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Abstract

Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal

morphology. However, the impact of stomatal morphology on WUE across different

ontogenetic stages of tree species is not well-documented. Here, we investigated the

relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and

leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and

mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We

measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA),

iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated posi-

tively with iWUE across species in both juvenile and mature trees, while GCL showed

a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however,

only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor

negative influence on iWUE and leaf δ13C, but this effect was inconsistent between

juvenile and mature trees. We conclude that GCL and SD can be considered func-

tional morphological traits related to the iWUE and leaf δ13C of trees, highlighting

their potential for rapid phenotyping approaches in ecological studies.

1 | INTRODUCTION

Water-use efficiency (WUE) reflects the balance between carbon gain

and water loss in plants (Leakey et al. 2019; Brendel et al. 2021;

Vadez et al. 2023). Intrinsic water-use efficiency (iWUE) indicates a

momentary balance of leaf carbon and water fluxes and corresponds

to the ratio of net CO2 assimilation rate (An) to stomatal conductance

to water vapour (gs) (Roussel et al. 2009; Petek-Petrik et al. 2023).

Higher iWUE can increase the establishment and survival of plants under

water-deficit conditions (Ehleringer and Driscoll 2022). Enhancing

iWUE is crucial for maximizing forest carbon assimilation capacity while

conserving water resources (Zhang et al. 2023; Petrík et al. 2024).
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For long-termWUE, leaf carbon isotope composition (δ13C) is often used

as a proxy because of the preference for the lighter isotope during physi-

cal and chemical processes involved in CO2 uptake and assimilation

(Farquhar et al. 1989; Ma et al. 2023). The preference for the lighter 12C

isotope during CO2 uptake and assimilation results in discrimination of

the heavier 13C isotope. This discrimination is more pronounced when

leaf internal CO2 concentrations are higher, for instance when stomata

are fully open due to more intense gas exchange via stomata, which in

turn is associated with a lower iWUE (Impa et al. 2005). Thus, iWUE and

δ13C are critical traits affecting tree water-use use for carbon assimila-

tion, growth and survival across different time scales under water-deficit

conditions, and they are of vital importance in the context of increasing

evaporative demand due to climate change (Ehleringer and Driscoll 2022;

Zhang et al. 2023; Puchi et al. 2024).

Both iWUE and δ13C of plants are affected by multiple physiolog-

ical and morphological traits such as stomatal morphology, cuticular

conductance, mesophyll conductance, leaf nitrogen, respiration rates

(Buckley and Warren 2014; Bucher et al. 2016; Cardoso et al. 2020;

Paillassa et al. 2020; Eckardt et al. 2023; Petrík et al. 2023; Kurjak

et al. 2024). Ontogeny can also play a crucial role in shaping the leaf

physiology, anatomy and morphology of trees across different life

stages. Studies have shown that as trees develop, there are significant

changes in their leaf morpho-physiological traits such as photosyn-

thetic pigment concentration, dark respiration, δ13C (Fortunel

et al. 2019) and photosynthetic efficiency (Ishida et al. 2005). Under-

standing particularly the phenotypic and ontogenetic constraints of

iWUE would allow for better insights into the impacts of rising evapo-

rative demand and more frequent drought periods (Grossiord

et al. 2020; Vicente-Serrano et al. 2020; De Souza et al. 2023).

We chose here to specifically analyse the influence of stomatal

morphological traits on iWUE and leaf δ13C as the characterization of

these traits may represent an affordable and robust method for a

rapid and mass phenotyping of tree water-use in field and experimen-

tal studies. So far, most studies focused on linking stomatal morphol-

ogy to iWUE in crops (Andrade et al. 2022; Huang et al. 2022; Ozeki

et al. 2022) or used model plant species like Arabidopsis and poplars

(Guo et al. 2019; Jiao et al. 2022). There are some studies that

focused on tree species, but these studies only captured intra-specific

variability and did not include the effect of ontogeny (Cregg

et al. 2000; Dillen et al. 2008; Roussel et al. 2009; Cao et al. 2012).

Liu et al. (2018) found quadratic relationships between GCL, SD and

WUE among tree species in global meta-analysis, but the WUE was

derived from empirical relationships based on temperature and precip-

itation data rather than direct measurements. A comprehensive exper-

imental analysis of inter-specific variability and coordination between

the stomatal morphology and iWUE in forest tree species is lacking

thus far. It, therefore, remains inconclusive whether stomatal morpho-

logical traits such as guard cell length (GCL) and stomatal density

(SD) affect the water-use efficiency in tree species across ontogeneti-

cal stages, and whether they can be considered as robust functional

traits associated with the drought tolerance in trees.

Photosynthetic activity of plants can adjust to changes in irradi-

ance in seconds, but the time lag in stomatal responses limits the CO2

uptake and therefore constrains photosynthesis and limits iWUE

(Lawson et al. 2012; Nguyen et al. 2023). Several studies have

reported that smaller stomata respond faster to changes in environ-

mental conditions than larger stomata (Lawson et al. 2014; Kardiman

and Raebild 2018; Durand et al. 2019), which can lead to higher long-

term WUE (Drake et al. 2013; McAusland et al. 2016; Haworth

et al. 2021). Stomatal size is also positively correlated with operational

gs; therefore, plants with smaller stomata can limit their maximal tran-

spiration, potentially positively affecting iWUE (Fanourakis et al.

2015). Multiple gene-manipulation studies have shown that a reduc-

tion of stomatal size leads to enhanced iWUE in plants (Lawson et al.

2014; Mohammed et al. 2019; Jiao et al. 2023). This is particularly

true in crops, and as a result, stomatal morphology is already used in

crop breeding programmes that aim to create varieties with greater

resistance to drought (Robertson et al. 2021; Xiong et al. 2022). If the

negative relationship between stomatal size (guard cell length, GCL)

and iWUE also holds true in trees across ontogenetical stages, this

could further support phenotyping efforts for the evaluation of the

water-use ability of tree populations.

SD is also a common functional trait related to plants WUE. Mul-

tiple studies have found a significant impact of SD on the WUE of

plants under well-watered but also drought stress conditions. Several

gene-manipulation studies have found negative relationships between

SD and iWUE or δ13C in Arabidopsis (Franks et al. 2015), various crop

species (Liu et al. 2015; Guo et al. 2019; Li et al. 2020; Pitaloka

et al. 2022), in poplars (Liu et al. 2021; Jiao et al. 2022) and among

tropical trees (Pan et al. 2024). Nevertheless, there is some evidence

that higher SD can also be associated with a greater iWUE in plants

(Xu et al. 2008; Naz et al. 2010; Zhao et al. 2015; Stojni�c et al. 2019;

Bhaskara et al. 2022; Al-Salman et al. 2023; Caine et al. 2023), or corre-

late positively with assimilation without offsetting iWUE (Tanaka

et al. 2013). SD is usually negatively correlated with GCL as there is a

trade-off between stomatal size and frequency (Franks and Beerling 2009;

Doheny-Adams et al. 2012; Driesen et al. 2023). The increase of SD and

reduction of stomatal size is a common acclimation response to drought

stress in trees (Dunlap and Stetter 2001; Pearce et al. 2006; Boughalleb

et al. 2014; Stojni�c et al. 2015). Typically, SD and GCL show a negative

correlation across genera due to spatial constraints on the leaf (Liu

et al. 2023). In contrast, gene manipulation in crops can reduce SD

disproportionally (�80%) compared to the increase of GCL (+20%),

which might not be realistic for natural populations (Franks et al. 2015).

The relationship between SD and iWUE of trees is therefore probably

connected to changes in stomatal size.

The leaf morphology can also constrain the iWUE via changes in

CO2 and H2O pathways throughout leaf tissues (Carriquí et al. 2015;

Trueba et al. 2022). Leaf morphology can be apprehended by the spe-

cific leaf area (SLA), i.e., the inverse of leaf mass per area, a widely

used functional trait in plant ecology (Tian et al. 2016). SLA decreases

in plants with thicker leaves (Vile et al. 2005; Homeier et al. 2021).

Multiple studies have found that SLA is negatively related to iWUE

and δ13C in crops (Reddy et al. 2020a; Reddy et al. 2020b), shrubs

(Horike et al. 2021) and tree species (Ge et al. 2022). The correlation

between SLA and iWUE might be caused by anatomical differences
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that affect the mesophyll tissue surface area and mesophyll conduc-

tance (Baird et al. 2017). SLA can also influence photosynthetic capac-

ity (Liu et al. 2010) and quantum yield (Petek-Petrik et al. 2024),

which may be constraining factors for iWUE. This raises the question

of whether the reported association between SLA and iWUE is a gen-

eral pattern, which would allow using SLA, a widely available func-

tional trait, as a proxy of the iWUE of plants in ecological studies.

In this study, we took advantage of two experiments on temper-

ate mature and juvenile trees (18 tree species in total) to quantify

how stomatal and leaf morphology affect the short-term iWUE and

long-term δ13C estimates of tree water-use. We hypothesized that i)

higher values of GCL are associated with a lower iWUE and δ13C, ii)

the degree of stomatal density affects iWUE and δ13C, iii) SLA is nega-

tively related to iWUE and δ13C, iv) the relationships between mor-

phological (GCL, SD, SLA) and physiological (iWUE, δ13C) traits do not

differ between juvenile and mature tree species.

2 | MATERIALS AND METHODS

2.1 | Juvenile trees experimental set-up

The juvenile tree measurements were conducted in the Botanical Gar-

den of the University of Würzburg, Germany (49�45053.54200N,

9�55052.9200E) in June 2022. The site has a temperate climate with an

average temperature of 11.7�C and an annual precipitation of

561 mm in 2022 (Deutscher Wetterdienst, 2022). Ten individuals

each from ten broadleaved tree species were used for the measure-

ments: Acer pseudoplatanus (ACPS), Aesculus hippocastanum (AEHI),

Betula maximowicziana (BEMA), Betula pendula (BEPE), Fagus sylvatica

(FASY), Quercus petraea (QUPE), Quercus rubra (QURU), Sorbus aucu-

paria (SOAC), Tilia cordata (TICO) and Tilia tomentosa (TITO). The trees

of all species except ACPS and SOAC had heights ranging from 50 cm

to 120 cm and were between 3–5 years old. The height of ACPS and

SOAC individuals ranged from 150 cm to 180 cm, ACPS individuals

were 8 years old and SOAC individuals were 6 years old. The juvenile

trees were planted in an inorganic sand/loam mixture in 10 L pots and

20 L pots (ACPS, SORB) during the spring of 2022. The trees were

regularly irrigated to maintain optimal water status. The leaves for all

measurements were sampled from the upper part of the crown and

represented sun leaves.

2.2 | Mature trees experimental set-up

The mature tree measurements were conducted on the Campus of

the Université du Québec à Trois-Rivières, Canada (46�20049.04100N,

72�34040.93200W) in August/September 2022. The site is located on

sandy soils representative of the retreat of the Champlain Sea, and in

a temperate climate zone with average annual temperature and

annual precipitation around 5.2�C and 872 mm (as rainfall), respec-

tively (MDDELCC, 2015). Six individuals each from nine broadleaved

tree species were tagged within the Campus area and used for the

measurements. The tree species included: Acer platanoides (ACPL),

Acer rubrum (ACRU), Acer saccharinum (ACSA), Betula populifolia

(BEPO), Populus grandidentata (POGR), Populus tremuloides (POTR), Pru-

nus pensylvanica (PRPE), Quercus rubra (QURU) and Tilia americana

(TIAM). All mature trees had heights ranging between 8–15 m with the

exception of TIAM, which measured around 4 m. The vegetation season

and measurement period of 2022 received evenly distributed precipita-

tion and, therefore, the trees were not drought-stressed, which is also

visible in our leaf water potential measurements (Table 1). The leaves for

all measurements were sampled with telescopic scissors from the sun-

exposed Southern side in the lower third of the crown.

2.3 | Gas-exchange measurements

Gas-exchange measurements were conducted between 1st and 9th of

June 2022 of juvenile trees and between 25th of August and 8th

of September 2022 on mature trees. The time periods for the mea-

surements were 9:30–12:00 and 13:30–16:00 to avoid a mid-day

depression. Gas-exchange measurements were done with a Li-6800

(LI-COR) equipped with a standard leaf chamber with 3 cm2 for juve-

nile trees and with 6 cm2 cuvette for mature trees. The chamber con-

ditions were set to 1000 μmol m�2 s�1 PAR intensity, 420 ppm

reference CO2 and fan speed of 10000 rpm in both experiments. The

air temperature in the cuvette was 22 ± 0.95 �C (mean ± SE) for

mature trees and 26 ± 1.05�C for juvenile trees, the relative humidity

in the cuvette was averaging at 60 ± 1.6% for mature trees and

60 ± 3% for juvenile trees. Leaf gas-exchange on mature trees was

measured at sun-exposed leaves from the lower third of the tree

crown, immediately after excision. Leaf gas-exchange of juvenile trees

was typically measured at intact, sun-exposed leaves from the upper

third of their crown. For juvenile ACPS and SORB, we used excised

branches originating from the upper third of the tree crown, which

were immediately measured. In total, we measured gas exchange on

154 trees belonging to 18 tree species (mature: n = 54; juvenile:

n = 100). Leaf gas-exchange was measured 4–5 times per individual

in mature trees and 3–4 times in juvenile trees during the experimen-

tal period. The measurements were averaged per individual for further

analyses. The intrinsic water-use efficiency (iWUE) was calculated as a

ratio between assimilation rate (A) and stomatal conductance (gs);

iWUE = A/gs.

2.4 | Water potential measurements

The leaf water potential (WP) of both juvenile and mature trees was

measured periodically to make sure that the trees were not drought-

stressed. All juvenile trees were watered regularly (1–2� per week)

and their leaf WP was measured each morning before gas-exchange

measurements to test their water status (Table 1). The leaf WP of

juvenile trees was measured with a Scholander pressure chamber

(Model 1505D, PMS Instruments) on petioles of leaves excised from

the upper part of the tree crowns, within 3 minutes after the excision.
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The leaves of mature trees adjacent to the leaves used for the

gas-exchange measurements were stored in plastic bags with a wet

tissue and placed in a mobile cooler. In the afternoon of the same day

(ca. 4–5 pm), their leaf WP was measured with a Scholander pressure

chamber (Model 1505D, PMS Instruments) on petioles of the excised

leaves (Table 1).

The water potential measurements confirmed that none of the

species were drought-stressed during the measurement periods

neither in juvenile nor mature trees.

2.5 | Stomatal morphology

The stomatal imprints were done with the ‘collodion method’,
where transparent nail polish is applied to the abaxial side of the

leaves, as all sampled species have minimal stomatal occurrence on

upper side of their leaves. After 2–3 minutes, the nail polish layer

was transferred to a microscope slide using transparent tape (Petrík

et al. 2022). The stomatal imprints from mature trees were col-

lected after each gas-exchange measurement, while for juvenile

trees they were taken only after the first round of measurements.

The imprints were collected from the same area where leaf gas-

exchange was measured. Therefore, the spatial variability of the

stomatal morphology within the leaf should match the spatial vari-

ability of gas-exchange. The stomatal imprints were taken for

10 individuals per species, 4–5 imprints per individual for mature

trees and one imprint per individual for juvenile trees. From these

imprints, the digital photographs using Levenhuk MED 30 T

equipped with Delta Optical DLT-Cam Pro 12MPx were taken at

40�10 resolution. The guard cell length (GCL) and stomatal density

(SD) were measured from these digital photos with ImageJ soft-

ware (Schneider et al. 2012). The GCL was measured for 3 random

stomata per photo and these values were averaged per individual

(three stomata per individual for juvenile and 12–15 stomata per

individual for mature trees). The number of stomata for the entire

area of the photo (0.416 mm2) was measured and was further recal-

culated to SD per 1 mm2 (one SD value per individual for juvenile

and three SD values averaged per individual for mature trees).

2.6 | Specific leaf area

The leaves used for the first round of gas-exchange measurements for

mature trees were taken for specific leaf area (SLA) estimation, while

SLA was deduced from additional leaves sampled at the end of the

experiment for juvenile trees. Three leaves from the upper third of

the crown were sampled from each mature tree individual. The

mature tree leaves were scanned with a Perfection V800 scanner

(Epson) and juvenile tree leaves with an A3 scanner (Perfection

12000XL, Seiko Epson) and their leaf area was measured with ImageJ

software. Afterwards, the leaves were oven-dried at 70 �C for 48 h.

Subsequently, SLA of each leaf was calculated as SLA = leaf area/dry

mass. The values were averaged for each individual.

2.7 | Carbon isotope analysis

The same leaf samples used for SLA measurement were further ground to

fine powder and stored in a freezer for the carbon isotope (δ13C) analysis.

Leaf δ13C isotopic ratios of the mature tree's samples were determined

using an elemental analyser coupled with an isotope ratio mass spectrom-

eter (EA-IRMS, Agilent technology). The juvenile tree samples were ana-

lysed at the Centre for Stable Isotope Research and Analysis (KOSI),

University of Göttingen. The leaf δ13C of juvenile trees was measured

with a Delta Plus Isotope mass ratio spectrometer (Finnigan MAT), a Con-

flo III interface (Thermo Electron Corporation) and a NA2500 elemental

analyser (CE-Instruments). The replicate analyses of isotopic standard

reference materials USGS 40 (δ13C = �26.39‰) and USGS 41 (δ13C =

37.63‰) were used to normalize the isotopic values of working stan-

dards to the Vienna Pee Dee Belemnite (δ13C) scales. Isotope values

are expressed in δ notation following the formula δX (‰) = [(Rsample/

Rstandard) – 1] � 103, where X represents 13C and R is 13C/12C isotopic

ratio. Working standards were analysed after every ten samples to

monitor instrument performance and ensure data normalization. The

precision of the laboratory standards was ±0.3‰ for C and N.

2.8 | Statistical analysis

All statistical analyses were conducted in R 4.2.1 software (R Core Team),

using trait data at the individual (tree) level (n = 10 individuals � 10 spe-

cies for the juvenile tree stage, and n = 6 individuals � 9 species for the

mature tree stage). Prior to analyses, the normal distribution of all traits

within species was tested with the Shapiro–Wilk test and the homosce-

dasticity between species was tested with the Bartlett's test. Variation in

stomatal and leaf morphology among species was conducted using sim-

ple ANOVAs with species as fixed factor and Tukey's HSD post-hoc

tests to test variation in the measured traits among species (Table 1).

The influence of stomatal and leaf morphology on water-use effi-

ciency and carbon isotope ratio variation was studied using linear models

at species level (across species) and linear mixed models at individual

level (within species). Linear regression was used to test the impact of

morphological traits on iWUE and δ13C, and to test the relationship

between iWUE and δ13C on species level for the juvenile and mature

trees separately (Figures 1-3). The individual-level relationship between

morphological traits, iWUE and δ13C was analysed with linear mixed-

effects models fitted with R package lme4 v1.1–35.1 (Bates et al. 2015).

Models were fitted using stomatal density, guard cell length and specific

leaf area as predictors, with separate sets of parameters for each ontoge-

netic class. To account for the heterogeneity among species and ontoge-

netic stages, we added a random intercept for species separated into

juvenile and mature state. All three predictor variables were natural log-

transformed prior to analysis to account for their strict lower bound at

zero and to reduce the leverage of few observations with high values for

one or more of the predictors. After log-transformation, the predictors

were scaled and centred to facilitate comparison between parameter

estimates and to improve the interpretability of the intercept. We used

custom contrasts specified via R's formula interface to estimate a
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separate intercept and parameter set for each ontogenetic stage, result-

ing in the following model:

yi ¼ αsþβ1s �SDiþβ2s �GCLiþβ3s �SLAiþαjsþϵi

αjs �Normal 0,τspð Þ

ϵi �Normal 0,σð Þ,

where yi is the observed value of the response (iWUE or δ13C) for

observation; i, αs, β1s, β2s and β3s are the estimated intercept and

slopes for the values of SD, GCL and SLA, respectively for ontogenetic

stage s (adult or juvenile); αjs is a random effect for species j; stage

s and ϵi are the model residuals. The random model components αjs

and ϵi were assumed to be normally distributed around zero with

standard deviation τsp and σ, respectively.

Models were fitted with restricted maximum likelihood. Inference

was based on Wald t-tests with Satterthwaite's approximation to the

degrees of freedom based on R package lmerTest v3.1–3 (Kuznetsova

et al., 2017). Model assumptions were tested by inspection of residual

diagnostic plots. As there were indications of increasing variance with the

mean and a non-normality of the residuals, the model for WUE was re-

fitted after log-transformation of the response. Estimates of the explained

variance of the marginal and conditional predictions were computed

according to Nakagawa et al. (2017) using R package MuMIn v1.47.5

(Bartoń, 2023). Parametric confidence bounds on partial predictions were

computed with R package ciTools v0.6.1 (Haman & Avery, 2017).

Supplementary analyses Pearson correlations between traits were

assessed and visualized with R package corrmorant (Link 2020).

3 | RESULTS

3.1 | Species level relationships between leaf and
stomatal morphology, water-use efficiency and leaf
carbon isotope ratio

Across species, GCL was a significant predictor of iWUE and leaf

δ13C. The increase of GCL corresponded to a reduction of iWUE

(Figure 1A,B) and leaf δ13C (Figure 2A,B) in both juvenile and mature

trees. All significant correlations for iWUE exhibited an R2 > 0.5, while

those for δ13C demonstrated R2 > 0.4. The GCL and SD were nega-

tively correlated for both juvenile and mature tree species (Figure S1).

Therefore, SD showed a positive trend with iWUE and δ13C, but this

trend was significant only for mature trees (Figures 1C and 2C). SLA

showed a negative impact on both iWUE and leaf δ13C, but the rela-

tionship was significant only for the leaf δ13C of juvenile trees

(Figure 2F).

The iWUE derived from gas-exchange measurements corre-

sponds to leaf δ13C among tree species. The iWUE and leaf δ13C

showed significant positive linear relationships for both juvenile and

mature trees (Figure 3A,B). The relationship between iWUE and δ13C

showed greater explanatory power for mature (R2 = 0.89) than for

juvenile (R2 = 0.59) trees.

3.2 | Individual level relationships between leaf
and stomatal morphology, water-use efficiency and
leaf carbon isotope ratio

The mixed effects model of iWUE as a function of GCL, SD and SLA

at the individual level explained 63.1% of the variance in iWUE, of

which 45.0% were explained by the fixed effects alone (Table 2). On

average, iWUE was higher for juvenile than for mature trees. iWUE

was moreover significantly lower for leaves with a higher average

guard cell length both for mature and juvenile trees (Figure 5A). In

addition, the iWUE of the leaves of mature trees was lower for leaves

with higher SLA (Figures 4C and 5A). Notably, SD did not have a

significant effect on iWUE after accounting for the effect of GCL and

SD (Figures 4C and 5A).

An analogous model of leaf δ13C at the individual level explained

82.8% of the variance in leaf δ13C, of which 56.8% were explained by

GCL, SD an SLA. Here, only the GCL for juvenile trees had a signifi-

cant impact, while the other variables did not (Figures 4D and 5B).

The partial effects of the model showed similar patterns as for iWUE,

where increasing GCL had a negative impact on leaf δ13C.

3.3 | Variation in stomatal and leaf morphology
among species and ontogenetic stages

All tested morpho-physiological traits differed significantly among

species for both juvenile and mature stages (Table S1). The aver-

ages with 95% confidence intervals and results of Tukey's HSD

post-hoc analysis for each measured trait are presented in Table 1.

The lowest iWUE was observed for Betula sp. at both juvenile and

mature stages (35–65 μmol mmol�1 average range) and for mature

Prunus pensylvanica (35 μmol mmol�1). The highest iWUE was

observed among the mature trees of Acer sp. and Quercus rubra

(averages between 80 and 90 μmol mmol�1) and among juvenile

Quercus petraea and two Tilia sp. (averages between 95 and

114 μmol mmol�1). The aforementioned species had an approxi-

mately 2.5� higher iWUE than species with a low iWUE in both

juvenile and mature stages. The data from both experiments showed a

dependency between GCL and SD at the species level (Figure S1).

Accordingly, species with high GCL, like Betula sp., had a lower SD and

species with low GCL, like Acer sp. and Quercus sp., had a higher SD in

our study (Table 1). The differences in specific leaf area (SLA) between

species were greater among the juvenile trees than between mature

trees (Table 1). The Betula sp. had the greatest SLA among juvenile

trees and Aesculus hippocastanum the lowest. The overall mean SLA of

mature trees was lower than that of juvenile trees. The variability of

SLA between species was much higher among juvenile trees than

among mature trees (Table 1).
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4 | DISCUSSION

4.1 | Guard cell length affects water-use efficiency
and δ13C of trees

We observed significant negative relationships between GCL and

both iWUE and δ13C for juvenile and mature trees both inter-

specifically and intra-specifically (with the exception of mature δ13C

within species). A higher guard cell length corresponded to a lower

iWUE, as well as a longer-term WUE proxy of δ13C, thus confirming

hypothesis 1. A negative relationship between stomatal size or GCL

and iWUE has been previously reported mostly in crops and was

explained by the faster response time of smaller stomata to changing

environmental conditions compared to larger stomata (Drake

et al. 2013; Lawson and Blatt 2014; Kardiman and Raebild 2018; Dur-

and et al. 2019). Lei et al. (2023) showed that larger stomata exhibited

a decelerated response time to fluctuations in light intensity and dem-

onstrated an overall diminished water-use efficiency (inferred from

δ13C). Larger stomata can also have higher maximal gs, which increases

transpiration and, therefore, can have a negative impact on iWUE

(Fanourakis et al. 2015). A genetic manipulation experiment showed

that rice mutants with reduced stomatal size exhibited increased iWUE

compared to mutants with larger stomatal size (Pitaloka et al. 2022).

Similarly, the iWUE in wheat cultivars was correlated negatively with

stomatal size and transpiration rates (Li et al. 2017). Amitrano et al.

(2021) found that lettuce exhibited a substantial 49% increase in iWUE

F IGURE 1 Species-level linear
regressions between guard cell length
(GCL), stomatal density (SD), specific leaf
area (SLA) and intrinsic water-use
efficiency (iWUE) for mature trees (A,C,E)
and juvenile trees (B,D,F). The species-
level averages are accompanied by 95%
confidence intervals. Solid and dashed
lines refer to significant and non-

significant relationships on a 0.05%
significance level, respectively. Regression
analysis' sample size for mature trees is
9 and 10 for juvenile trees. Sample size
for 95% confidence intervals per species
is 10 individuals for juvenile and
6 individuals for mature trees.
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that was associated with a reduction of stomatal size under different

VPD treatments. Furthermore, exposure to drought stress led to the

inhibition of stomatal development, resulting in smaller stomata and an

increase of iWUE in cotton (Dubey et al. 2023). On the other hand,

two studies focusing on the intra-specific variability of iWUE did not

find a significant relationship between GCL and iWUE, most likely due

to low GCL variability across poplar genotypes (Durand et al. 2019;

Durand et al. 2020). The GCL is probably under strong intra-specific

genetic control, as previously observed for different European beech

provenances (Petrík et al. 2020). Our results showed that GCL had a

significant impact on iWUE also within species and tends to impact the

leaf δ13C of mature trees. The use of stomatal imprints is a cost-

effective method to characterize trees' water-use efficiency variability

compared with labour-intensive gas-exchange measurements or costly

carbon isotope analysis. Our results support findings from crops that

species with smaller stomatal cells with lower GCL have a higher

immediate leaf iWUE derived from gas-exchange and higher leaf δ13C

as proxy for long-term WUE. The relationship is slightly weaker for

intra-specific comparison at the individual level but is quite robust at

the species level. The creation of stomatal imprints is significantly

cheaper and faster than gas-exchange or δ13C measurements. There-

fore, stomatal morphology traits can be measured more extensively in

the field (more sites, higher sample size) compared to the other two

methods, which highlights their potential value for large-scale pheno-

typing studies. The overall time efficiency is limited by the measure-

ment of stomatal morphological parameters and stomatal density,

which can be significantly improved by the implementation of machine

learning or AI tools that automate the measurements (Casado-Garcia

et al. 2020; Wu et al. 2024). Additionally, it is important to note that

stomatal imprints primarily capture the water side of iWUE, and that

photosynthetic efficiency must be characterised by other methods to

fully understand iWUE constraints (Al-Salman et al. 2024).

F IGURE 2 Species-level linear regressions
between guard cell length (GCL), stomatal
density (SD), specific leaf area (SLA) and leaf
carbon isotope ratio (δ13C) for mature trees
(A,C,E) and juvenile trees (B,D,F). The species-
level averages are accompanied by 95%
confidence intervals. Solid and dashed lines
refer to significant and non-significant
relationships on a 0.05% significance level,

respectively. Regression analysis' sample size
for mature trees is 9 and 10 for juvenile trees.
The sample size for 95% confidence intervals
per species is 10 individuals for juvenile and
6 individuals for mature trees.
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4.2 | Stomatal density and water-use efficiency

We observed that SD had a significant positive effect on iWUE and

leaf δ13C of mature trees (p < 0.05) and a marginally significant impact

on leaf δ13C (p = 0.08) of juvenile trees at the species level (hypothe-

sis 2 confirmed). On the other hand, the mixed model showed no

impact of SD on individual-level iWUE or leaf δ13C. The discrepancies

between the inter- and intra-specific comparison may in part result

from the different aggregation levels (Pollet et al. 2015; Isasa

et al. 2023). However, the disappearing SD effect when accounting

for GCL is likely also driven by the relatively high correlation between

the two variables. Leaf stomatal density can have a distinct effect on

F IGURE 3 Linear regressions
between intrinsic water-use efficiency
(iWUE) and leaf carbon isotope ratio
(δ13C) per tree species in mature trees
(A) and juvenile trees (B). Regression
analysis sample size for mature trees is
9 and for juvenile trees is 10. The sample
size for 95% confidence intervals per
species is 10 individuals for juvenile and

6 individuals for mature trees.

TABLE 2 Results of the mixed effects models testing the influence of stomatal (GCL, SD) and morphological (SLA) traits and genus on
intrinsic water use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We used species (included separately for adult and juvenile stages of
the same species) as a random effect, and fitted the models on a log scale with normal errors, corresponding to the following model equation:
lmer(response � stage + stage: (sla + gcl + sd) + 0 + (1 j species:stage), data = data). Shown are the estimated values with their standard errors
and 95% confidence intervals, the t-statistic and degrees of freedom based on Satterthwaite's approximation, and the corresponding p-values.
Parameters significantly different from zero on a 95% level are highlighted in bold.

Parameter Ontogeny Estimate Std.error Lwr 95% CI Upr 95% CI t-statistic df p-.value

Model for iWUE

αs (Intercept) Juvenile 4.286 0.054 4.168 4.403 78.818 12.784 <0.001

Mature 3.881 0.085 3.706 4.056 45.246 31.215 <0.001

β1 (SD) Juvenile 0.007 0.039 �0.071 0.085 0.188 52.876 0.851

Mature 0.124 0.090 �0.054 0.303 1.377 132.133 0.171

β2 (GCL) Juvenile �0.212 0.053 �0.321 �0.104 �3.959 49.194 <0.001

Mature �0.144 0.067 �0.278 �0.009 �2.130 69.997 0.0376

β3 (SLA) Juvenile 0.053 0.037 �0.021 0.127 1.412 116.924 0.161

Mature �0.176 0.085 �0.346 �0.006 �2.065 100.837 0.041

τsp 0.149 NA NA NA NA NA NA

σ 0.213 NA NA NA NA NA NA

Model for δ13C

αs (Intercept) Juvenile �26.843 0.307 �27.566 �26.120 �87.310 7.194 <0.001

Mature �29.576 0.411 �30.451 �28.701 �71.804 15.656 <0.001

β1 (SD) Juvenile 0.204 0.161 �0.115 0.524 1.264 105.781 0.208

Mature �0.136 0.340 �0.808 0.536 �0.399 145.903 0.698

β2 (GCL) Juvenile �0.785 0.226 �1.235 �0.335 �3.469 85.023 <0.001

Mature �0.396 0.287 �0.975 0.182 �1.380 44.570 0.174

β3 (SLA) Juvenile �0.160 0.142 �0.441 0.121 �1.123 145.995 0.263

Mature �0.261 0.332 �0.918 0.396 �0.785 139.41 0.434

τsp 0.920 NA NA NA NA NA NA

σ 0.748 NA NA NA NA NA NA
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overall plant water loss. For instance, genetical manipulation studies

in crops show overwhelming evidence that a reduction of SD leads to

increased WUE due to lower transpiration rates (Liu et al. 2015; Guo

et al. 2019; Li et al. 2020; Pitaloka et al. 2022). In stark contrast, there

are multiple studies that reported a positive relationship between SD

and WUE in plants (Xu et al. 2008; Naz et al. 2010; Zhao et al. 2015;

Stojni�c et al. 2019; Bhaskara et al. 2022; Al-Salman et al. 2023;

Caine et al. 2023). As there is a general trade-off between GCL and

SD in plants due to space constraints of leaves (Lawson et al. 2016),

increasing GCL typically leads to lower SD in natural populations

(Haworth et al. 2023). The increase of SD and reduction of stomatal

size is a common acclimation response to water-deficit or drought

stress in trees (Dunlap and Stetter 2001; Pearce et al. 2006; Boughal-

leb et al. 2014; Stojni�c et al. 2015). Gene manipulation techniques on

crops can disproportionally reduce SD compared to an increase in

GCL, which might not be realistic for natural populations, or it may

influence other factors that affect iWUE (Franks et al. 2015). In a

study by Hughes et al. (2017), the reduction of SD in barley via gene

manipulation also led to a reduction of GCL and an improved iWUE.

Therefore, the reduction of SD can have a strong positive impact on

iWUE in gene manipulation studies in crops, but the applicability of

lowering SD under field conditions, particularly in tree species, is still

not well understood. Our results show that GCL and SD are good pre-

dictors of iWUE and leaf δ13C across species, but GCL is more reliable

for capturing individual-level relationships and intra-specific variability

of trees.

4.3 | Specific leaf area and water-use efficiency

Specific leaf area (SLA) had a minor role in explaining water-use effi-

ciency in our study. We found that SLA had a significant negative

F IGURE 4 Partial effects of guard cell length, stomatal density, specific leaf area for the model of water use efficiency (A-C) and leaf carbon

isotope ratio (D-F) at individual level. Shown are the marginal predictions (solid lines) with their 95% confidence intervals (ribbons), coloured by
ontogenetic stage. The partial predictions show the hypothetical values when changing one predictor and keeping the others at their average
value. Points show the corresponding partial residuals. Faint lines show the conditional predictions on species level. The sample size for mature
trees is 54 and 100 for juvenile trees.
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impact on the individual level iWUE of mature trees and a

negative impact on leaf δ13C of juvenile trees at the species level. SLA

is widely used in functional ecology as a proxy for plant life strategies

(e.g., Wright et al. 2010), where high SLA is typically associated with

an ‘acquisitive’ growth strategy and high relative growth rate (Wright

et al. 2004; Baird et al. 2017). SLA can reflect the differences in leaf

anatomical structure that can influence the variability of iWUE

between species via changes in mesophyll conductance (Mediavilla

et al. 2001; Tomás et al. 2013; Carriquí et al. 2015; Trueba et al.

2022). Previous studies reported that SLA was negatively correlated

with iWUE and δ13C in crops (Craufurd et al. 1999; Reddy

et al. 2020a,b), shrubs (Horike et al. 2023), trees (Wang et al. 2013;

Ge et al. 2022; Zhong et al. 2022) and forests (Guerrieri et al. 2021).

Our results also show the tendency of a negative correlation between

SLA and both iWUE and δ13C, though this was significant only for the

relationship with δ13C of juvenile species inter-specifically and with

the iWUE of mature trees intra-specifically. Our measurements

showed different coverage of variable ranges for juvenile and mature

species that could affect these results. The lower variability in SLA for

mature trees may indicate that even though we sampled sun-exposed

leaves from the crown edges, these might have been still more shaded

than the sun-exposed leaves of the seedlings (Baird et al. 2017).

Moreover, leaf size increases and thickness declines vertically

(Oldham et al. 2010; Schuldt et al. 2011; Coble et al. 2014). In

comparison, GCL and SD are more influential and more robust traits

capturing the iWUE and leaf δ13C variability than SLA.

4.4 | Relationship between intrinsic water-use
efficiency and leaf carbon isotope ratio

The significant positive relationship between iWUE and leaf δ13C

observed for both juvenile and mature tree species serves as a vital

indicator of the capacity of trees in regard to carbon-water utilization.

The positive relationship between gas-exchange derived iWUE and

leaf δ13C (or negative relationship between iWUE and δ13C) has also

been observed inter-specifically (Grossnickle et al. 2005; Ducrey

et al. 2008; Roussel et al. 2009; Marguerit et al. 2014; Kaluthota

et al. 2015). The leaf δ13C reliably reflects seasonal iWUE and there-

fore can capture long-term trends as in our study, where the trees

were not exposed to water-deficit stress. Exposure of plants to short-

term drought or heat stress can create a discrepancy between

momentary iWUE and leaf δ13C as the sampled leaves contain carbo-

hydrates from pre-stress period not affected by current A/gs balance

(Camarero et al. 2023; Pernicová et al. 2023). The leaf δ13C is thus a

good proxy for a long-term iWUE, especially under relatively homoge-

nous environmental conditions. Also, as it can be easily sampled in a

large number of individuals in the field while representing plant long-

term trends in water-use efficiency, the leaf δ13C offers good insights

to analyse the adaptation of tree species to environmental aridity

(Rabarijaona et al. 2022).

4.5 | General comparison of species and
ontogenetical stages

The inter-specific differences between stomatal and leaf traits, iWUE

and δ13C reflect their functional adaptation to the environment. We

can see a clear differentiation between pioneering species such as

Betula populifolia (low iWUE), fast-growing species such as Populus

grandidentata (low iWUE) and climax forest species such as Quercus

petraea or Tilia cordata (high iWUE). Nevertheless, our results show

that there are also intermediaries between these two edge cases,

where high iWUE species can also have relatively high assimilation

rates (Acer saccharinum), or low iWUE species can have relatively low

assimilation rates (Prunus pensylvanica). It should be noted that forest

tree species typically have a high intra-specific variability, and sample

size of 7–10 trees may be inefficient in capturing the functional differ-

ences between species. We observed a very high variability of GCL

and SD between the species as well. The species-level GCL correlated

negatively with SD, consistent with the assumed trade-off between

the size and frequency to optimize the overall conductive surface to

water vapour and CO2 that was described in numerous other studies

(Doheny-Adams et al. 2012; Boer et al. 2016; Rahman et al. 2022).

The differences between the species we report here represent the

F IGURE 5 Estimates of the slope parameters for water use
efficiency (A) and leaf carbon isotope ratio (B) models at individual
level. Shown are parameter estimates with their 95% confidence
intervals. Significant differences of the slope from zero are highlighted
with stars (* - p < 0.05, ** - p < 0.01, *** - p < 0.001). The sample size
for mature trees is 54 and 100 for juvenile trees.
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carbon-water balance under well-watered conditions and should

be without the impact of reduced stomatal conductance. Hence,

we excluded any drought stress impacts that can strongly alter

the iWUE/δ13C of plants (Roman et al. 2015; Hajíčková et al. 2021;

Hartmann et al. 2021; Gebauer et al. 2022). Therefore, the relation-

ship between GCL and iWUE/δ13C could be even more (or less)

pronounced under drought stress conditions.

The tree age class can also affect the iWUE, which is usually

species-specific and tied to the stand structure (Tanaka-Oda et al.

2010; Matoušková et al. 2022). Neither juvenile nor mature trees in

our study were light-limited; therefore, we can eliminate the impact of

light competition. The only species sampled in both ontogenetical

stages was Quercus rubra (QURU). The juvenile QURU had signifi-

cantly higher SLA and SD than mature QURU, and significantly lower

A and gs, but there were no significant differences in GCL, iWUE

or δ13C. Similarly, a study by Cavender-Bares & Bazzaz (2000) found

no changes in iWUE between three ontogenetical stages of Q. rubra

under well-watered conditions. Ontogeny had a significant impact on

leaf anatomical and morphological traits, but no impact on assimilation

or stomatal conductance among tropical tree species (Ishida

et al. 2005; Fortunel et al. 2019). These results suggest that leaf

morphological traits might change during ontogenetical stages, but

the water-use efficiency remains stable. Nevertheless, our sampling

did not cover very old trees in which the iWUE could be limited by

soil nutrients (N, P) or aging (Munné-Bosch 2007; Brueck et al. 2008;

Huang et al. 2016).

The strength and significance of relationships between SD,

SLA and iWUE, δ13C differed between ontogenetical stages (juvenile,

mature). Irrespective of tree age and species, GCL showed over all a

consistent negative relationship with iWUE and was significant for

both ontogenetical stages inter-specifically and intra-specifically. This

indicates the potential of GCL as a highly effective predictor of iWUE

regardless of the ontogenetical stage. The relationship between GCL

and δ13C was significant for both ontogenetic stages across species,

but only for juvenile trees intra-specifically. The study by Fortunel

et al. (2019) found a significant impact of the ontogenetical stage on

leaf δ13C and dark respiration but not on assimilation or stomatal

conductance and, therefore, probably no impact on iWUE. The lower

explanatory power of GCL in regards to δ13C (compared to iWUE) in

mature trees could be explained by differences in the respiratory sub-

strate used throughout the season (Salomón et al. 2023). The iWUE

signal recorded in the δ13C of plant organic material is photosynthetic

rate weighted, meaning that more carbon is assimilated during periods

of high photosynthetic rate. Consequently, the iWUE signal from

these periods is more strongly represented in the bulk leaf material

(Bing et al. 2022). This also implies that δ13C is more biased toward

variations in A as well as tissue growth, while GCL primarily reflects

the gs component of iWUE. This difference could explain why we

observed stronger correlations between GCL and iWUE compared to

δ13C. Therefore, it is critical to explore if the connections between

morphological and physiological traits are consistent throughout onto-

genetical development (life stages) if we want to transfer inferences

obtained at seedling or juvenile level to mature trees. Finally, our

study used two sets of trees grown under different conditions and

experienced varying environments during the sampling period. It is

thus possible that the differences observed between juvenile and

adult stages may also be driven by variations in soil type, nutrients,

climate, watering status, as well as within-species genetic variation.

Controlled condition experiments limiting environmental variations

will now be needed if we are to characterize more precisely the sole

effects of ontogeny on the relationships among SD, SLA, iWUE

and δ13C.

5 | CONCLUSION

Our study confirmed our assumption that stomatal guard cell

length (GCL) and stomatal density (SD) are important determi-

nants of both short-term intrinsic water-use efficiency (iWUE)

from gas exchange and long-term WUE derived from leaf carbon

isotopes (δ13C). Both iWUE and δ13C correlated positively with

SD and negatively with GCL for juvenile and mature trees across

species. The GCL was a stronger predictor of both iWUE and δ13C

compared to SD within species. In addition, the short-term iWUE

showed a strong positive correlation with leaf δ13C in both onto-

genetical stages. We conclude that GCL is a valuable addition

to the functional trait toolkit that permits rapid phenotyping of

the WUE strategy of broadleaved tree species regardless of

their age class.
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