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Abstract 

The sharing of sensitive data increasingly poses privacy risks not only to the disclosing 
individuals, but also to their families and friends. Genetic data sharing is a prime example 
of the tensions between personal and interdependent privacy risks and benefits that 
individuals must trade off when making disclosure decisions. Surprisingly, extant 
research has mostly neglected interdependent privacy-utility trade-offs and focused on 
personal privacy-utility trade-offs in genetic data sharing. We draw on the privacy 
calculus and the concept of interdependent privacy, as well as on construal level theory 
to theorize about the effects of personal and interdependent privacy-utility trade-offs in 
genetic data sharing. To test our hypotheses, we conducted a scenario-based factorial 
survey using contextualized vignettes in a typical genetic data sharing scenario. While 
our results support the hypothesized direct effects of personal and interdependent 
privacy-utility trade-offs, the role of social distance as a moderator within the 
interdependent calculus remains inconclusive. 

Keywords:  interdependent privacy, genetic data sharing, privacy calculus,  
social distance, construal level theory, vignette study 

 

Introduction 
In our ever-digitized world, individuals increasingly share data with third parties that, when shared, might 
not only pose privacy risks to themselves but also privacy risks to their relatives, friends, or acquaintances 
(Franz and Benlian 2022). A prime example of such interdependent privacy risks (i.e., an individual A’s 
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expectation of losses for an individual B, arising due to individual A disclosing their own personal data to a 
third party), is the sharing of genetic data.  

Genetic data are an increasingly affordable (Thiebes et al. 2020) and very rich source of information that 
individuals can exploit to learn more about themselves (Roberts et al. 2017). Beneficial information that 
individuals might learn from their genetic data include disease risks, personal traits, or information about 
ancestry and family relationships. At the same time, sharing genetic data also poses various threats to an 
individual’s privacy (Anderson and Agarwal 2011). Potential negative consequences of genetic data 
disclosure include, for example, social marginalization and stigmatization (Green and Botkin 2003), or 
unsolicited information about genetic predispositions (Middleton et al. 2019). Next to privacy risks for the 
disclosing individual, sharing personal genetic data may also have serious implications for related others, 
especially for blood relatives who share parts of their DNA with the disclosing individual. For example, 
when Joseph James DeAngelo — the infamous Golden State Killer — was charged with first degree murder 
in 2018, he was the first criminal, in a following series of reopened cases, to be identified decades after his 
crimes (Erlich et al. 2018). One of DeAngelo’s distant relatives had used a direct-to-consumer (DTC) genetic 
testing service and uploaded their genetic data to a public online database. Authorities matched that data 
to DNA found at the crime scenes and used it to construct a family tree that eventually led to the 
identification of DeAngelo as the perpetrator more than 40 years after his first murder. While the sharing 
of genetic data has benefited society in the case of DeAngelo, avenues for infringing the privacy of blood 
relatives like those of the original data-sharing individual of genetic data are possible. In a more recent case,  
hackers breached the data of millions of customers of the popular DTC genetic testing service 23andMe, 
supposedly targeting especially Jewish and Chinese customers (Carballo et al. 2024). As a result, customers 
with Jewish heritage, who had originally used the service to connect with relatives, expressed serious 
concerns that their families could become targets of antisemitic hate speech and violence due to the current 
conflict between Israel and Gaza (Carballo et al. 2024). In some cases, however, sharing one’s own genetic 
data might also be beneficial to related others. For example, although men have a much lower risk of 
suffering from breast cancer caused by mutations of the BRCA1/2 genes than women, it is often reasonable 
for them to undergo genetic screening to complete the family anamnesis for their female descendants and 
thereby provide valuable information about their health (Smith et al. 2007). 

Previous research has extensively investigated individuals’ data sharing intentions and decisions in light of 
apparent privacy-utility trade-offs (i.e., cognitive trade-offs made between the benefits and privacy risks of 
sharing personal data with a third party) (Smith et al. 2011), also in the context of genetic data sharing (e.g., 
Samad et al. 2023; Sanderson et al. 2016; Weidman et al. 2019). In doing so, literature has treated privacy-
utility trade-offs as a personal phenomenon that primarily concerns the sharing individuals’ personal 
privacy risks and personal benefits (Bélanger and James 2020), largely neglecting interdependent privacy 
risks and benefits (see Table A.1 in the appendix for a definition of personal and interdependent privacy 
risks and benefits). As such, interdependent privacy-utility trade-offs (i.e., cognitive trade-offs made 
between the benefits and privacy risks for someone else when sharing personal data with a third party) 
remain a nascent stream of research. In terms of genetic data sharing, previous research has also focused 
primarily on personal privacy-utility trade-offs. Despite initial research on interdependent privacy 
considerations in genetic data sharing decisions (e.g., Weidman et al. 2019), previous research has largely 
neglected the possible existence of interdependent privacy-utility trade-offs or has only broadly 
operationalized risk and benefit perceptions as higher-order concepts that encompasses both personal and 
interdependent risks and benefits (Oliver et al. 2012; Sanderson et al. 2017). Thus, there remains a lack of 
comprehensive understanding of how interdependent privacy-utility trade-offs affect the sharing intentions 
of genetic data (Weidman et al. 2019). Especially in comparison to personal privacy-utility trade-offs.  
Furthermore, it is likely that the interdependent privacy-utility trade-offs are not uniform across all types 
of relationships but differ depending on the disclosing individuals’ affectivity and sympathy toward 
potentially affected others (i.e., their social distance (SD) to each other). Extant research shows, for 
example, that individuals feel more obligated to help close family members than distant family members 
(McManus et al. 2021). Likewise, genetic privacy risks are higher for close blood relatives of disclosing 
individuals than for more distant blood relatives because they share larger portions of their DNA (Humbert 
et al. 2013). Yet, previous research on interdependent privacy-utility trade-offs has not yet sufficiently taken 
this into account and has neglected how SD might affect the perceptions of interdependent privacy-utility 
trade-offs and their impact on individuals’ willingness to share (WTS) their (genetic) data. 
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Against the background of these limitations in existing research, we therefore examine the following 
research questions (RQs) in this study: 

RQ1: How do personal and interdependent privacy-utility trade-offs impact individuals’ WTS 
their genetic data? 
RQ2: How does SD moderate the effects of interdependent privacy-utility trade-offs on 
individuals’ WTS their genetic data? 

To answer our research questions, we leverage the privacy calculus as our theoretical lens and augment it 
with the concept of interdependent privacy. Accordingly, we hypothesize the effects of personal privacy 
risks and benefits as well as interdependent privacy risks and benefits on individuals’ WTS their genetic 
data. Furthermore, drawing on construal level theory (Trope and Liberman 2010), we hypothesize that SD 
plays a moderating role that either amplifies or reduces the effects of perceived interdependent privacy risks 
and benefits. To test our hypotheses, we conduct a scenario-based factorial survey in the context of sharing 
genetic data for a research project. Although our results support the hypothesized direct effects of personal 
and interdependent privacy risks and benefits, the role of SD as a moderator remains inconclusive. Our 
study makes three key contributions to the literature. First, we extend the privacy calculus to explicitly 
incorporate interdependent privacy risks and benefits as a key driver of individuals’ genetic data disclosure 
decisions. Second, based on construal level theory, we introduce the moderating effect of SD in these 
interdependent privacy-utility trade-offs. Third, for the genetic privacy literature, we answer calls for an 
explanatory model of genetic data sharing decisions by contextualizing the privacy calculus.  

Theoretical Background 

Interdependent Privacy 

Privacy is a multidimensional concept that has been widely researched and addressed from various 
perspectives. In IS research, privacy is generally viewed from the perspective of information privacy and is 
usually understood as an individual’s ability to control the dissemination of their personal information 
(Smith et al. 2011). Although, on the surface, data about an individual may seem to only affect that 
individual, in our increasingly digitized and interconnected world the information extracted from one’s 
personal data often also exhibits interdependencies (Humbert et al. 2020). Thus, an individual’s ability to 
manage and control the dissemination of their personal information increasingly depends not only on their 
own self-disclosure behaviors, but also on the privacy behaviors of others (Humbert et al. 2020).  
Interdependence of personal information can result from several sources, ranging from mundane behaviors 
like sharing the photo of multiple individuals online (Henne et al. 2013), to more complex correlations such 
as individuals liking similar social media postings (Jernigan and Mistree 2009; Lindamood et al. 2009). 
One common source of personal information interdependence is homophily, which describes the 
phenomenon that individuals often bond with other individuals of similar gender, age, social class, and 
preferences (McPherson et al. 2001). Using this information, a multitude of inferences can be made about 
individuals, including sensitive information like political orientation (Lindamood et al. 2009) or sexual 
orientation (Jernigan and Mistree 2009). Capitalizing on homophily, past research has investigated the 
concept of interdependent privacy especially within social networking contexts (Humbert et al. 2020). 
Another important source of personal information interdependence stems from the kinship property of 
genetic data. Because the nucleotide pairs that make up the genetic sequence consist of nucleotides from 
the mother and the father of an individual, information collected through one’s genetic sequence can be 
correlated to characteristics of the parents and other extended members of the family. This enables the 
precise inference of highly sensitive information such as appearance, age, or disease predispositions (Erlich 
et al. 2018). Since research has shown that even with limited knowledge about relatives of an individual 
sharing their genetic data conclusions about said relatives can be drawn (Humbert et al. 2020), it is of 
utmost importance to consider interdependent privacy risks when researching genetic privacy. 

Notions of interdependent privacy have emerged in a variety of scholarly disciplines, mostly in isolation 
from each other and under different terminology like group-level privacy, collective privacy, multi-party 
privacy, networked privacy, peer privacy, or multi-subject privacy. We refer interested readers to a review 
by Humbert et al. (2020) for a more in-depth comparison of these different terms and instead align our 
own terminology with that of interdependent privacy to better reflect the complex network of privacy risks 
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and benefits considered in this work. In IS research, there have been calls for more research beyond 
individual-level privacy for more than a decade (Smith et al. 2011). Yet, it seems that only recently there has 
been some uptake in research on interdependent privacy. To date, most IS research in that area has focused 
on the potential negative consequences of someone else disclosing information that an individual has 
previously shared with them (Lin and Armstrong 2019; Ozdemir et al. 2017). Additionally, Bélanger and 
James (2020) develop a theoretical model for multi-level privacy that incorporates an interdependent 
privacy perspective. Only few studies have explicitly conceptualized the role of individuals’ concerns for 
another party’s privacy risks (and, for that matter, also their considerations for another party’s benefits) in 
disclosure decisions (Franz and Benlian 2022; Wirth et al. 2019). 

Privacy-Utility Trade-Offs in Genetic Data Sharing 

Genetic data are digital representations of the whole or parts of the genetic sequence of individuals. They 
possess several characterizing properties like encoding information about an individual’s health and 
behavior, or being relatively static over the lifetime of an individual (thus potentially allowing for 
individuals to be traced over long periods) (Naveed et al. 2015). In particular, genetic data serve as both, a 
unique identifier of individuals that is virtually impossible to fully anonymize, and as a source of kinship 
information between blood relatives (Naveed et al. 2015). Due to rapid advances in genetics and 
accompanying technologies (e.g., genetic sequencing), genetic data have become an invaluable tool for 
various medical and non-medical use cases (Naveed et al. 2015). Despite the many potential benefits of 
analyzing genetic data, its proliferation into all walks of life also bears tremendous opportunities to infringe 
on individuals' privacy. Given the immense potential privacy risks involved with sharing genetic data, extant 
research has extensively studied and discussed privacy risks in genetic data sharing from diverse 
perspectives, including genetic privacy attacks and protective technology (Naveed et al. 2015), ethical, legal, 
and social implications of genetic data sharing (Vos et al. 2017), and individuals’ WTS their genetic data 
(Bearth and Siegrist 2020; Shabani et al. 2014). However, although numerous qualitative and quantitative 
exploratory studies have investigated individuals’ motivations to share their genetic data, only few studies 
have thus far sought to uncover and explain causal relationships between perceived benefits and perceived 
risks within such privacy-utility trade-offs. See Table 1 for an overview of related studies. 

Study Summary Benefits Privacy 
risks 

P I P I 
Anderson and 
Agarwal (2009) 

The trade-off between individuals' altruism and self-interest in the form 
of monetary and non-monetary incentives. X O O  

Anderson and 
Agarwal (2011) 

Impact of situation-specific risk factors on the cost-benefit trade-off in 
healthcare digitization. Genetic data as one type of data. O O X  

Bearth and 
Siegrist (2020) 

The impact of genetic literacy and trust on privacy-utility trade-offs in 
genetic data sharing. X X X  

Heath et al. 
(2016) 

The trade-off between benefit awareness and privacy concerns 
regarding genetic data. X  X  

Kim et al. (2016) The impact of online discussions about genetic data on privacy-utility 
trade-offs. O O O  

Oliver et al. 
(2012) 

Perceived benefits and risks for different release options of genetic data 
in consent forms. O X X  

Samad et al. 
(2023) 

The impact of privacy-utility trade-offs in genetic data sharing versus 
financial data sharing. X O X  

Sanderson et al. 
(2017) 

The impact of different consent models on privacy-utility trade-offs in 
biobanking. X X X  

Weidman et al. 
(2019) 

The impact of personal characteristics and situation-specific risk factors 
on privacy-utility trade-offs in DTC genetic testing. O  X X 

P = personal; I = interdependent 
X = focus of the study; O = implicitly or explicitly part of the study but not in focus 

Table 1. Overview of Studies on Privacy-Utility Trade-Offs in Genetic Data Sharing 

Overall, we still possess a limited understanding of how individuals’ decisions to share (or not share) their 
genetic data are possibly impacted by their perceived risks and perceived benefits (Bearth and Siegrist 
2020; Weidman et al. 2019). Past explanatory research in this area has especially focused on the impact of 
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personal risks and benefits (e.g., Bearth and Siegrist 2020) or (sometimes implicitly) considered perceived 
personal risks (PR) and benefits (PB) and perceived interdependent risks (IR) and benefits (IB) as part of 
the more general concept of perceived risks and benefits. Despite the interdependent nature of genetic data 
and first valuable investigations into interdependent privacy considerations in the context of genetic data 
sharing (i.e., Weidman et al. 2019), it thus remains largely unclear whether and how individuals consider 
IRs and IBs in their privacy-utility trade-offs, whether these effects differ based on one’s SD with potentially 
affected individuals, and how such interdependent privacy-utility trade-offs compare to personal privacy-
utility trade-offs. 

Research Model and Hypotheses 
Building on prior research efforts in understanding individuals’ privacy-utility trade-offs (regarding genetic 
data sharing), we employ the privacy calculus as our theoretical lens and augment it with the concept of 
interdependent privacy to better understand how interdependent privacy considerations impact 
individuals’ privacy-utility trade-offs in the genetic data sharing decision-making process and to untangle 
possible effects of perceived PBs, PRs, IBs, and IRs. Figure 1 depicts our research model. Table A.1 in the 
appendix provides definitions for all key constructs in our model. 

 

Figure 1. Research Model 

Effect of Personal Privacy Calculus on Willingness to Share 

Given the possible health benefits of genetic data analyses on the one hand, and the various ways to infringe 
on individuals’ privacy by analyzing their genetic data on the other hand, genetic data sharing is often 
characterized as a high-risk/high-reward scenario (Heath et al. 2016). Toward that end, past research has 
extensively investigated individuals’ reasons for or against genetic data sharing, highlighting a complex 
network of motivations (Sanderson et al. 2016; Thiebes et al. 2017). Frequently cited personal motivations 
for undergoing genetic testing and sharing genetic data with third parties include receiving information 
about potential disease predispositions (Smith et al. 2007), improved diagnoses and tailored treatments 
(Vos et al. 2017), or insights about one’s genealogical history (Roberts et al. 2017). Likewise, often-named 
personal motivations against genetic data sharing include the fear of medical implications for oneself 
(Middleton et al. 2016), concerns about genetic discrimination and stigmatization (Green and Botkin 
2003), the commercialization of one’s genetic data (Tavani 2004), or the use of one’s genetic data into other 
jurisdictions (Kennett 2019). Extant research especially indicates that individuals often desire some degree 
of control over the dissemination of their personal genetic data (Jamal et al. 2014; Shabani et al. 2014)  and 
that they make deliberate, situation-specific privacy-utility trade-offs when faced with the decision whether 
or not to share their genetic data with third parties for a stated purpose (Anderson and Agarwal 2011; Oliver 
et al. 2012; Shabani et al. 2014). Bearth and Siegrist (2020), for example, found that perceived PBs have a 
significant positive impact on individuals’ WTS their genetic data for research, whereas perceived PRs 
exhibit a significant negative impact on individuals’ WTS their genetic data for research. In line with these 
empirical insights on individuals’ WTS their genetic data we therefore hypothesize that: 

H1a: High levels of PBs of genetic data sharing are positively associated with an individual’s WTS 
their genetic data with a third party for a stated purpose. 
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H1b: High levels of PRs of genetic data sharing are negatively associated with an individual’s 
WTS their genetic data with a third party for a stated purpose. 

Effects of Interdependent Privacy Calculus on Willingness to Share 

Surveys on individuals’ motivations to participate in biobanking (Lemke et al. 2010), direct-to-consumer 
genetic testing (Goldsmith et al. 2012), or clinical genetic testing (Issa et al. 2009) repeatedly show that 
next to PBs and PRs, individuals often also explicitly name potential benefits for their relatives (e.g., 
preventively improving the health of close others through genetic testing) or the wider public (e.g., 
contributing to medical research on a certain disease), as well as concerns about negative implications for 
their relatives (e.g., uncertainty about future privacy implications for one’s children or upsetting family 
members) as reasons for, respectively, against genetic data sharing (Gilbar and Barnoy 2012; Green and 
Botkin 2003). Diergaarde et al. (2007), for example, report that participants in their focus group study 
understood potential tensions between protecting (their own) privacy and the sharing of genetic data for 
the benefit of others. Likewise, in their study on individuals’ interdependent privacy considerations, 
Weidman et al. (2019) provide first evidence that concerns for another person’s privacy in the context of 
genetic data sharing might have a negative impact on individuals’ WTS their genetic data with DTC genetic 
testing services. 

At the same time, despite the inherent interdependence of genetic data, past explanatory studies have 
primarily focused on personal privacy-utility trade-offs in genetic data sharing and often only implicitly 
considered IBs and IRs as dimensions in more general, multi-dimensional benefits and risks constructs. In 
their study on the effects of privacy literacy and trust on privacy-utility trade-offs in genetic data sharing 
decisions, for example, Bearth and Siegrist (2020) include several items like “[t]he data are used to advance 
medical research” or “[t]he data are used to improve public health” in their measurement scale of perceived 
benefits. Similarly, Sanderson et al. (2017) include items relating to IBs (e.g., “I would feel that taking part 
could help my family”) next to items relating to PBs (e.g., “I would feel that taking part could help me 
personally”) in their measurement of the perceived benefits of participating in biobanking, essentially 
black-boxing potential differences in the perceptions of personal and interdependent benefits and risks. 
In summary, individuals are not only aware of their PBs and PRs risks but also of the IBs and IRs associated 
with the disclosure of their own genetic data to third parties and there exists first empirical evidence that 
such aspects play a role in individuals’ disclosure decisions. Accordingly, we augment the personal privacy 
calculus with an interdependent privacy calculus to unblackbox the effects of personal privacy-utility trade-
offs versus interdependent privacy-utility trade-offs, and hypothesize that: 

H2a: High levels of IBs for another individual are positively associated with an individual’s WTS 
their genetic data with a third party for a stated purpose. 
H2b: High levels of IRs for another individual are negatively associated with an individual’s WTS 
their genetic data with a third party for a stated purpose. 

Moderating Role of Social Distance on the Interdependent Privacy Calculus 

By drawing on construal level theory, we further investigate the effects of SD on the interdependent privacy 
calculus. According to construal level theory, individuals tend to view events (e.g., privacy infringements) 
as abstract or concrete depending on how distant or close they are to the individuals’ immediate reality 
(Trope and Liberman 2010). Thus, the more distant an event is from an individual, the more abstract that 
event is to the individual (i.e., they mentally construe it at a higher level as opposed to a lower, more concrete 
level). Within construal level theory the distance of an event from an individual's reality is understood in 
terms of psychological distance, a multidimensional construct consisting of temporal (i.e., how near or far 
in the future an event will occur), spatial (i.e., how near or far within the physical world an event occurs), 
hypothetical (i.e., how likely or unlikely an event is to occur), and SD (i.e., how far or close the (groups of) 
individuals affected by the event are from each other) (Trope and Liberman 2010). 
Although there has been little research examining construal level theory in the context of privacy behavior, 
some initial studies suggest that diverse dimensions of psychological distance may have a role in individuals' 
privacy behavior (Bandara et al. 2021; Hallam and Zanella 2017). Hallam and Zanella (2017), for example, 
in their study of temporal distance in the context of social networks, find that individuals trade off future 
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privacy infringements with immediate benefits in using social networks. Similarly, in their study, Bandara 
et al. (2021) find a negative moderating effect of psychological distance on the relationship between privacy 
concerns and defensive privacy behaviors. That is, the higher the perceived psychological distance, the 
weaker the effect of privacy concerns on defensive privacy behaviors. 
Based on the inherent interdependence of genetic data, we focus specifically on the SD dimension and its 
potential influence on individuals' privacy-utility trade-offs here. The implications of SD have been studied 
in a variety of contexts, often outside of construal level theory, and from a variety of understandings. 
However, within privacy research, SD has been primarily studied as an aspect of psychological distance, if 
at all. A frequently adopted view of SD is that of affective SD, which is usually based on the seminal works 
by Bogardus (1933) and describes the degree of sympathy an individual has toward another individual. To 
that end, research building on construal level theory indicates that altruistic behavior toward closer 
individuals is more morally justifiable than behavior toward more distant individuals (Law et al. 2022). 
Likewise, individuals might feel more obligated to help close family members than more distant family 
members (McManus et al. 2021). Regarding IR, risks are higher for close blood relatives of disclosing 
individuals than for distant blood relatives (Humbert et al. 2013), and parents frequently report concerns 
over the privacy implications for their children in genetic data sharing situations (Stoffel et al. 2008). 
In line with construal level theory, we therefore argue that the closer an individual feels to another 
individual (e.g., close family members vs. extended family members), the more concretely they will think 
about the implications of their own genetic data disclosure for that individual. Accordingly, we hypothesize:  

H3a: SD moderates the effects between IB and WTS such that the (positive) effect of IB on WTS 
decreases with increasing SD. 
H3b: SD moderates the effects between IR and WTS such that the (negative) effect of IR on WTS 
decreases with increasing SD. 

Methods 

Factorial Survey Method 

To test our hypotheses, we applied the scenario-based factorial survey method, which has increasingly 
found its way into the IS discipline in recent years (e.g., Lowry 2017; Vance et al. 2015; Willison 2018). The 
factorial survey method uses contextualized vignettes to enable participants to imagine themselves in the 
context of a realistic scenario and the scenario’s fictional character (Willison 2018). Variations of the 
vignette represent the different manipulations of the independent variables of the research model (Lowry 
2017). After being presented with a vignette, participants are then asked to respond on rating scales that 
measure the dependent variable. By combining the strengths of experiments and traditional surveys, the 
factorial survey method enables researchers to manipulate a large number of factors without suffering from 
multicollinearity problems (Vance et al. 2015). Given the complexity of our theoretical model, the factorial 
survey method was thus a reasonable choice. Moreover, the vignettes of a factorial survey method can be 
distributed to different participants, reducing the time and cognitive burden per person. An additional 
strength of the method is that it is particularly useful in situations where social desirability bias is to be 
expected since it is based on participants’ rating regarding somebody else’s hypothetical behavior in a 
realistic but fictional scenario (Vance et al. 2015). Thereby, individuals are more likely to disclose their own 
intentions of conducting unethical behavior (Willison 2018). Again, given the sensitive context of our study 
(i.e., sharing of genetic data with a clinical research project), the factorial survey method seemed like a good 
choice to test our theoretical model. 
As is the case for traditional experiments, factorial surveys are designed based on factors of theoretical 
interest (i.e., dimensions) (Vance et al. 2015). Each dimension comprises different levels, which build the 
foundation for constructing the vignette variations. In our case, the research model yields five factors of 
theoretical interest (i.e., PB, PR, IB, IR, SD) with two levels each (i.e., low and high). Consequently, our 
study comprises a full factorial design with 32 (2 to the power of 5) vignettes. As not to overburden 
participants with too many vignettes, we chose to present only four out of the 32 possible vignettes per 
participant. When showing participants only a subset of vignettes, it is important to balance and block the 
vignettes in such a way that all instances of a manipulation are still present once in the block for each 
participant, also called orthogonal block design. In cases where this is not possible (e.g., due to too many 
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factors or levels for the number of vignettes shown) the estimation of higher order interaction effects may 
be limited (Baguley et al. 2022). We utilized the skpr package version 1.0.0 in RStudio version 4.1.1 to find 
an efficient blocking of four vignettes in eight blocks (4*8 = 32). Optimality inspection showed that the 
resulting design is D = 1, A = 1, and G = 1 optimal with an I-optimality of 2 (i.e., the block design is fully 
orthogonal), thus theoretically allowing for analysis of all higher order interaction effects. 

Scenario and Vignette Design 

For our vignette design we aimed to create a realistic scenario in which a fictional individual named ‘Jamie’ 
has to evaluate benefits and risks of sharing their genetic data for themselves as well as for their blood 
relative named ‘Ashley’. The scenario introduces Jamie, who is interested in genetic testing, in a situation 
where Ashley was diagnosed with brainstem glioma. While searching online about this disease, they find 
that their local university hospital conducts a research project on brainstem glioma and is currently looking 
for participants willing to contribute their genetic data. With the scenario in place, we designed the vignettes 
as email responses in which a scientist from the university hospital answers Jamie's questions regarding 
the research project. Figure 2 shows two vignettes with all low (left) and all high (right) treatments. 

  

Figure 2. Exemplary Vignettes with low Treatments (Left) and high Treatments (Right) 

To determine the specific high and low manipulations, we first generated five different possible treatments 
from real world applications and literature for each construct with a hypothesized direct effect on WTS (i.e., 
PB, PR, IB, IR). Subsequently, we surveyed 48 participants on Amazon Mechanical Turk (mTurk) to deduct 
a direct and indirect ranking of the treatments from low to high. We decided to use the lowest and highest 
ranked treatments as our manipulations in the final vignette design. Furthermore, we decided to construct 
Ashley as being Jamie’s sibling for the low SD treatment and Jamie’s third cousin for the high SD treatment. 
Additional details on the scenario and vignette development are available in the online supplementary 
material.1 

Data Collection and Analysis 

With vignettes for the factorial survey in place, we next constructed online survey instruments using 
soscisurvey.org version 3.2.46. Figure 3 shows an overview of the procedure for the online survey. 
The survey first provided a short introduction to the study context (i.e., clinical genetic testing), followed 
by an initial attention check. Next, we collected pre-vignette measurements about participants personal 
characteristics, including general WTS genetic data in the respective study context. Thereafter, we 

 
1 Supplementary material: https://osf.io/ghkcp?view_only=8a58e2d69dbd433baa44087daab35702  
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presented a short scenario description including a visual representation of Jamie’s initial contact (the 
beginning of Jamie’s email to the university hospital). Next, each participant was randomly assigned one of 
the eight vignette blocks. Randomly choosing the order of the four vignettes in each block, after each 
presented vignette, participants were then asked to indicate Jamie’s WTS their genetic data. To validate 
whether our treatments worked as expected, we also included manipulation checks for each independent 
variable. When possible, we adapted measures from prior studies and used multi-item scales to improve 
reliability and validity of the manipulation check scales. All items were measured using a 7-point Likert 
scale. A full list of the adapted items can be found in the online supplementary material.1 
 

 

Figure 3. Overview of the Survey Procedure 

For the SD manipulation check we used the Inclusion of Other in Self scale (Aron et al. 1992), which is an 
established visual, single-item scale that has previously been used to measure SD (Hong et al. 2017). 
Throughout the survey procedure, we used attention checks (i.e., asking participants to select the social 
distance manipulation presented during a vignette) and washouts (e.g., simple arithmetic questions) 
between vignettes. The survey closed with open-ended questions regarding the scenario and the collection 
of selected demographics. Before collecting data, we first conducted a feature test with 9 fellow researchers. 
Subsequently, we conducted pilot tests with 143 participants from Access by Cint. While the feature and 
pilot tests lead to minor text and appearance changes, they did not lead to alterations in the general design, 
as analysis of the pilot dataset indicated functionality of the vignette designs. To determine the planned 
number of participants for data collection, we calculated the minimal required number of responses per 
vignette. Following the procedure of Döring and Bortz (2015) for one degree of freedom and a desired 
significance level of .05, we calculated a minimum of 25.5 responses per vignette. Rounding up to 26 
answers for 32 vignettes resulted in a total of 816. Consequently, since each participant was presented with 
four vignettes, the minimal required number of participants was 204. To ensure sufficient leeway and 
highest data quality, we opted for a sample size of 600 participants or 2,400 vignette responses. 
Because participants were asked to assess multiple vignettes, observations were not independent and 
unobserved differences in the participants could have introduced a fixed individual effect that biased the 
vignette ratings for each respondent (Willison 2018). Because ordinary least squares analysis does not 
handle mixed models of fixed and random effects (Vance et al. 2015), we decided to use a generalized linear 
mixed model (GLMM). Since the four vignette answers of a single participant are not independent of each 
other, we followed the recommendation to model this as a repeated measure (Baguley et al. 2022). 
Furthermore, inspection of the dependent variable (i.e., WTS) indicated no normal distribution but a clear 
skewness toward larger values, thus requiring Gamma regression. In accordance with our hypothesis model 
the GLMM contained the main effects for PB, PR, IB, IR and the 2-way interactions for SD*IB and SD*IR 
as fixed effects. All analyses were conducted using IBM SPSS Statistics v27. 

Results 

Sample 

The survey data were collected from a sample of the general US population. A total of 1,465 people 
responded to the survey invitation sent out via the panel provider Access by Cint, which translates to a 
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response rate of about 50.28%. Of those, 662 participants did not finish the survey either because they 
canceled voluntarily or because they failed the attention checks. Moreover, 191 responses were excluded 
due to speeding the survey and 142 participants were excluded due to failing our quality checks (i.e., they 
straight lined, or used certain answering patterns). In sum, 470 valid responses with an average completion 
time of 24:44 minutes (min: 11:02 minutes; max: 59:55 minutes) remained after data cleansing. When 
analyzing the 470 valid responses, we recognized that the number of observations were not evenly 
distributed across groups with group 5 having the lowest number of observations (n=50). As a central 
requirement of GLMMs is that observations are evenly distributed across the eight treatment groups 
(Baguley et al. 2022) we decided to randomly remove responses from all groups except group 5 until each 
group comprised exactly 50 valid responses. Consequently, we were left with 400 valid responses and 1.600 
observations (i.e., four answered vignettes per valid response), which is still well above the estimated 
required sample size of 204 responses (i.e., 816 observations). We summarize important demographics for 
the remaining sample in Table A.2 appendix. Using a Chi-square test, we assessed all groups to determine 
whether significant differences exist with respect to important demographics. The results of the Chi-square 
test indicate that at the 95% confidence interval there were no significant differences between the groups 
in any demographic dimension. 

Treatments Validation 

To test the reliability and validity of the measurement model of the included manipulation checks and the 
dependent variable, we performed exploratory factor analysis (EFA) using IBM SPSS Statistics v27 and 
confirmatory factor analysis (CFA) using IBM SPSS AMOS v27 for all adapted multi-item scales, including 
for the adapted WTS scale of our dependent variable. Results of the EFA and CFA led to the exclusion of all 
reverse coded items for the manipulation checks (i.e., PB5, PR5, IB5, IR5), as well as the removal of one 
item each for PB (i.e., PB3) and for IR (i.e., IR2). Nevertheless, all constructs (except SD) were still 
measured with at least three items. In summary, the adjusted measurement model with removed items 
exhibits adequate levels of convergent validity, discriminant validity, and reliability. With the measurement 
model in place, we determined the validity of our treatments by a one-way ANOVA (see Table 2).  

Construct Overall mean low Treatment high Treatment ANOVA 
N = 1,600 n = 800 n = 800 Effect size p-Value 

PB 4.15 (1.950) 3.16 (1.878) 5.13 (1.465) 546.913 < 0.001 
PR 3.29 (1.752) 2.81 (1.561) 3.77 (1.800) 129.265 < 0.001 
IB 4.47 (1.901) 3.64 (1.882) 5.31 (1.512) 383.439 < 0.001 
IR 3.05 (1.652) 2.75 (1.567) 3.39 (1.732) 59.221 < 0.001 
SDa 3.90 (2.061) 5.00 (1.817) 2.80 (1.667) 636.939 < 0.001 
aHigher mean value indicates lower social distance. 

Table 2. Summary of Manipulation Validation 

Main Results 

Table 3 lists the main results of the analysis of the vignette experiment data. 

Category Constr. Coefficient Sig. F-value Hypothesis 
Corrected model +1.510*** < 0.001 55.770  
Personal 
calculus 

PB +0.164*** < 0.001 78.389 H1a  Supported 
PR -0.182*** < 0.001 142.178 H1b  Supported 

Interdependent 
calculus 

IB +0.182*** < 0.001 83.745 H2a  Supported 
IR -0.100*** < 0.001 48.409 H2b  Supported 

Moderation SD +0.033* 0.015 5.879  
IB*SD -0.087** 0.007 7.200 H3a Supported 
IR*SD -0.051† 0.084 2.987 H3b Not supported 

†: p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001; Note: SD reported as basis for the interactions. 

Table 3. Fixed Effects Summary 
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In our model, the base levels were set to match the low treatment conditions. Thus, the coefficients reported 
for the high treatments indicate the increase or decrease in WTS between the low and the high treatments. 
The results show that participants who viewed a vignette with a high PB treatment rated significantly higher 
values of WTS compared to the low PB treatment (low, M = 4.243; high, M = 4.999; p < 0.001), supporting 
H1a. Furthermore, participants rated significantly lower WTS after a vignette with high PR treatment 
compared to low PR treatment (low, M = 5.044; high, M = 4.205; p < 0.001), supporting H1b. Like the 
personal constructs, the results of the interdependent main effects also supported our hypotheses. Vignettes 
with the high IB treatment resulted in significant higher levels of WTS than the low IB treatment (low, M 
= 4.282; high, M = 4.953; p < 0.001), supporting H2a. The high IR treatment resulted in significant lower 
levels of WTS than the low IR treatment (low, M = 4.904; high, M = 4.325; p < 0.001), supporting H2b. 
To test for the hypothesized moderations of SD on the relationships between IB and IR on WTS, we 
calculated the corresponding two-way interactions. The results are shown in Table 3 and Figure 4. We found 
a significant interaction effect between SD and IB (p = 0.007), supporting H3a as the WTS shows a 
significantly greater increase from low IB (M = 4.266) to high IB (M = 5.155) in the case of a low SD 
treatment vignette compared to the increase from low IB (M = 4.297) to high IB (M = 4.760) for high SD 
treatment vignettes. Regarding the interaction between SD and IR, our results showed no significant effect 
(p = 0.084), indicating no support for H3b. WTS decreased from low IR (M = 4.930) to high IR (M = 4.461) 
in the case of a low SD treatment vignette and decreased from low IR (M = 4.877) to high IR (M = 4.194) 
for high SD treatment vignettes. 

In addition to the main GLMM analysis, we augmented the model with 15 collected control variables (i.e., 
demographics, personal characteristics, order of presented vignettes) that may have confounding effects. 
We then compared the hypothesis and control model in terms of goodness of fit with the Akaike Information 
Criterion corrected (AICc) and Bayesian Information Criterion (BIC). For both experiments the hypothesis 
model showed a greater fit than the control model (cf. Table 4). The addition of control values did not lead 
to significant changes for the constructs of the hypothesis model.  

 Hypothesis model Control model 
-2 log likelihood 1258.925 1334.293 
AICc 1326.365 1401.770 
BIC 1502.226 1576.775 

Table 4. Model Quality Criteria 

Discussion 

Principal Findings 

In this study, we developed and empirically tested a research model that explores individuals’ decision 
making with regard to genetic data sharing. The model was built using the privacy calculus as a theoretical 

  
Figure 4. Interaction Graphs for (A) SD*IB Interaction and (B) SD*IR Interaction 
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lens and augmented with the concept of independent privacy and elements of construal level theory. The 
motivation for this focus was based on the observation that extant research has put only little attention on 
the circumstance that individuals’ privacy behavior in genetic data sharing is not just a matter of weighing 
up personal implications, but inherently includes considerations of implications that one’s own genetic data 
sharing behavior has for others. Toward that end, the further analysis of the results of our experiment 
provides interesting insights into the model effects that help us to understand better the privacy-utility 
trade-offs in genetic data sharing and to uncover possible differences between the personal and the 
interdependent calculus.  

First, we find that all direct effects of the personal and interdependent calculus are highly significant 
(providing support for H1a, H1b, H2a and H2b), substantiating existing notions that individuals make 
deliberate privacy-utility trade-offs when faced with genetic data disclosure decisions (Samad et al. 2023; 
Sanderson et al. 2016; Weidman et al. 2019). However, when comparing the coefficients of the direct effects 
of the personal calculus with those of the interdependent calculus, some interesting differences become 
apparent. While in the personal calculus the perceived PRs appear to have a significantly stronger (negative) 
influence on the WTS than the perceived PBs, the relationship in the interdependent calculus is exactly the 
opposite. Here, perceived IBs appear to have a stronger (positive) influence on WTS than perceived IRs. 
While it is conceivable that some of this difference in impact is due to our specific scenario design (i.e., 
sharing genetic data for research purposes), as this may have favored altruistic traits (Anderson and 
Agarwal 2009), we are nevertheless convinced that these results highlight the existence of a complex web 
of personal and interdependent privacy-utility trade-offs in genetic data sharing. 
Second, our results also provide some interesting insights into the potential moderating role of SD in the 
impact of the interdependent calculus on individuals' WTS. For example, we found support for H3a (i.e., 
the closer a disclosing individual feels to a potentially affected other person, the more important IBs become 
for a disclosure decision), despite the fact that both the high and low manipulations of SD involved kin 
(third cousins vs. siblings). This finding is consistent with construal level theory, which posits that the closer 
an object (i.e., involved kin) is perceived, the more concrete it will be thought of. More specifically, it is in 
line with contemporary research on construal level theory that shows that altruistic behavior toward closer 
people is more morally justifiable than behavior toward more distant people (Law et al. 2022). In contrast, 
we find no support for H3b in our results. Thus, the nature of the disclosing individual's relationship with 
a potentially affected other does not appear to impact the effect of perceived IRs on WTS, which contradicts 
construal level theory. We see two possible explanations for this observation. First, the perceived difference 
between the low and high condition of IR in our experiment might have simply been too small to tease out 
the moderating effect of SD. Second, there might be an interaction effect between IB and IR in the low SD 
condition, where IBs overshadow the IRs. If individuals feel that the affected other is very close to them 
(i.e., low SD), they might be willing to accept higher levels of IRs to ensure that they can maintain their 
quality of life (i.e., high IB). Simply put, the survival and quality of life of our closest family members become 
so important that even severe data breaches become negligible. 

Theoretical and Practical Implications 

Our study makes three key contributions to the literature. First, we add to the literature on privacy-utility 
trade-offs in privacy decision-making by extending the privacy calculus and integrating considerations of 
interdependencies (i.e., IBs and IRs) as important determinants of individuals’ disclosure decisions. In 
doing so, we show that interdependent aspects can play a key role in disclosure decisions and highlight a 
complex network of PBs and PRs and IBs and IRs. Similar to other studies recently published in major IS 
outlets (e.g., Bélanger and James 2020), our study thus provides valuable insights toward better 
understanding information privacy as a group-level phenomenon, which IS scholars have demanded for 
over a decade (Smith et al. 2011).  Second, we add to a nascent stream of privacy literature that investigates 
privacy behaviors through the lens of construal level theory (e.g., Bandara et al. 2021), by investigating 
psychological distance at a more granular level. Specifically, by introducing the moderating role of SD to 
the interdependent calculus, we provide evidence for how a specific subdimension of psychological distance 
impacts privacy-utility trade-offs. This contrasts with most extant research in that area, which usually 
conceptualizes psychological distance at a higher level of abstraction and does not explicitly consider its 
subdimensions in isolation. Third, we add to the literature on genetic privacy and answer calls for more 
research in that area and help establish a comprehensive explanatory model of genetic data sharing 
decisions. We do so by integrating three distinct theoretical perspectives (i.e., privacy calculus, 
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interdependent privacy, and construal level theory) in order to account for the specificities of genetic data, 
which not only hold sensitive information about oneself, but also about blood relatives that share certain 
genetic information with a potential donor. For other researchers interested in continuing their research 
efforts in this area, our study also provides a validated set of vignettes that can be used as treatments for 
the constructs in the personal and interdependent calculus. 

By highlight the importance of both personal and interdependent risks and benefits perceptions with regard 
to individuals’ genetic data sharing decisions, our study also makes some important contributions to 
practice. For organizations that collect and process genetic data (e.g., clinics, DTC genetic testing services, 
genetic research labs), our results emphasize that they should keep in mind to not limit themselves to 
pointing out the PBs that individuals gain from undergoing genetic testing and thereby sharing their genetic 
data, but also highlight the beneficial information that may be gained for blood-relatives due to the kinship 
property of genetic data. However, by nature this also leads to associated IRs that arise from sharing genetic 
data. Extant research has criticized that many providers of genetic tests do not present sufficient 
information to their customers about how their genetic tests might affect others (Wallace et al. 2015), 
although this information is highly relevant for individuals in their data sharing decisions, as the results of 
our study demonstrate. Thus, an obvious step in addressing this issue would be for providers of genetic 
tests to review their privacy policies with an eye toward transparently illustrating the specific areas in which 
steps are being taken to reduce both PRs and IRs. Moreover, our results also paint an interesting picture 
for policy makers. Ever since the early 2000s there have been discussions about a joint account model for 
genetic information (i.e., whether genetic information belongs to an individual or the whole family and 
therefore whether disclosure decisions must be made by the whole family) (Foster et al. 2015). Thus far, 
these discussions have not led to substantive changes in the legal frameworks and data disclosure decisions 
are still fundamentally a personal decision. Based on the results of our study, a joint account model might 
not seem all that necessary after all. Given that individuals do already consider personal and interdependent 
privacy-utility trade-offs when presented with the necessary information, a more pragmatic approach might 
be to educate individuals about such IRs and IBs in the respective disclosure situations. 

Limitations and Future Research 

This study is not without limitations. For one, due to the nature of the factorial survey method our study is 
limited to the examination of how personal and interdependent privacy-utility trade-offs form individuals’ 
behavioral intentions to share their genetic data and does not include investigations of actual behavior or 
how such intentions translate to actual behavior. While we think that this boundary of our study is an 
appropriate one, it would be an obvious extension of our work to derive and test a model that also includes 
genetic data sharing behavior. Moreover, while we aimed to balance data quality and burden for 
participants some methodological decisions, such as the number of vignettes per participant (in general it 
is considered optimal to show all possible vignettes), may have affected some of our results. We addressed 
this by designing our factorial survey study in line with best practices from IS (Lowry 2017; Vance et al. 
2015; Willison 2018). For another, we did not consider different genetic data sharing contexts and instead 
only focused on one specific scenario (i.e., sharing genetic data with a research institution for research on a 
severe health issue). Genetic data is, however, not only shared for health reasons, but also for other reasons 
like recreational or legal purposes. It will be an interesting avenue for future research to investigate the 
different effects of the different benefits and risks provided by genetic data sharing more in depth, especially 
given the broad diversity of potential application contexts and associated benefits and risks that were not 
covered by our study. Lastly, research has also started to explore interdependencies of risk and benefits 
perceptions in the privacy calculus (Kehr et al. 2015; Sun et al. 2021), which we did not consider in our 
study. We think that this phenomenon deserves additional attention in future research, because it suggests 
that individuals’ privacy-utility trade-offs in genetic data sharing could be even more complex and dynamic 
than presented here. 

Conclusion 

The sharing of sensitive data with third parties increasingly poses privacy risks not only to the disclosing 
individuals, but also to their family and friends. The sharing of genetic data is a prime example of such IRs. 
With this study, we aimed to understand better how IRs (and IBs) impact individuals’ privacy-utility trade-
offs in genetic data sharing. To do so, we augmented the privacy calculus as a theoretical lens with an 
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interdependent perspective and SD as a specific subdimension of construal level theory. We empirically 
tested the resulting research model by means of using the vignette-based factorial survey method in the 
context of genetic data sharing for research purposes. While the results clearly show that personal and 
interdependent privacy-utility trade-offs play an important role in forming individuals’ genetic data 
disclosure decisions, the role of SD remains inconclusive and warrants further investigation. By augmenting 
the privacy calculus with an interdependent perspective, this study approaches genetic privacy not solely 
on an individual level of analysis, but rather engages with a decision process that includes both individual-
level and group-level considerations simultaneously. In doing so, our research can be of value for scholars 
in the future, when investigating other information privacy phenomena that include group-level 
considerations. 
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Appendix 

Construct (Abbr.) Adapted definition Based on 
Willingness to share 
(WTS) 

An individual’s willingness to share their personal genetic data with a third 
party for a stated purpose. 

Anderson and Agarwal 
(2011) 

Personal benefits 
(PB) 

The perceived benefits for the sharing individual when sharing their personal 
genetic data with a third party for a stated purpose. 

Limayem et al. (2007) 

Personal privacy 
risks (PR) 

An individual’s expectation of personal losses associated with the disclosure of 
their personal genetic information to a third party for a stated purpose. 

Malhotra et al. (2004) 

Interdependent 
benefits (IB) 

The benefits pertaining to another individual B as perceived by a sharing 
individual A, when sharing their personal genetic data with a third party for a 
stated purpose. 

Self-developed based 
on personal benefits 
construct 

Interdependent 
privacy risks (IR) 

An individual A’s expectation of losses for another affected individual B, 
associated with individual A disclosing their personal genetic information to a 
third party for a stated purpose. 

Self-developed based 
on personal privacy 
risks construct 

Social distance (SD) The affectivity (i.e., how much sympathy) a sharing individual A feels for 
another individual B that might be affected by the sharing individual A’s 
decision to disclose their genetic data.  

Hong et al. (2017) 

Table A.1. Definition of Key Constructs 
 

Demographic Total (%) Experimental group Chi-square test 
1 2 3 4 5 6 7 8 F p-Value 

N - 400 (100.00%) 50 50 50 50 50 50 50 50 - - 
Gender Female 236 (59.00%) 30 28 27 35 28 27 30 31 12.095 0.599 

Male 160 (40.00%) 18 22 22 15 21 23 20 19 
Other 4 (1.00%) 2 0 1 0 1 0 0 0 

Age (in 
years) 

18-24 47 (11.75%) 5 5 5 6 6 9 6 5 28.877 0.966 
25-34 75 (18.75%) 5 9 11 9 10 8 13 10 
35-44 84 (21.00%) 11 9 8 10 9 10 13 14 
45-54 69 (17.25%) 9 10 7 9 11 8 8 7 
55-64 55 (13.75%) 8 7 8 5 8 6 4 9 
65-74 56 (14.00%) 12 8 8 8 4 7 6 3 
75+ 14 (3.50%) 0 2 3 3 2 2 0 2 
Prefer not to say 0 (0.00%) 0 0 0 0 0 0 0 0 

Ethnicity American Indian or Alaska Native 5 (1.25%) 0 1 0 1 0 1 0 2 28.028 0.792 
Asian 17 (4.25%) 3 1 2 0 4 4 2 1 
Black or African American 45 (11.25%) 5 6 5 7 7 3 5 7 
Native Hawaiian or Other Pacific Islander 2 (0.50%) 1 0 0 0 1 0 0 0 
White 324 (81.00%) 41 41 41 41 36 42 43 39 
Prefer not to say 7 (1.75%) 0 1 2 1 2 0 0 1 

Health Excellent 35 (8.75%) 3 9 3 5 4 4 3 4 28.884 0.757 
Very good 114 (28.50%) 12 15 13 14 9 19 17 15 
Good 138 (34.50%) 21 11 21 18 19 18 14 16 
Fair 93 (23.25%) 13 11 11 11 15 7 14 11 
Poor 19 (4.75%) 1 3 2 2 3 2 2 4 
Prefer not to say 1 (0.25%) 0 1 0 0 0 0 0 0 

Table A.2. Summary Panel Demographics 
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