KIT | KIT-Bibliothek | Impressum | Datenschutz

Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance

Kruse, Maximilian ORCID iD icon 1; Niu, Zihua; Wolf, Sebastian; Lykkegaard, Mikkel; Bader, Michael; Gabriel, Alice-Agnes; Seelinger, Linus ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This repository contains the code base accompanying the work published in Scalable Bayesian Inference of Large Simulations via Asynchronous Prefetching Multilevel Delayed Acceptance. The code can be used to run parallelized MLDA sampling runs for a Bayesian posterior governed by a PDE model from geophysics. For a methodological introduction to the underlying research, we refer the reader to the mentioned publication.

The code base is divided into four subdirectories, each of them containing separate README files for how to use the respective components:
1. mtmlda: Parallelized implementation of the MLDA algorithm, based on asynchronous prefetching.
2. surrogate: Greedy, asynchronous surrogate based on Gaussian process regression, used as an additional level in the MLDA hierarchy.
3. seisbridge: Implementation of a SLURM load balancer for HPC architectures, used for parallel requests of SeisSol simulations.
4. ridgecrest: Run files for SeisSol simulations of the Ridgecrest earthquake on the Frontera supercomputer.


Download
Originalveröffentlichung
DOI: 10.5281/zenodo.14315614
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Forschungsdaten
Publikationsdatum 08.12.2024
Identifikator KITopen-ID: 1000177364
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Lizenz MIT License
Schlagwörter Markov Chain Monte carlo, Bayesian Inverse Problems, Geophyscs, Distributed Computing
Art der Forschungsdaten Software
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page