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Abstract: The subject is a continuous-time second-order damped oscillator whose restoring
force is nonlinear and delayed. It is otherwise called the “sunflower equation.” The goal is to
find a forward invariant set containing the equilibrium, as well as to estimate its domain of
attraction. The aim is for delay-dependent results. We formulate and apply the method of delay-
free comparison systems. Using a reasoning similar to the classical Bendixson pocket principle,
we develop an invariant set estimation algorithm based on the numerical integration of the
comparison system. The approach is nonlocal: we give an example where it handles relatively
large delays and yields an invariant set containing a large periodic trajectory.
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1. INTRODUCTION

A nonlinear oscillator with time delay serves as a simple
model of many dynamical systems in science and engi-
neering, including synchronization networks and power
electronic devices. An oscillator with delayed restoring
force such as ẍ(t) + kẋ(t) + sinx(t − τ) = 0 may occur
due to delayed control action; this equation has also been
named the sunflower equation as it models the circadian
rotation of the sunflower head. Smirnova et al. (2021) give
an overview of known results for the sunflower equation.

Analysis of a nonlinear oscillator near an equilibrium is
often focused first of all on the stability of the equilibrium.
If it is asymptotically stable, then an estimated domain of
attraction is of interest. Such questions can be answered by
linearizing the system. There is a large volume of research
concerning linear delayed oscillators – e.g., see Scholl et al.
(2019) and references therein.

If the equilibrium turns out to be unstable, then the next
question to be answered is whether there exists a certain
region surrounding the equilibrium such that after a small
perturbation the system remains in the region. The goal
is formalized as, firstly, finding a forward invariant set
(also called a “positively invariant set”) containing the
equilibrium and, secondly, estimating a larger set from
which the system is known to converge to the invariant
set. This is the goal we aim for.

We apply the technique of comparison systems. It consists
in designing a simpler system whose solutions bound or
otherwise estimate the solutions of the original system.

⋆ The authors gratefully acknowledge funding by the German
Federal Ministry of Education and Research (BMBF) within the
Kopernikus Project ENSURE “New ENergy grid StructURes for the
German Energiewende” (03SFK1B0-3).

The comparison system may be solvable analytically or nu-
merically, or lend itself to qualitative analysis readier than
the original system. This idea was used by Serebryakova
and Barbashin (1961) to study a couple of interacting mas-
sive points on a circle. A nonlinear term in the equations
was replaced by its bounds – upper or lower depending on
the current state. The resulting simplified system could
be integrated analytically. Its trajectories, in some sense,
bounded the trajectories of the original system. In a more
general case, the method was extended by Belykh (1975)
for the global portrait analysis of a planar time-varying
system using autonomous comparison systems. Later the
approach was generalized to n-dimensional systems where
an (n − 2)-dimensional part is treated as a bounded dis-
turbance of the remaining two-dimensional subsystem –
see the bottom of page iv in Leonov et al. (1992) for
an overview. In Ponomarev et al. (2024) we applied the
technique to the analysis of the periodic solutions of a
phase synchronization system – the so-called phase-locked
loop used, e.g., in power electronics.

An advantage of the comparison system method over
linearization is that the former is nonlocal. Comparison-
based results also often win against Lyapunov’s direct
method due to being less conservative. Indeed, Lyapunov
function design in most practical cases is guided by a
simplification of the system equations. A comparison sys-
tem likely requires less simplification: often it is sufficient
to solve it numerically to obtain an estimation for the
system’s solutions.

The main contribution of the present paper is an extension
of the comparison system technique to time-delay systems.
The idea is to estimate the delayed position of the system
based on its current position. The estimation is then used
to bound the right-hand side, leading to a comparison
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1. INTRODUCTION

A nonlinear oscillator with time delay serves as a simple
model of many dynamical systems in science and engi-
neering, including synchronization networks and power
electronic devices. An oscillator with delayed restoring
force such as ẍ(t) + kẋ(t) + sinx(t − τ) = 0 may occur
due to delayed control action; this equation has also been
named the sunflower equation as it models the circadian
rotation of the sunflower head. Smirnova et al. (2021) give
an overview of known results for the sunflower equation.

Analysis of a nonlinear oscillator near an equilibrium is
often focused first of all on the stability of the equilibrium.
If it is asymptotically stable, then an estimated domain of
attraction is of interest. Such questions can be answered by
linearizing the system. There is a large volume of research
concerning linear delayed oscillators – e.g., see Scholl et al.
(2019) and references therein.

If the equilibrium turns out to be unstable, then the next
question to be answered is whether there exists a certain
region surrounding the equilibrium such that after a small
perturbation the system remains in the region. The goal
is formalized as, firstly, finding a forward invariant set
(also called a “positively invariant set”) containing the
equilibrium and, secondly, estimating a larger set from
which the system is known to converge to the invariant
set. This is the goal we aim for.

We apply the technique of comparison systems. It consists
in designing a simpler system whose solutions bound or
otherwise estimate the solutions of the original system.
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Baden-Württemberg, Germany (e-mail: anton.ponomarev@kit.edu,

veit.hagenmeyer@kit.edu, lutz.groell@kit.edu).

Abstract: The subject is a continuous-time second-order damped oscillator whose restoring
force is nonlinear and delayed. It is otherwise called the “sunflower equation.” The goal is to
find a forward invariant set containing the equilibrium, as well as to estimate its domain of
attraction. The aim is for delay-dependent results. We formulate and apply the method of delay-
free comparison systems. Using a reasoning similar to the classical Bendixson pocket principle,
we develop an invariant set estimation algorithm based on the numerical integration of the
comparison system. The approach is nonlocal: we give an example where it handles relatively
large delays and yields an invariant set containing a large periodic trajectory.

Keywords: Time-delay systems, nonlinear systems, sunflower equation, oscillations, invariant
set, stability, numerical analysis, comparison systems.

1. INTRODUCTION

A nonlinear oscillator with time delay serves as a simple
model of many dynamical systems in science and engi-
neering, including synchronization networks and power
electronic devices. An oscillator with delayed restoring
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system. On our way to attain delay-dependent results,
the primary challenge is to formulate conditions on the
infinite-dimensional state of the system in such a way that
the estimated delayed position is close to the current posi-
tion when delay is small – otherwise the results would be
delay-independent. We overcome the challenge, essentially,
by letting the system evolve for one delay period due to its
own dynamics and assessing its state after this transition
time. We arrive at an implicit definition of the invariant set
in the form: “a given initial state belongs to the invariant
set if the solution it generates during one delay period
satisfies certain constraints.”

In Section 2 we describe the time-delay system that is
investigated, specify the notion of a forward invariant set,
and formulate the goal of the study. In Section 3, the
delay-free comparison system is introduced, and a concept
of invariant pocket is formulated to enable qualitative
analysis in the spirit of the classical “Bendixson pocket”
argument. Section 4 contains the main result: an algorithm
for the construction of an invariant set and estimation of
its domain of attraction. In Section 5 we provide numerical
examples to showcase the algorithm.

2. PROBLEM STATEMENT

2.1 Nominal System

Let us begin by considering the nonlinear planar system

ẋ = y, (1a)

ẏ = −f(x)− ky (1b)

where k > 0 is a constant and f is a bounded analytic
function satisfying

f(0) = 0, (2a)

xf(x) > 0 in a neighborhood of x = 0. (2b)

A typical example of (1) is the mathematical pendulum
with friction where the restoring force f(x) = sinx.

2.2 Assumption of Oscillatory Behavior

The qualitative behavior of system (1) near the equilib-
rium (0, 0) depends on the eigenvalues of the linearization
at the equilibrium. The system can be underdamped (os-
cillatory) or overdamped. For the lack of space, we limit
our attention to the underdamped case. It is characterized
by the condition

k2 < 4f ′(0) (3)

which means that the origin of (1) is a stable focus (spiral).

2.3 System with Delay

By adding a time delay τ > 0 to the restoring force f in
(1) we create the modified system

ẋ(t) = y(t), (4a)

ẏ(t) = −f
(
x(t− τ)

)
− ky(t), t ≥ 0. (4b)

The state of the system at time t is the history of the
x coordinate over the past τ seconds, together with the
current value of the y coordinate: the tuple(

xt, y(t)
)

(5)

where

xt : [−τ, 0] → R,
θ → x(t+ θ). (6)

The state space S is the space of tuples (5).

In what follows we shall assume that the initial state at
t = 0 generates a unique smooth solution for all t ≥ 0.
This is ensured, e.g., by assuming that the initial history
x0 is a continuous function. Accordingly, we postulate

S = C0
(
[−τ, 0],R

)
× R (7)

where C0 is the space of continuous functions.

2.4 Invariant Sets

Let us first mention two concepts of a forward invariant
set found in the literature. The first one is common for
abstract infinite-dimensional systems.

Definition 1. A set D̃ ⊂ S is forward invariant if every
solution that starts in this set at t = 0 remains there for
all t > 0.

Definition 1 is in line with the finite-dimensional theory.
However, it specifies an infinite-dimensional set which may
be difficult to describe practically. A typical estimation of
it by a normed ball is sensitive to the choice of the norm,
as explained in Scholl et al. (2020).

For the special class of time-delay systems, the following
definition is often assumed.

Definition 2. A set D ⊂ R2 is forward invariant for system
(4) if for every initial state that is pointwise in D, i.e.,(

x(s), y(0)
)
∈ D for all s ∈ [−τ, 0] (8)

the corresponding future trajectory remains in D:(
x(t), y(t)

)
∈ D for all t > 0. (9)

Definition 2 is used, e.g., in Dórea et al. (2022) and
explored in detail by Laraba et al. (2016) in the discrete-
time setting. It describes a set D which is two-dimensional
and thus certainly convenient in practice but is much
narrower than its infinite-dimensional counterpart.

In the forthcoming discussion, another notion of a forward
invariant set is adopted. It combines the above definitions
in the following manner.

Definition 3. We say that D̃ ⊂ S is a forward invariant
set associated with a set D ⊂ R2 if for every initial state(

x0, y(0)
)
∈ D̃ (10)

the corresponding trajectory satisfies(
x(t), y(t)

)
∈ D for all t ≥ τ. (11)

Note that the system is required to reach D and stay there
only after one delay period.

Definition 3 describes an infinite-dimensional set D̃. How-
ever, as will be seen later, our construction of D̃ is such
that condition (10) can be verified in practice through
numerical integration of (4) over the finite time [0, τ ].
This test can be further simplified via various conservative
estimations of the solutions of (4) which would result in a

fully analytic description of D̃.

Remark 4. Definition 3 “implies” Definition 1 and “is
implied” by Definition 2 in the following sense:
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• If D̃ ⊂ S is the maximal forward invariant set
associated with D ⊂ R2 per Definition 3 then it
is forward invariant by Definition 1. Indeed, if (10)
implies (11), then every future state (xt, y(t)), by the
semigroup property of (4), generates the same rest of
trajectory as (x0, y(0)) and thus also implies (11). If

D̃ is maximal, this verifies (xt, y(t)) ∈ D̃ and shows

that D̃ is forward invariant by Definition 1.
• If D ⊂ R2 is forward invariant by Definition 2 then

the set D̃ ⊂ S described by (8) is a forward invariant
set associated with D according to Definition 3, even
with “t ≥ 0” in (11) instead of “t ≥ τ .”

2.5 Main Goal

Our goal is to localize the solutions of the system (4) in
a neighborhood of the equilibrium (0, 0) by tackling the
following problems:

1. For system (4), construct a forward invariant set

D̃ ⊂ S associated with a set D ⊂ R2 according to
Definition 3 such that (0, 0) ∈ D.

2. Given an invariant set D̃ associated with D, estimate
its domain of attraction. Specifically, find a larger in-
variant set such that all solutions it produces converge
into D after a finite time.

3. PRELIMINARIES

3.1 Comparison System

Before we formulate the comparison system for (4) it is
necessary to specify a restriction of the state space for
which the intended comparison will be valid. This is done
in the following definition.

Definition 5. Given a set D ∈ R2, we say that the tuple
(ξ(·), η) ∈ S is a D-self-consistent state of system (4) if
there exists an initial state (x0, y(0)) ∈ S such that the
corresponding solution (xt, y(t)) satisfies two conditions:

• (x(t), y(t)) ∈ D for all t ∈ [0, τ ];
• (xτ , y(τ)) = (ξ(·), η).

In other words, a D-self-consistent state is the one pro-
duced by the system itself, and in such a way that the
trajectory via which it is produced remains in the set D.
This concept enables the following statement.

Lemma 6. Consider a box

B =

{
xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

}
⊂ R2 (12)

and a B-self-consistent state (xt, y(t)) of (4). It holds that

x(s) ∈ [xmin, xmax] ∩ [x(t)− τymax, x(t)− τymin] (13)

for all s ∈ [t− τ, t].

Proof. Since (xt, y(t)) is a B-self-consistent state, we have
x(s) ∈ [xmin, xmax] and

d

ds
x(s) ∈ [ymin, ymax] (14)

for all s ∈ [t− τ, t]. The estimation follows trivially.

Lemma 6 provides an estimation of x(t − τ) via x(t).
This allows an estimation of the right-hand side of (4)

via x(t), leading to the following definition of a delay-free
comparison system.

Definition 7. The delay-free comparison system for (4) in
the box (12) is the system

ẋ = y, (15a)

ẏ =

{
−fmin(x) − ky, y ≥ 0,

−fmax(x)− ky, otherwise
(15b)

where

fmin(x) = min
ξ∈X (x)

f(ξ), fmax(x) = max
ξ∈X (x)

f(ξ) (16)

and

X (x) = [xmin, xmax] ∩ [x− τymax, x− τymin]. (17)

Note that (15) is a system of ordinary differential equations
with, generally, a discontinuous right-hand side. However,
at least for small τ it permits safe numerical integration
starting from every point in a neighborhood of (0, 0),
except for a small segment of the x axis containing 0. We
claim it for the following reason.

Proposition 8. System (15) has only piecewise smooth
Carathéodory solutions starting from almost every initial
point – specifically, excluded are initial points (x, 0) such
that the interval [x− τymax, x− τymin] contains a zero of
the function f .

Proof. The set X (x) is compact and changes smoothly
with x. Function f is assumed to be analytic. Therefore,
the extrema fmin and fmax are smooth with respect to x
by Theorem 6.2 from Fiacco and Ishizuka (1990). Thus,
the only switching surface in (15) is the line y = 0. On
both sides of the line the velocity vector points either
in the same direction or in the opposite directions away
from the line. The points with opposing velocities are
excluded by the Proposition. Starting from every other
point, the solution of (15) proceeds piecewise smoothly in
the Carathéodory sense – it does not reach the excluded
points and thus does not go into the sliding mode on the
switching surface, see Cortés (2008). The proof is thus
complete.

Remark 9. Delay-free comparison system (15) is an ana-
logue of the autonomous comparison systems (A+) and
(A−) of Belykh (1975) – it is similar to (A+) for y ≥ 0
and to (A−) for y < 0.

The geometric meaning of (15) is explained by the follow-
ing lemma.

Lemma 10. Given a box B and a point (x, y) ∈ B,
suppose (ξ(·), y) is a B-self-consistent state of the time-
delay system (4) with ξ(0) = x. Then the trajectory of
(4), as it originates from (ξ(·), y), crosses the trajectory
of the comparison system (15) starting from (x, y) in the
direction “left to right,” which is to say that the shortest
rotation from the velocity of (15) to the velocity of (4) at
(x, y) is clockwise, unless the velocities are collinear.

Proof. The proof is illustrated by Fig. 1. Owing to the
B-self-consistency of (ξ(·), y), the historical value ξ(−τ)
can be estimated from ξ(0) = x by Lemma 6 which yields
ξ(−τ) ∈ X (x). The initial velocity of (4) starting from the
state (ξ(·), y) is the vector[

y
−f

(
ξ(−τ)

)
− ky

]
(18)
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• If D̃ ⊂ S is the maximal forward invariant set
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is forward invariant by Definition 1. Indeed, if (10)
implies (11), then every future state (xt, y(t)), by the
semigroup property of (4), generates the same rest of
trajectory as (x0, y(0)) and thus also implies (11). If

D̃ is maximal, this verifies (xt, y(t)) ∈ D̃ and shows

that D̃ is forward invariant by Definition 1.
• If D ⊂ R2 is forward invariant by Definition 2 then

the set D̃ ⊂ S described by (8) is a forward invariant
set associated with D according to Definition 3, even
with “t ≥ 0” in (11) instead of “t ≥ τ .”

2.5 Main Goal
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a neighborhood of the equilibrium (0, 0) by tackling the
following problems:

1. For system (4), construct a forward invariant set

D̃ ⊂ S associated with a set D ⊂ R2 according to
Definition 3 such that (0, 0) ∈ D.

2. Given an invariant set D̃ associated with D, estimate
its domain of attraction. Specifically, find a larger in-
variant set such that all solutions it produces converge
into D after a finite time.

3. PRELIMINARIES

3.1 Comparison System
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necessary to specify a restriction of the state space for
which the intended comparison will be valid. This is done
in the following definition.

Definition 5. Given a set D ∈ R2, we say that the tuple
(ξ(·), η) ∈ S is a D-self-consistent state of system (4) if
there exists an initial state (x0, y(0)) ∈ S such that the
corresponding solution (xt, y(t)) satisfies two conditions:

• (x(t), y(t)) ∈ D for all t ∈ [0, τ ];
• (xτ , y(τ)) = (ξ(·), η).

In other words, a D-self-consistent state is the one pro-
duced by the system itself, and in such a way that the
trajectory via which it is produced remains in the set D.
This concept enables the following statement.

Lemma 6. Consider a box

B =

{
xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

}
⊂ R2 (12)

and a B-self-consistent state (xt, y(t)) of (4). It holds that

x(s) ∈ [xmin, xmax] ∩ [x(t)− τymax, x(t)− τymin] (13)

for all s ∈ [t− τ, t].

Proof. Since (xt, y(t)) is a B-self-consistent state, we have
x(s) ∈ [xmin, xmax] and

d

ds
x(s) ∈ [ymin, ymax] (14)

for all s ∈ [t− τ, t]. The estimation follows trivially.

Lemma 6 provides an estimation of x(t − τ) via x(t).
This allows an estimation of the right-hand side of (4)

via x(t), leading to the following definition of a delay-free
comparison system.

Definition 7. The delay-free comparison system for (4) in
the box (12) is the system

ẋ = y, (15a)

ẏ =

{
−fmin(x) − ky, y ≥ 0,

−fmax(x)− ky, otherwise
(15b)

where

fmin(x) = min
ξ∈X (x)

f(ξ), fmax(x) = max
ξ∈X (x)

f(ξ) (16)

and

X (x) = [xmin, xmax] ∩ [x− τymax, x− τymin]. (17)

Note that (15) is a system of ordinary differential equations
with, generally, a discontinuous right-hand side. However,
at least for small τ it permits safe numerical integration
starting from every point in a neighborhood of (0, 0),
except for a small segment of the x axis containing 0. We
claim it for the following reason.

Proposition 8. System (15) has only piecewise smooth
Carathéodory solutions starting from almost every initial
point – specifically, excluded are initial points (x, 0) such
that the interval [x− τymax, x− τymin] contains a zero of
the function f .

Proof. The set X (x) is compact and changes smoothly
with x. Function f is assumed to be analytic. Therefore,
the extrema fmin and fmax are smooth with respect to x
by Theorem 6.2 from Fiacco and Ishizuka (1990). Thus,
the only switching surface in (15) is the line y = 0. On
both sides of the line the velocity vector points either
in the same direction or in the opposite directions away
from the line. The points with opposing velocities are
excluded by the Proposition. Starting from every other
point, the solution of (15) proceeds piecewise smoothly in
the Carathéodory sense – it does not reach the excluded
points and thus does not go into the sliding mode on the
switching surface, see Cortés (2008). The proof is thus
complete.

Remark 9. Delay-free comparison system (15) is an ana-
logue of the autonomous comparison systems (A+) and
(A−) of Belykh (1975) – it is similar to (A+) for y ≥ 0
and to (A−) for y < 0.

The geometric meaning of (15) is explained by the follow-
ing lemma.

Lemma 10. Given a box B and a point (x, y) ∈ B,
suppose (ξ(·), y) is a B-self-consistent state of the time-
delay system (4) with ξ(0) = x. Then the trajectory of
(4), as it originates from (ξ(·), y), crosses the trajectory
of the comparison system (15) starting from (x, y) in the
direction “left to right,” which is to say that the shortest
rotation from the velocity of (15) to the velocity of (4) at
(x, y) is clockwise, unless the velocities are collinear.

Proof. The proof is illustrated by Fig. 1. Owing to the
B-self-consistency of (ξ(·), y), the historical value ξ(−τ)
can be estimated from ξ(0) = x by Lemma 6 which yields
ξ(−τ) ∈ X (x). The initial velocity of (4) starting from the
state (ξ(·), y) is the vector[

y
−f

(
ξ(−τ)

)
− ky

]
(18)

Fig. 1. Illustration for the proof of Lemma 10.

where the term f(ξ(−τ)) is estimated by [fmin(x), fmax(x)]
giving rise to the cone of “hypothetical velocities” of (4),
shown in the figure. If y ≥ 0, the comparison system (15)
assumes f = fmin(x) and follows the upper direction of
the cone; otherwise, the lower one. Since both (4) and (15)
move rightward if y > 0, vertically if y = 0, and leftward
if y < 0, this finishes the proof.

3.2 Invariant Pocket

We construct an invariant set and its estimated domain of
attraction using regions formed by the trajectories of the
comparison system (15). Let us define the basic building
block of this construction, called an invariant pocket.

The following explanation is illustrated by Fig. 2. Recall
that the delay-free system (1) is assumed to be oscillatory
by virtue of condition (3). Consider a box B given by
(12) which contains the origin. Due to continuity, at least
for small τ , there exists a trajectory Γ of the comparison
system (15) which starts at a point (x1, 0) with x1 > 0,
makes a turn around the origin and returns to the positive
x axis at x = x2 < x1. Together with the segment [x2, x1],
trajectory Γ bounds a region which we name P. It is
sometimes referred to as a Bendixson pocket – see p. 170
in Petrovski (1966).

Lemma 10 states that every trajectory of the time-delay
system (4) starting from a B-self-consistent initial state
(ξ(·), η) whose head (ξ(0), η) is on Γ, must certainly enter
the pocket P. This fact is symbolized in Fig. 2 by arrows
crossing Γ into P. As for the arrow that crosses the
segment [x2, x1] downward, it represents another condition
which makes the pocket P “invariant.”

Definition 11. Consider a Bendixson pocket P constructed
as described above inside a box B defined by (12). We say
that the pocket P is invariant relative to the box B if
f(·) > 0 on the interval [x2 − τymax, x

1 − τymin].

Such a pocket is invariant in the following sense.

Lemma 12. Suppose that a pocket P is invariant relative
to a box B. Every trajectory of the time-delay system
(4) starting from a B-self-consistent state (ξ(·), η) with
(ξ(0), η) ∈ P remains in P in the future.

Fig. 2. Invariant pocket P relative to the box B.
Proof. Consider the pocket P as pictured in Fig. 2 and
suppose that the head (ξ(0), η) of the initial state lies on
the segment [x2, x1] of the x axis. Under the condition
prescribed by Definition 11, it holds that fmin(x) > 0 for
all x ∈ [x2, x1] where fmin(x) comes from Definition 7. This
verifies that (4) crosses the x-axis segment of the pocket’s
boundary downward and into P. As explained previously,
the curve Γ is also crossed inward which completes the
invariance proof.

4. MAIN RESULT

Using the concept of an invariant pocket, we propose the
following numerical algorithm to construct an invariant
set of the time-delay system (4) and estimate its domain
of attraction. The algorithm is illustrated by Fig. 3:

1. Begin by constructing an invariant pocket P1 in a box
B1. This can be done as follows:
• choose an initial point (x1, 0) and generate a
Bendixson pocket P1,0 via numerical integration
of the delay-free system (1) starting from (x1, 0);

• define the smallest box B1,0 that contains P1,0;
• based on the box B1,0, generate a new (larger)
pocket P1,1 from the same initial point (x1, 0) by
integration of the comparison system (15);

• contain P1,1 in the smallest box B1,1;
• based on B1,1, generate P1,2 by integration of the

comparison system;
• contain P1,2 in the smallest box B1,2;
• repeat until the process practically converges to
a pocket P1,∞ =: P1 and box B1,∞ =: B1.

If the process does not converge (e.g., the trajectory of
(15) may fail to turn around the origin or its endpoint
may fall further from the origin than x1), then the
initial point (x1, 0) must be placed closer to the origin.
Denote (x2, 0) the endpoint of the trajectory that

forms the pocket P1.
2. Using the same box B1, generate another invariant

pocket P2 bounded by the trajectory of (15) starting
from (x2, 0) and ending at some point (x3, 0). Define
B2 as the smallest box containing P2.

3. Using B2, generate P3 and define B3, etc.
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Fig. 3. A sequence of three invariant pockets and corre-
sponding boxes produced by the numerical algorithm.

It follows from the previous section that the algorithm is
feasible, at least for small τ and in a neighborhood of the
origin. More precisely, see the following remark.

Remark 13. The success of the algorithm is decided at its
first step where the trajectory of (15) starting at (x1, 0)
should encircle the origin and form the pocket P1. It is
guaranteed to happen for small τ and x1. An initial guess
for τ and x1 that are “small enough” can be obtained,
e.g., by linearization at the origin. These values can then
be gradually increased until the first step of the algorithm
starts failing. If the first step passes then the output of the
algorithm is valid.

The algorithm outputs a sequence of nested invariant
pockets Pi and boxes Bi. The structure of the sequence
and its relation to our goals can be summarized as follows:

• The first pocket P1 is invariant relative to the box B1.
• Each of the following pockets Pi (i ≥ 2) is invariant

relative to Bi−1 by construction, and is also invariant
relative to Bi since Bi ⊂ Bi−1.

• Ideally, we would like to end up with the largest
possible pocket P1 and the smallest possible PN after
a large enough number of steps N .

• The last pocket PN implicitly defines a forward

invariant set P̃N ⊂ S of (4). The first pocket P1

defines an estimation P̃1 ⊂ S of the domain of
attraction of P̃N . The exact formulation is contained
in the following main Theorem.

Theorem 14. Consider a sequence of pockets Pi and boxes

Bi =

{
xi
min ≤ x ≤ xi

max

yimin ≤ y ≤ yimax

}
(19)

constructed by the above algorithm (i = 1, 2, . . . , N).
Assume that

f(x) < 0 for all x ∈ [x1
min − τy1max, x

N
min − τyNmin]. (20)

Let P̃i ⊂ S be the set of initial states (x0, y(0)) of the
time-delay system (4) such that the corresponding solution
satisfies (

x(s), y(s)
)
∈ Bi for all s ∈ [0, τ ] (21)

and

(
x(τ), y(τ)

)
∈ Pi. (22)

Then P̃N is a forward invariant set associated with PN

in the sense of Definition 3. Furthermore, P̃1 is an esti-

mation of the domain of attraction of P̃N in the sense of
Section 2.5.

Proof. By definition of P̃i, for every (x0, y(0)) ∈ P̃i the
corresponding state (xτ , y(τ)) of (4) is Bi-self-consistent in
the sense of Definition 5. Furthermore, (x(τ), y(τ)) ∈ Pi.
By Lemma 12 the trajectory of (4) is guaranteed to stay

in Pi after time t = τ . Therefore, P̃i is a forward invariant
set associated with Pi according to Definition 3.

Let us now prove that P̃1 is an estimation of the domain of

attraction of P̃N . Take a solution of (4) starting from P̃1

that has entered P1 and suppose that it never enters P2, so
it remains in the gap P1\P2 (see Fig. 3). Consider a small
ε > 0. The solution cannot remain forever in the part of
the gap where y < −ε since then it moves leftward with
non-zero velocity, and in the same way it cannot remain in
the part where y > ε where it moves rightward. It remains
to show that the solution cannot remain forever in the ε-
neighborhood of the segments [x2, x1] and [x1

min, x
2
min] of

the x axis. From the proof of Lemma 12 the velocity of (4)
points downward on the segment [x2, x1]. By continuity,
the velocity is non-zero in the ε-neighborhood of [x2, x1].
Similarly, from the condition (20) it follows that in the
ε-neighborhood of [x1

min, x
2
min] the velocity is non-zero as

well. Therefore, we conclude that the solution must enter
P2 after a finite time. In the same way, it must enter all
further pockets and eventually PN . The proof is finished.

5. EXAMPLE

Consider (4) with f(x) = sinx, k = 1, and two cases of τ .

The first case (Fig. 4) is τ = 0.8. We implemented the
algorithm of the previous section and observed that the
sequence of pockets Pi shrinks completely down to the
origin as i → ∞. Linearization at the origin shows local
asymptotic stability, see Cooke and Grossman (1982).

Thus, we conclude that the set P̃1 specified by Theorem 14

Fig. 4. Example (τ = 0.8).
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Fig. 3. A sequence of three invariant pockets and corre-
sponding boxes produced by the numerical algorithm.

It follows from the previous section that the algorithm is
feasible, at least for small τ and in a neighborhood of the
origin. More precisely, see the following remark.

Remark 13. The success of the algorithm is decided at its
first step where the trajectory of (15) starting at (x1, 0)
should encircle the origin and form the pocket P1. It is
guaranteed to happen for small τ and x1. An initial guess
for τ and x1 that are “small enough” can be obtained,
e.g., by linearization at the origin. These values can then
be gradually increased until the first step of the algorithm
starts failing. If the first step passes then the output of the
algorithm is valid.

The algorithm outputs a sequence of nested invariant
pockets Pi and boxes Bi. The structure of the sequence
and its relation to our goals can be summarized as follows:

• The first pocket P1 is invariant relative to the box B1.
• Each of the following pockets Pi (i ≥ 2) is invariant

relative to Bi−1 by construction, and is also invariant
relative to Bi since Bi ⊂ Bi−1.

• Ideally, we would like to end up with the largest
possible pocket P1 and the smallest possible PN after
a large enough number of steps N .

• The last pocket PN implicitly defines a forward

invariant set P̃N ⊂ S of (4). The first pocket P1

defines an estimation P̃1 ⊂ S of the domain of
attraction of P̃N . The exact formulation is contained
in the following main Theorem.

Theorem 14. Consider a sequence of pockets Pi and boxes

Bi =

{
xi
min ≤ x ≤ xi

max

yimin ≤ y ≤ yimax

}
(19)

constructed by the above algorithm (i = 1, 2, . . . , N).
Assume that

f(x) < 0 for all x ∈ [x1
min − τy1max, x

N
min − τyNmin]. (20)

Let P̃i ⊂ S be the set of initial states (x0, y(0)) of the
time-delay system (4) such that the corresponding solution
satisfies (

x(s), y(s)
)
∈ Bi for all s ∈ [0, τ ] (21)

and

(
x(τ), y(τ)

)
∈ Pi. (22)

Then P̃N is a forward invariant set associated with PN

in the sense of Definition 3. Furthermore, P̃1 is an esti-

mation of the domain of attraction of P̃N in the sense of
Section 2.5.

Proof. By definition of P̃i, for every (x0, y(0)) ∈ P̃i the
corresponding state (xτ , y(τ)) of (4) is Bi-self-consistent in
the sense of Definition 5. Furthermore, (x(τ), y(τ)) ∈ Pi.
By Lemma 12 the trajectory of (4) is guaranteed to stay

in Pi after time t = τ . Therefore, P̃i is a forward invariant
set associated with Pi according to Definition 3.

Let us now prove that P̃1 is an estimation of the domain of

attraction of P̃N . Take a solution of (4) starting from P̃1

that has entered P1 and suppose that it never enters P2, so
it remains in the gap P1\P2 (see Fig. 3). Consider a small
ε > 0. The solution cannot remain forever in the part of
the gap where y < −ε since then it moves leftward with
non-zero velocity, and in the same way it cannot remain in
the part where y > ε where it moves rightward. It remains
to show that the solution cannot remain forever in the ε-
neighborhood of the segments [x2, x1] and [x1

min, x
2
min] of

the x axis. From the proof of Lemma 12 the velocity of (4)
points downward on the segment [x2, x1]. By continuity,
the velocity is non-zero in the ε-neighborhood of [x2, x1].
Similarly, from the condition (20) it follows that in the
ε-neighborhood of [x1

min, x
2
min] the velocity is non-zero as

well. Therefore, we conclude that the solution must enter
P2 after a finite time. In the same way, it must enter all
further pockets and eventually PN . The proof is finished.

5. EXAMPLE

Consider (4) with f(x) = sinx, k = 1, and two cases of τ .

The first case (Fig. 4) is τ = 0.8. We implemented the
algorithm of the previous section and observed that the
sequence of pockets Pi shrinks completely down to the
origin as i → ∞. Linearization at the origin shows local
asymptotic stability, see Cooke and Grossman (1982).

Thus, we conclude that the set P̃1 specified by Theorem 14

Fig. 4. Example (τ = 0.8).

Fig. 5. Example (τ = 1.4).

is, in fact, an estimation of the domain of attraction of the
origin. To reiterate: the trajectory (xt, y(t)) of (4) starting
from any initial state (x0, y(0)) such that (x(s), y(s)) ∈ B1

for all s ∈ [0, τ ] and (x(τ), y(τ)) ∈ P1 stays in P1 for
t ≥ τ and converges to (0, 0). The black curve in the figure
is a sample trajectory of (4) starting from a sinusoidal
initial state shown by the bold curve. As expected, it goes
through all the pockets and approaches the origin.

The second case (Fig. 5) is τ = 1.4. The pockets do not
shrink to the origin but quickly approach an oval shape.
As we increase τ from 0.8 to 1.4, one pair of eigenvalues at
the origin moves into the right half of the complex plane
which indicates a supercritical Hopf bifurcation, i.e., the
birth of a stable limit cycle near the origin, see Somolinos
(1978). The limit cycle is contained in our pockets which
is confirmed by the sample trajectory. In practice, pocket
P100 is an estimation of the largest oscillation resulting

from a slight disturbance at the origin. The set P̃1 defined
by Theorem 14 estimates the domain of attraction of P100.

6. CONCLUSION

We introduce the concept of a delay-free comparison
system. Based on that, we propose a numerical algorithm
to find a forward invariant set and estimate its domain of
attraction for a nonlinear time-delay system.

Although the algorithm is only proven to be feasible for
small delays, the example shows that it works for sensible
delays and in a moderately large region around the origin.
As a nonlocal technique, it can even generate an invariant
set with large limit cycles inside. In practical terms, this
result brings about, e.g., an estimation of the amplitude
of the possible oscillations near the origin. If the origin
is asymptotically stable, then the method can enlarge the
linearization-based domain of attraction.

In the future, the method can be adapted to distributed
delays and to time-varying systems by incorporating the
classical autonomous comparison system idea of Belykh
(1975). It can be extended to systems of a more general
structure and enhanced by the left and right comparison
systems in the sense of Ponomarev et al. (2024). Further-

more, the method is applicable to the analysis of cycle
slipping, see Smirnova and Proskurnikov (2019).
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