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A B S T R A C T

We consider the classical multi-asset Merton investment problem under drift uncertainty, i.e. the asset price
dynamics are given by geometric Brownian motions with constant but unknown drift coefficients. The investor
assumes a prior drift distribution and is able to learn by observing the asset prize realizations during the
investment horizon. While the solution of an expected utility maximizing investor with constant relative risk
aversion (CRRA) is well known, we consider the optimization problem under risk and ambiguity preferences
by means of the KMM (Klibanoff et al., 2005) approach. Here, the investor maximizes a double certainty
equivalent. The inner certainty equivalent is for given drift coefficient, the outer is based on a drift distribution.
Assuming also a CRRA type ambiguity function, it turns out that the optimal strategy can be stated in terms
of the solution without ambiguity preferences but an adjusted drift distribution. To the best of our knowledge
an explicit solution method in this setting is new. We rely on some duality theorems to prove our statements.

Based on our theoretical results, we are able to shed light on the impact of the prior drift distribution as
well as the consequences of ambiguity preferences via the transfer to an adjusted drift distribution, i.e. we are
able to explain the interaction of risk and ambiguity preferences. We compare our results with the ones in a
pre-commitment setup where the investor is restricted to deterministic strategies. It turns out that (under risk
and ambiguity aversion) an infinite investment horizon implies in both cases a maximin decision rule, i.e. the
investor follows the worst (best) Merton fraction (over all realizations of it) if she is more (less) risk averse
than a log-investor. We illustrate our findings with an extensive numerical study.
1. Introduction

We investigate the effects of model ambiguity preferences on opti-
mal investment decisions in a multi asset Black Scholes market. Since
the seminal paper by Ellsberg (1961), we know that decision makers
may have a non-neutral attitude towards model ambiguity. As a result,
preferences are decomposed into risk preferences (based on known
probabilities) and preferences concerning the degree of uncertainty
about the (unknown) model parameters and are evaluated separately.
This is in particular relevant for portfolio optimization problems. A
recent literature suggests that model ambiguity is at least as prominent
as risk in making investment decisions, see Chen and Epstein (2002).

There are different ways to incorporate model ambiguity in decision
making, like for example summarized in Guidolin and Rinaldi (2013).
In our setting, model ambiguity refers to the drift uncertainty in the
dynamics of asset prices1 and we apply the smooth ambiguity approach
of Klibanoff et al. (2005) to deal with it. The risk in asset prices itself
is evaluated by a utility function applied to the terminal wealth. Thus,
the expected utility is itself a random variable (determined by the prior

∗ Corresponding author.
E-mail addresses: nicole.baeuerle@kit.edu (N. Bäuerle), amahayni@uni-due.de (A. Mahayni).

1 It is well-known that the drift of stock prices is notoriously difficult to estimate, Gennotte (1986)

distribution of the drift parameters) which is evaluated by a second
utility function (ambiguity function) capturing the model ambiguity.
This approach allows for a separation of risk and ambiguity. As a
result we end up with a stochastic optimization problem over a nested
expectation which leads to non-linear expectations and the fact that we
cannot solve the problem with a standard HJB approach. As in Balter
et al. (2021) we assume that both the risk aversion and ambiguity
aversion of the investor are described by (CRRA) power functions.
While Balter et al. (2021) consider pre-commitment strategies, we take
into account for the possibility that the investor is able to gradually
learn about the drift by observing the asset price movements.

First of all, we contribute to the literature by analytically solving
the portfolio optimization problem under drift uncertainty and learning
while taking into account for both, risk and ambiguity preferences.
To the best of our knowledge this has not yet been achieved before
in our setting. We exploit the fact that the norm-like functions which
appear in the concatenations of the certainty equivalents for risk and
ambiguity allow for a specific dual representation. On the one hand,
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such a result should have been expected from previous research about
the representation of smooth ambiguity, see Iwaki and Osaki (2014), on
the other hand it shows that smooth ambiguity is nothing else than a
special kind of robust control. Indeed, we can think of the optimization
problem as a classical Bayesian problem with adjusted prior probability
distribution for the drift where the adjustment is computed in a second
optimization problem. The attitude towards ambiguity depends on the
relation of the levels of risk and ambiguity aversion (Balter et al., 2021;
Iwaki & Osaki, 2014). Our quasi closed form solutions allow an in depth
analysis of the interaction of risk and ambiguity preferences. Among
others it turns out that with relatively increasing ambiguity aversion,
the prior distribution is smoothly shifted from ‘good’ to ‘bad’ drift
scenarios, i.e. an ambiguity averse decision maker is more pessimistic.

Second, we are able to determine the long-time behavior of an
ambiguity neutral/averse Bayes investor in the multi asset case. This
is much more challenging than in the single-asset case. There it has
been shown in Bäuerle and Grether (2017) that the worst/best drift is
crucial. In the vector-valued case it is not clear which drift scenarios are
worst and which best cases. It turns out that these extreme scenarios
are determined by the Euclidean norm of the possible drift vectors.
An investor who is more (less) risk averse than a log-investor2 then
tends to a maximin (maximax) decision rule (which does not depend
on the probability distribution of the drift). More precisely, an infinite
investment horizon implies that the more (less) risk averse investor
initially acts as someone who knows that the drift belongs to the worst
(best) case scenario. Relying on this result we are able to compare
the optimal strategy under learning with pre-commitment strategies,
i.e. strategies where the investor is restricted to strategies which are
deterministic functions of time. We are able to explain why (compared
to a pre-commitment strategy) the value of learning is rather low,
even in the case of high investment horizons. For short investment
horizons (or remaining investment horizons), the investor is not able
to learn much about the drift. For long investment horizons, both
investors are initially guided by the worst (best) scenario. Finally this
observation also carries over to the investor with model ambiguity since
she essentially behaves like a Bayesian investor with adjusted prior
which does not play a role when a large time horizon is present. This is
maybe expected since a large time horizon allows for perfectly learning
the model.

Related literature:
Bayes optimization problems and their sensitivity: We treat the fact that

the asset drifts or market prices of risk are unknown as a Bayesian
problem where we have a prior distribution (knowledge) about the
values of the parameters which are here the drift or equivalently the
market price of risk. The observations of the asset prices can then be
used to update the belief which is also known as learning. This is done
with the help of a filter. This filter then becomes part of the state
process of the optimization problem. Techniques like these are well-
known in finance, see e.g. Lakner (1995) Brennan (1998), Karatzas
and Zhao (2001), Honda (2003), Rieder and Bäuerle (2005), Björk
et al. (2010) for investment problems in Black Scholes markets. The
sensitivity of the optimal investment strategy in a single-asset Bayesian
Black Scholes model w.r.t. model parameters is an interesting topic and
investigated among others in Rieder and Bäuerle (2005), Longo and
Mainini (2016), Bäuerle and Grether (2017).

Duality and ambiguity: One early approach to deal with ambiguity
s to consider robust approaches, e.g. Gilboa and Schmeidler (2004),
ansen and Sargent (2001) and in continuous time control problems
ith ambiguous interest rates (Lin & Riedel, 2021) and in semimartin-
ale markets (Schied, 2007; Schied et al., 2009). The latter survey paper
iscusses different robust formulations and their connection to risk
easures. Robust approaches care about worst-case scenarios and have

ometimes been criticized for being too pessimistic. Thus, Klibanoff

2 Investor with logarithmic utility
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et al. (2005) introduced smooth ambiguity (KMM) which weights pos-
sible scenarios in a smooth way. Using Yaari’s duality theory (Yaari,
1987), Iwaki and Osaki (2014) already showed that there is a dual
approach to smooth ambiguity which connects the ’smoothing function’
to some distorted probabilities. The dual representation of entropic
risk measures is used in Bäuerle and Rieder (2020) to tackle discrete-
time decision problems with exponential utility for the KMM ambiguity
applied to an unknown parameter. In Skiadas (2003, 2013) the author
relates a robust control to a recursive utility approach.

Solving smooth ambiguity: Smooth ambiguity models are by defini-
tion more complex than standard decision models under uncertainty.
There are not many explicitly solved cases and approaches to tackle
the problem. A static two-asset problem is considered and solved
directly in Gollier (2011). In Balter et al. (2021), the authors treat a
Black–Scholes market with one risky asset and restrict to deterministic
strategies which excludes learning. In Guan and Li (2022) the authors
look for equilibrium strategies in a smooth ambiguity problem with
investment in a single-asset Black Scholes market and reinsurance and
the mean–variance criterion. The recent paper Guan et al. (2023)
also considers equilibrium portfolio strategies for smooth ambiguity
preferences.

Learning and ambiguity: The effect of learning under ambiguity has
e.g. been investigated in Epstein and Schneider (2007) among others
with the help of dynamic variants of the Ellsberg problem. In Ju and
Miao (2012) a generalized recursive smooth ambiguity and the effects
on learning are considered. Both references deal with problems in
discrete time. Suzuki (2018) generalizes the results in Ju and Miao
(2012) by taking a limit to continuous time. Whereas in Baillon et al.
(2018) the effect of learning information on people’s attitudes toward
ambiguity is investigated. Miao (2009) considers optimal consumption
and investment in a similar financial market with incomplete infor-
mation, however apply a recursive multiple priors approach which
immediately yields some kind of worst case problem over densities.
Numerical results are not provided in the paper.

The outline of the paper is as follows. First, Section 2 states the
optimization problem and its solution. We start with a multi-asset Black
Scholes model where we set the interest rate to zero for simplicity.
Then we review the classical Bayesian case and explain how the prob-
lem with ambiguity can be solved analytically. A main tool is Sion’s
minimax theorem. Proofs are deferred to the appendix. Section 3 first
analyzes the optimal strategy in the Bayesian model, since the optimal
strategy in the ambiguous case boils down to this setting with adjusted
prior. We discuss the behavior of the optimal investment strategy for
short and long time horizon. The latter one being quite difficult to
analyze. A particular focus is on the special case with two-point prior
where we can represent the optimal investment strategy as a convex
combination of Merton fractions which are optimal in the setting with
complete information given by the two drift settings. We also consider
the case with pre-commitment i.e. when the investment strategy has to
be chosen at time 0 and compare the two cases. Finally we simplify in
the two-prior scenario the problem with model ambiguity. In Section 4
we present an extensive numerical study which sheds further light on
our theoretical statements and gives some intuitive explanations. We
restrict here to the single-asset case and two-point prior. The appendix
contains proofs and further parameter constellations not discussed in
the main sections.

2. Optimization problem and solution

Let (𝛺, , (𝑡),P) be a filtered probability space and 𝑇 > 0 be a finite
time horizon. The underlying financial market consists of 𝑑 stocks and
ne riskless bond, each defined on the previously mentioned probability
pace. The price process 𝑆 = (𝑆1(𝑡),… , 𝑆𝑑 (𝑡))𝑡∈[0,𝑇 ] of the 𝑑 stocks will
or 𝑖 = 1,… , 𝑑 be given by

𝑑𝑆𝑖(𝑡) = 𝑆𝑖(𝑡)

[

𝜇𝑖𝑑𝑡 +
𝑑
∑

𝜎𝑖𝑗𝑑𝑊𝑗 (𝑡)

]

= 𝑆𝑖(𝑡)

[ 𝑑
∑

𝜎𝑖𝑗𝑑𝑌𝑗 (𝑡)

]

, (2.1)

𝑗=1 𝑗=1
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where 𝑊 = (𝑊1(𝑡),… ,𝑊𝑑 (𝑡))⊤𝑡∈[0,𝑇 ] is a d-dimensional Brownian motion,
𝜇𝑖 ∈ R, 𝜎𝑖𝑗 ∈ R+, 𝑖, 𝑗 = 1,… , 𝑑 and 𝜎 = (𝜎𝑖𝑗 ) is regular. We further set

𝑌 (𝑡) ∶= 𝑊 (𝑡) + 𝛩𝑡, 𝛩⊤ ∶= 𝜎−1𝜇, 𝜇 ∶= (𝜇1,… , 𝜇𝑑 ),

where 𝛩 denotes the market price per unit of risk. The price process of
the riskless bond is for simplicity assumed to be identical to 1.

We further assume that 𝜇 is not known and thus a random variable.
This implies that the market price of risk 𝛩 is also not known to the
investor. However, she has a prior knowledge about 𝛩 in form of a
prior distribution P on R𝑑 . For the numerical part we assume that the
random variable 𝛩 may take only one of the values 𝜗1,… , 𝜗𝑚 with
P(𝛩 = 𝜗𝑖) = 𝑝𝑖.

In a next step we introduce a suitable set of trading strategies. Since
the riskless bond is equal to 1 and we only consider self-financing
strategies we can express the wealth process with the help of the
investment in risky assets only. By 𝜋 = (𝜋1,… , 𝜋𝑑 ) we denote a 𝑑-
dimensional stochastic process representing the trading strategy of
some investor, where 𝜋𝑘(𝑡) describes the amount invested in the 𝑘th
stock at time 𝑡 ∈ [0, 𝑇 ]. We denote by

𝑌 (𝑡) ∶= 𝜎(𝑌 (𝑠), 0 ≤ 𝑠 ≤ 𝑡), 𝑌 ∶= (𝑌 (𝑡))

the filtration generated by 𝑌 which is equivalent to the filtration
generated by 𝑆. Strategies 𝜋 should be 𝑌 -progressively measurable.
This means that the agent is able to observe the stock prices and
updates the belief about the market price of risk from this observation.
In other words, the agent is able to learn the right market price of risk.
The associated wealth process denoted by (𝑋𝜋

𝑡 )𝑡∈[0,𝑇 ] is given by

𝑑𝑋𝜋
𝑡 =

𝑑
∑

𝑘=1
𝜋𝑘(𝑡)

d𝑆𝑘(𝑡)
𝑆𝑘(𝑡)

= 𝜋(𝑡)𝜎𝑑𝑌 (𝑡) (2.2)

with initial capital 𝑥0 ∈ R. In what follows let

𝑢(𝑥) = 1
𝛼
𝑥𝛼 , 𝛼 < 1, 𝛼 ≠ 0

e a CRRA utility function. The absolute and relative risk aversion is
ere given by

𝐴(𝑥) ∶= −
𝑢′′(𝑥)
𝑢′(𝑥)

= 1 − 𝛼
𝑥

and 𝑅𝑅(𝑥) ∶= 𝑥𝑅𝐴(𝑥) = 1 − 𝛼.

It is well-known that the limiting case 𝛼 → 0 corresponds to the
logarithmic utility.

2.1. The classical Bayesian case

The investor aims to maximize her expected utility of terminal
wealth. First we assume that the investor is ambiguity-neutral w.r.t.
the unknown parameter and consider

𝑉 (𝑥0) = sup
𝜋 ∫ E𝜗[𝑢(𝑋𝜋

𝑇 )]P(𝑑𝜗) (2.3)

where the supremum is taken over all 𝑌 -adapted strategies 𝜋 for
which the stochastic integral and the expectations are defined and 𝑋𝜋

𝑇 ≥
0. We denote this set by . E𝜗 is the conditional expectation, given 𝛩 =
𝜗. This problem is the well-known Bayesian adaptive portfolio problem.
We summarize its solution in the following theorem (Karatzas & Zhao,
2001; Rieder & Bäuerle, 2005) (where ‖⋅‖ is the usual Euclidean norm):

heorem 2.1. The maximal expected utility attained in (2.3) is given by

(𝑥0) =
𝑥𝛼0
𝛼

(

∫R𝑑
𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧

)1∕𝛾
, 𝑥0 > 0 (2.4)

where 𝛾 = 1∕(1 − 𝛼), 𝜑𝑇 is the density of the 𝑑-dimensional normal
istribution  (0, 𝑇 𝐼) (𝐼 being the identity matrix) and for 𝑡 ≥ 0, 𝑧 ∈
𝑑 , 𝜗 ∈ R we define

(𝑡, 𝑧) ∶= ∫ 𝐿𝑡(𝜗, 𝑧)P(𝑑𝜗),

𝐿𝑡(𝜗, 𝑧) ∶=

{

exp
(

𝑧 ⋅ 𝜗 − 1
2‖𝜗‖

2𝑡
)

𝑡 > 0
(2.5)
395

1 𝑡 = 0.
The optimal fractions invested in the stocks are for 𝑡 ≥ 0 given by

𝜋∗(𝑡)
𝑋∗(𝑡)

= 𝛾(𝜎⊤)−1
∫R𝑑 ∇𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧
(2.6)

here 𝑋∗ is the wealth process under the optimal strategy 𝜋∗.

Remark 2.2.

(a) Recall in particular that in case the market price of risk is known
and is equal to 𝜗, the optimal fractions which have to be invested
do not depend on time and wealth and are given by
𝜋∗(𝑡)
𝑋∗(𝑡)

= 𝜅Mer(𝛾, 𝜗) ∶= 𝛾(𝜎⊤)−1𝜗.

This is a special case of our model when the prior distribution is
concentrated on 𝜗. It is often named Merton fractions of a CRRA
investor with a level of relative risk aversion 1

𝛾 = 1−𝛼. Indeed this
fraction can be recovered from (2.6) as follows: Since the prior is
concentrated on 𝜗 we obtain that 𝐹 (𝑡, 𝑧) = 𝐿𝑡(𝜗, 𝑧) and thus

𝜋∗(𝑡)
𝑋∗(𝑡)

= 𝛾(𝜎⊤)−1
∫R𝑑 𝜗𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧
= 𝛾(𝜎⊤)−1𝜗.

(2.7)

(b) In case 𝛼 → 0 which can be interpreted as the logarithmic utility
we obtain that the optimal fractions invested in the stocks are for
𝑡 ≥ 0 given by
𝜋∗(𝑡)
𝑋∗(𝑡)

= (𝜎⊤)−1�̂�𝑡 = (𝜎⊤)−1E[𝛩|𝑌 (𝑡)] = (𝜎⊤)−1
∇𝐹 (𝑡, 𝑌 (𝑡))
𝐹 (𝑡, 𝑌 (𝑡))

. (2.8)

This is sometimes called certainty equivalence principle since the
unknown market price of risk in the Merton fractions is simply
replaced by its conditional expectation, given the information
so far. The fraction here does not depend on the time horizon
of investment. Moreover for discrete distribution P on 𝜗1,… , 𝜗𝑚
with P(𝛩 = 𝜗𝑖) = 𝑝𝑖, it holds that

P(𝛩 = 𝜗𝑖|𝑌 (𝑡)) =
𝑝𝑖𝐿𝑖(𝜗𝑖, 𝑌 (𝑡))
𝐹 (𝑡, 𝑌 (𝑡))

, 𝑖 = 1,… , 𝑚

is the conditional distribution of 𝛩, (Karatzas & Zhao, 2001;
Rieder & Bäuerle, 2005). Also note that the expectation of �̂�𝑡
remains constant over time and is thus equal to the expectation
of the prior, since the process is a martingale by construction.

2.2. The case with model ambiguity concerns

Now we are interested in an investor who takes model ambiguity
into account, i.e. instead of problem (2.3) we consider for a second
utility function

𝑣(𝑥) = 1
𝜆
𝑥𝜆, 𝜆 < 1, 𝜆 ≠ 0

the problem (see e.g. Balter et al. (2021))

sup
𝜋∈

𝑣−1 ∫ 𝑣◦𝑢−1E𝜗[𝑢(𝑋𝜋
𝑇 )]P(𝑑𝜗)

sup
𝜋∈

(

∫
(

E𝜗[(𝑋𝜋
𝑇 )

𝛼]
)𝜆∕𝛼 P(𝑑𝜗)

)1∕𝜆
(2.9)

his means that model ambiguity, represented by an uncertain market
rice of risk, is evaluated with a second utility function 𝑣 which is here
f the same form but with possibly different parameter. In case 𝛼 > 0
roblem (2.9) is equivalent to

sup
𝜋∈

(

E
[

(

E𝛩[(𝑋𝜋
𝑇 )

𝛼]
)𝜆∕𝛼

])𝛼∕𝜆
, (2.10)

n case 𝛼 < 0 it is equivalent to

inf
(

E
[

(

E [(𝑋𝜋 )𝛼]
)𝜆∕𝛼

])𝛼∕𝜆
, (2.11)
𝜋∈ 𝛩 𝑇
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In case 𝛼 = 𝜆 the problem reduces to the Bayesian problem discussed
previously. Thus, if model risk and the market risk is evaluated with
the same parameter we are back in the setting of Section 2.1. In
what follows we restrict the discussion to the case 𝛼, 𝜆 ∈ (0, 1). The
cases where at least one of the parameters is negative are similar and
discussed in the appendix.

2.2.1. The ambiguity loving case
Let us now assume that 𝜆 > 𝛼 > 0 and define 𝐩 ∶= 𝜆∕𝛼 > 1. The

conomic interpretation is that the agent is less concerned about model
mbiguity than about the risk in the stock market itself. In this case by
sing the 𝐿𝐩 norm ‖ ⋅ ‖𝐩 we can write problem (2.10) as

sup
𝜋∈

‖

‖

‖

E𝛩[(𝑋𝜋
𝑇 )

𝛼]‖‖
‖𝐩

(2.12)

where the norm is w.r.t. 𝛩. It is well-known that the 𝐿𝐩 norm has the
following dual representation for a r.v. 𝑋 ≥ 0, where 1∕𝐩+1∕𝐪 = 1 (see
.g. Rudin (1991)):

emma 2.3. If 𝐩 ∶= 𝜆∕𝛼 > 1 we obtain for non-negative 𝑋 ∈ 𝐿𝐩

𝑋‖𝐩 = sup
{

∫ 𝑋𝑑Q ∶
‖

‖

‖

‖

𝑑Q
𝑑P

‖

‖

‖

‖𝐪
≤ 1

}

. (2.13)

where on the right-hand side of (2.13) the supremum is taken over all
measures Q (not necessarily probability measures) which are absolutely
continuous w.r.t. P and satisfy the constraint. Moreover, an optimal measure
Q∗ exists.

For a random variable 𝑋 with values {𝑥1,… , 𝑥𝑚} and corresponding
probabilities 𝑝1,… , 𝑝𝑑 we can thus write
( 𝑚
∑

𝑖=1
𝑥𝐩𝑖 𝑝𝑖

)1∕𝐩

= sup

{ 𝑚
∑

𝑖=1
𝑥𝑖𝑞𝑖 ∶

𝑚
∑

𝑖=1

(

𝑞𝑖
𝑝𝑖

)𝐪
𝑝𝑖 ≤ 1, 𝑞𝑖 ≥ 0

}

. (2.14)

In what follows define the set of measures Q as the set of measures
which satisfy the constraints in (2.13). This gives immediately rise to
the following solution algorithm for our problem:

Theorem 2.4. In the model of this subsection we have

sup
𝜋∈

‖

‖

‖

E𝛩[(𝑋𝜋
𝑇 )

𝛼]‖‖
‖𝐩

= sup
𝜋∈

sup
Q∈Q∫ E𝜗[(𝑋𝜋

𝑇 )
𝛼]Q(𝑑𝜗)

= sup
Q∈Q

sup
𝜋∈∫ E𝜗[(𝑋𝜋

𝑇 )
𝛼]Q(𝑑𝜗)

= ∫ E𝜗[(𝑋𝜋∗
𝑇 )𝛼]Q∗(𝑑𝜗). (2.15)

After normalizing Q, the inner optimization problem is however, exactly
the Bayesian portfolio problem of the previous section with distribution
Q̃ ∶= Q∕Q(R) for the unknown parameter. So solving (2.10) boils down
to solving the classical Bayesian portfolio problem first with value given in
Theorem 2.1 and then in a second step finding the optimal prior distribution
implied by Q∗ which is obtained from the outer optimization problem. The
optimal strategy 𝜋∗ is then the one in Theorem 2.1 with P replaced by Q∗.

2.2.2. The ambiguity averse case
Let us now assume that 𝛼 > 𝜆 > 0, i.e. the agent is more concerned

about model ambiguity than about the risk in the financial market. This
case is slightly more complicated. Define again 𝐩 ∶= 𝜆∕𝛼 < 1 and 𝐪 by
1∕𝐩 + 1∕𝐪 = 1. Note that 𝐪 < 0. We obtain (see Appendix A.1):

Lemma 2.5. If 𝐩 ∶= 𝜆∕𝛼 < 1 we obtain for non-negative 𝑋 ∈ 𝐿1

(

∫ 𝑋𝐩𝑑P
)1∕𝐩

= inf
{

∫ 𝑋𝑑Q ∶
(

∫

(𝑑Q
𝑑P

)𝐪
𝑑P

)1∕𝐪
≥ 1

}

. (2.16)

where on the right-hand side of (2.16) the infimum is taken over all
measures Q (not necessarily probability measures) which are absolutely
continuous w.r.t. P. Moreover, an optimal measure Q∗ exists.
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In what follows we denote by Q′ the set of all measures which
satisfy the constraints in (2.16) Hence we can write our optimization
problem as

sup
𝜋∈

(

E
(

E𝛩[(𝑋𝜋
𝑇 )

𝛼]
)𝐩
)

1
𝐩 = sup

𝜋∈
inf

Q∈Q′ ∫ E𝜗[(𝑋𝜋
𝑇 )

𝛼]Q(𝑑𝜗). (2.17)

e have to show next that we can interchange the infimum and
upremum in order to solve the problem as in the previous case. We
roceed as in Bäuerle and Rieder (2020) and use the following minimax
heorem (see Sion (1958)):

heorem 2.6. Let 𝑀 be any space and 𝑂 be a compact space, ℎ a function
n 𝑀 × 𝑂 that is concave–convex like. If ℎ(𝑥, 𝑦) is lower semi-continuous
n 𝑦 for all 𝑥 ∈ 𝑀 then

up
𝑥

inf
𝑦
ℎ(𝑥, 𝑦) = inf

𝑦
sup
𝑥

ℎ(𝑥, 𝑦).

heorem 2.7. In the model of this subsection where P has compact support
e have

sup
∈

inf
Q∈Q′ ∫ E𝜗[(𝑋𝜋

𝑇 )
𝛼]Q(𝑑𝜗) = inf

Q∈Q′
sup
𝜋∈∫ E𝜗[(𝑋𝜋

𝑇 )
𝛼]Q(𝑑𝜗)

= ∫ E𝜗[(𝑋𝜋∗
𝑇 )𝛼]Q∗(𝑑𝜗). (2.18)

he solution procedure is then as in Theorem 2.4 by first solving the inner
nd then the outer problem.

roof. We apply Theorem 2.6 to the function 𝐿 ∶ ×Q′ → R defined
y

(𝜋,Q) = ∫ E𝜗[(𝑋𝜋
𝑇 )

𝛼]Q(𝑑𝜗).

here  is the set of admissible strategies. The set Q′ is not compact,
owever since we want to minimize over this set we can first restrict to
set Q̃ where the elements Q have a mass bounded by a constant 𝐾 > 0.
he proof of Lemma 2.5 shows that an optimal Q∗ with finite mass
xists. Next the mapping Q ↦ 𝐿(Q, 𝜋) is linear and continuous w.r.t.
eak convergence. Finally, since 𝑋𝜋

𝑇 is linear in 𝜋 and 𝑥𝛼 is concave, the
apping 𝜋 ↦ 𝐿(Q, 𝜋) is concave. Hence the assumptions are satisfied

nd Theorem 2.6 implies that we are able to interchange the infimum
nd supremum. □

emark 2.8. For simplicity we assume that our financial market
s complete. However the approach to solve the smooth ambiguity
roblem by making use of a dual representation of the target function is
ndependent of the precise formulation of the market. For example we
ould also solve smooth optimization problems in incomplete markets
ike in Karatzas et al. (1991) in the same way with the drawback that
he solution of the inner optimization problem is more complicated and
oes not allow for such a nice formula as in Theorem 2.1.

emark 2.9. When we choose as utility function for our investor
(𝑥) = −𝑒−𝛼𝑥, 𝛼 > 0 and for the ambiguity 𝑣(𝑥) = −𝑒−𝜆𝑥, 𝜆 > 0 then
quick calculation shows that 𝑣◦𝑢−1 = −(−𝑥)𝜆∕𝛼 and we can apply the

ame solution method in this case. However, the idea of the duality
pproach is more general. For example suppose that ambiguity aversion
s smoothly measured via the negative of the entropic risk measure
1
𝛼 ln(E[𝑒−𝛼𝑋 ]), 𝛼 > 0 and our decision maker is risk neutral. Then we
ould like to maximize
1
𝛼
ln∫ 𝑒−𝛼E𝜗[𝑋𝜋

𝑇 ]Q(𝑑𝜗) = inf
Q

{

∫ E𝜗[𝑋𝜋
𝑇 ]Q(𝑑𝜗) + 1

𝛼
𝐼(Q ∥ P)

}

here the infimum is taken over all probability measures Q which are
bsolutely continuous w.r.t. P and 𝐼 is the usual relative entropy. This
epresentation gives again rise to a decomposition of the problem in an
nner and outer problem, Bäuerle and Rieder (2020). Representations
ike this are well-known for convex risk measures, Schied (2007).
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3. Sensitivity and comparison results

In the previous section we have seen that solving the optimization
problem with smooth ambiguity boils down to solving the classical
Bayesian investment problem with the ‘right’ prior distribution for the
unknown market price of risk. In particular, as far as sensitivity results
are concerned, the model behaves as the classical Bayesian problem.
Thus, we first prove some sensitivity results for the classical case, i.e. for
the optimal fractions in Theorem 2.1 which we denote by

𝜅(𝑡, 𝑇 , 𝑌 (𝑡)) ∶=
𝜋∗(𝑡)
𝑋∗(𝑡)

.

.1. Limiting results for optimal investment fraction - general discrete prior

In what follows, suppose that the prior distribution P is concentrated
n 𝜗1,… , 𝜗𝑚 with P(𝛩 = 𝜗𝑘) = 𝑝𝑘, 𝑘 = 1,… , 𝑚. The 𝑖-the row of (𝜎⊤)−1
ill be denoted by (𝜎⊤)−1𝑖 and ‖ ⋅ ‖ is the usual Euclidean norm. When
e assume that 𝑝𝑘 > 0 for all 𝑘, we obtain the following results:

heorem 3.1. In the Bayesian model it holds for the optimal investment
ractions:

(a) for all 𝑦 ∈ R ∶

lim
𝑇→0

𝜅(0, 𝑇 , 𝑦) = 𝛾(𝜎⊤)−1
𝑚
∑

𝑘=1
𝜗𝑘𝑝𝑘.

(b) when ‖𝜗1‖ < ⋯ < ‖𝜗𝑚‖ and 𝛼 > 0 then for all 𝑡 ≥ 0, 𝑦 ∈ R ∶

lim
𝑇→∞

𝜅(𝑡, 𝑇 , 𝑦) = 𝛾(𝜎⊤)−1 ⋅ 𝜗𝑚 = 𝜅Mer(𝛾, 𝜗𝑚).

(c) when ‖𝜗1‖ < ⋯ < ‖𝜗𝑚‖ and 𝛼 < 0 then for all 𝑡 ≥ 0, 𝑦 ∈ R ∶

lim
𝑇→∞

𝜅(𝑡, 𝑇 , 𝑦) = 𝛾(𝜎⊤)−1 ⋅ 𝜗1 = 𝜅Mer(𝛾, 𝜗1).

(d) for all 𝑡 ≥ 0, 𝑦 ∈ R and 𝑖 = 1,… , 𝑑 ∶

𝛾 min
𝑘
{(𝜎⊤)−1𝑖 ⋅ 𝜗𝑘} ≤ 𝜅𝑖(𝑡, 𝑇 , 𝑦) ≤ 𝛾 max

𝑘
{(𝜎⊤)−1𝑖 ⋅ 𝜗𝑘}.

(e) for all 𝑇 > 0:

lim
𝛼↓0

𝜅(0, 𝑇 , 0) = (𝜎⊤)−1
𝑚
∑

𝑘=1
𝜗𝑘𝑝𝑘.

A proof of this theorem can be found in Appendix A.2. Recall again
that the limiting case 𝛼 → 0 corresponds to the logarithmic utility (cp.
Remark 2.2 (b)) and the unknown market price of risk 𝛩 in the Merton
fraction is simply replaced by its expectation (e). The same is true,
when the time horizon is short, see (a). For a large time horizon, (b),
(c) investors tend to extreme Merton fractions. In general the optimal
investment fractions can be bounded by the entries in the Merton
fractions, (d) .

Remark 3.2. The statements are substantially easier to formulate and
prove in the case when we have only one stock. In this case part (a), (d)
and (e) are special cases of Theorem 9 in Rieder and Bäuerle (2005),
part (b) and (c) are Theorem 3.1/3.3 in Bäuerle and Grether (2017).
Further sensitivity results in the one risky asset case can be found
in Longo and Mainini (2016).

3.2. Representation for optimal investment fraction — two-point prior

Assume now further that 𝜇 = (𝜇1,… , 𝜇𝑑 ) can take only two possible
(arbitrary) values �̄� = (�̄�1,… , �̄�𝑑 ) and 𝜇 = (𝜇

1
,… , 𝜇

𝑑
). We assume that

(𝜇 = �̄�) = 𝑝 and P(𝜇 = 𝜇) = 1 − 𝑝, 𝑝 ∈ (0, 1). (3.1)

The optimization problem (2.3) boils down to

𝑉 (𝑥0) = sup 𝑝E�̄�[𝑢(𝑋𝜋
𝑇 )] + (1 − 𝑝)E𝜇[𝑢(𝑋𝜋

𝑇 )]. (3.2)
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𝜋∈
where 𝑢(𝑥) = 1
𝛼 𝑥

𝛼 . In this case the function 𝐹 appearing in 2.1 is given
y 𝐹 (𝑡, 𝑧) = 𝑝𝐿𝑡(�̄�, 𝑧) + (1 − 𝑝)𝐿𝑡(𝜗, 𝑧). Let us further denote

𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)) ∶=
∫R 𝐿𝑇 (𝜗, 𝑧 + 𝑌 (𝑡))𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧
.

hen we can express the solution of (3.2) more explicitly.

emma 3.3. In the case of a priori distribution of 𝜇 given by (3.1), the
ptimal investment fractions 𝜅(𝑡, 𝑇 , 𝑌 (𝑡)) ∶= 𝜋∗(𝑡)

𝑋∗(𝑡) of the Bayesian problem
3.2) can be written as follows.

(𝑡, 𝑇 , 𝑌 (𝑡)) = 𝛾(𝜎⊤)−1�̄� 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)) + 𝛾(𝜎⊤)−1𝜗 (1 − 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)))

= 𝜅Mer(𝛾, �̄�) 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)) + 𝜅Mer(𝛾, 𝜗) (1 − 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)))

with 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)) = 1 − (1 − 𝑝)𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)) ∈ [0, 1].

roof. From Theorem 2.1 we know that the optimal fraction is given
y:

(𝑡, 𝑇 , 𝑌 (𝑡)) = 𝛾(𝜎⊤)−1
∫R𝑑 ∇𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧

(3.3)

e obtain that

𝐹 (𝑡, 𝑧) = 𝑝∇𝐿𝑡(�̄�, 𝑧) + (1 − 𝑝)∇𝐿𝑡(𝜗, 𝑧)

= 𝑝𝐿𝑡(�̄�, 𝑧)�̄� + (1 − 𝑝)𝐿𝑡(𝜗, 𝑧)𝜗

= �̄�𝐹 (𝑡, 𝑧) − (1 − 𝑝)𝐿𝑡(𝜗, 𝑧)(�̄� − 𝜗)

which implies

𝜅(𝑡, 𝑇 , 𝑌 (𝑡)) = 𝛾(𝜎⊤)−1�̄� − (1 − 𝑝)𝛾(𝜎⊤)−1(�̄� − 𝜗) 𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)).

The stated representation is obtained from

𝜅(𝑡, 𝑇 , 𝑌 (𝑡)) = 𝛾(𝜎⊤)−1�̄� − (1 − 𝑝)𝛾(𝜎⊤)−1(�̄� − 𝜗) 𝐹 (𝑡, 𝑇 , 𝑌 (𝑡))

= 𝛾(𝜎⊤)−1�̄�
(

1 − (1 − 𝑝)𝐹 (𝑡, 𝑇 , 𝑌 (𝑡))
)

+ 𝛾(𝜎⊤)−1𝜗(1 − 𝑝)𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)).

What is left to prove is that 1 − 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)) = (1 − 𝑝)𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)) ∈ [0, 1].
on-negativity is clear. For the upper bound note that (1 − 𝑝)𝐿𝑇 (𝜗, 𝑧 +

𝑌 (𝑡)) ≤ 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡)). □

Thus, we can see that the optimal fraction is always a convex
combination between the two possible Merton fractions 𝛾(𝜎⊤)−1�̄� and
𝛾(𝜎⊤)−1𝜗.

3.3. Pre-commitment

We will also compare the optimal investment fraction 𝜅(𝑡, 𝑇 , 𝑌 (𝑡))
under learning with the optimal pre-commitment strategy without
learning. The optimal pre-commitment strategy is a constant, 𝑌

0 −
measurable investment fraction 𝜅pre

𝑇 which is defined by the optimal
constant investment fraction 𝜅 which solves the optimization prob-
lem (Branger et al., 2023)

𝑉 pre(𝑥0) = sup
𝜋

𝑝 E�̄�[𝑢(𝑋𝜋
𝑇 )] + (1 − 𝑝)E𝜇[𝑢(𝑋𝜋

𝑇 )] s.t. 𝜋(𝑡) = 𝜅𝑋(𝑡). (3.4)

he expectation appearing in (3.4) can be computed explicitly and the
irst-order condition for the optimal 𝜅pre

𝑇 can implicitly be written as

𝜅pre
𝑇 = 𝛾(𝜎⊤)−1�̄�

( 𝑝𝑒𝛼𝜅
pre
𝑇 ⋅�̄�𝑇

𝑝𝑒𝛼𝜅
pre
𝑇 ⋅�̄�𝑇 + (1 − 𝑝)𝑒𝛼𝜅

pre
𝑇 ⋅𝜇𝑇

)

+ 𝛾(𝜎⊤)−1𝜗
( (1 − 𝑝)𝑒𝛼𝜅

pre
𝑇 ⋅𝜇𝑇

𝑝𝑒𝛼𝜅
pre
𝑇 ⋅�̄�𝑇 + (1 − 𝑝)𝑒𝛼𝜅

pre
𝑇 ⋅𝜇𝑇

)

= 𝜅Mer(𝛾, �̄�)
( 𝑝𝑒𝛼𝜅

pre
𝑇 ⋅�̄�𝑇

𝛼𝜅pre⋅�̄�𝑇 𝛼𝜅pre⋅𝜇𝑇

)

𝑝𝑒 𝑇 + (1 − 𝑝)𝑒 𝑇
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+ 𝜅Mer(𝛾, 𝜗)
( (1 − 𝑝)𝑒𝛼𝜅

pre
𝑇 ⋅𝜇𝑇

𝑝𝑒𝛼𝜅
pre
𝑇 ⋅�̄�𝑇 + (1 − 𝑝)𝑒𝛼𝜅

pre
𝑇 ⋅𝜇𝑇

)

.

hus, we can again write the optimal pre-commitment fraction as a con-
ex combination of the two Merton fractions 𝜅Mer(𝛾, �̄�) and 𝜅Mer(𝛾, 𝜗).
or the special case 𝑑 = 1 see Branger et al. (2023), Prop. 2 and 3.
bviously it holds

lim
→0

𝜅pre
𝑇 = 𝑝𝜅Mer(𝛾, �̄�) + (1 − 𝑝)𝜅Mer(𝛾, 𝜗).

In case 𝑑 = 1 when �̄� > 𝜇 and 𝛼 > 0 we further obtain

lim
𝑇→∞

𝜅pre
𝑇 = 𝜅Mer(𝛾, �̄�).

These limiting results coincide with the limits in Theorem 3.1 where
we allow for learning.

3.4. Impact of model ambiguity preferences

Now we consider an investor who is concerned about model am-
biguity, i.e. instead of problem (2.3) we consider for a second utility
function 𝑣(𝑥) = 1∕𝜆𝑥𝜆, 0 < 𝜆 < 1 problem (2.9). We treat the multi-
asset case but with only two possible values �̄� = (�̄�1,… , �̄�𝑑 ) and 𝜇 =
(𝜇

1
,… , 𝜇

𝑑
) for 𝜇 = (𝜇1,… , 𝜇𝑑 ). The optimization problem is then

sup
𝜋∈

(

𝑝
(

E�̄�[(𝑋𝜋
𝑇 )

𝛼]
)

𝜆
𝛼 + (1 − 𝑝)

(

E𝜇[(𝑋𝜋
𝑇 )

𝛼]
)

𝜆
𝛼

)
1
𝜆

. (3.5)

3.4.1. Probability adjustment in the case of less ambiguity concerns
Let us first consider the case of 0 < 𝛼 < 𝜆 where 𝐩 ∶= 𝜆∕𝛼 > 1. The

ptimization problem (3.5) is then according to (2.15) and Theorem 2.1
quivalent to

sup
Q∈Q

{

(𝑞1 + 𝑞2)𝑥𝛼0

(

∫R

( 𝑞1
𝑞1 + 𝑞2

𝐿𝑇 (�̄�, 𝑧) +
𝑞2

𝑞1 + 𝑞2
𝐿𝑇 (𝜗, 𝑧)

)𝛾𝜑𝑇 (𝑧)𝑑𝑧
)1∕𝛾

}

= 𝑥𝛼0 sup
Q∈Q

{

(

∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

)1∕𝛾
}

. (3.6)

Since 𝛾 > 0 it is enough to solve

sup
Q∈Q∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧. (3.7)

The solution of this problem can be summarized as follows (the same
solution is obtained for 𝜆 < 𝛼 < 0):

Lemma 3.4. Let 0 < 𝛼 < 𝜆 or 𝜆 < 𝛼 < 0, thus 𝐩 ∶= 𝜆∕𝛼 > 1. An optimal
solution (𝑞∗1 , ℎ(𝑞

∗
1 )) of (3.7) is obtained by

sup
0≤𝑞1≤𝑞b

1

{

∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + ℎ(𝑞1)𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

}

ℎ(𝑥) ∶=
(

1 − 𝑥𝐪 𝑝1−𝐪

(1 − 𝑝)1−𝐪

)

1
𝐪

ith 𝑞b
1 ∶= 𝑝1∕𝐩.

Proof. Note first that the set Q is bounded. Indeed, when we set
𝑞2 = 0, the maximal value of 𝑞1 is given by 𝑝1∕𝐪. Moreover, since both
𝐿𝑇 (�̄�, 𝑧) and 𝐿𝑇 (𝜗, 𝑧) are positive, the optimal pair (𝑞1, 𝑞2) will satisfy
he constraint with equality, i.e.

𝑞1
𝑝

)𝐪
𝑝 +

(

𝑞2
1 − 𝑝

)𝐪
(1 − 𝑝) = 1.

Solving this equation for 𝑞2 yields the function ℎ. □

The optimal solution (𝑞∗1 , 𝑞
∗
2 ) in Lemma 3.4 then determines the prior

istribution (𝑞∗1∕(𝑞
∗
1 + 𝑞∗2 ), 𝑞

∗
2∕(𝑞

∗
1 + 𝑞∗2 )) which has to be used for the

ayesian problem in order to solve problem (3.5).
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xample 3.5. To make things more explicit consider the case that the
nitial prior distribution is uniform on the two outcomes, i.e. 𝑝 = 1

2 and
that 0 < 𝛼 < 𝜆 with 𝛼 = 0.5. This implies that 𝛾 = 1∕(1 − 𝛼) = 2. In this
special case we obtain:

sup
Q∈Q∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

= 21∕𝐪−1 sup
0≤�̃�≤1∫R𝑑

(

�̃�1∕𝐪𝐿𝑇 (�̄�, 𝑧) + (1 − �̃�)1∕𝐪𝐿𝑇 (𝜗, 𝑧)
)2𝜑𝑇 (𝑧)𝑑𝑧

= 21∕𝐪−1 sup
0≤�̃�≤1

(

�̃�2∕𝐪 exp (𝑇 ‖�̄�‖2) + (1 − �̃�)2∕𝐪 exp (𝑇 ‖𝜗‖2)

+ 2�̃�1∕𝐪(1 − �̃�)1∕𝐪 exp (𝑇𝜗⊤�̄�)
)

.

The corresponding optimal prior distribution will depend on 𝑇 , �̄�, 𝜗.
It is easy to see that for small time horizon 𝑇 , the optimal prior
distribution is again close to the uniform distribution. For very large 𝑇 ,
the optimal prior distribution will have large mass on the larger of the
two outcomes ‖�̄�‖2, ‖𝜗‖2. However, the optimal prior distribution will
always be in (0, 1). This can easily be seen by inspecting the derivatives
of the function to maximize at �̃� = 0 and �̃� = 1.

3.4.2. Probability adjustment in the case of more ambiguity concerns
Let us next consider the case of 0 < 𝜆 < 𝛼 where 𝐩 ∶= 𝜆∕𝛼 < 1.

Recall that in this case 𝐪 < 0. The optimization problem (3.5) is then
according to (2.15) and Theorem 2.1 equivalent to

𝑥𝛼0 inf
Q∈Q

{

(

∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

)1∕𝛾
}

.

Since 𝛾 > 0 it is enough to solve

inf
Q∈Q∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧. (3.8)

The solution of this problem can be summarized as follows. The proof
is similar to the proof of Lemma 3.4 and we skip it here (the same
solution is obtained for 𝛼 < 𝜆 < 0).

Lemma 3.6. Let 0 < 𝜆 < 𝛼 or 𝛼 < 𝜆 < 0, thus 𝐩 ∶= 𝜆∕𝛼 < 1. An optimal
solution (𝑞∗1 , ℎ(𝑞

∗
1 )) of (3.8) is obtained by

inf
𝑞1≥𝑞b

1

{

∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + ℎ(𝑞1)𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

}

with 𝑞b
1 and ℎ as in Lemma 3.4.

xample 3.7. We can again consider the case that the initial prior
istribution is uniform on the two outcomes, i.e. 𝑝 = 1

2 and that
0 < 𝜆 < 𝛼 with 𝛼 = 0.5. This implies that 𝛾 = 1∕(1 − 𝛼) = 2. In this
special case we obtain:

inf
𝑞1≥𝑞b

1
∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

21∕𝐪−1 inf
0≤�̃�≤1

(

�̃�2∕𝐪 exp (𝑇 ‖�̄�‖2) + (1 − �̃�)2∕𝐪 exp (𝑇 ‖𝜗‖2)

+ 2�̃�1∕𝐪(1 − �̃�)1∕𝐪 exp (𝑇𝜗⊤�̄�)
)

.

Again the optimal prior distribution will always be in (0, 1) since the
function tends to +∞ at the boundary. According to Theorem 3.1 (b)
this implies that for a very large time horizon the optimal investment
fraction is hardly influenced by model ambiguity.

3.4.3. Probability adjustment in the case of much less ambiguity concerns
Let us finally consider the case of 0 < 𝜆 and 𝛼 < 0 where 𝐩 ∶= 𝜆∕𝛼 <

0. Recall that in this case 0 < 𝐪 < 1. The optimization problem (3.5) is
hen according to (2.15) and Theorem 2.1 equivalent to

𝛼
0 inf

′

{

(

∫
(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

)1∕𝛾
}

.

Q∈Q R𝑑
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Since 𝛾 > 0 it is enough to solve

inf
Q∈Q′ ∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + 𝑞2𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧. (3.9)

The solution of this problem can be summarized as follows. The proof
is similar to the proof of Lemma 3.4 and we skip it here (the same
solution is obtained for 𝛼 > 0, 𝜆 < 0).

Lemma 3.8. Let 𝛼 < 0 < 𝜆 or 𝜆 < 0 < 𝛼, thus 𝐩 ∶= 𝜆∕𝛼 < 0. An optimal
solution (𝑞∗1 , ℎ(𝑞

∗
1 )) of (3.9) is obtained by

inf
0≤𝑞1≤𝑞b

1

{

∫R𝑑

(

𝑞1𝐿𝑇 (�̄�, 𝑧) + ℎ(𝑞1)𝐿𝑇 (𝜗, 𝑧)
)𝛾𝜑𝑇 (𝑧)𝑑𝑧

}

with 𝑞b
1 and ℎ as in Lemma 3.4.

4. Numerical illustration and economic discussion

The following discussions and numerical illustrations refer to the
case of one risky asset with a two point prior distribution where only
two drift scenarios 𝜇 and 𝜇 (0 < 𝜇 ≤ 𝜇) are possible. The market price
f risk is thus positive in both scenarios (0 < 𝜗 < 𝜗).3 Along the lines of

Eq. (3.1), 𝑝 denotes the prior probability for the higher drift 𝜇 (good or
upper drift scenario) such that the prior probability for the lower drift
scenario 𝜇 is given by 1−𝑝. In addition, we refer to the initial date 𝑡 = 0
where 𝑌 (𝑡) = 0.4

We consider intuitive explanations of the previous results and shed
further light on the impact of the two sources of risk on the opti-
mal investment strategy. Along the lines of Eq. (2.9), the strategy
is obtained by maximizing the expected utility over a double risk
situation where the two sources of risk are evaluated with different
utility functions 𝑢 and 𝑣. Our economic reasoning is first based on the
classical Bayesian problem which coincides with the special case that
the two utility functions 𝑣 and 𝑢, are identical (𝜆 = 𝛼, respectively).
Since the general case can be captured by modifying the probability 𝑝
towards 𝑞∗1∕(𝑞

∗
1 + 𝑞∗2 ) (cf. Lemmas 3.4, 3.6 and 3.8), all sensitivities can

be explained by the probability adjustment and the sensitivities of the
classical setup in 𝑝. Thus, we first discuss and illustrate the Bayesian
case (𝜆 = 𝛼) and consider the impact of 𝜆 ≠ 𝛼 on the prior probability
adjustment subsequently. In addition, we comment on the implications
of pre-commitment instead of learning.

In what follows the classical Merton problem with a constant market
price of risk 𝜗 (known drift, respectively) is referred to as the inner
risk situation. Here, the optimal investment fraction 𝜅Mer(𝛾, 𝜗) = 𝛾 𝜗

𝜎
is constant (it does not depend on the investment horizon 𝑇 ). It is
increasing in the market price of risk 𝜗 and decreasing in the level
of relative risk aversion 1

𝛾 = 1 − 𝛼. In contrast to the inner risk, we
efer to the probability distribution over the market price of risk as
he outer risk situation. The impact of this outer risk on the optimal

investment strategy is more demanding since, in general, it depends on
the investment horizon 𝑇 . An exception is the log-investor (an investor

ith a log utility function) who can be used as an intuitive benchmark
or other investors (more or less risk averse investors).

If not mentioned otherwise, we refer to the three benchmark param-
ter constellation summarized in Table 1.

.1. Sensitivities in the classical Bayesian case

If 𝑢 and 𝑣 coincide, Lemma 3.3 immediately separates the impact
f the inner and outer risk on the optimal investment fraction. The

3 From a technical point of view, the results are reversed in the case of a
egative market price of risk (cf. Longo and Mainini (2016)).

4 The discussion can also be extended to future dates 𝑡 > 0 where 𝑌 (𝑡) ≠ 0.
Using the log-investor as a benchmark then implies that the prior distribution
is replaced by the ‘updated’ distribution.
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Table 1
Benchmark parameter setup (classical Bayesian case). If not otherwise
mentioned, the investment horizon is 𝑇 = 10 years.

model parameter

𝜇 𝜇 𝜎 p
0.03 0.09 0.15 0.5

level of relative risk aversion 1
𝛾
= 1 − 𝛼

less than log-investor log-investor more than log-investor
1∕𝛾 = 0.5 1∕𝛾 = 1 1∕𝛾 = 2

optimal myopic investment fraction of all investors (all levels of relative
risk aversion 1 − 𝛼), is given by the convex combination of the Merton
fractions of the inner risk situations (good and bad scenario). Thus, the
impact of the inner risk is simply as in the classical Merton problem
while the impact of the outer risk can be stated by the weight on the
good (or bad scenario). Along the lines of Lemma 3.3, the weight on
the lower Merton solution (the bad scenario) is given by

1 − 𝛼(𝑡, 𝑇 , 𝑌 (𝑡)) = (1 − 𝑝)𝐹 (𝑡, 𝑇 , 𝑌 (𝑡))

here

̂ (𝑡, 𝑇 , 𝑌 (𝑡)) ∶=
∫R 𝐿𝑇 (𝜗, 𝑧 + 𝑌 (𝑡))𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R 𝐹 (𝑇 , 𝑧 + 𝑌 (𝑡))𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧
.

otice that

𝑇 (𝜗, 𝑧 + 𝑌 (𝑡)) = 𝐿𝑡 (𝜗, 𝑌 (𝑡))𝐿𝑇−𝑡 (𝜗, 𝑧) .

his hints at two (competing) effects: one is due to learning (i.e. the
bservation of 𝑌 (𝑡) at time 𝑡), the other effect is caused by the remaining
nvestment horizon 𝑇 −𝑡. The second effect vanishes for the log-investor
𝛼 → 0, 𝛾 → 1, respectively), i.e. 𝐹 (𝑡, 𝑇 , 𝑌 (𝑡)) = 𝐿𝑡(𝜗,𝑌𝑡)

𝐹 (𝑡,𝑌𝑡)
.5 We first discuss

the second effect and consider the special case 𝑡 = 0 (𝑌 (𝑡) = 0) where

𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) ∶= 1 − 𝛼(0, 𝑇 , 0) = (1 − 𝑝)𝐹 (0, 𝑇 , 0).

4.1.1. Benchmark log-investor
Formally, the justification that the log-investor 𝛼 → 0 (with a

level of relative risk aversion 1 − 𝛼 equal to 1) defines a convenient
benchmark is given by Theorem 3.1 (e) , i.e.

lim
𝛼→0

𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) = lim
𝑇→0

𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) = 1 − 𝑝.

Observe that the log-investor behaves in a myopic way. In the short run
(𝑇 → 0), the impact of the outer risk (weight on the bad scenario/lower
Merton solution) is given by the prior probability 1 − 𝑝. While the

ithin regime Merton fractions depend on the individual levels of risk
version, the myopic solution of the outer risk is risk neutral in the sense
hat it is given by the expected value (under the prior distribution) of
he within regime Merton fractions. Obviously, for 𝑇 → 0 there is no
edging demand. For the log-investor, this is also true for investment
orizons 𝑇 > 0 (cf. Fig. 1 upper left plot). In addition, the log-investor
ives an important distinction: an investor who is less (more) risk
verse uses a lower (higher) weight on the lower Merton fraction (bad
egime), cf. Fig. 1 (lower left plot).6 Economically, this is explained by
he trade-off between speculating on the better regime (and following
he optimal strategy for the good regime) and hedging against the
orse regime (and following the optimal strategy for the bad regime).
hile the log-investor acts neutral, the hedging (speculation) motive

ominates for the more (less) risk averse investor.
Intuitively, the larger the difference between the two regimes, the

tronger is the hedging (speculating) motive, and the more the optimal

5 It is well understood that the problem of time inconsistency naturally
rises if one aggregates utilities (cf. e.g. Desmettre and Steffensen (2021)).

6 Rieder and Bäuerle (2005) Theorem 9 (d) .
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Fig. 1. The figure is based on the benchmark parameter setup of Table 1 but considers the dependence on the investment horizon (upper left plot), the probability for the good
drift scenario 𝑝 (upper right plot), the level of relative risk aversion 1 − 𝛼 (lower left plot), and the parameter for the good drift scenario 𝜇 (lower right plot). The plots depict the
weight on the lower Merton fraction in the optimal investment strategy. In addition, each figure contains the log-investor (dashed line) and the more (black line) and less (gray
line) risk averse investor than the log-investor.
r
T
g

strategy moves towards the worst(best)-case strategy. An illustration
is given in Fig. 1 (lower right plot) which depicts the weight on the
lower Merton solution for varying 𝜇. The higher 𝜇 (the higher the
difference between the regimes), the larger is the impact of the hedging
(speculation) motive for the more (less) risk averse investor.

4.1.2. Long run investor
Similar reasoning applies to the investment horizon 𝑇 . The outer

risk is ‘higher’ for longer investment horizons. For large 𝑇 , the investor
who is more risk averse than the log-investor only considers the Merton
solution of the bad regime, i.e. for 𝛼 < 0

lim
𝑇→∞

𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) = 1.

Thus, w.r.t. the outer risk, the long term investor who is more risk
averse than the log-investor acts extremely risk averse. In contrast, a
long term investor who is less risk averse than the log-investor only
considers the good regime.7 In consequence, for long term investment
horizons (𝑇 → ∞), the prior distribution has no impact on the weight
𝛼(0, 𝑇 , 𝑦), i.e. 𝛼(0, 𝑇 , 𝑦) = 0 (𝛼(0, 𝑇 , 𝑦) = 1) for 𝛼 < 0 (for 𝛼 > 0). The long
erm investor only considers the worst (best) case drift, i.e. 𝜇 (𝜇) and
ehaves along the lines of a maximin (maximax) decision rule. This is
urther emphasized by means of the sensitivities of the optimal weight
n the lower Merton investment fraction. An illustration is given by
ig. 1 (upper left plot) which depicts the weight on the lower Merton
raction for varying investment horizons 𝑇 . See also Sections 4.1.4,
.1.5.

.1.3. Impact of prior distribution
Intuitively, the weight on the lower Merton investment fraction

s decreasing (increasing) in the prior probability 𝑝 (1 − 𝑝) (upper

7 Bäuerle and Grether (2017) Theorem 3.1, Theorem 3.3
400
right plot of Fig. 1). This is obvious for the log-investor who simply
relies on the prior probability. However, notice again the important
distinction based on the benchmark log-investor. While the more risk
averse investor (black line) uses a higher weight on the lower Merton
solution, the opposite is true for the less risk averse investor (gray
line). Intuitively, the discrepancy is the highest for some intermediate
𝑝. While there is no outer risk implied in the extreme cases that
𝑝 → 0 or 𝑝 → 1, the outer risk is ‘maximal’ for some intermediate
𝑝 (which depends on the investment horizon 𝑇 , the level of relative
isk aversion 1 − 𝛼, and the relation between good and bad scenario).
he outer risk situation also increases in the distance between the
ood and bad regime (𝜇 and 𝜇). Thus, the deviation of a more (less)

risk averse investor from the log-investor is the higher, the higher the
distance is, e.g. it is increasing in 𝜇 (cf lower right figure of Fig. 1). An
additional illustration is given by Fig. 2 which depicts the difference to
the log-investor by means of

𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) − (1 − 𝑝),

i.e. the difference of the weight on the lower Merton solution and
1 − 𝑝 which is the weight of the log-investor. All figures include two
investment horizons (𝑇 = 10 and 𝑇 = 20). Observe that the deviation
from the log-investor is the higher, the higher the investment horizon is.
For the investor who is more (less) risk averse than the log-investor, the
highest deviation is obtained for 𝑝 > 0.5 (𝑝 < 0.5). Recall that the more
(less) risk averse investor tends to hedge (speculate) the bad (good)
drift scenario. In consequence, the prior probability 𝑝 with the highest
deviation increases (decreases) in the investment horizon. Analogous
reasoning is true w.r.t. the sensitivity to 𝜇 (𝜇) and the level of risk
aversion 1 − 𝛼 (cf. Fig. 2).
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Fig. 2. If not otherwise mentioned below, the figure refers to the benchmark parameter scenario of Table 1. The figure compares, for varying priors 𝑝, the weight on the lower
Merton fraction to the one of the log-investor, i.e. it depicts the difference 𝑔(𝛼, 𝑝, 𝑇 , 𝜗, 𝜗) − (1 − 𝑝). The black (gray) lines refer to the investor who is more (less) risk averse than
the log-investor. The investment horizon is 𝑇 = 10 (thick lines) and 𝑇 = 20 (dashed lines). The upper right figure is then based on 𝜇 = 0.12 (instead of the benchmark parameter
𝜇 = 0.09). The lower left plot then considers the benchmark scenario with the exception that 𝜇 = 0.01 (instead of 𝜇 = 0.03). The last figure (lower right plot) considers a higher
risk aversion (𝛼 = −2 instead of 𝛼 = −1) for the black lines and a lower risk aversion (𝛼 = 0.6 instead of 𝛼 = 0.5) for the gray lines.
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.1.4. Learning vs. pre-commitment
It is worth to mention that similar reasoning as above is valid in

pre-commitment setup (cf. optimization problem (3.4)). First notice
hat, in the classical Bayesian setup, the optimal investment fraction
f the log-investor does not depend on 𝑇 . Thus, the optimal pre-
ommitment and learning strategies coincide at 𝑡 = 0. In addition, this
s true for the limiting cases of a myopic investor (𝑇 → 0) and the long
erm investor (𝑇 → ∞). For an investor who is more risk averse than
he log-investor, recall now the hedging motive. W.r.t. the trade-off
etween speculating on the better regime (and following the optimal
trategy for the good regime) and hedging against the worse regime
and following the optimal strategy for the bad regime), the hedging
otive dominates. In addition, observe that the hedging motive is

ncreasing in the investment horizon 𝑇 . Compared to the setup under
earning, pre-commitment implies that the investor must pre-commit to
constant investment fraction at 𝑡 = 0. In the optimum, she anticipates

hat gradually over time, the remaining investment horizon decreases.
herefore, at 𝑡 = 0, the hedging demand is, for rather high investment
orizons 𝑇 , lower in the pre-commitment setup than under learning.
he above reasoning is illustrated in Fig. 3. The left figure compares
for an investor who is more risk averse than the log-investor) the
ptimal weight on the lower Merton solution of the learning (black)
nd pre-commitment setup (dashed) for varying investment horizons 𝑇 .
bserve that the strategies coincide in the limiting cases. In addition,

or intermediate investment horizons 𝑇 , the pre-commitment strategy
as a lower weight on the bad scenario (lower Merton solution). This
mplies that (at 𝑡 = 0) the pre-commitment strategy is more aggressive
han the learning strategy. As mentioned above, this is due to the
act that the investor who must pre-commit already has to anticipate
hat, in the future, the remaining investment horizon is lower which
s associated with a lower hedging demand (against the bad scenario).
he right plot of Fig. 3 depicts the weight on the lower Merton solution
401

N

or varying levels of relative risk aversion. Again, the black line refers
o learning while the dashed one is pre-commitment. Observe that the
trategies (the weights on the lower Merton solution) coincide in the
ase of a log-investor (𝛼 → 0) with level of relative risk aversion equal
o one. Overall, however, our numerical results do not show a very big
ifference between the pre-commitment and the learning strategy.

.1.5. Value of learning and impact of investment horizon
An intuitive explanation for the similarity of learning and pre-

ommitment at 𝑡 = 0 is given by means of the conditional distribution
f 𝜗. Along the lines of Remark 2.2, it holds
(

𝛩 = 𝜗||
|

𝑌 (𝑡)
)

= 𝑝
𝐿(𝜗, 𝑌 (𝑡))
𝐹 (𝑡, 𝑌 (𝑡))

=∶ �̂�𝑡 and 𝑃
(

𝛩 = 𝜗|
|

𝑌 (𝑡)
)

= 1 − �̂�𝑡

uch that �̂�(𝑡) = 𝐸
[

𝛩|𝑌 (𝑡)
]

= �̂�𝑡𝜗 + (1 − �̂�𝑡)𝜗. Recall that, at 𝑡 = 0,
he investor maximizes her expected utility under the prior distribution.
hus, the optimal strategy depends on the expected value of �̂�(𝑡) which

s
[

�̂�(𝑡)
]

= 𝑝𝜗 + (1 − 𝑝)𝜗

by the martingale property of �̂�. This is the same for a pre-commitment
and a learning investor.

In summary, at 𝑡 = 0, both (pre-commitment and learning) have
he same information and the investor only expects to learn the prior
istribution such that for the log-investor there is no difference between
he pre-commitment and learning strategy (cf. Remark 2.2), and a
egligible difference for an investor with 𝛼 ≠ 0.

However, the evolutions of the strategies under learning and pre-
ommitment are rather different. While the pre-commitment invest-
ent fraction is (per definition) constant over time, the time 𝑡 invest-
ent fraction under learning is a random variable defined by 𝑌 (𝑡).

otice that in our stylized illustration the true model is either given



European Journal of Operational Research 315 (2024) 393–410N. Bäuerle and A. Mahayni

f
w

i
2

N

O
𝑌
W
o
p
i
i
i

Fig. 3. If not otherwise mentioned below, the figure refers to the benchmark parameter scenario of Table 1. The upper plots are based on 𝑝 = 0.75 (i.e. 1 − 𝑝 = 0.25) while the
lower plots refer to 𝑝 = 0.25 (i.e. 1 − 𝑝 = 0.75). The left hand figures compare the optimal weight on the lower Merton solution of the learning (black) and pre-commitment setup
(dashed) for varying investment horizons 𝑇 . The upper (lower) figure concerns the investor who is more (less) risk averse than the log-investor. The right hand figures depict,
or 𝑇 = 10 (black) and 𝑇 = 20 (gray), the weight on the lower Merton solution for varying levels of relative risk aversion. Again, the black lines refer to strategies under learning
hile the dashed ones are pre-commitment strategies.
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n terms of 𝜗 = 𝜗 (Model 1 where 𝑌 (𝑡) ∼ 𝑁
(

𝜗𝑡, 𝑡
)

) or 𝜗 = 𝜗 (Model
where 𝑌 (𝑡) ∼ 𝑁

(

𝜗𝑡, 𝑡
)

) such that we can compare the conditional
distributions of the investment fraction, i.e. given Model 1 and Model
2. In order to focus on the impact of learning, consider the log-investor
whose strategy is exclusively specified in terms of �̂�𝑡. Straightforward
calculations imply that with 𝑍∗ ∼ 𝑁(0, 1) it holds

�̂�𝑡||Model 1 ∼
(

1 + 𝑞 𝐿𝑡(𝜗 − 𝜗,
√

𝑡𝑍∗)
)−1

�̂�𝑡||Model 2 ∼
(

1 + 𝑞 exp{(𝜗 − 𝜗)2𝑡} 𝐿𝑡(𝜗 − 𝜗,
√

𝑡𝑍∗)
)−1

An illustration of the conditional distributions is given in Fig. 4.
otice that comparing the densities in the first row at time points 𝑡 = 5

(left) and 𝑡 = 10 (right) that the true model is learned by the density.
Indeed, at time point 𝑡 = 10 depending on what has been observed,
the investment strategies will be quite different. However, the second
row of pictures shows that learning may be slow when the initial prior
is mainly wrong. Then the probability mass shifts rather slowly to the
correct model.

However, a pure learning effect is only immanent in the strategy of
the log-investor. Any deviation from the log-investor gives, in addition,
rise to a competing effect caused by the dependence of the remaining
investment horizon 𝑇 − 𝑡. This is illustrated in Fig. 5 which depicts the
weight on the lower Merton solution for varying observations of 𝑌 (𝑡).

bviously, the weight on the lower Merton solution is decreasing in
(𝑡), i.e. a higher observation is in favor of Model 1 (where 𝜗 = 𝜗).
hile the weights of the log investor (dashed lines) do not depend

n the remaining investment horizon 𝑇 − 𝑡 (upper plots versus lower
lots), the horizon effect for an investor who deviates from the log-
nvestor implies that the dependence of the weight on 𝑌 (𝑡) vanishes for
ncreasing 𝑇 −𝑡, i.e. the more (black line) and less (gray line) risk averse
nvestor moves to the lower (upper) Merton solution.
402
To assess the value of learning, we have to compare the expected
tilities (certainty equivalents) of the optimal strategy under learning
ersus pre-commitment. For a pure value of learning, we consider the
og-investor. Notice that the expected utility 𝑣 of the optimal strategy
s (for 𝑥0 = 1) given by

(𝑥0) = ∫R
𝐹 (𝑇 , 𝑧) ln𝐹 (𝑇 , 𝑧)𝜑𝑇 (𝑧)𝑑𝑧.

n contrast, the value of the optimal pre-commitment strategy is

pre(𝑥0) =
(𝑝𝜇 + (1 − 𝑝)𝜇)2

2𝜎2
𝑇 .

For the log-investor, the value of learning in terms of the savings rate
difference which is here given by
1
𝑇
(𝑣(𝑥0) − 𝑣pre(𝑥0))

s illustrated by means of Fig. 6. Here, the value of learning is increasing
n 𝑇 (cf. left hand figure). Obviously, the value of learning is zero in
he degenerate cases that 𝑝 = 0 (𝑝 = 1, respectively) and obtains its

maximum value approximately for 𝑝 = 0.5 (cf. right hand figure).

.1.6. Impact of good drift scenario and volatility on investment fraction
The previous sensitivities mainly referred to the outer risk param-

eters 𝑝 and 𝑇 . We now consider the sensitivities of the inner risk
arameters 𝜇 and 𝜎. While the outer risk parameters have no impact on

the inner risk situation, the model parameters 𝜇 and 𝜎 give rise to an
inner and outer effect. Thus, we have to discuss the combined effects on
the optimal investment fraction 𝜅(𝑡, 𝑇 , 𝑌 (𝑡)). To simplify the exposition,
we only consider the case of a more risk averse investor than the
log-investor along with our benchmark parameters and 𝑡 = 0, 𝑌 (𝑡) = 0.

First consider the drift parameter of the good scenario 𝜇. The inner
risk effect concerns the Merton fraction in the good scenario which is
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Fig. 4. The figure illustrates the conditional distribution of �̂�𝑡 given Model 1 (black) and Model 2 (gray). It is based on the benchmark model parameter setup of Table 1. The
left (right) hand plots refer to 𝑡 = 5 (𝑡 = 10). For the upper (lower) plots it holds 𝑝 = 0.5 (𝑝 = 0.75.).

Fig. 5. The figures illustrate the weight on the lower Merton solution at time 𝑡 and an investment horizon 𝑇 for varying 𝑌𝑡. Each figure contains the log-investor (dashed line)
and the more (black line) and less (gray line) risk averse investor than the log-investor. It is based on the benchmark model parameter setup of Table 1. The upper (lower) plots
refer to 𝑡 = 5 and 𝑇 = 10 (𝑇 = 30). For the left (right) plots it holds 𝑝 = 0.5 (𝑝 = 0.75.).
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Fig. 6. The figures illustrate the value of learning in terms of the savings rate difference (learning versus pre-commitment). It is based on the benchmark model parameter setup
of Table 1 and 𝑝 = 0.5 (black), 𝑝 = 0.75 (gray) in the left plot, 𝑇 = 10 (black), 𝑇 = 20 (gray) in the right plot.
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linearly increasing in 𝜇 while there is no impact on the lower Merton
raction. The directional effect on the investment fraction 𝜅 is positive.
owever, the outer risk effect is captured by the hedging motive.
ecall (cf. Fig. 1 and its explanation) that the higher 𝜇 (the higher the

difference between the regimes), the larger is the impact of the hedging
motive for the more (than log) risk averse investor. The higher 𝜇, the
igher is the weight on the lower Merton solution which decreases the
nvestment fraction 𝜅. In summary, there are opposing effects.

Now, consider the volatility 𝜎. Notice that the volatility is a scaling
actor to the Merton fractions. The higher the volatility is, the lower
re both, the upper and lower Merton fraction, i.e. the inner risk

effect to the investment fraction 𝜅 is negative. In contrast, the outer
isk effect is positive, i.e. a higher volatility decreases the difference
etween good and bad scenario (in terms of the market price per unit
f risk or, alternatively, the Merton fractions of the inner risk situation)
hich reduces the hedging motive. Intuitively, the inner effect is the
ominating one since 𝜅 is given in terms of a weighted average of upper
nd lower Merton fraction.

An illustration is given by means of Fig. 7. It depicts the impact of
arying 𝜇 (upper plots) and varying 𝜎 (lower plots) on the investment
raction 𝜅. Observe that, in spite of the opposing effects, the optimal
nvestment fraction 𝜅 is decreasing in 𝜎. However, varying only the
pper drift 𝜇 emphasizes the opposing effects. The investment fraction

is first increasing (i.e. the inner risk impact is dominating) while,
after a critical drift level, it is decreasing (i.e. the hedging motive is
dominating). In addition, observe that the critical level is decreasing in
𝑇 . Finally, it is also worth to emphasize that the inner risk parameters
have a crucial impact on learning. Notice that 𝑌𝑡 depends on both, 𝜇
nd 𝜎.

.2. Impact of ambiguity

Throughout the following, we assume that the investor is more risk
verse than the log-investor, i.e. 𝛼 < 0. Notice that the investor is risk
verse if and only if 𝑢 is concave, while she is ambiguity averse if and
nly if 𝑣 is a concave transformation of 𝑢. Assuming that 𝑢 and 𝑣 are
RRA functions with relative risk (ambiguity) aversion 1 − 𝛼 (1 − 𝜆)

mplies that an ambiguity neutral investor is characterized by 𝜆 = 𝛼
hile she is ambiguity averse (loving) for 𝜆 < 𝛼 < 0 (0 > 𝜆 > 𝛼).

Again, we consider the impact of the outer risk (evaluated by the
mbiguity function 𝑣) by means of the weight on the lower (upper)
erton solution (implied by the utility function 𝑢), i.e. we are interested

in 𝑔(𝛼, 𝑝mod,…) where
mod ∶= 𝑞∗1∕(𝑞

∗
1 + 𝑞∗2 )

(cf. Lemmas 3.4, 3.6 and 3.8). We call 𝑝mod the adjusted or modified
probability. The ambiguity neutral investor serves as a benchmark
404

o

since 𝑝mod = 𝑝, i.e. the modified probability coincides with the prior
probability.

Recall (cf. Section 4.1.3) that the weight on the lower Merton
solution is decreasing in the prior probability 𝑝. Thus, introducing
ambiguity aversion (loving) is equivalent to decreasing (increasing) the
prior probability 𝑝 for the good drift scenario. Assume now that both,
the level of risk aversion and ambiguity aversion are above the one of
the benchmark log-investor, i.e. 𝛼 < 0 and 𝜆 < 0. Recall that we already
discussed the special case 𝜆 = 𝛼 in Section 4.1. Intuitively, the investor
chooses less risk (a higher weight on the lower Merton solution) under
ambiguity aversion, i.e. if the relative ambiguity aversion is higher than
the level of risk aversion, i.e. if 𝜆 < 𝛼 (1 − 𝜆 > 1 − 𝛼). In terms of the
robability adjustment this implies that the modified probability 𝑝mod

s smaller than 𝑝, i.e. the investor is characterized by a lower weight
n the upper Merton solution than the ambiguity neutral investor. In
ontrast, if 𝜆 > 𝛼 (1 − 𝜆 < 1 − 𝛼) implies that 𝑝mod is higher than 𝑝.

numerical illustration of the modified probability is given in Fig. 8
left plot). The level of relative risk aversion is 1 − 𝛼 = 4. Notice
hat the modified prior probability 𝑝mod is decreasing in the level of
elative ambiguity aversion 1 − 𝜆 and tends to zero for 1 − 𝜆 → ∞.
athematically this is clear since the smaller of the two values in (3.5)

note 𝜆 < 0) dominates the optimization problem. From an economic
oint of view the very ambiguity averse investor tries to maximize her
orst-case utility. In particular, it is above (below) the prior 𝑝 in the

ase that 1 − 𝜆 < 1 − 𝛼 (1 − 𝜆 > 1 − 𝛼). Notice that the effect is
ore pronounced for higher times to maturity 𝑇 , i.e. the impact on

he modified prior probability is increasing in 𝑇 . However, recall that
he impact of the prior probability is decreasing in 𝑇 , i.e. for 𝑇 → ∞
he (more than log) risk averse investor only relies on the worst drift
cenario. Hence the effect of ambiguity aversion is fading for large
ime horizons. This is natural, since a large time horizon allows for
erfectly learning the model. For 𝑇 → 0 the modified prior tends to the
nitial given prior. This is because for a very short time horizon there is
lmost no difference between the two scenarios. However, recall that
𝑚𝑜𝑑 depends on both, time horizon and ambiguity aversion. Thus, in
he end the combination of both effects is crucial. The overall effect on
he investment fraction (represented by the weight on the lower Merton
olution) is smooth (cf. Fig. 8 (right plot)).

.3. Comments on implementation and practical relevance

We give some brief comments on the practical relevance of the
erived strategies w.r.t. their implementation on historical return data,
he possibilities to test the out-of-sample performance and the com-
lexity caused by these problems. Since the objective to maximize the
xpected value (w.r.t. different drift scenarios) of the expected utility

f an investor with constant relative risk aversion is motivated by
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Fig. 7. The figure depicts the impact of varying 𝜇 (upper plots) and varying 𝜎 (lower plots) on the investment fraction 𝜅∗. It is based on the benchmark model parameter setup
of Table 1 with the exception that the level of relative risk aversion is equal to 4 (𝛼 = −3). While the black lines refer to 𝑝 = 0.5 (benchmark), the gray (dotted) lines are based
on 𝑝 = 0.25 (𝑝 = 0.75). In addition, the left (right) plots refer to 𝑇 = 10 (𝑇 = 20).
Fig. 8. Model parameters are given as before (cf. Table 1). The prior probability for the good drift scenario is 𝑝 = 0.5, the level of relative risk aversion is equal to 4 (1−𝛼 = 4). The
igure on the left hand side depicts the modified prior probability for varying levels of relative ambiguity aversion 1− 𝜆. The figure on the right hand side gives the corresponding

weights on the lower Merton solution. The black lines refers to an investment horizon of 𝑇 = 10 years, the dashed one to 𝑇 = 20, and the gray one to 𝑇 = 50.
w

estimation risk, we also refer to other approaches which deal with
estimation risk and some empirical results.

In the first instance, it is convenient to consider the problem in
the classic mean variance setup. The discrete time version of the price
dynamics of the risky assets 𝑆1,… , 𝑆𝑑 has returns 𝑟𝑖𝑡 =

𝑆𝑖𝑡
𝑆𝑖,𝑡−1

−1 and log
eturns ln(1+𝑟𝑖𝑡) ≈ 𝑟𝑖𝑡. Let 𝑟𝑓𝑡 denote the return of the risk free asset, the
xcess return is defined by 𝑅𝑡 ∶= 𝑟𝑡 − 𝑟𝑓𝑡1𝑑 where 1𝑑 is an 𝑑-vector of

ones. It is assumed that 𝑅 follows a multivariate normal distribution
405

𝑡

with mean 𝜇 and covariance matrix 𝛴. For portfolio weights 𝜅 (for
the risky assets) the objective function of a short-term expected utility
maximizing investor with constant relative risk aversion is, in the above
context, equivalent to the mean–variance objective function

𝑈 (𝜅) = 𝜇PF − 1 − 𝛼
2

(

𝜎PF)2 = 𝜇PF − 1
2𝛾

(

𝜎PF)2

here 1 − 𝛼 = 1
𝛾 denotes the level of relative risk aversion, 𝜇𝑃𝐹 = 𝜅′𝜇

the portfolio mean, and
(

𝜎PF)2 = 𝜅′𝛴−1𝜅 the portfolio variance. For
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Fig. 9. S&P500 price path and daily returns from 2010.01.01 to 2024.01.01.
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known 𝜇 and 𝛴, the optimal portfolio weights are

𝜅∗ = 1
1 − 𝛼

𝛴−1𝜇 = 𝛾(𝜎𝑇 )−1𝜗 = 𝜅Mer(𝛾, 𝜗)

Since the true model parameters 𝜇 (and 𝛴) are not known, it is not
possible to implement the optimal investment fraction 𝜅∗. A naive
way to solve the problem is the so called plug-in rule where the
investor relies on the sample estimates of 𝑁 periods of observed returns
(training data) and treats them as true parameters.

Along the lines of Kan and Zhou (2007), a portfolio rule �̂� is defined
by a function 𝑓 of the training data 𝑅1,… , 𝑅𝑁 and the out-of-sample
performance of a portfolio rule can be measured by the expected utility
�̃� conditional on the weights being chosen by �̂�. In particular, they
consider the loss by means of the difference 𝑈 (𝜅∗) − 𝐸[�̃� (�̂�)]. Kan
and Zhou (2007) analytically derive the expected loss function for the
(naive) plug-in approach and show that this approach can lead to very
poor out-of-sample performance.

To implement our (dynamic) strategy (which includes learning),
we need a prior distribution for 𝜇. Thus, it is, in the first instance
necessary to determine a suitable estimator for the prior distribution
(cf. e.g. Bauder et al. (2021)). An interesting question is whether it is
possible to reduce the problem to a two point prior without causing
too much sub-optimality (in particular, w.r.t the dynamic version of
the strategy). In addition, the implementation of the strategy affords an
estimator for the covariance matrix 𝛴 (where 𝜎𝑇 = 𝜎−1𝛴). For exam-
ple, Ledoit and Wolf (2017) promote a nonlinear shrinkage estimator
and show that their estimator dominates its competitors on historical
stock returns data.

Once �̂� and the prior distribution of 𝜇 are calculated by means of
the training data, the investor can initialize the strategy with 𝑌 (0) = 0.
Afterwards (at time 𝑡), it is necessary to plug-in the observed accumu-
lated increments 𝑌𝑡−1 + 𝛥𝑌𝑡. Notice that the increments are based on
the estimate �̂� (the estimated covariance matrix �̂�, respectively). Thus,
a practical application may also reconsider the estimated covariance
matrix �̂� and the possible (two point) values of 𝜇. To get some further
intuition about the implementation and the problems herein, consider
e.g. the case of one risky asset where 𝑆𝑡 = 𝑆0 exp(𝜎𝑊𝑡 + 𝜇𝑡 − 1

2𝜎
2𝑡) =

0 exp(𝜎𝑌𝑡 −
1
2𝜎

2𝑡) such that

𝑡 − 𝑌𝑡−1 =
1
𝜎
ln(𝑆𝑡∕𝑆𝑡−1) +

1
2
𝜎 ≈ 1

𝜎
(𝑆𝑡∕𝑆𝑡−1 − 1) + 1

2
𝜎

For a given (discounted) price path of the risky asset (e.g. with
aily observations), a naive way is to plug for �̂� the historical volatility

of the price path over a rolling window of prior trading dates. To
illustrate the implementation, assume that the (discounted) price path
of the risky asset is given by the S&P500 index values from 2010.01.01
to 2024.01.01 (cf. Fig. 9). The upper plots of Fig. 10 illustrate the
corresponding historical volatilities based on the last 250 (and 50)
trading dates. The resulting 𝑌 paths are depicted in the middle plots.
406
It is worth to emphasize that the asset price path (S&P500 index
path) is one realization of the true data generating process such that the
corresponding path of 𝑌 only depends on the volatility estimator. Now
consider the path of the investment fraction 𝜅 of an Bayesian investor
with constant relative risk aversion 1−𝛼 = 6 and an investment horizon
of 𝑇 = 14 years. In addition to 𝑌 (𝑡), her investment fraction depends
on her assumptions about (𝜇, 𝜇), and her prior probability 𝑝. For both
olatility windows (250 and 50 days), the lower plots of Fig. 10
llustrate the investment fraction 𝜅 for 𝜇 = 0.09 and 𝜇 = 0.03 with a
rior probability 𝑝 = 0.5 (black line). The strategy 𝜅 is then compared

to a naive investor who uses 𝜇 = 𝜇 = 0.9 (gray dashed line) and one
with 𝜇 = 𝜇 = 0.3 (gray lines). Fig. 11 then illustrates variations of the
investment fraction of the benchmark investor (i.e. variations of (𝜇, 𝜇) =
(0.09; 0.03) and 𝑝 = 0.5). The question which presents itself concerns the
robustness of the Bayesian strategies and their performance w.r.t. the
distributional assumption posed on 𝜇 (and the volatility estimation).
A thorough empirical analysis (or Monte Carlo study based on return
data) which also incorporates the impact of ambiguity aversion (and a
suitable out-of-sample performance measure to compare our strategies
with other ones) is beyond the scope of the paper and left for future
research.

5. Conclusion

We consider a classical multi-asset investment problem within a
Black Scholes market with terminal utility of CRRA type. In contrast
to established literature we include ambiguity aversion by means of
the KMM (Klibanoff et al., 2005) approach where we assume that the
drift of the stocks is not known (model ambiguity), but only a prior
distribution is given and the investor is able to learn about the drifts by
observing the stock prices. Thus, a second utility function of CRRA type
for ambiguity aversion is included. We show analytically how problems
of this type can be reduced to the solution of a classical Bayesian
investment problem with adapted prior. Based on this result we are able
to carry out an extensive numerical study where we discuss the impact
of ambiguity preferences. It turns out that investors choose less risk (in
terms of a higher weight on the lower Merton ratio) under ambiguity
aversion. We consider in particular the short-term and the long-term
investment behavior. For the long-term investment it turns out that
only the risk aversion of the investor matters and the investor behaves
like one who knows the drift and this is either the most optimistic one
(if she is less risk averse than the log-investor) or the most pessimistic
one (if she is more risk averse than the log-investor) independent from
model ambiguity. Whereas it is clear what this means in the single-
asset case, in the multi-asset scenario we first have to figure out what
the worst and best drift parameters indeed are. We have shown that
the Euclidean norm of the drift vector is here the relevant quantity.
For the short-term horizon investment, only the prior distribution is
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Fig. 10. The figure depicts the historical volatilities of the S&P500 index for a rolling window of 250 and 50 trading dates (upper plots). Scaling the daily S&P500 index returns
ith the historical volatilities then gives the daily increments of 𝑌𝑡 − 𝑌𝑡−1 where 𝑌 (0) = 0. The plots in the middle illustrate 𝑌 (𝑡) based on the volatility estimates resulting from a

window of the prior 250 (left hand plot) and 50 (right hand plot) trading dates. The lower plots then depict the investment fractions of an investor with a level of relative risk
aversion of 6 (𝛼 = −5) (and 𝑇 = 14 years) who relies on 𝜇 = 0.09 and 𝜇 = 0.03 with a prior probability 𝑝 = 0.5 (black line). The learning strategy 𝜅 is compared to a naive investor

ho uses 𝜇 = 𝜇 = 0.9 (dashed gray) and one with 𝜇 = 𝜇 = 0.3 (gray).
Fig. 11. The figure illustrates variations of the investment fraction of the benchmark investor ((𝜇, 𝜇) = (0.09; 0.03) and 𝑝 = 0.5) considered in Fig. 10. The benchmark is indicated
y the black line. In the left plot, the gray (dashed) line is implied by (𝜇, 𝜇) = (0.1; 0.01) ((𝜇, 𝜇) = (0.06; 0.02)). The right plot uses modified a priori probabilities, i.e. 𝑝 = 0.25 (gray

line) and 𝑝 = 0.75 (dashed line).
important and the solution is given by the average of within regime
Merton solutions. This is again independent from model ambiguity. We
407
indicate that an approach like this may be generalized to situations
where uncertainty and ambiguity are measured by other means.
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Appendix

A.1. Duality results

Throughout we assume here that 𝑋 ≥ 0 and all integrals exist.
The duality result for the 𝐿𝐩 norm (Lemma 2.3) is well-known (Rudin,
1991) and we do not repeat a proof here.

A.1.1. Dual representation for 0 < 𝐩 < 1
Again let 𝐪 be such that 1∕𝐩 + 1∕𝐪 = 1 which implies 𝐪 < 0 and let

′ be as defined in Lemma 2.5. In order to show the statement we first
eed the following variant of the Hölder inequality.

emma A.1. Let 𝑋, 𝑌 be two non-negative random variables such that all
ntegrals exist. Then

𝑋𝑌 𝑑P ≥
(

∫ 𝑋𝐩𝑑P
)1∕𝐩(

∫ 𝑌 𝐪𝑑P
)1∕𝐪

.

roof. Set 𝑍 ∶= 𝑋𝑌 and w.l.o.g. we assume that ∫ 𝑍𝑑P = 1 and
∫ 𝑌 𝐪𝑑P

)1∕𝐪
= 1. Otherwise multiply the inequality by appropriate

onstants. We then have to show that

(𝑍∕𝑌 )𝐩𝑑P ≤ 1.

his can be done with the usual Hölder inequality. In what follows
onsider 𝑍𝐩 ∈ 𝐿1∕𝐩 and (1∕𝑌 )𝐩 ∈ 𝐿1∕(1−𝐩). We then obtain:

𝑍𝐩(1∕𝑌 )𝐩𝑑P ≤
(

∫ (𝑍𝐩)1∕𝐩𝑑P
)𝐩(

∫ (1∕𝑌 )𝐩∕(1−𝐩)𝑑P
)1−𝐩

=
(

∫ 𝑍𝑑P
)𝐩(

(∫ 𝑌 𝐪𝑑P)1∕𝐪
)(1−𝐩)𝐪

= 1.

The last equation follows from our normalization. □

Now we prove Lemma 2.5. In order to do this we show that for
every Q ∈ Q′ we have that

∫ 𝑋𝑑Q ≥
(

∫ 𝑋𝐩𝑑P
)1∕𝐩

and there exists a Q∗ ∈ Q′ which attains equality. Thus, let first be
Q ∈ Q′. Then using Lemma A.1

∫ 𝑋𝑑Q = ∫ 𝑋 𝑑Q
𝑑P

𝑑P ≥
(

∫ 𝑋𝐩𝑑P
)1∕𝐩(

∫

( 𝑑Q
𝑑P

)𝐪
𝑑P

)1∕𝐪
≥
(

∫ 𝑋𝐩𝑑P
)1∕𝐩

.

Next define Q∗ by

𝑑Q∗

𝑑P
=
(

∫ 𝑋𝐩𝑑P
)−1∕𝐪

𝑋1∕(𝐪−1) ≥ 0.

hen Q∗ ∈ Q′ since
(𝑑Q∗

𝑑P

)𝐪
𝑑P =

(

∫ 𝑋𝐩𝑑P
)−1

∫ 𝑋𝐪∕(𝐪−1)𝑑P = 1

where 𝐪∕(𝐪 − 1) = 𝐩. Moreover,

∫ 𝑋𝑑Q∗ = ∫ 𝑋 𝑑Q∗

𝑑P
𝑑P =

(

∫ 𝑋𝐩𝑑P
)−1∕𝐪

∫ 𝑋𝑋1∕(𝐪−1)𝑑P

=
∫ 𝑋𝐪∕(𝐪−1)𝑑P
(

∫ 𝑋𝐩𝑑P
)1∕𝐪 =

∫ 𝑋𝐩𝑑P
(

∫ 𝑋𝐩𝑑P
)1∕𝐪 =

(

∫ 𝑋𝐩𝑑P
)1∕𝐩

which concludes the proof.

A.1.2. Dual representation for 𝐩 < 0
Let 0 < 𝐪 < 1 be such that 1∕𝐩+1∕𝐪 = 1 and Q′ as before. In this case

Lemma 2.5 holds too. The proof is the same as before where we have
to interchange the role of 𝑋 and 𝑌 in the application of Lemma A.1.
408
A.1.3. Summary of different cases
For the following table let

𝐹 (𝜋) ∶=
(

E
[

(

E𝛩[(𝑋𝜋
𝑇 )

𝛼]
)𝜆∕𝛼

])𝛼∕𝜆
, 𝐺(𝜋,Q) ∶= ∫ E𝜗[(𝑋𝜋

𝑇 )
𝛼]Q(𝑑𝜗).

roblem (2.9) is equivalent to

𝜆 > 0 𝜆 < 0
𝜆∕𝛼 > 1 sup𝜋 𝐹 (𝜋)

= sup𝜋 supQ∈Q 𝐺(𝜋,Q) sup𝜋 𝐹 (𝜋)
𝛼 > 0

𝜆∕𝛼 < 1 sup𝜋 𝐹 (𝜋) = sup𝜋 infQ∈Q′ 𝐺(𝜋,Q)
= sup𝜋 infQ∈Q′ 𝐺(𝜋,Q)

𝜆∕𝛼 > 1 inf𝜋 𝐹 (𝜋)
inf𝜋 𝐹 (𝜋) = inf𝜋 supQ∈Q 𝐺(𝜋,Q)

𝛼 < 0
= inf𝜋 infQ∈Q′ 𝐺(𝜋,Q) inf𝜋 𝐹 (𝜋)

𝜆∕𝛼 < 1 = inf𝜋 infQ∈Q′ 𝐺(𝜋,Q)

In all cases sup and inf can be interchanged.

A.2. Proof of Theorem 3.1

Part (a) follows directly by inspecting the expression in Theo-
rem 2.1. Note that for 𝑇 → 0 the density 𝜑𝑇−𝑡 concentrates on the Dirac
measure on zero and thus the integral vanishes.

Next we prove (b) . The optimal fraction invested in stock 𝑖 at time
𝑡 given observation 𝑦 ∈ R can more explicitly be written as (we denote
(𝜎⊤)−1 =∶ �̃�):

𝑖(𝑡, 𝑇 , 𝑦) = 𝛾
∫R𝑑

∑𝑚
𝑘=1(�̃�)𝑖 ⋅ 𝜗𝑘𝑝𝑘𝐿𝑇 (𝜗𝑘, 𝑦 + 𝑧)𝐹 (𝑇 , 𝑦 + 𝑧)𝛾−1𝜑𝑇−𝑡(𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑦 + 𝑧)𝛾𝜑𝑇−𝑡(𝑧)𝑑𝑧

(A.1)

here (�̃�)𝑖 ⋅ 𝜗𝑘 =
∑𝑑

𝑗=1(�̃�)𝑖𝑗𝜗𝑘𝑗 and 𝜑𝑇 (𝑧) = (2𝜋𝑇 )−𝑑∕2𝑒−‖𝑧‖2∕2𝑇 is the
ensity of 𝑁(0, 𝑇 𝐼).

We will show the statement for 𝑡 = 0 and 𝑦 = 0. The proof of
he general case is similar. First suppose that 𝛼 ∈ (0, 1). Define for
= 1,… , 𝑚:

𝑘(𝑇 ) ∶=
∫R𝑑 𝑝𝑘𝐿𝑇 (𝜗𝑘, 𝑧)𝐹 (𝑇 , 𝑧)𝛾−1𝜑𝑇 (𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧
.

bviously we have by definition of 𝐿𝑇 and 𝐹 that 0 ≤ 𝑓𝑘(𝑇 ) and
𝑚
𝑘=1 𝑓𝑘(𝑇 ) = 1. Thus, it is enough to show that lim𝑇→∞ 𝑓𝑚(𝑇 ) = 1. Let

s now consider the following inequality where the integral in the last
quation can be computed with the formula of the moment generating
unction of a multivariate normal distribution.

𝑚(𝑇 ) ≥
∫R𝑑 𝑝𝑚𝐿𝑇 (𝜗𝑚, 𝑧)(𝑝𝑚𝐿𝑇 (𝜗𝑚, 𝑧))𝛾−1𝜑𝑇 (𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧

=
∫R𝑑 (𝑝𝑚𝐿𝑇 (𝜗𝑚, 𝑧))𝛾𝜑𝑇 (𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧
=

𝑝𝛾𝑚 exp
( 1
2‖𝜗𝑚‖

2𝑇 𝛾(𝛾 − 1)
)

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧
.

e will show that the lower bound tends to 1 for 𝑇 → ∞. In what
ollows we consider the denominator. We can write it as E[𝐹 (𝑇 ,𝑍)𝛾 ]
ith 𝑍 ∼  (0, 𝑇 𝐼). Let 𝐴 be an (𝑚, 𝑑)-matrix with rows consisting of
1,… , 𝜗𝑚. Then 𝑋 ∶= 𝐴𝑍 ∼  (0, 𝑇𝐴𝐴⊤). In particular the marginal
istribution is given by 𝑋𝑗 ∼  (0, 𝑇 ‖𝜗𝑗‖2) and we can write

[𝐹 (𝑇 ,𝑍)𝛾 ] = E
[(

𝑚
∑

𝑘=1
𝑝𝑘 exp(𝑋𝑘 −

1
2
‖𝜗𝑘‖

2𝑇 )
)𝛾]

.

Now let 𝛾 ∈ Q, i.e. we can write 𝛾 = 𝑛
𝑙 . Recall that 𝛾 = 1∕(1 − 𝛼) > 1

n this case. Then we obtain with 𝛽 = (𝛽1,… , 𝛽𝑚) ∈ N𝑚
0 and with the

otation |𝛽| = 𝛽1 +⋯ + 𝛽𝑚 and

𝑛
)

= 𝑛!

𝛽1,… , 𝛽𝑚 𝛽1!… 𝛽𝑚!
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using the multinomial formula that
[(

𝑚
∑

𝑘=1
𝑝𝑘 exp(𝑋𝑘 −

1
2
‖𝜗𝑘‖

2𝑇 )
)𝑛] 1

𝑙 =

∑

|𝛽|=𝑛

(

𝑛
𝛽1,… , 𝛽𝑚

)

𝑝𝛽11 exp
(

𝛽1(𝑋1 −
1
2
‖𝜗1‖

2𝑇 )
)

… 𝑝𝛽𝑚𝑚

xp
(

𝛽𝑚(𝑋𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

] 1
𝑙 .

Now since (𝑥1 +⋯ + 𝑥𝐾 )
1
𝑙 ≤ 𝑥

1
𝑙
1 +⋯ + 𝑥

1
𝑙
𝐾 for 𝑥𝑖 ≥ 0 we further obtain

[

∑

|𝛽|=𝑛

(

𝑛
𝛽1,… , 𝛽𝑚

)

𝑝𝛽11 exp
(

𝛽1(𝑋1 −
1
2
‖𝜗1‖

2𝑇 )
)

… 𝑝𝛽𝑚𝑚

exp
(

𝛽𝑚(𝑋𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

] 1
𝑙

≤
∑

|𝛽|=𝑛

(

𝑛
𝛽1,… , 𝛽𝑚

)
1
𝑙
𝑝

𝛽1
𝑙

1 exp
( 𝛽1
𝑙
(𝑋1 −

1
2
‖𝜗1‖

2𝑇 )
)

… 𝑝
𝛽𝑚
𝑙

𝑚

exp
( 𝛽𝑚
𝑙
(𝑋𝑚 − 1

2
‖𝜗𝑚‖

2𝑇 )
)

𝑝𝛾1 exp
(

𝛾(𝑋1 −
1
2
‖𝜗1‖

2𝑇 )
)

+⋯ + 𝑝𝛾𝑚 exp
(

𝛾(𝑋𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

+
∑

|𝛽|=𝑛
𝛽𝑖≠𝑛

𝐶𝛽 exp
( 𝛽1
𝑙
(𝑋1 −

1
2
‖𝜗1‖

2𝑇 ) +⋯ +
𝛽𝑚
𝑙
(𝑋𝑚 − 1

2
‖𝜗𝑚‖

2𝑇 )
)

,

for some constants 𝐶𝛽 which do not depended on 𝑇 . The last summands
can be written as

exp
( 𝛽1
𝑙
(
√

𝑇 ‖𝜗1‖�̃�1 −
1
2
‖𝜗1‖

2𝑇 ) +⋯ +
𝛽𝑚
𝑙
(
√

𝑇 ‖𝜗𝑚‖�̃�𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

ith marginal distribution �̃�𝑖 ∼  (0, 1). Since the function

𝑥1,… , 𝑥𝑚) ↦ exp
( 𝛽1

𝑙
(
√

𝑇 ‖𝜗1‖𝑥1 −
1
2
‖𝜗1‖

2𝑇 )

+⋯ +
𝛽𝑚
𝑙
(
√

𝑇 ‖𝜗𝑚‖𝑥𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

s supermodular (follows e.g. with Lemma 2.1 in Bäuerle (1997))
e obtain with the Lorentz-inequality (see e.g. Lemma 2.4 (a) in
äuerle (1997))

E
[

exp
( 𝛽1
𝑙
(
√

𝑇 ‖𝜗1‖�̃�1 −
1
2
‖𝜗1‖

2𝑇 ) +⋯ +
𝛽𝑚
𝑙
(
√

𝑇 ‖𝜗𝑚‖�̃�𝑚 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

]

≤ E
[

exp
( 𝛽1
𝑙
(
√

𝑇 ‖𝜗1‖𝑋 − 1
2
‖𝜗1‖

2𝑇 ) +⋯ +
𝛽𝑚
𝑙
(
√

𝑇 ‖𝜗𝑚‖𝑋 − 1
2
‖𝜗𝑚‖

2𝑇 )
)

]

with the same random variable 𝑋 ∼  (0, 1). Now taking the expec-
ation and using the formula of the moment generating function of a
ormal distribution yields

E[𝐹 (𝑇 ,𝑍)𝛾 ] ≤ 𝑝𝛾1 exp
( 1
2
‖𝜗1‖

2𝛾(𝛾 − 1)𝑇
)

⋯ + 𝑝𝛾𝑚 exp
( 1
2
‖𝜗𝑚‖

2𝛾(𝛾 − 1)𝑇
)

+
∑

|𝛽|=𝑛
𝛽𝑖≠𝑛

𝐶𝛽 exp
( 1

2
𝑇
[

(‖𝜗1‖𝛽1 +⋯ + ‖𝜗𝑚‖𝛽𝑚)2
1
𝑙2

−(𝛽1‖𝜗1‖2 +⋯ 𝛽𝑚‖𝜗𝑚‖
2) 1

𝑙

])

. (A.2)

Let us now consider the exponent in the last line for an arbitrary
admissible 𝛽 without the factor 1

2𝑇 in front. Obviously we can choose
numbers ‖𝜗∗‖ and ‖�̄�‖ such that

𝜗1‖𝛽1 +⋯ + ‖𝜗𝑚‖𝛽𝑚 = ‖�̄�‖|𝛽|

𝛽1‖𝜗1‖
2 +⋯ 𝛽𝑚‖𝜗𝑚‖

2 = ‖𝜗∗‖2|𝛽|.

his implies

𝜗∗‖ =

√

𝛽1
|𝛽|

‖𝜗1‖2 +⋯
𝛽𝑚
|𝛽|

‖𝜗𝑚‖2

≥
𝛽1

‖𝜗1‖ +⋯
𝛽𝑚

‖𝜗𝑚‖ = ‖�̄�‖.
409

|𝛽| |𝛽|
Moreover we have that ‖𝜗∗‖ < ‖𝜗𝑚‖ since at least two 𝛽𝑖 are non-zero.
his implies

(‖𝜗1‖𝛽1 +⋯ + ‖𝜗𝑚‖𝛽𝑚)2
1
𝑙2

− (𝛽1‖𝜗1‖2 +⋯ 𝛽𝑚‖𝜗𝑚‖
2) 1

𝑙

≤ ‖𝜗∗‖2
|𝛽|2

𝑙2
− ‖𝜗∗‖2

|𝛽|
𝑙

= ‖𝜗∗‖2𝛾(𝛾 − 1) < ‖𝜗𝑚‖
2𝛾(𝛾 − 1).

This shows us that all summands of the upper bound are of the form
exp( 12𝑇 𝑐) with the largest 𝑐 = ‖𝜗𝑚‖2𝛾(𝛾 − 1). Thus we obtain

1 ≥ lim
𝑇→∞

𝑓𝑚(𝑇 )

≥ lim
𝑇→∞

𝑝𝛾𝑚 exp
( 1
2
𝑇 ‖𝜗𝑚‖2𝛾(𝛾 − 1)

)

∑

𝑘 𝑝
𝛾
𝑘 exp

( 1
2
𝑇 ‖𝜗𝑘‖2𝛾(𝛾 − 1)

)

+ exp
( 1
2
𝑇 ‖𝜗∗‖2𝛾(𝛾 − 1)

)
∑

|𝛽|=𝑛
𝛽𝑖≠𝑛

𝐶𝛽

= 1

hich implies the statement for 𝛾 ∈ Q. Since the expression is contin-
uous in 𝛾 we obtain the statement for all 𝛼 ∈ (0, 1).

Part (c) The proof for the case 𝛼 < 0 can be done similar. In this
case we have to show that lim𝑇→∞ 𝑓1(𝑇 ) = 1. Note that here 𝛾 ∶= 1

1−𝛼 ∈
(0, 1). We start with the similar inequality

𝑓1(𝑇 ) ≥
∫R𝑑 𝑝1𝐿𝑇 (𝜗1, 𝑧)(𝑝1𝐿𝑇 (𝜗1, 𝑧))𝛾−1𝜑𝑇 (𝑧)𝑑𝑧

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧

=
𝑝𝛾1 exp

( 1
2‖𝜗1‖

2𝑇 𝛾(𝛾 − 1)
)

∫R𝑑 𝐹 (𝑇 , 𝑧)𝛾𝜑𝑇 (𝑧)𝑑𝑧

or the denominator we can use the same lines of inequality until
A.2). Defining ‖𝜗∗‖ in the same way we obtain ‖𝜗∗‖ > ‖𝜗1‖ and since
∈ (0, 1) that

𝜗∗‖2𝛾(𝛾 − 1) < ‖𝜗1‖
2𝛾(𝛾 − 1).

ooking again for the highest exponents in the denominator we obtain
he statement as in part (b) .

Part (d) follows from the representation

𝑖(𝑡, 𝑇 , 𝑦) = 𝛾
𝑚
∑

𝑘=1
�̃�𝑖 ⋅ 𝜗𝑘𝑓𝑘(𝑇 )

n the beginning of part (b) .
Part (e) can be obtained by direct calculation.
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