, hence
𝑥𝑗 = 0.
Now we remove all the leaves, which are vertices in 𝑈, and all 𝑣 ∈ 𝑉 that turn into leaves by

this procedure and get a subgraph 𝐺′ that is again a tree and has no vertex in 𝑉 as a leaf. For all
those 𝑣𝑗 ∈ 𝑉 that get removed, we already have 𝑥𝑗 = 0. Hence, by removing these entries from 𝑥,
we obtain a vector 𝑥′ with 𝐵(𝐺′)𝑥′ = 0. Hence, by induction, it follows that 𝑥 = 0. □

Lemma A.4. Suppose that 𝐺 is a tree so that no 𝑣 ∈ 𝑉 is a leaf. Then, the image of 𝐵(𝐺), when
considered as a map 𝑅𝑠 → 𝑅𝑟, is a direct summand in 𝑅𝑟.

Proof. We define a vertex in 𝑉, say 𝑣1, to be the root of 𝐺. For every vertex 𝑣𝑗 ∈ 𝑉, we then pick a
vertex 𝑢𝑖 ∈ 𝑈 connected to 𝑣𝑗 that has greater distance to 𝑣1 than 𝑣𝑗 . We set 𝑓(𝑗) = 𝑖 and obtain a
function 𝑓∶ {1, … , 𝑠} → {1, … , 𝑟}. Since no vertex in 𝑉 is a leaf, the function 𝑓 is well defined and
since 𝐺 contains no cycle, the function 𝑓 is injective. Denote by 𝑒𝑖 the 𝑖th standard basis vector of
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𝑅𝑟 and the union of the columns of 𝐵(𝐺) and the elements 𝑒𝑖 with 𝑖 ∉ im(𝑓) by 𝐶. We will show
that 𝐶 is a basis of 𝑅𝑟.
Let 𝑢𝓁 ∈ 𝑈. If 𝓁 ∉ im(𝑓), then 𝑒𝓁 is already contained in 𝐶. Otherwise let 𝑗 ∈ {1, … , 𝑠} such

that 𝑓(𝑗) = 𝓁. If 𝑗 = 1, then the first column of 𝐵(𝐺) is a sum of elements in (𝑒𝑖)𝑖∉im(𝑓) and 𝑒𝓁
(after multiplying each element by ±1), in particular, 𝑒𝓁 is a linear combination of elements in
𝐶. If 𝑗 > 1, then the 𝑗th column of 𝐵(𝐺) is a sum of elements in (𝑒𝑖)𝑖∉im(𝑓), 𝑒𝓁 and an element 𝑒𝑘
where 𝑢𝑘 is the preceding vertex to 𝑣𝑗 (and again each element is multiplied by±1). In particular,
𝑢𝓁 is a linear combination of elements in 𝐶 and 𝑒𝑘. By induction, this shows that any 𝑒𝓁 is a linear
combination of elements in 𝐶, so 𝐶 is a generating set for 𝑅𝑟.
Since 𝐶 has 𝑟 = rank(𝑅𝑟) elements, it follows that 𝐶 is a basis of 𝑅𝑟 and 𝑅𝑟 is the direct sum of

the subspace generated by the columns of 𝐵(𝐺) and the subspaces generated by the elements 𝑒𝑖
with 𝑖 ∉ im(𝑓). □
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