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A B S T R A C T

Artificial intelligence is increasingly being integrated into socio-technical systems. Existing design principles for
ethical, safe and trustworthy AI tend to be highly abstract and focus on AI systems in isolation. They have rarely
considered the adverse effects on safety that may emerge from interactions between AI and other technical
components. Organisational theories of safety take such emergent outcomes of interactions between entities in
socio-technical systems into account. They offer guidance on how to identify structural vulnerabilities in socio-
technical systems enhanced by AI, and how to organise the design and operation of such systems for safety. In
this paper, which is the result of a collaboration between sociologists and computer scientists (AI consultants),
we conduct an analysis that can support the process of designing AI-enhanced autonomous systems in order to
avoid structural vulnerabilities. It builds on organisational theories of safety and derives five key descriptors
from them, the examination of which can guide the design of AI-enhanced systems. We demonstrate the utility
of the descriptors by applying them to proposals for AI-enhanced critical functions in advanced microgrids.
We discuss these proposals from the research literature on microgrids and review their effects on structural
vulnerabilities. We then explore the implications that go beyond the example of advanced microgrids and
propose steps for reviewing and reflecting on structural vulnerabilities that AI controllers may introduce into
socio-technical systems.
1. Introduction

Artificial intelligence (AI) components are increasingly considered
as enhancements to well-established technologies, ultimately for the
creation of autonomous systems. In such systems, computer algorithms
make operational decisions without human interference, for previously
specified tasks. The non-deterministic nature of some AI systems, their
complexity and computational power, which enable their autonomous
adaptation to changing situations and new information, pose new chal-
lenges with regard to safety (Varshney and Alemzadeh, 2017; Johnson,
2022). This is especially true when critical infrastructures are enhanced
by these systems, as a disruption of their services threatens to affect a
‘‘wide variety of social capacities’’ (Schulman and Roe, 2007).

In response to the new challenges posed by AI-enhanced systems
making operational decisions autonomously, this paper proposes a new
perspective on safe system design principles. It differs from the plethora
of guidelines and principles for trustworthy or ethical AI (Hagendorff,
2020; Thiebes et al., 2020) by focusing not on the specificities, like the
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inherent opacity and lack of interpretability of some models (Burrell,
2016), and possible risks of AI models themselves (Amodei et al.,
2016). Instead, the paper’s major underlying assumption is that the
recombination of technologies with AI adds complexity to seemingly
well-understood systems to the extent that, apart from the expected
benefits, unexpected new vulnerabilities may arise (Zio, 2016). When
discussing AI we refer to weak AI only, i.e. AI algorithms trained on
data to perform a specific, narrow set of tasks, in contrast to strong
AI or Artificial General Intelligence, i.e. an AI system with human-
like general intelligence across a broad range of tasks (Searle, 1980;
Fjelland, 2020).

Although the notion of weak artificial intelligence has nothing to
do with general artificial intelligence that matches human intelligence,
the specific, narrow sets of tasks that weak AI is supposed to per-
form include capabilities that were once solely the domain of human
operators in socio-technical systems. Yet, AI components and humans
are dissimilar in many regards. AI components remain deterministic
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since their output is limited by the data the AI was trained with. In
contrast, some capabilities of human operators extend beyond purely
technical skills and can contribute to the safety of a system based
n improvisation and novel actions — something beyond the reach

of current AI technology. In this paper, we therefore aim to explore
vulnerabilities of AI-enhanced socio-technical systems resulting from a
design process that entails the decision to shift away from social actors
o more technical components at the level of operation.

Analysing a socio-technical system in terms of its vulnerabilities
mplies two basic questions: ‘‘vulnerability of what?’’ and ‘‘vulnera-
ility to what?’’ (Khazai et al., 2014). The first question demands a
elineation of the system that is the focus of analysis. We are inter-
sted in understanding the consequences for vulnerability in systems
here AI controllers take over operational decisions, interact with other

technical components and social actors in the system. AI controllers
(continuously) learn from data, which AI practitioners (Amershi et al.,
2014; Vela et al., 2022) must provide. In principle, it would be possible
o broaden the perspective and include the wider organisational context
n which an AI-enhanced technology is deployed in the analysis. For
he purpose of exploring vulnerabilities that AI may introduce when
ombined with previously used technologies, we will, however, focus
n the social aspects of a socio-technical system primarily with regard
o the interplay of AI (sub-)systems with the experts involved in their
eployment for a particular operational task. This includes not only
I practitioners, but also, although otherwise rarely considered, do-
ain experts (Amershi et al., 2014) and their knowledge about the

socio-technical system
This focus leads to an answer to the second question. Gößling-

Reisemann et al. (2013) differentiate between event-based vulnerability
nd structural vulnerability. Event-based vulnerabilities concern ex-

posure and adaptive capacity in response to external perturbations,
hereas structural vulnerabilities stem from potential failures indepen-
ent of external perturbations and relative to the inherent adaptive

capacity of a system (Gößling-Reisemann et al., 2013, p. 849). Our
analysis aims at identifying structural vulnerabilities, as we look at
ulnerabilities that are introduced by AI into systems independent of

any threat event. The analysis thus provides an orientation towards
losing gaps that a focus on AI systems in isolation (Johnson, 2022)
eaves with regard to the safety of comprehensive systems incorporating

AI.
Different domains (e.g. energy, traffic, medicine) define safety in

specific ways, have their own design principles and regulations (Varshne
and Alemzadeh, 2017). A re-combination of established technologies

ith an AI component does therefore not affect all domains uniformly.
The more disruptive AI enhancements are for a domain, the more
complex the necessary re-assessment of safety is likely to be as the
wider organisational context will certainly be affected. Consequently,
we develop our analysis of structural vulnerabilities based on the
example of an established technology for which the introduction of AI
components is an incremental and not a disruptive change.

This example is the AI-enhanced advanced microgrid. The U.S.
Department of Energy’s Microgrid Initiative defines microgrids as ‘‘a
group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable
entity with respect to the grid. A microgrid can connect and discon-
nect from the grid to enable it to operate in both grid-connected or
island-mode’’ (Ton and Smith, 2012, p. 84). Advanced microgrids have
automatic functions beyond automated islanding and load-shedding.
The shift towards more local grid operation is one possible solution to
the challenges and vulnerabilities arising from the transition to clean
energy in combination with the interdependencies of a large-scale elec-
tricity grid (Streck, 2021; Witsch, 2021). Multiple microgrids can iso-
ate from the main system in the case of disturbances such as frequency
rops or sudden overloads, (Rodrigues et al., 2020; Venkatanagaraju

and Biswal, 2020) and thus increase the overall reliability of a critical
nfrastructure.
 u

2 
Controlling the interplay of multiple microgrids in a large-scale
power grid is extremely demanding, which is why current research
often suggests the use of artificial intelligence (AI) as part of the
olution (Ali and Choi, 2020). AI controllers promise smooth adapta-

tion to varying conditions on the production and consumption side by
analysing vast amounts of real-time data, which are either translated
into suggestions for human decision-makers or trigger specific decisions
utomatically. These data concern variables that are relatively well
nderstood and limited in number (e.g. weather, load, consumption),
ompared to those relevant for many other technologies, for example
utonomous cars. An exploration of the structural vulnerabilities that
he integration of AI controllers into advanced microgrids may create
an consequently offer an orientation that is relevant (although not nec-
ssarily sufficient) for other cases in which AI controllers are introduced
nto otherwise well-understood socio-technical systems. Since the use of
I in microgrids is still mostly at the research stage, the paper conducts

his analysis based on a desktop study of research papers that address
he design of microgrids and an iterative discussion process between the
omputer scientists and the social scientists who co-wrote the paper.

Section 2 introduces organisational theories of safety as the the-
retical background of the paper and explains their relevance for
nderstanding implications of AI for the safety and reliability of socio-

technical systems. Section 3 draws on these theories to propose five
descriptors of socio-technical systems that are affected when they in-
lude AI components. They capture key structural vulnerabilities that
eed to be considered at the design stage to ensure safety and reliabil-

ity. Section 4 explains the empirical basis and methodological approach
for applying the descriptors to the analysis of structural vulnerabilities
n AI-enhanced advanced micgrogrids. Section 5 describes the basic

structure of advanced microgrids and identifies critical functions for
which AI applications are being considered and experimented with in
urrent research. Section 6 then applies the descriptors proposed in

Section 3 to the case of three critical functions in advanced microgrids.
t explores structural vulnerabilities that result from introducing AI into
icrogrids, in particular from the altered interaction of technical com-
onents and from the role that AI practitioners and domain experts play

in implementing such change. The section also indicates how and to
what extent a mindful system design could avoid these vulnerabilities.
Section 7 discusses the results of this analysis and the aspects that may
be generalised beyond the example of microgrids. Finally, Section 8
offers a conclusion and discusses the limitations of our study.

2. Theory: AI and the organisation of safety and reliability

Reflections on design principles for ethical, safe and trustworthy
I have proliferated in recent years and resulted in numerous guide-

lines (Hagendorff, 2020). They were triggered by the uptake of AI in
arious fields of application as well as concerns about the implications
f a possible future ‘‘superintelligent AI’’ for humankind (Conn, 2015).
y now, those reflections have started to find their way into legislation,

in particular the AI Act of the European Union, which explicitly draws
on the recommendations of a High-Level Expert Group on AI (2019)
regarding ethics principles for trustworthy AI (Kusche, 2024). The no-
tion of trustworthiness encompasses technical robustness and safety but
also adherence to general ethical principles and respect for fundamental
rights. Thiebes et al. (2020) compare different frameworks for trust-
worthy AI and find that most agree on the principles of beneficence,
non-maleficence (which includes safety), human autonomy, justice and
explainability. Significantly, these principles are both highly abstract
and focus on AI systems and their providers. While AI certainly poses
particular challenges with regard to ethics and fundamental rights and
safety can be considered as one such right, AI also raises questions
in terms of how to actually organise for safety. These questions go
beyond technical measures of robustness or accuracy of AI (Hendrycks
nd Dietterich, 2019; Zhang et al., 2019). They concern the so far
nderdeveloped aspect of effects that emerge from interactions between
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AI and technical components and the sociotechnical context of the
esign and redesign process. They cannot be answered without con-
idering the difference that it makes for the safety of a socio-technical
ystem when at least one of its parts behaves neither like a human
or a conventional technical component. Understanding the problem of
ntegrating AI into a sociotechnical system as a matter of organisational
esign directs the attention to organisational theories, even though they
id not incorporate the possibility of autonomous operation when they
ere developed.

Perrow’s Normal Accident Theory (NAT) is a suitable starting point
when exploring the implications of operational decision-making by

I. It heuristically categorises the types of interaction and couplings
etween system components. The theory posits that complex systems
re prone to accidents if their components are tightly coupled, i.e. do
ot allow for elasticity and flexibility. As Hopkins summarises Perrow’s
istinction (Hopkins, 1999, p. 95): In tightly coupled systems, one thing

rapidly follows another with little opportunity for intervention. These
systems are usually highly automated. Power grids are, for Perrow, a
prime example of tightly coupled systems (Perrow, 1999), as opposed
to loosely coupled systems, where there is plenty of time and room for
intervention before problems become serious. Yet, AI-based operations
do not necessarily fall into Perrow’s category of tight coupling. They are
capable of adapting to environmental changes within the boundaries
implied by their training data. The advent of artificial intelligence (AI)
consequently suggests that the equation between tight coupling and au-
tomation may no longer be valid. Loose(r) couplings may increasingly
be integrated into future socio-technical systems via smart, learning
machines (Büscher, 2022).

High Reliability Theory provides another theoretical anchor point.
ts proponents started out by studying the capacity of organisations to
eliably cope with the challenges of complex and tightly coupled socio-

techncial systems (La Porte and Consolini, 1991) and identified a set
of abilities that describe High Reliability Organisations (Weick et al.,
2008). Other authors treat the concept of High Reliability Organization
(HRO) theory more as an ideal or goal for organisations and socio-
technical systems to strive for in order to become more reliable or
afer (Cantu et al., 2020; Lekka, 2011).

With the advent of digitalisation, i.e. increasingly automated pro-
esses, the way reliability needs to be organised changes

(Schwiderowski and Beck, 2023). Especially for fully autonomous sys-
tems, the design process itself becomes one of the central pillars of
rganising for reliability. By introducing AI into component interac-
ions, the characteristics of these interactions changes as well. The
apabilities of AI transcend traditional control, which was based on pre-
rogrammed algorithms. On one hand, AI controllers are deterministic
n the sense of being limited by their model features and the data
hey were trained on. On the other hand, AI practitioners have not
etermined ex ante what AI controllers are supposed to do with a par-
icular input; instead, the respective algorithms learn and adapt based
n the input data they are exposed to. How inputs are transformed into
utputs during operation is therefore not fixed ex ante and, depending
n the type of AI used, it can even be difficult to understand ex post.
onsequently, the interactions within a socio-technical system become
ven more complex in the presence of AI controllers.

The interaction between AI controllers and technical components
not only needs to be properly designed, but maintained and organ-
ised. For autonomously operating systems, the training process of AI
controllers, their designers and the potential users of AI applications
(e.g. companies operating a microgrid) constitute an organisation that
can strive for high reliability. The principles of HROs help to shift the
focus of AI design towards safety concerns. Mindful design principles
that take into account interactions of AI with technical components and
ocial actors are a key way to strive for high reliability.

In summary, the look at NAT suggests that the introduction of AI
nto a socio-technical system may imply a loosening of previously tight
ouplings, but also an increase in interactional complexity between
3 
components. HRO theory is a pointer to aspects that are important to
consider already at the design stage when striving for reliability of a
socio-technical system that incorporates AI (Schwiderowski and Beck,
2023). At the same time, none of these theories explicitly focuses on the
esign stage and considers the characteristics of technical components.
onsequently, we also draw on Leveson’s System-Theoretic Accident

Model and Processes (STAMP) (Leveson et al., 2009) for language that
can capture what it is that AI components do in a socio-technical
system. Firstly, STAMP frames safety as a control problem at the level
of the system and considers both human and automated controllers.
Since AI in operational decision-making is all about controlling certain
functions within a system, the notion of (lack of) control underlies
the identification of structural vulnerabilities that AI may introduce.
Secondly, STAMP employs the concept of process model. It refers to
the model of the system being controlled that any controller, whether
human or automated, must have. In the case of humans, this corre-
sponds to mental models, for which HRO theory stresses flexibility and
mindfulness as requirements (Weick et al., 2008). In the case of AI
controllers, it is the AI method employed that provides a process model
f what is supposed to be controlled. An AI process model is less flexible
han the mental models of humans; yet it is still somewhat flexible due
o the role that learning from data plays for AI.

3. Five descriptors for identifying structural vulnerabilities

The three theories introduced in the previous section emphasise
ifferent perspectives on socio-technical systems: NAT (Perrow, 1999)

provides an overview of the risks, and in our case vulnerabilities,
that are typical for complex systems. HRO theory (Weick et al., 2008)
offers inspiration regarding abilities that organisations can strive for to
operate highly reliable. STAMP (Leveson, 2012) is helpful for consid-
ering temporal elements of vulnerability and adapting organisational
concepts to technical agents (e.g. employing the notion of process

odel). In combination, the three approaches suggest a number of in-
erdependent characteristics that vary between socio-technical systems.

These descriptors are affected when technical components operate
utonomously based on AI, trained and retrained by humans according
o a pre-specified design. Considering them can highlight structural
ulnerabilities that the design of AI controllers and emergent effects of
perational interactions with other technical components may create.

We propose the following five descriptors, subsequently explicated,
o capture the structural vulnerability of a socio-technical system (see

Table 1):

1. overall system behaviour (linear vs. complex)
2. mode of control of the system (tight vs. loose coupling)
3. points of control within the system (centralised vs. decentralised)
4. operational/structural system dynamics (low vs. high)
5. adaptive capacity of the system controllers (low vs. high)

The first three descriptors are linked to the basic idea of NAT that
ocio-technical systems with many complex interactions and tight cou-

pling are more vulnerable than loosely coupled complex systems (Perrow
1999). The implied causal link was challenged by HRO theory, but this
hallenge hinged on the importance of well-trained human operators

and controllers. Since AI controllers differ from human ones, our anal-
ysis needs to treat overall system behaviour and coupling as variables
without ex ante assuming a specific causal relation between them.

Complex as opposed to linear overall system behaviour, according to
Perrow (Perrow, 1999, p. 72–78), means that system components inter-
act with each other in unfamiliar or unexpected sequences, which are
not observable or not immediately comprehensible. Such a behaviour is

ore likely when individual components are in close proximity to each
other, while also being responsible for several functions in the system
at once (common-mode connection). Furthermore, complex systems
imply numerous monitoring and control parameters and even more
numerous potential interactions between them and, concomitantly, a
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Table 1
Synopsis of the five descriptors for identifying structural vulnerabilities.
Descriptors Spectrum Markers

System behaviour linear ↔ complex The more complex a system behaves, the closer the components
are, the more functions they fulfil, the more interactions they
exhibit, the more feedback loops and indirect information there are.

Mode of control tight ↔ loose coupling Strict protocol, without much delay and with little contingency in
its actions ↔ flexible sequences, alternative courses of actions and
more leeway for intervention and improvisation.

Points of control centralised ↔ decentralised System-wide awareness and coordination ↔ fine-grained local
understanding and swift response.

System dynamics low ↔ high Operational dynamicity, i.e. fluctuations in key operational
variables, and structural dynamicity, i.e. changes in key structural
variables (e.g. component degradation, new technology and shifts in
the environment).

Adaptive capacity low ↔ high High adaptive capacity is marked by a flexible control hierarchy,
extensive training for edge cases and a continuously up-to-date
process model of the system state.
c
l
w
p
u

c

multiplicity of new and unintended feedback loops (Perrow, 1999,
p. 87). Operators, controllers, and by extension AI practitioners and
omain experts, in systems with complex interactions tend to receive

their information about the system in an indirect and derived form,
resulting in an incomplete understanding of certain processes (Perrow,
1999, p. 84–88). A complex system consequently requires structural
rrangements such as a more decentralised control structure ‘‘to cope

with unplanned interactions of failures’’ (Hopkins, 1999, p. 98) in its
omponents and the indirect information about their behaviour.

The distinction between tight and loose coupling refers to the timing
and sequencing of operations in a socio-technical system (Perrow,
1999, p. 89–96), that is the mode of control. In tightly coupled systems,
rocesses are time-sensitive and delays are not possible. The sequencing
f operations is fixed, and buffers and redundancies are part of the

design. In loosely coupled systems, time delays are possible, the order
of process sequences can be changed and there is enough slack in
the system to create buffers and redundancies not planned ahead and
eeway for human intervention and improvisation.

As NAT suggested that complex systems require decentralised oper-
ations, it also argues that, in contrast, tightly coupled systems require
rigid centralised control (Perrow, 1999, p. 331–333). The theory of

ROs clarifies how this does not necessarily result in contradictory
equirements for complex and tightly coupled systems, but that organi-

sations can strike a balance with regard to the points of control: they can
elegate authority to recognise and detect hazards at a local level for
 fine-grained understanding and fast response times, while still being
entrally aware of vulnerabilities, coordinating system-wide responses
nd initiating local learning processes (Weick et al., 2008, p. 60).

In addition to the three basic descriptors overall system behaviour,
mode of control and points of control, the temporality of a socio-
technical system as a whole is relevant to its structural vulnerabilities.
ystems change over time in ways beyond their control and cannot be
ssumed to be static throughout their lifetime (Leveson, 2012, p. 175–

176). Their structural dynamicity includes the degradation of system
omponents, the introduction of new technology, changes in the goals

and structure of the organisation operating the system and changes to
the regulatory environment. In the case of AI, model degradation (Vela
et al., 2022), changes in terms of functional expectations, a change in
the valuation of key variables (or different key variables altogether) and
nexpected events all contribute to structural dynamicity. They require
 retraining of the AI models that should be based on deliberations of
I practitioners with domain experts, Amershi et al. (2014) in order

to include their experiences and knowledge about the socio-technical
system. At the same time, advanced microgrids and AI are both in-
tended to be technologies that can reliably and quickly cope with
operational dynamicity, meaning fluctuations in key variables during
operation (Section 1).
4 
Finally, the adaptive capacity of a system affects its structural vul-
nerability (Gößling-Reisemann et al., 2013). The research on HROs
demonstrated multiple ways of how operators and system controllers
could foster this capacity. In essence, the cases identified by this
research (Weick et al., 2008; La Porte and Consolini, 1991) as HROs
pointed to a flexible authority or decision-making structure as a key to
adaptive capacity (Sawyerr and Harrison, 2019). Training to ‘‘increase
people’s response repertoire enlarge[s] the range of issues that they
notice and can deal with’’ Weick and Sutcliffe (2015, p. 110). Adaptive
capacity also requires mindfulness and an adaptive cognitive model,
i.e. the ability to process new information about the system generated
in the course of adjusting to unexpected events and to retrieve this
information when needed (Weick et al., 2008). Furthermore, an emer-
gent quality of a system’s modus operandi was assumed in cases where
operators continuously ‘‘combine fragments of old routines with novel
actions into a unique response to deal with a unique input’’ (Weick
et al., 2008, p. 55). AI controllers differ from human operators and
cannot be expected to contribute to adaptive capacity in identical ways.
In particular, they are unable to come up with truly novel actions
because they rely entirely on the history of a system’s process states.
Nevertheless, it is possible to draw some analogies with regard to other
underlying principles of fostering adaptive capacity.

AI controllers cannot spontaneously delegate authority laterally or
to new controllers outside predetermined pathways. Rather, authority
is given to sub- or superordinate controllers according to the system’s
predetermined hierarchy. However, if AI controllers are able to shift
control between higher and lower levels, they can form a flexible
ontrol hierarchy within the boundaries of their predetermined control
ogic. If AI controllers face an event that leaves these boundaries, they
ould have to delegate control to human operators, i.e. knowledgeable
ersonnel, or the designers, so they can retrain the model based on the
nexpected event.

With regard to training the response repertoire, an analogy in the
training of an AI controller, which is otherwise obviously very different
from the training of human operators, would be the training on exam-
ples at the extreme ends of their operational boundaries. Since an AI’s
boundaries of possible actions result from the limits of the data it was
trained on, these so-called edge cases in the data are a prerequisite for
it being prepared for rare events.

Similar to human operators, AI controllers need to be sensitive to
data and able to indicate changes in the system state to allow operators
and designers to retake control, if necessary. Whenever the actual pro-
ess state in a given socio-technical system diverges, e.g. due to emer-

gent phenomena or hazards, from the process model that controllers,
whether human or AI, rely on accidents become more likely (Leveson
et al., 2009, p. 243). Although AI controllers are not able to process
new information and adjust their control actions on the fly, akin to an
adaptive cognitive model or mindfulness, they can at least somewhat
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compensate for this. They can improve on their capacity to adapt to
the full range of system state changes that have already occurred, as
they have been trained on data that is supposed to represent the entire
history of possible system changes. Depending on the data they were
trained on, AI controllers have potentially access to a wider range of
possible system states and their process model can encompass more
variables, compared to human operators. Consequently, mindfulness
must primarily be located in the design process and requires AI prac-
titioners and domain experts to be aware of the limitations of the
data used for training AI models. Another limitation of AI models that
they have to be aware of is the possibility of catastrophic forgetting,
which has no parallel in human operators or conventional technical
components. It can occur if AI models are retrained on a new dataset,
which under certain conditions risks erasing what they were previously
trained (French, 1999).

In sum, the five descriptors should be able to capture key structural
vulnerabilities that need to be considered when organising for the safe
integration of AI components into a socio-technical system.

4. Method

Due to the state of research on AI-enhanced microgrids, we con-
ducted our analysis as an exploratory desk study of peer-reviewed
original research and review articles on applications and trends of AI
for deployment in (advanced) microgrids. The starting point of the
study was a formal definition for advanced microgrids, published in a
White Paper by the U.S. Department of Energy (Bower et al., 2014) and
summarised in the next section, as well as the most cited comprehensive
review of the state of the art for artificial intelligence techniques in
smart grids (Ali and Choi, 2020) at the time the project started in
January 2021. Based on the latter, we determined the scope of our
analysis and restricted it to AI use for components of microgrids that are
critical to system services in the sense of controlling and maintaining
their functionality. We thus identified three critical functions (see
Section 5). We searched for peer-reviewed articles and reviews that deal
with the integration of AI-based methods for these critical functions
into microgrids and/or compared the impact to traditional methods.
Using Google Scholar, we combined keywords denoting the subject of
microgrids (‘‘microgrids’’ OR ‘‘smart grids’’) and AI (‘‘artificial intel-
ligence’’ OR ‘‘machine learning’’) with keywords related to the three
critical functions (‘‘load forecasting’’ OR ‘‘fault detection’’ OR ‘‘energy
management system’’). After this initial search, we also added literature
referenced in the identified reviews and articles. We included articles
published between 2015 (earliest relevant publication) and July 2022
(cut-off date).

We analysed the respective articles employing the descriptors of
structural vulnerability developed from the theory. The results of this
analysis are presented in Section 6. The collation, comparison, and
analysis of the literature was integrated with a continuous dialogue
between the three sociologists and the two computer scientists and AI
consultants on the research team. Although presented in the previous
section, this dialogue also informed our specification of the descriptors.
Consequently, the development of descriptors, based on theories that
focus on organising for safety, and their application to the example
of advanced microgrids overlapped. Theory and empirical example
thus fed back into each other to make full use of the interdisciplinary
composition of our research team. Such a recursive approach, and the
dialectic between empirical case and theoretical perspective it involves,
is common in qualitative research in the social sciences (Timmermans
and Tavory, 2012). For our paper, this approach was essential for
gradually developing a shared vocabulary — manifested through the
descriptors — that would resonate with both computer engineers and
social scientists, thereby bridging the gap between the purely tech-
nical literature on AI and advanced microgrids and a social science
perspective.
5 
Fig. 1. A conceptual model of the social actors involved in the (pre-/post-) deployment
of a microgrid.

Research on AI-enhanced microgrids is largely at the development
stage, which includes simulations and experiments but only exemplary
applications in real-world environments. We propose that a socio-
technical perspective at this stage is particularly useful to identify
potential structural vulnerabilities that stem from the combination of
a well-understood technology, such as microgrids, and AI components.
Their identification can inform the future real-world implementation of
AI-enhanced microgrids. Moreover, the analysis, developed by drawing
on the example of microgrids, aims at a level of generalisation that
makes it possible to apply it to other cases where an established
technology is supposed to be enhanced by AI.

5. Social context and design principles of advanced microgrids
and the role of AI

Before we can explore the structural vulnerabilities of an AI-
enhanced microgrid where operational decisions are transferred from
social actors to AI controllers, a conceptual model of the social ac-
tors involved helps to identify the nature of the shift away from
human operators. The autonomous operation of an AI enhanced mi-
crogrid is preceded by a predeployment phase and succeeded by a
postdeployment phase (see Fig. 1).

Predeployment involves the three organisationally embedded groups
of AI practitioners (computer engineers and programmers), opera-
tors/domain experts (e.g. controllers and electrical engineers) and
regulators (e.g. government, standard-setting bodies). AI practitioners
select the data and train the AI model according to the functional
expectations of the operators/domain experts. The former operators
are no longer involved in the actual process of operating the de-
ployed system. As their domain expertise guides the data selection
and training process, they rather take part in the design process for a
more autonomous, AI-enhanced microgrid. AI practitioners and domain
experts are the social actors on whose interplay with the AI and
other technical components our subsequent analysis will focus. Their
actions are however also influenced by the third group that forms
part of the microgrid as a socio-technical system: Regulators set limits
on the possible specifications the design can take. Their regulations
can take the form of legislation, standards and certificates, crucially
affecting the safety requirements of the organisations behind the AI
practitioners and operators/domain experts (Leveson et al., 2009).
Moreover, organisational embeddedness means that the AI practitioners
and operators/domain experts are also affected by company, project,
manufacturing, and operations management decisions made in other
parts of their respective organisations (ibid.).

Postdeployment involves regulators and operators/domain experts as
well, but also includes consumers and producers. The latter consist
of residential communities, commercial or industrial users that can
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consume and produce electricity as well as share energy with other
users (Ali and Choi, 2020). For our design focus they come into play in
the form of energy demand or load fluctuations and when they add or
remove decentralised energy resources or energy storage systems. The
load is not only used to provide the information to the deployed AI
controller, on which it can enact control decisions, but the history of the
previously installed grid and its load fluctuations are used to train the
AI model during the predeployment phase. The relationship between
pre- and postdeployment is therefore cyclical. Structural dynamics (see
3) like shifting operational goals, the addition or removal of energy
resources or storage systems as well as new regulations would also
necessitate a move from postdeployment back to predeployment and
edesign.

Component-wise, advanced microgrids contain all the key elements
of a regular utility grid. They are connected to the main utility grid at
one point of common coupling, through which they exchange power
and information with the main grid in real time. Bower et al. (2014)
utline the defining characteristics of advanced microgrids. They are
eographically delimited, connected to the main/host utility grid at one
oint of common coupling, and fed from a single substation.

They automatically transition to/from islanded mode, and include
distributed energy resources, an EMS and power and information ex-
changes on both sides and across the point of common coupling in real
ime.

The physical components of a microgrid belong to five categories
(Yoldas et al., 2017): the transmission system, the distribution system
onnecting all microgrid components, the distributed generation of
nergy, the energy storage systems and the load. The transmission

system is only active during grid-connected mode, and its feeder lines
maintain the bidirectional power flow through the point of common
coupling. If the frequency or load leaves a predetermined range, then
the microgrid switches to islanded mode. The remaining four categories
of physical components continue to be active in islanded mode.

As an advanced microgrid cannot be continuously controlled via
hysical on-site operations, the system requires accurate state estima-
ion at each point of control. State estimation needs accurate, high-
esolution information from the physical components to provide con-
rollers with an up-to-date process model of the actual system state.
rocess modelling at scale is enabled by the advanced metering infras-
ructure. Data from the microgrid components is also collected by smart
ensors and measurement devices, such as intelligent electronic devices
nd remote terminal units.

As soon as automated controllers receive the information necessary
to determine the operational state of the advanced microgrid, they
erform appropriate control actions. The levels within an advanced

microgrid at which control is exercised can be subdivided according
to their timescale requirements (Ray and Biswal, 2020): Primary or
local-level controllers are used for fast response (less than 1s) control
functions, involving no communications and using only local measure-
ments (e.g. used for frequency/voltage control, power-sharing, etc.).

he secondary or upper-level microgrid central controller considers
ower, loads, and storage measurements (less than 1 h time scales) to
anage the microgrid as a whole (including island detection, power
ispatching, etc.). At the tertiary level, the distribution management
ystem controls the microgrid central controller as part of the host or
ain grid. It ensures that the microgrid meets the overall grid demands

nd operates on longer (greater than 1 h) time scales (including forecast
eneration, demand response, etc.).

Whether the control itself is performed centrally, in a distributed
anner or via a hybrid1 approach depends on the microgrids’ con-

figuration, size, and components used. Centralised control works by

1 Hybrid control is also sometimes referred to as hierarchical; we use the
erm hybrid to avoid confusion with the flexible control hierarchy we discuss
n this work when referring to a system’s adaptive capacity.
6 
delegating decision-making power to the microgrid central controller,
which makes optimal decisions based on aggregated data from local
ontrollers. With decentralised control, on the other hand, local level

controllers manage power without the need for control commands from
a microgrid central controller. The hybrid approach combines both
centralised and decentralised controllers to optimise grid operation
according to local and system-level demands.2

When discussing the consequences of enhancing microgrids with AI,
e distinguish between the two broad categories of components that

erve critical functions and those that serve non-critical ones. A non-
ritical function is, for instance, the optimisation of production costs;
ritical functions maintain the essential ‘‘services that the network

and systems provide’’ (Young and Leveson, 2014, p. 32). Our analysis
focuses on components that are critical to system services in the sense of
ontrolling and maintaining their functionality. In the comprehensive
eview of AI applications by Ali and Choi (2020) we identified three

critical functions, based on the aforementioned definition:

Forecasting of loads, generation capabilities, grid status, etc. at vari-
ous time scales.

Fault detection for identification of locations and various causes of
line faults, e.g. lightning strikes.

Energy management for economical use of grid components and co-
ordination and optimisation of e.g. distributed energy resources
and energy storage systems. This includes the integration of new
systems.

The descriptors of structural vulnerability developed in Section 3
can be applied to these critical functions from two complementary
perspectives in order to analyse the consequences of introducing AI.
On the one hand, the AI-based solutions proposed for each of the
critical functions directly concern one descriptor each, corresponding
to the function itself. As the following sections will clarify, forecasting
is directly linked to the dynamics of the overall microgrid system
(Section 6.1), fault detection directly concerns the mode of control in
the system (Section 6.2), and energy management is primarily about
its points of control (Section 6.3). On the other hand, the descriptors
f structural vulnerability are interdependent, which means that the
ntroduction of an AI-based solution will have specific implications for

all of them.

6. Analysis: Descriptor interaction in critical functions

6.1. Forecasting and system dynamics

The overall goal of forecasting functions is to ensure the balance
between the amount of power being generated and the amount being
sed (the load). This helps to keep the system running smoothly,
educes energy wastage and maximises the use of renewable energy
ources. Forecasting is thus directly concerned with the operational
ynamics of a microgrid system, which include weather changes as
ell as fluctuations in people’s energy usage. Forecasting uses time-

series data to predict microgrid states and capacities at various time
cales (Khan et al., 2016): these range from short-term daily operations

(up to one week) to medium-term operational planning (weekly up
o yearly) and long-term expansion planning (longer than a year).
utomated control, and the potential use of AI for it, is most relevant

for short-term forecasting.
For forecasting in microgrids and their advanced variant in partic-

ular, STLF is the most critical function since many operating decisions
are based on it (Chitsaz et al., 2015, p. 50). In contrast to a regular

2 A detailed review of hybrid microgrid control, with a focus on the explicit
implementation of building microgrids, can be found in Yamashita et al.
(2020).
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power system, a microgrid is smaller, which means that it does not have
as much built-in stability. In other words, it has low inertia due to more
load fluctuations (Chitsaz et al., 2015, p. 50). The decentralised energy
sources as well as power usage fluctuate, which is harder to compensate

ithin a small-scale system as it lacks buffers present in the main grid
Dag and Mirafzal, 2016). Consequently, operations are tightly coupled
nd thus structurally vulnerable to high operational dynamicity. That
akes accurately forecasting the load, i.e. power usage or demand,

ssential to reliable operation.
AI models in forecasting support estimates of how the process

tate of a microgrid will develop. Artificial neural networks are most
ommonly used (Gerwig, 2015). Different from statistical methods, AI-

based methods are designed to handle the non-linear data resulting
from the many components of an advanced microgrid, like the load,
storage units and energy supply. They also have to deal with data
from the many devices used to monitor and control these components.

y including non-linear variables, artificial neural networks provide
further information and take additional, complex relationships in the
data (Zor et al., 2017) into account. They are therefore expected to
ignificantly improve the accuracy of short-term load forecasting.

A more accurate Short-Term Load Forecasting (STLF) gives con-
trollers that depend on its forecasts time to react ahead of any up-
oming fluctuations or disruptions (e.g. due to a rapid and unexpected
hange in energy demand). In terms of the descriptors, this amounts

to loosening the mode of control by mitigating the adverse effects of
the low inertia in advanced microgrids. Human operators or other
automated controllers can use the predictions of an AI-enhanced STLF
to change the order of sequences and consider alternatives for the most
ppropriate response at their disposal.

As a common-mode function STLF contributes to the complex be-
aviour of the whole socio-technical system since several other func-
ions depend on it. Should the STLF be disrupted or fail, the ensuing
ysfunctional interactions would adversely affect the other critical
unctions, for example in the Energy Management System (see Sec-
ion 6.3), and could thus trigger cascading failures in the entire system.
uman operators and automated controllers depend on STLF to con-

struct and constantly update their process model, which serves as a
cognitive or computational model of how the system is currently oper-
ating. It allows them to quickly respond if the system goes beyond safe
limits for its operation, for example the 50 Hz frequency of currents. AI-
enhancement of STLF can help to reduce complexity for and improve
response times of other, dependent controllers, in particular under
conditions of high operational dynamicity. However, this will only
work if the designers trained the artificial neural network on data that
includes all the relevant variables. AI designers can hardly make such
an assessment on their own but have to rely on domain experts and
their experiential knowledge, Domain experts can in effect assist in re-
ducing overall system complexity for human operators and automated
controllers by providing AI Designers with criteria to assess the relevant
variables and data for the training process of an AI-enhanced STLF.

If domain experts guide the training process, the AI enhancement
f STLF can provide a more accurate process model to dependent

operators and automated controllers, which would mean an increase in
adaptive capacity. There is, however, a trade-off. All neural networks
import a structural vulnerability into any system in which they are
used, namely the black box problem and the associated lack of inter-
pretability (Burrell, 2016). Operators, designers, and domain experts
are unable to understand why a neural network gives a particular
output. Furthermore, at least at this stage of research, neural net-
works cannot provide reliable prediction uncertainties, which means
that they cannot (reliably) convey the degree of confidence in their
outputs (Chua et al., 2023). In load forecasting, for example, unreliable
redictions and a false confidence in them, like a prediction that un-

derestimates the future load requirements, can cause the entire power
system network to fail (Khwaja et al., 2017).
7 
Consequently, research is focused on probabilistic load forecasting
approaches that lead to more reliable prediction uncertainties (Wang
et al., 2019a; Yang et al., 2019; Afrasiabi et al., 2020; Brusaferri et al.,
2022). Reliable estimates about how uncertain a prediction is permits
uman operators and automated controllers to trade some degrees of
ptimisation against reliability of operation in a rational way. They
an thereby err on the side of caution. Moreover, such estimates are
mportant not just for day-to-day operations, but also for knowing when
n AI model might start making less reliable decisions due to model
egeneration or concept drift (Vela et al., 2022) and deviate from

what is considered safe or reliable. If prediction uncertainty increases,
designers and domain experts could initiate a retraining of the AI mode
preemptively.

6.2. Fault detection and mode of control

Fault Detection and Classification (FDC) is another function in
advanced microgrids that is potentially suitable for enhancement by
AI (Ali and Choi, 2020).

In general, fault detection involves three steps (Wei et al., 2018):

1. registering that a fault has occurred (detection)
2. classifying the type and location of the fault (classification)
3. taking an appropriate control action to isolate the fault in an

effort to protect the rest of the grid (protection)

This means that fault detection directly concerns the mode of control.
In a tightly coupled system, faults are potentially dangerous since they
can easily propagate within the system. FDC intermittently loosens the

ode of control when it isolates faulty components while ensuring the
unctionality of the overall grid.

Fault detection in microgrids is particularly challenging, compared
o conventional power systems. Fahim et al. (2020), Bansal and Sodhi

(2018), Beheshtaein et al. (2019). It has to deal with both internal
faults, which have to be located and corrected, and internal faults,
which require a decision on whether to island the microgrid. The
istributed generation of energy means that the system is prone to prob-

lems like bidirectional currents (Bansal and Sodhi, 2018; Beheshtaein
t al., 2019). Conventional, model-based FDC methods monitor the

microgrid state and ensure that it is within acceptable limits, predefined
by the model (Bansal and Sodhi, 2018).

AI-based FDC methods promise a more fine-grained fault detection.
They cannot only detect faults but also classify them into types, based
n patterns they have learned to identify in training data from the
ystem. Such a classification would allow human operators and auto-

mated controllers (see Section 6.3) to refine their process model of the
hysical system state, in particular with regard to the types of faults

that may occur in it. In this way, it is possible to detect anomalies
hat model-based methods would ignore (Bansal and Sodhi, 2018). AI

practitioners and domain experts can thus improve their understanding
of possible system states, with potential benefits for adaptive capacity.

However, the topology of a microgrid changes whenever a dis-
ributed energy resource is added or removed, and this structural dy-
namicity creates practical problems for the use of AI in FDC (Bansal and
Sodhi, 2018). AI models require large amounts of data, both for training
and the validation of predictions. These data have to be collected from
grid measurements or simulated, for example, by creating a digital
twin of the microgrid. AI practitioners and domain experts face a
considerable challenge in this regard. They have to collect and choose
the appropriate amount of data, knowing that the AI model can only
deal with faults it has encountered in the training data. Training and
validation based on simulations runs the risk of deviations between
simulated process states and actual ones. Moreover, each change to the
topology of a microgrid requires a retraining of the AI model. A high
frequency of re-trainings adds complexity to the whole socio-technical
system, since AI practitioners and domain experts need to be mindful
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each time of possible errors during the (re-)training process and their
potential consequences.

The high operational dynamicity that distributed energy generation
reates adds to the practical problems with AI. Processing times in-

crease with the complexity of the trained models, Bansal and Sodhi
(2018) ultimately resulting in longer response times. Yet, short re-
sponse times are crucial because of the fluctuations of distributed
energy generation and the low inertia of microgrids. A better un-
derstanding of the system in terms of faults and anomalies would
therefore come at the cost of slowing down a tightly coupled process.
n other words, the attempt to improve adaptive capacity by creating a
ore fine-grained process model could end up increasing the structural

ulnerability of the whole system. A central AI controller, which could
improve protection against faults based on its sensitivity to different
types of faults and anomalies in the overall system, would consequently
need to be counterbalanced by simpler, decentralised FDC devices with
aster response times. This would add more devices and interactions
etween them, increasing the overall complexity of the system. The

trade-off with regard to the points of control currently limits the
practical use of AI for FDC in microgrids and requires design choices by
AI practitioners and domain experts. Neglecting this balance or shifting
it too much to one side of the spectrum exposes advanced microgrids
to structural vulnerabilities.

To design less vulnerable advanced microgrids in the future and
ctualise the potential increase in adaptive capacity resulting from
I-based methods, research suggests a prospective development path.
I-based methods could feasibly complement rule-based models in a
ybrid control scheme, if technologies like 5G improve on the pro-
ess of real-time data collection by intelligent electronic devices and
he subsequent communication to a central controller (Gutierrez-Rojas

et al., 2021). There, the input could be processed by a neural network
and the protection setting updated with the help of another AI method
e.g. support vector machine) (Lin et al., 2019).

6.3. Energy management and points of control

The Energy Management System fulfils another critical function for
he microgrid. It manages its power flow by coordinating distributed

energy resources and the loads based on operational goals (Zia et al.,
2018). These operational goals include the minimisation of outages
and stable control of renewable energy sources, but also economic and
ecological aspects. The number of and balance between operational
goals can change over time since they typically entail trade-offs. AI
practitioners and domain experts need to be mindful of such changes
and trade-offs. They need to make shifts in the relative weight of
specific goals explicit, since the goals have to be implemented in the
process of (re-)training AI models.

The EMS in advanced microgrids typically consists of decision-
aking modules, which encompass data monitoring and analytics,

orecasting, optimisation and real-time control geared towards the
perational goals. Because of its coordination function, the design of
n EMS directly concerns the points of control in the system. It can
rioritise different loads by categorising them, for example into critical
oads, which are energy demands that have to be met at all times, and
ontrollable loads, which are more flexible in terms of demands (Wang

et al., 2019b; Bagherian and Tafreshi, 2009). Accordingly, several
loads could be flexibly curtailed during disruptions that require time-
ritical decisions (Zia et al., 2018). While designing AI modules as

Energy Management System (EMS)-controllers, AI practitioners and
omain experts have to consider two points in particular: Firstly, the

criteria for these categories may change over time (Alahmed and Al-
Muhaini, 2020). Secondly, such categorisations are not just technical
but social. They imply a prioritising of certain energy users over others
uring disruptions. An AI-enhanced EMS will derive its categories for
rioritisation from the historical data of the system on which the model
s trained. It can therefore reproduce historical biases present in the
8 
data, and, for example, continue to categorise certain energy demands
as critical, although actual requirements have changed as part of the
structural dynamics of the overall system.

The literature on EMS control distinguishes between centralised
and decentralised control architectures, with the latter varying in the
extent of decentralisation (Meng et al., 2016; Zia et al., 2018). Central
control is mostly suitable for small-scale installations, microgrids where
security or privacy is a priority, and microgrids whose setup is not
xpected to change significantly (Meng et al., 2016), i.e. setups with

low structural dynamicity. The limits to the use of AI in centralised
EMS control are similar to those observed for fault detection, such as
longer computing times and problems to adapting the system when
decentralised energy resources are added or removed. Current research
suggests additional limitations: uncertainties that result from the fluc-
tuations of distributed energy resources (Espín-Sarzosa et al., 2020) and
the lack of stability, since the failure of a centralised EMS would result
n the breakdown of the whole system (Zia et al., 2018; Meng et al.,

2016).
Zia et al. (2018) state in their extensive literature review that the

current research focus shifts from centralised control schemes towards
decentralised control in more recent research, due to the aforemen-
tioned constraints. Decentralised control can take the form of a multi-
agent system in which multiple control agents interact with each
other (Jimeno et al., 2011) and the environment to achieve both
local and global objectives. Research has in particular proposed AI
approaches based on multi-agent systems (Tazi et al., 2020; Bourakadi
et al., 2020; Harrold et al., 2022).

As information is processed locally, decentralisation limits the com-
lexity and the operational system dynamics that any single controller
aces. Compared to a centralised EMS, the mode of control is looser
y avoiding a single point of failure and the adaptive capacity is
igher as the local controllers maintain operational flexibility during
isruptions of their central EMS. Decentralised control can also better
eal with structural system dynamics, as it is possible to add com-
onents without major revisions to the overall design. However, the
ecentralised points of control and their local process models require
eliable synchronisation. Consequently, the communication network
ecomes a crucial factor for the system’s safety and stability (Zia et al.,

2018). Proposals for hybrid architectures, which introduce a supervisor
gent that observes the whole microgrid but does not interfere with
ocal agents (Tazi et al., 2020), indicate that, similar to fault detection,

the appropriate balance between centralised and decentralised control
s a key challenge for AI design and implementation. AI practitioners
nd domain experts cannot design such a balance and assume it to be

continuously appropriate for the system operation as a whole. As the
MS fulfils the critical function of supervisory control, it is necessary to

monitor any changes that may require a different balance in the points
of control.

What is not discussed in the literature are consequences of the in-
teraction between an AI-enhanced EMS and other AI-enhanced critical
functions, such as forecasting and fault detection, in the microgrid.
Although the use of AI for each function is supposed to increase the
adaptive capacity of the whole system, this result is far from guaranteed
when several AI-based components are combined. The layering of AI-
based components in an advanced microgrid increases complexity and
tightens the mode of control. An EMS relies on proper output from fore-
asting and fault detection, while these subordinate functions depend
n a reliable EMS. If some or all of these modules employ more or less

opaque AI models, the result could be cascading failures throughout
the system once one of the modules fails to work reliably. Model
degradation and concept drift decrease the reliability of AI models over
time (Vela et al., 2022). AI practitioners and domain experts would
need to keep attention to the specific re-training needs of each AI-
enhanced module and how their interaction plays out in operation,
which is a demanding task. Moreover, even if all modules work reliably
throughout their lifetime, hazardous system states could build up from
nforeseen feedback loops, as Leveson et al. (2009) have shown for

complex systems in general.
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7. Discussion

The promise of AI for advanced microgrids lies in managing the
complex interactions between energy resources, storage and energy
use, as well as the high dynamicity of the overall system in operation.
Compared to the capabilities of human operators, AI models are tightly
oupled due to their underlying deterministic set-up. However, the

mode of control is a question that pertains to the whole system and
ot only some of its components, and it is a matter of degree (Perrow,

1999). As the example of advanced microgrids has shown, the inte-
ration of AI does not amount to a tightly coupled mode of control
or the whole system. On one hand, the critical functions for which
ts use is foreseen, namely short-term load forecasting, fault detection
nd energy management, tend to loosen the mode of control in the

microgrid. They provide time to adequately respond in advance to
change the order of sequences and make use of alternative methods
(STLF), decouple faulty components from the microgrid and decouple
the microgrid from a failing main grid (FDC) and they enable the
prioritisation of loads (EMS). The overall mode of control in the socio-
technical system is therefore a result of various design choices, made
by AI practitioners and domain experts, that concern the interaction of
AI-enhanced components with other parts of the system.

The analysis of this example has, however, identified three main
challenges that so far hinder the use of AI in microgrids but also
have implications beyond it. The first challenge concerns the structural
dynamicity of the overall system. When energy resources, for example
residential solar installations, are to be added to or removed from an
dvanced microgrid, the components for forecasting or fault detection
ust be able to accommodate these changes. However, AI, especially

n the case of the commonly used artificial neural networks, are not
intrinsically adaptive. This problem with structural dynamicity reaches
beyond the case of microgrids, since it concerns a feature of AI methods.
Artificial neural networks are generally very sensitive to small changes
in input data distributions, an effect known as concept drift (Widmer
and Kubat, 1996; Tsymbal, 2004). They also have issues with producing
reliable uncertainties and cannot reliably create information about
whether uncertainties are due to model imperfections or noisy data, or
due to never having encountered the input data before (Chua et al.,
2023). Artificial neural networks consequently often do not register
when a system state is beyond their capacities to deal with it. In
combination with the sensitivity to changes in input data distribution,
his makes for a scenario where it is not possible to know from the AI’s

output alone when it must be retrained for new, shifted input data. This
lack of reflexivity regarding the distinction between operational and
structural dynamicity is something in which AI controllers fundamen-
tally differ from human operators. This has implications for the notion
of adaptive capacity, adopted from research on HROs (Section 3). For
AI enhancement of socio-technical systems, there are two different
orms of process modelling and adaptation:

Adaptive operation is characterised by responses to events within the
scope of system design.

Adaptive restructuring is characterised by responses to events that
transcend the boundaries of adaptive operation. Consequently,
AI controllers must be retrained and/or the overall system must
be redesigned (e.g. conventional methods or human control)

Although AI facilitates adaptive operation thanks to more detailed
rocess models of variable operations, adaptive restructuring poses a

considerable challenge. The latter continues to be the purview of AI
practitioners and domain experts, who have to retrain the AI models.

daptive restructuring in response to changes in the topology of the
verall system is still faster, compared to models relying on explicit

configuration by engineers. It can be particularly fast if a simulation
or digital twin of the system exists. However, this acceleration requires
mindfulness (Weick and Sutcliffe, 2006) on the part of AI practitioners
9 
and domain experts, as constant retraining runs the risk of errors during
every iteration. Moreover, they need to keep in mind that simulations
can deviate from actual system states.

Provided AI practitioners and domain experts have an extensive
data pool available to them and mindfully select relevant variables,
he scope of adaptive operations of AI enhanced systems could be
idened, thereby potentially reducing the necessary frequency of re-

training. For instance, by first training an AI-based forecasting model
on mindfully selected data from regions with similar conditions and
potentially higher weather extremes, the model can be primed to
handle a high operational system dynamicity before being fine-tuned
to the given microgrid. Such a procedure, known as transfer learning,
has long been established within AI research and Zhuang et al. (2020).

nother approach to facilitate adaptive restructuring would presuppose
 solution to the problems with reliable uncertainties in ANNs. Then

AI practitioners and domain experts could retrain an artificial neural
network right before the input data drifts out of acceptable operational
limits.

The second challenge for AI enhancement concerns the points of
control in the system. In contrast to human operators, any flexibility of
a system’s decision hierarchy has to be designed in advance in the case
of AI controllers. Our analysis suggests that choices regarding points
f control affect adaptive operations at different hierarchical control
evels differently.

Upper-level adaptive operation involves system-wide process mod-
elling and coordination of control responses. It is improved by
centralised points of control.

Lower-level adaptive operation involves fine-grained local process
models and rapid control responses. It is improved by decen-
tralised points of control.

A trade-off between upper-level and lower-level adaptive operations
s consequently inevitable. Proposals for hybrid control schemes in fault

detection and energy management, where central and decentralised AI
controllers are combined, indicate that it is possible to strike a bal-
nce and implement a flexible control hierarchy, including lower level
utonomous control. Yet, determining the right balance for a socio-
echnical system will continue to pose problems for AI practitioners and

domain experts.
The third challenge is the ensuing complexity when several AI

omponents are to be integrated into the socio-technical system. Our
nalysis encountered it as an open question with regard to the energy
anagement system in advanced microgrids. Proposals for AI enhance-
ent address it in isolation. They do not consider the possibility that

unctions subordinate to energy management, such as forecasting and
ault detection, could be enhanced by AI concurrently. In the layering
f AI modules lies a source of fatal structural vulnerabilities if no cor-
esponding countermeasures are implemented. These countermeasures
ould amount to a mindful design (Salovaara et al., 2019) that takes

into account the descriptors of structural vulnerability in the following
ways:

• Map and continuously monitor any interdependencies between
the AI modules and other system components to prepare for
complex interactions and unforeseen feedback loops.

• Establish points of control that strike an appropriate balance be-
tween a coordinating central controller with system-wide aware-
ness and decentralised control devices for swift responses based
on a granular process model (corresponding with the second chal-
lenge). This would also enable access to more direct information,
counteracting the adverse effects of complexity.

• Design for redundancies and substitutions. Superordinate con-
trollers in particular would require such measures to maintain
their critical function. This could mean that a conventionally
programmed controller, not based on AI, takes over control or the
function is temporarily delegated to all decentralised controllers
(e.g. in a multi-agent system).
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Fig. 2. Template for mindfully designing AI enhancement in order to avoid structural
ulnerabilities. Colours indicate the different descriptors.

• Implement a safe fail mechanism to allow for operations to stop in
a reasonable manner, initiating an examination and intervention
by human operators (Varshney and Alemzadeh, 2017). The results
of this examination should inform AI practitioners and domain
experts preparing a retraining, ensuring that they are mindful of
the component interaction that led to the safe fail.

• Reflect on initial operational goals and on how they have changed
until the moment of retraining.

Although these countermeasures are most crucial when several AI
modules interact within a socio-technical system, they also offer guid-
ance for reviewing and reflecting design choices about implementing
AI in systems more generally. Such a review is particularly helpful
given the widespread enthusiasm for AI solutions. It may crowd out
reflection on how desirable such solutions actually are for the system
in question. Based on our analysis, we propose the following steps to
encourage AI practitioners and domain experts to systematically reflect
on the consequences of redesigning a socio-technical system for more
autonomous operations by integrating AI controllers:

1. Identify the controllers that are under consideration for AI en-
hancement, map their known interactions with other system
elements.

2. Check whether AI enhancement actually entails a plausible
promise to improve the system with regard to at least one
descriptor. If not, clarify for what other reasons, not related to re-
liability and safety, AI enhancement is considered (e.g. expected
cost-savings).
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3. Apply the descriptors to characterise the degree of complexity,
points of control, system dynamics, mode of control and adaptive
capacity (see Table 1).

4. Reflect on which descriptors you can influence to avoid struc-
tural vulnerabilities due to AI.

Fig. 2 provides a template for these steps for a mindful design
process. Step 1 entails a check on how controllers interact with tech-
nical components, but also with the social actors depicted in Fig. 1.
Step 2 is a reminder to clarify the expectations regarding the benefits
of introducing AI into the system. Step 3 and 4 directly incorporate
the results of the analysis presented in Section 6 and of the previous
discussion: As the introduction of AI tends to increase complexity, due
to not executing a fixed programme, its implementation is the more
challenging the more complex the overall system already is. For a
less complex system, centralisation in the points of control allows for
optimising the fulfilment of operational goals. If the system is rather
complex, centralised control is not feasible due to reliability problems
and decentralised points of control are preferable. The dynamicity of
the system has to be considered both in operation and over longer time
horizons. High operational dynamicity requires more and more varied
data for the training of AI to widen the boundaries of safe operation.
High structural dynamicity raises the question of how to facilitate the
restructuring of the overall system. Finally, if the system is tightly
coupled it is crucial to consider the aforementioned countermeasures
and establish a flexible control hierarchy between the upper and lower
levels of adaptive operations, ensuring that the lower levels are able to
operate autonomously when necessary. In contrast, for loosely coupled
systems the focus can remain on improving system wide-process mod-
elling based on a central controller, i.e. upper-level adaptive operations
and considering countermeasures.

The template offers orientation, but not a fixed rulebook on how
to integrate AI-enhanced components into a socio-technical system. It
is the result of an analysis indicating the importance of organising for
safety when using AI, and a shift towards a mindful design process as a
key path towards this goal. It can be used to reflect in advance on the
consequences that the use of AI may have for a given system, and to
check whether planned adjustments of the system can be expected to
fully mitigate the system-wide effects of AI controllers.

8. Conclusion and outlook

In this work, we have presented an analysis to identify structural
ulnerabilities resulting from the introduction of AI controllers into
ocio-technical systems and used the example of advanced microgrids.
rom this analysis, we have derived design principles for the AI en-
ancement of socio-technical systems that help avoid such structural
ulnerabilities. Our perspective is informed by sociological approaches
o organisational theory (NAT and HRO) and insights from an engi-
eering point of view (STAMP). Building on these approaches, we have
dentified five descriptors, and their respective markers, that help to
nalyse a system with regard to its potential structural vulnerabilities.
y accounting for the interaction between the descriptors, social actors,
uch as AI practitioners and domain experts, can design, maintain
nd organise a safer interplay between AI controllers, alternative solu-
ions, e.g. non-AI-based methods, and other technical components. Our
nalysis reveals latent or unexpected trade-offs that can occur when
ystems are supposed to be enhanced by AI to operate autonomously.
he implications for design processes include new perspectives on
ystem dynamics and dimensions of adaptive capacity. As a result,
he analysis identifies alternative design choices as well as potential
esearch directions that suggest how certain structural vulnerabilities
ould be mitigated in the future.

Our study has limitations. In terms of technology, there are AI
research directions that we have not extensively covered that could
improve the interaction of descriptors in autonomously operating sys-
tems: If the decisions of the AI controllers are explainable or easier to
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interpret, operators, AI practitioners and domain experts could better
identify the boundary violation that led to a malfunction or disaster.

onsequently, they could retrain the AI for a more appropriate pro-
ess model, effectively extending the boundary conditions of adaptive
perations.

In view of the entanglement of technology and social organisation,
e have refrained from addressing event-based vulnerabilities as it
ould affect dynamics of a wider organisational context beyond the

cope of design, implementation, and operation. In principle, it would
e possible to include event-based vulnerabilities in the analysis, for
nstance by relating descriptors to disruptive events. Nevertheless, it
s likely that the descriptors would need to be extended or modified
or this purpose. Most importantly, we have not considered how the
ocial design and technical control of AI-enabled autonomous systems

are embedded in larger socio-technical systems. This would require
he reflection of wider organisational processes as well as different
takeholders (e.g. consumers, users etc.). Research on interactive ma-
hine learning between AI practitioners and users (Amershi et al., 2014)
resents a potential avenue for a more holistic design framework, in-
olving an iterative design process where descriptor interactions could
e applied, reviewed and restructured.

Overall, our analysis builds on the premises of organisational the-
ries to present five key descriptors that capture the emergent effects

on structural vulnerability of component interactions when a system
s transformed by AI. Our approach can be used to guide the design

of systems enhanced by AI controllers in order to organise the process
for safety. Importantly, it also has the potential to open a conversation
between multiple stakeholders with different backgrounds, allowing
them to reflect on whether AI should be introduced into a seemingly
well-understood system. Similarly to the interdisciplinary cooperation
that resulted in this paper, we suggest that the inclusion of social
science perspectives on reliability and safety would be helpful in this
regard.
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Appendix. Table of acronyms

Acronyms

EMS Energy Management System

FDC Fault Detection and Classification

HRO High Reliability Organization

NAT Normal Accident Theory

STAMP System-Theoretic Accident Model and Processes

STLF Short-Term Load Forecasting
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