

Sustainability in the Cement Industry: Thermodynamic Modelling of Belite Cement Clinker Annual meeting of the DECHEMA high-temperature technology specialist group P. Yarka Reddy, G. Sandaka, G. Beuchle, P. Stemmermann, D. Stapf

www.kit.edu

Introduction & Motivation

- Karlsruhe Institute of Technology
- Cement: responsible for 5-7% of the global CO₂ emissions^[2]
- Increasing trend in cement production:
 - Increase in CO₂ emissions
 - Increase in raw material utilization
 - Energy efficiency (cement production is an energy-intensive process)
- End-of-life demolition waste becoming a significant problem

Need for circularity in the cement industry

<u>https://geopolymerhouses.wordpress.com/2011/09/18/a-blueprint-for-a-climate-friendly-cement-industry/</u> (15.3.2024)
Robbie M. Andrew 2018 Global CO₂ emissions from cement production, 1928-2017

Concrete fines to feedstock route: ITC Belite process

Coarse particles

Ordinary Portland Cement (OPC) CaO-SiO₂-Al₂O₃ system

OPC vs Belite

slower hydration kinetics

[3] S. Prakasan et al., Study of Energy Use and CO2 Emissions in the Manufacturing of Clinker and Cement, Journal of the Institution of Engineers, 2019
[4] P. Stemmermann et al., Recycling belite cement clinker from post-demolition autoclaved aerated concrete – assessing a new process, Resources, Conservation and Recycling 203 (2024)

ITC Belite process

- Reaction mechanism
- Process conditions
- Intermediate phases, impact of variations

Approach

Results: Simulation at 1000°C

Technical raw meal from AAC waste

Input	wt.%
CaCO ₃	50.9
SiO ₂	23.9
CaO	13.3
CaSO ₄	3.5
CaCl ₂	1.7
Al_2O_3	1.6
Fe_2O_3	0.7
MgO	0.6
H_2O	3.8
Total	100

Solid Phases	Simulation (without extensions) wt. %	Experiments wt.%
Belite Ca ₂ SiO ₄	72.2	63.8
Bredigite $Ca_3(Ca, Mg)_4Mg(SiO_4)_4$	11.6	0
Chlorellestadite Ca ₁₀ (SiO ₄) ₃ (SO ₄) ₃ Cl ₂	0	9.9
Wollastonite CaSiO ₃	2.5	0.6
Melilite Ca ₂ (Mg, Fe, Al)(Al, Fe, Si) ₂ O ₇	9.0	0
Chlormayenite Ca ₁₂ Al ₁₄ Cl ₂ O ₃₂	0	3.9
Anhydrite CaSO ₄	4.7	0
Ternesite Ca ₁₀ (SiO ₄) ₂ SO ₄	0	0.1
Lime CaO	0	0.1
Quartz SiO ₂	0	2.1
Amorphous Content	0	15.0
Other phases	0	4.5
Total	100	100

Output

Database extensions

- Factsage Standard Databases
 - FToxid
 - FTsalt
- Cement typical phases that are not part of that
 - Chlorellestadite Ca₁₀(SiO₄)₃(SO₄)₃(Cl)₂
 - Chlormayenite Ca₁₂Al₁₄Cl₂O₃₂
 - Ternesite $Ca_5(SiO_4)_2SO_4$
 - Yeelimite Ca₄Al₆(SO₄)O₁₂
 - Mayenit Ca₁₂Al₁₄O₃₃

Implemented as Private Database

Results: Simulation vs Experiments

Simulations				
Solid Phases	(without extensions) wt. %	(with extensions) wt. %	Experiments wt.%	Comments
Belite Ca ₂ SiO ₄	72.2	61.7	63.8	60% of the solid phase
Bredigite $Ca_3(Ca, Mg)_4Mg(SiO_4)_4$	11.6	12.3	0	Mg
Chlorellestadite $Ca_{10}(SiO_4)_3(SO_4)_3Cl_2$	0	12.1	9.9	SO ₄ , Cl
Wollastonite CaSiO ₃	2.5	6.2	0.6	
Melilite $Ca_2(Mg, Fe, Al)(Al, Fe, Si)_2O_7$	9.0	5.4	0	Mg, Fe, Al
Chlormayenite Ca ₁₂ Al ₁₄ Cl ₂ O ₃₂	0	2.3	3.9	Al, Cl
Anhydrite CaSO ₄	4.7	0	0	
Ternesite Ca ₁₀ (SiO ₄) ₂ SO ₄	0	0	0.1	
Lime CaO	0	0	0.1	Grain size, kinetics,
Quartz SiO ₂	0	0	2.1	inhomogeneity
Amorphous Content	0	0	15.0	Real product
Other phases	0	0	4.5	
Total	100	100	100	

Simulation Result: Crystalline phase evaluation

AAC raw meals with different sulfate contents Simulations vs Experiments

Matches

- belite content is approximately the same (deviates between 8 -14 %)
- shows similar (amounts) reservoir elements for chlorine and sulfate
 - Ellestadite Ca₁₀(SiO₄)₃(SO₄)₃Cl₂
 - Chlormayenite Ca₁₂Al₁₄Cl₂O₃₂

Thermodynamic Modelling Results vs Experiments: On going work

- Raw meal variations
- Experimental differences and imperfections (e.g. unreacted raw meal)
 - Kinetics in solid-solid reactions plus grain size inhomogenities
 - T vs. T profile
 - Gas atmosphere
- Bredigite Ca-Mg silicate: crystallization and/or detection question
- Amorphous content from Q-XRD means X-ray amorphous
 - Thermodynamic calculations yield crystalline phases (and gas phase)
 - Amorphous content could result from melt formation at high T and poor recrystallization or X-ray amorphous products
 - Melt detection and modelling
- Cooling
 - Modelling with Scheil approach
 - Sample quenching with different cooling rates

Summary

Construction waste (fine particles) to Recycled Belite Cement Clinker

- Saves primary resources
- Reduces CO₂ Emissions
- Prevents Landfill

Thermodynamic Modelling

- Understand experiments
- Feedstock variations (AAC, concrete fines, waste handling)
- Improve process (scale up) and sample production (applications)
- Model assessment (sensitivity)
- Link kiln model or flow sheet model with FactSage

Thank you for your attention!

