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Abstract

The Data Bottleneck refers to the challenge of ensuring the availability of the right data at the right time in AI-driven
projects. Early stages often involve uncertainty about when, how, and how much data will be required. The proposed
approach focuses on estimating data requirements and determining when the data is needed at each phase of the AI
lifecycle. This includes identifying critical data dependencies, ensuring data quality, managing imbalanced datasets, and
implementing post-deployment monitoring to adapt to data shifts. By addressing these issues, organizations can enhance
fairness, accuracy, and adaptability while sustainingmodel performance. Effective data bottleneckmanagement empowers
organizations to unify their data, improving trust, accessibility, and control. This approach supports key business objectives
while enabling the development of reliable, scalable, and adaptable AI systems.
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1. The Data Bottleneck for AI in Industry

The availability of the right data at the right time is a key challenge in AI-driven projects. At the
start of a project, there is uncertainty about when, how, and how much data will be needed. Data
acquisition is often a critical dependency in a project, requiring careful planning and coordina-
tion to ensure its timely availability. Understanding the data requirements in each phase of the AI
project and ensuring high data quality are critical for developing effective and reliable AI systems.

AI in Industry

Artificial Intelligence (AI) in Industry involves the end-to-
end process of designing, developing, deploying, and main-
taining AI systems to improve operational efficiency, boost
productivity, and enhance decision-making across manu-
facturing processes such as predictive maintenance, qual-
ity control, and robotics for automation. It optimizes supply
chains, enhances customer service with chatbots, and sup-
ports energy management for sustainability. By enabling
smarter, scalable, and adaptive operations, AI drives inno-
vation and transformation across diverse industrial sectors.

These AI systems analyze vast amounts of data to un-
cover the reasons behind past events, predict future out-
comes, and offer actionable insights to optimize perfor-
mance. However, due to the intricacies associated with AI
projects, there is a critical need for well-structured, robust
methodologies to ensure successful outcomes. One such
approach is the Cross-Industry Standard Process for Data
Mining (CRISP-DM) [1], which offers a systematic method for
planning, organizing, and executing data mining projects.
The PAISE® model [2] emphasizes a systematic and stan-
dardized development process for AI-based system engi-
neering. In Andrew Ng’s machine learning lifecycle [3], data
are emphasized as the foundation for model success. It
is a data-centric approach, where high-quality, represen-
tative, and accurate data drive better performance rather
than focusing on complex model designs. In each lifecy-
cle stage, from scoping to deployment, ensuring data qual-
ity enhances the model’s ability to generalize and adapt.
Focusing on data issues often yields better improvements
during error analysis than model tuning.

AI in industry presents significant challenges, especially
when it comes to managing and utilizing data effectively.
Inconsistent, incomplete, or biased data can lead to inaccu-
rate predictions and suboptimal decisions. In addition, the
complexity of manufacturing environments often requires
handling large, dynamic datasets, which can strain data col-
lection, processing, and storage capabilities. Nearly 85% of
AI projects fail due to poor data quality. The effectiveness

of AI models depends as much on the quality of data as
on the algorithms themselves. Experts even estimate that
data scientists spend 60-80% of their time on data prepa-
ration. Addressing these data-related issues is essential for
reliable AI-driven insights and managing the time required
for successful implementation.

Data Bottleneck

To manage data needs effectively, it is essential to consider
the requirements at different stages of the project lifecy-
cle: before the project starts, during the project, and af-
ter deployment. Each phase follows a consistent approach
to ensure comprehensive problem management. The ini-
tial focus is on identifying potential issues, assessing their
impact, and establishing strategies to address them proac-
tively.

We coin the term Data Bottleneck to refer to the chal-
lenge of managing the availability of the right data at
the right time. At the start of a project, there is un-
certainty about when and how much data is needed.
The acquisition of additional data is often in the criti-
cal path of a project and may depend on previous work
like further process instrumentation. Understanding
the data requirements in each phase of an AI project
and ensuring high data quality are critical for develop-
ing effective and reliable AI systems.

This white paper will describe the major challenges and
differences compared to traditional project management
in manufacturing. We propose an integrated approach to
identify the data bottleneck, propose effective solutions,
and manage these challenges throughout the project life-
cycle. Additionally, detailed manufacturing use case imple-
mentations will be discussed. The target audience for this
guideline is project leaders and decision-makers. It pro-
vides them with a framework for project management, ad-
dressing key challenges, and facilitating effective interac-
tion with technical development teams.
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2. Identifying the Data Bottleneck

Each AI methodology offers unique advantages and considerations for successful integration into
manufacturing processes. However, high-quality data is crucial for their success, presenting chal-
lenges across the AI lifecycle, from collection to deployment. These challenges influence scal-
ability, performance, and project timelines, causing delays and uncertainties. Addressing these
challenges proactively is essential for building reliable and efficient AI systems.

2.1. Data-Driven AI Method Selection

Define Project Goals

Before selecting an AI methodology, it is crucial to clearly
define what you want to achieve with AI. This initial stage in-
volves identifying your objectives and determining the spe-
cific problems you aim to solve. Recognizing the complexity
and size of the AI projects ensures that the chosen AI tool
can effectively meet the project’s needs.

Not all problems are feasible or appropriate for AI solutions,
making it essential to evaluate whether AI is the right tool
for the task. Some challenges may require more founda-
tional changes before AI can be effectively implemented.

Project leaders should consider the following
questions

● What is the primary objective of the project?

● Which problems are suitable and feasible to solve
using machine learning?

● What are the expected outcomes, and how will suc-
cess be measured?

● What are the constraints, such as timelines, bud-
gets, or available resources?

● How will the AI system integrate with existing pro-
cesses or systems?

● What are the potential risks or ethical considera-
tions, and how will they be managed?

By addressing these questions early on, project leaders
can ensure that the goals are realistic, measurable, and
aligned with both business priorities and technical capa-
bilities, paving the way for a focused and efficient project
execution. Furthermore, connecting the project goals with
the specific characteristics of various AI methodologies en-
ables teams to select the most suitable approach, ensuring
that the solution is both technically feasible and optimized
to effectively tackle the identified problem.

Data Considerations in AI Method Selection

The effectiveness of AI relies heavily on the quality, quantity,
and diversity of the data provided. Assessing the available
data significantly influences the choice of AI methodology
for a manufacturing problem.

Understanding the types of data involved is crucial, it can
be categorized into several types as shown in Table 1: struc-
tured data, unstructured data, semi-structured data, and
time series data. Each serves a specific role in the model
development and deployment phases, highlighting the im-
portance of selecting the right methodology to effectively
process and analyze the data.

The data’s nature—labeled or unlabeled—plays a crucial
role in determining the appropriate branch of Machine
Learning (ML), a subset of AI that focuses on developing
algorithms and models capable of learning patterns from
data to make predictions or decisions without explicit pro-
gramming, as illustrated in Figure 1.

Figure 1: Machine Learning Branches.

Supervised Learning: This approach is used when the data
is labeled, meaning each input has a corresponding out-
put. For structured data, supervised learning is well-suited
for tasks like classification and regression, where the model
learns by mapping inputs to outputs through examples. Ad-
ditionally, labeled time series data is often used in super-
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Category Description

Structured Data Data organized in a tabular for-
mat with rows and columns,
making it easy to understand
and analyze.
Example Spreadsheets, SQL
databases, financial trans-
actions, customer records,
maintenance logs.
Use cases Regression, classifica-
tion, and clustering.

Unstructured Data Data that does not have a pre-
defined format, making it more
challenging to process and ana-
lyze.
Example Text documents, im-
ages, audio files, and videos.
Use cases NLP for text analysis,
computer vision for image and
video recognition, and speech
recognition systems.

Semi-Structured
Data

Data that does not fit neatly into
tables but still contains some or-
ganizational structure.
Example JSON and XML files,
email content, and sensor data
with metadata.
Use cases Web scraping results,
hierarchical data analysis, and
data exchange between systems.

Time Series Data Data points collected or
recorded at specific time in-
tervals.
Example Stock prices, tempera-
ture readings, and server logs.
Use cases Forecasting, anomaly
detection, and analyzing trends
over time.

Table 1: The fundamental categories of data.

vised learning for forecasting or trend analysis.

Unsupervised Learning: When data lacks labels, unsuper-
vised learning becomes essential. This approach uncovers
hidden patterns, relationships, or structures in the data. For
unstructured data, unsupervised methods are commonly
used for clustering or anomaly detection. Similarly, semi-
structured data, can benefit from unsupervised learning to
discover underlying relationships or reduce dimensionality.

Reinforcement Learning: This method requires an environ-
ment where an AI agent interacts with its surroundings,
receives feedback, and learns to optimize its actions over
time. Time series data is often integrated into reinforce-
ment learning scenarios, where sequential decisions and
temporal feedback play a critical role. This makes reinforce-
ment learning especially powerful for dynamic, decision-
based environments such as robotics or automated sys-
tems.

Each ML branch serves specific purposes and depends
heavily on the nature of the data and the problem being ad-
dressed, emphasizing the importance of aligning the choice
of ML approach with the project’s goals and available data.

AI methodology involves either Machine Learning (ML) or
Deep Learning (DL), with the latter utilizing neural networks
to accomplish its objectives. The choice between ML and
DL, directly impacts the data requirements of an AI project,
affecting aspects like the amount of data, preprocessing ef-
forts, and data diversity as shown in Table 2.

For projects with limited data, smaller budgets, or simpler
problems, ML is a better choice. For tasks involving un-
structured data, complex patterns, or scalability, DL is more
suitable—provided there is sufficient data volume, diversity,
and quality. Balancing these factors ensures an optimal ap-
proach for the AI project’s success.

2.2. Estimation of Data Requirements

Scaling Laws

How domodel performance scales with respect to three key
factors: model size, dataset size, and computational power?

In neural networks, scaling laws often follow power-law be-
havior [4], where performance metrics such as loss or er-
ror decrease predictably with increased model size or data.
This relationship allows researchers to make informed de-
cisions about resource allocation when training large-scale
models. The power-law function can fit the validation per-
formance curve and extrapolate it to larger data set sizes.

Model Size: As model size (Number of Parameters) in-
creases, performance improves, but the improvement fol-
lows diminishing returns unless the dataset and compute
scale appropriately.

Dataset Size: More complex tasks require larger datasets
(Number of Samples). As models scale in size, they need
more data to avoid overfitting and to continue improv-
ing performance. Tasks like machine translation or au-
tonomous driving require vast amounts of data due to the
complexity and variability of inputs.

Computational Power: Larger models and datasets natu-
rally require more computational power. High complex-
ity tasks, especially in reinforcement learning, can demand
enormous computational resources to simulate environ-
ments and optimize policies.

Performance scales predictably with model size, dataset
size, and compute. These relationships follow power laws
over several orders of magnitude. As long asmodel size and
dataset size are increased together, performance continues
to improve.

Figure 2 shows a sketch power-law plot that breaks down
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Aspect Machine Learning (ML) Deep Learning (DL)

Data Volume Requires moderate datasets (hundreds to
thousands of samples). Suitable for struc-
tured data.

Requires large datasets (thousands to mil-
lions of samples) to capture patterns, espe-
cially in unstructured data.

Feature Engineering Relies on manual feature selection and do-
main expertise to identify predictive features.

Automatically extracts features directly from
raw data, reducing the need for manual input.

Data Diversity Moderate data diversity is needed; focus on
specific features or categories.

High data diversity is essential to generalize
effectively across different scenarios.

Preprocessing Effort Requires extensive preprocessing (cleaning,
structuring, handling missing values).

Requires less preprocessing; handles raw
data but often needs normalization and aug-
mentation.

Labeling Needs Smaller datasets with labeled data suffice for
most tasks.

Large volumes of labeled data are critical for
supervised tasks like image or text recogni-
tion.

Sensitivity to Quality Highly sensitive to quality; smaller datasets
amplify the effect of errors or noise.

Moderately sensitive to quality but relies on
large datasets to mitigate noisy data.

Table 2: Comparison of Machine Learning and Deep Learning regarding data requirements.

learning curve phases. The curve begins in the small data
region, where models will struggle to learn from a small
number of training samples. Here, models can only perform
as well as ”best” or ”random” guessing. The middle portion
of the learning curves is the power-law region, where each
new training sample provides information that helps mod-
els improve predictions on previously unseen samples.

Figure 2: Sketch of power-law learning curves.

The power lawsmay apply or fail depending on the data dis-
tribution and underlying model complexity. Understanding
these laws is crucial for optimizing the balance between
computational expense and model performance [4].

Estimation of Data Requirements based on Scaling Laws

The amount of data required can vary significantly based
on the complexity of the task and the AI methods applied.
Overestimating or underestimating data requirements in-
curs substantial costs that could be avoided with an ade-
quate budget.

Determining how much data is necessary to reach a target
validation or test performance is a critical initial require-

ment when designing an AI solution. The amount of data
needed can vary significantly depending on the complexity
of the problem.

To address this, we categorize tasks into three levels—Low
Complexity Tasks, Medium Complexity Tasks, and High Com-
plexity Tasks—based on scaling laws and the relationship
between task difficulty, data types, and model sizes, as out-
lined in Table 3.

Low Complexity Tasks: These tasks, like binary classifica-
tion or simple regression, don’t require massive models or
datasets. A model with 10M to 100M parameters is often
sufficient, and you can train them on smaller datasets us-
ing fewer computational resources.

Moderate Complexity Tasks: For tasks like multiclass clas-
sification or continuous control RL, you need models in the
100M to 500M parameter range, larger datasets, and com-
putational resources in the range of hundreds of thousands
of GPU hours.

High Complexity Tasks: Tasks such as machine transla-
tion, image segmentation, and autonomous driving need
the largest models (1B to 10B parameters), huge datasets,
and millions of GPU hours for training.

This requirement is determined by factors such as the size
of the training data set, the learning algorithm applied, and
the specific objectives of the application. By categorizing
tasks into varying levels of complexity, this approach offers
a structured framework for estimating data requirements
and ensuring that model performance is optimized accord-
ing to the demands of the task.
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Task Complexity Data Type Small Model Medium Model Large Model
Low Complexity Text 1,000 – 10,000 10,000 – 50,000 50,000 – 100,000

Tabular 1,000 – 5,000 5,000 – 20,000 20,000 – 50,000

Audio 1,000 – 5,000 5,000 – 20,000 20,000 – 50,000

Environmental 10,000 – 50,000 50,000 – 100,000 100,000 – 500,000

Moderate Complexity Text 10,000 – 50,000 50,000 – 200,000 200,000 – 1 million

Tabular 5,000 – 20,000 20,000 – 100,000 100,000 – 500,000

Audio 10,000 – 50,000 50,000 – 200,000 200,000 – 500,000

Environmental 50,000 – 100,000 100,000 – 500,000 500,000 – 1 million

High Complexity Text 100,000 – 500,000 500,000 – 1 million 1 million – 10 million

Image 100,000 – 500,000 500,000 – 1 million 1 million – 10 million

Time Series 50,000 – 200,000 200,000 – 1 million 1 million – 10 million

Audio 100,000 – 500,000 500,000 – 1 million 1 million – 10 million

Environmental 500,000 – 1 million 1 million – 10 million 10 million – 100 million

Table 3: Data Size Estimation Based on Task Complexity and Model Size.

2.3. Data Collection and Storage

Data collection and storage are fundamental to building
effective machine learning systems. This involves under-
standing what type of data is required, determining where
it can be sourced, and establishing how it will be collected.
Proper storage solutions must also be planned to ensure
scalability, security, and accessibility.

key questions that should be asked

● What data sources will be used, and how reliable
and up-to-date are these sources?

● How well do I understand the characteristics of my
data and the conditions under which they were col-
lected?

● What potential downstream problems could result
from using these specific data?

● How frequently does that data need to be updated
to maintain the model’s performance over time?

● Will the data be stored on-premises, in the cloud,
or using a hybrid solution?

● Does the storage infrastructure support scalability
as data volume grows?

Data Collection

The data collection phase is crucial for determining how
much data is needed, how to reduce data dependency, and
when data needs to be collected. The frequency of data col-
lection ensures that that data is up-to-date, consistent, and
accurate. Collecting data too infrequently risks missing sig-
nificant changes, trends, or events that could impact anal-

ysis. Conversely, collecting data too frequently can lead to
unnecessary costs, increased complexity, and heightened
risks.

Manufacturing Data Sources

● IoT Sensors: Real-time data like temperature, pres-
sure, and energy.

● Production Logs: Records of downtimes, produc-
tion rates, and activities.

● Quality Control: Inspection data, including images
and measurements.

● ERP Systems: Inventory, supply chain, and produc-
tion planning data.

● Operator Input: Manual records or adjustments
providing context to automated data.

● Simulation Data: Digital twins or synthetic data for
scalable AI training.

To determine the optimal data collection frequency, con-
sider the rate of change and level of detail required from
the data source, as well as the expectations and needs of
the destination. It’s essential to weigh the trade-offs and
costs associated with both high and low-frequency data
collection. For applications where conditions evolve slowly,
data collectionmay only need to happen quarterly or annu-
ally, followed by model updates. In fast-changing environ-
ments (e.g., manufacturing systems with frequent process
changes), more frequent data collection—daily or weekly—
may be necessary. Leveraging real-time data streams for
ongoing updates can reduce the burden of large batch col-
lections and ensure models remain up-to-date.
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Data Storage

A robust data infrastructure must securely store all col-
lected data, with security and accessibility as top priorities.
Key steps include selecting the right storage system, defin-
ing data retention policies, and establishing backup and re-
covery processes to maintain data integrity and availability.

Depending on specific needs, storage optionsmight include
cloud or physical (on-site) servers. While on-site storage, or
local storage, is often viewed as more secure, this is not al-
ways the case. Secure cloud storage with carefully defined
access controls and regular backup protocols can safeguard
data without the added responsibility of managing hard-
ware and infrastructure.

Scaling data infrastructure is critical for handling the grow-
ing volume, variety, and velocity of data generated in mod-
ern manufacturing environments. This includes cloud stor-
age, databases, and distributed systems that ensure relia-
bility, scalability, and efficiency—essential requirements for
any data storage solution (section 4.1).

Example

A manufacturing company utilizes a centralized plat-
form to store and analyze data from multiple plants
globally. The system needs to reliably handle criti-
cal data from thousands of sensors, scale with grow-
ing data volumes, and support efficient processing to
generate actionable insights, such as optimizing en-
ergy consumption or enhancing production efficiency.

2.4. Data Quality and Analysis

Data analysis relies heavily on the quality of the data
being used. High-quality data—accurate, complete, and
consistent—is essential for generating meaningful insights
and reliable results. Poor-quality data can lead to errors,
biased models, and ineffective decision-making.

key questions that should be asked

● How does the model handle unseen or out-of-
distribution data?

● How often should the data distribution be analyzed
to detect drift?

● How often should the model be retrained, and on
what criteria?

● What quality concerns or biases are present in my
data?

● Is the model achieving its intended performance
metrics on real-world data?

Data Quality

It is a critical determinant of the success of AI applications
in manufacturing. High-quality data ensures that the pat-
terns and insights derived from AI methodologies are accu-
rate and reliable. Poor data quality can lead to inaccurate
models, misleading results, and ultimately, faulty decision-
making. Therefore, it is crucial to implement robust data
quality assurance mechanisms to ensure the reliability and
accuracy of AI applications.

Various problems can arise during data collection, leading
to uncertainties and delays. These problems are shown in
Table 4.

Factor Description

Data Quality Incomplete, erroneous, or du-
plicate data can distort analysis
and require extensive cleaning
and validation efforts.

Data Inconsistency Data from different sources may
be inconsistent or inaccurate,
necessitating additional time to
resolve discrepancies.

Data Noise Irrelevant or erroneous data
points that obscure meaningful
patterns and reduce the clarity
and reliability of the dataset.

Historical Data
Accessibility

Delays can occur due to the lack
of accessibility or poor docu-
mentation of historical data.

Real-time Data
Collection

Implementing sensors and data
pipelines for real-time data col-
lection can be time-consuming
and complex.

Data Granularity Determining the appropriate
level of data granularity is often
uncertain and project-specific,
impacting the time required for
collection and processing.

Data Compatibility Incompatible data formats and
definitions can lead to time-
consuming conversions and ad-
justments.

Technical
Infrastructure

Inadequate or outdated infras-
tructure can slow down the data
collection process.

Scalability and
Flexibility

Systems that are not scalable
or flexible enough to respond
to changing requirements can
introduce uncertainties in the
timeline.

Time Management
and Planning

Over-optimistic timelines and
undetected issues can lead to
delays and inaccurate results.

Table 4: Factors affecting the overall project timeline.

Addressing these uncertainties and implementing strate-
gies to minimize the time required for data collection is
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essential for efficient project management.

Maintaining high-quality data is a continuous challenge
due to various issues that can arise at different stages of
the AI lifecycle such as data drift, concept drift, bias, imbal-
ance, and noise that can significantly affect the accuracy
and generalizability of AI models.

Imbalanced Data Imbalanced Data occurs during model
training, when the distribution of classes or categories in a
dataset is significantly skewed, meaning one class is much
more frequent than others. This imbalance can lead to bi-
ased models that perform well on the majority class but fail
to accurately predict or recognize the minority class.

Data Biased Bias arises when the training data are not
representative of the real-world distribution. This can lead
to unfair or inaccurate predictions, especially if certain
groups, conditions, or scenarios are underrepresented in
the dataset. Furthermore, bias may not only exist in the
training phase but can also emerge during deployment, as
unseen biases in live data come into play, further compli-
cating the performance and reliability of the AI system.

Data Drift It occurs when the statistical properties of the
input data change over time after deployment. This means
that the distributions, patterns, or underlying characteris-
tics of the data shift, even though the relationship between
inputs and outputs remains the same. Data drift might hap-
pen due to seasonal trends, changes in user behaviour, or
external factors that impact data collection.

Concept Drift It happens during Post-deployment when
the relationship between input data and the target variable
changes. This is common in applications with evolving envi-
ronments, where patterns that once indicated a certain be-
haviour no longer apply. Concept drift is more challenging
to detect, as it requires monitoring performance metrics,
rather than just input distributions. If the model’s accuracy
or other performance indicators begin to decline, this can
signal concept drift, suggesting a need for model retraining
or adjustment to reflect the new relationship.

Addressing these challenges proactively during data prepa-
ration and through continuousmonitoring post-deployment
is essential to maintaining high data quality and ensuring
reliable AI performance.

Data Analysis

It is the systematic examination, transformation, and inter-
pretation of data to extract meaningful information, iden-
tify patterns, and support informed decision-making. It in-
volves employing various techniques and tools to discover
insights, uncover trends, and answer questions about his-
torical, current, and future events. By leveraging data anal-

ysis, organizations gain a deeper understanding of their op-
erations, customers, and market environment, ultimately
guiding strategic planning and optimizing performance.

When it comes to data analysis, there are generally four key
types. Each differing in complexity, performance impact,
and data requirements. Figure 3 illustrates the varying de-
grees of these four types, comparing the level of complexity
involved with the value they add to the organization.

Figure 3: Data Analysis key types.

Descriptive Analysis: Summarizes and interprets historical
data to highlight patterns, trends, and outcomes, effectively
illustrating what has happened.

Diagnostic Analysis: Delves deeper into the factors behind
observed results, aiming to determine why certain events
took place or why certain patterns emerged.

Predictive Analysis: Uses historical data, statistical models,
and machine learning algorithms to forecast future scenar-
ios, enabling organizations to anticipate changes and pre-
pare accordingly.

Prescriptive Analysis: Builds on the insights gained from
other analysis types to suggest actionable recommenda-
tions, outlining the best course of action and helping
decision-makers choose strategies with the highest prob-
ability of success.

The general principle is to start with the simplest cate-
gory, Descriptive Analytics, which requires minimal data
and provides basic insights into past events. As organiza-
tions progress to Diagnostic Analytics, Predictive Analytics,
and finally Prescriptive Analytics, the complexity increases,
requiring more advanced models, higher data quality, and
larger volumes of data. This progression ensures a bal-
ance between achievable performance and growing data
requirements while unlocking greater organizational value.
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3. Solving the Data Bottleneck

An integrated approach to addressing the data bottleneck and associated risks is explored across
the AI lifecycle. This includes strategies for overcoming data scarcity, ensuring high-quality
datasets through preprocessing and cleaning, and managing imbalanced data to improve fairness
and accuracy. Post-deployment monitoring is highlighted to address data changes and sustain
model performance, enabling organizations to build reliable and adaptable AI systems.

3.1. Dealing with Data Scarcity

Data scarcity poses a significant challenge in AI projects,
particularly when building models that require large, high-
quality datasets. The need for additional data can arise at
various stages of an AI project.

Problem Definition Phase: During the initial stages, when
the scope of the problem is being defined, and it’s unclear if
the available data covers all relevant scenarios or variables.
Additional data might be required to validate the problem
scope and ensure representativeness for the AI model.

Data Collection and Preprocessing Phase: While gather-
ing and cleaning data, gaps, biases, or imbalances in the
dataset may be identified. More data may be needed to fill
these gaps, address underrepresented classes, or ensure
diversity and quality.

Model Training Phase: If the model underperforms due to
insufficient training data, particularly for complex tasks or
rare events. Additional data improves model generaliza-
tion, accuracy, and robustness, especially for supervised
learning tasks.

Validation and Testing Phase: During validation, when the
test results indicate overfitting or an inability to generalize
to unseen data. More diverse or representative data en-
sures better testing and reduces bias in evaluation.

Post-deployment Phase: Data drift or concept drift occurs
due to changes in real-world conditions. Collecting up-
dated real-time data ensures the model remains accurate
and adapts to evolving scenarios.

To mitigate data scarcity, organizations can use strategies
like data augmentation, transfer learning, design simula-
tion experiments, domain nknowledge integration, and ac-
tive learning to maximize the utility of available data [5].
These approaches help ensure AI models achieve robust
performance, even when data is limited.

Data Augmentation

Data augmentation is a technique used to artificially in-
crease the size and diversity of the training dataset with-
out collecting new data. This is particularly valuable for
small manufacturing companies, where data collection can
be costly or time-consuming. By simulating real-world vari-
ability, augmentation helps models generalize better, im-
proving performance in practical applications.

Basic data augmentation techniques involve simple geo-
metric transformations [6]:

Rotation and Flipping: Rotating images by fixed angles or
flipping them horizontally/vertically helps the model rec-
ognize products regardless of their orientation.

Scaling and Translation: Scaling changes the size of the
product in the image, while translation shifts its position
within the frame. These techniques introduce variability,
enabling the model to learn invariant features across dif-
ferent scales and positions.

Figure 4: The effects of common data augmentation meth-
ods.

More sophisticated data augmentation methods can signif-
icantly enhance model performance, especially when deal-
ing with limited data:

Generative Adversarial Networks (GANs): generate highly
realistic synthetic data. In manufacturing, GANs can create
images of rare defects, enriching the training dataset and
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improving the model’s ability to detect such defects.

Mixup and CutMix

● Mixup: Generates new training examples by combin-
ing two images and their corresponding labels through
linear interpolation, encouraging the model to learn
smoother decision boundaries.

● CutMix: Involves cutting out a region from one image
and pasting it onto another, which increases data di-
versity and forces the model to focus on less obvious
features like texture or shape.

Transfer learning

Transfer learning involves leveraging pre-trained models,
typically trained on large, general-purpose datasets, and
fine-tuning them for a specific task using a smaller dataset.
For small manufacturing companies, this approach is in-
valuable as it allows them to benefit from the extensive
knowledge embedded in these pre-trained models without
requiring large amounts of data.

Example

A small textile manufacturer used a pre-trained model
designed for general image recognition and fine-tuned
it to detect fabric defects. By leveraging the model’s
existing knowledge of textures and patterns, they sig-
nificantly reduced the time and data needed to achieve
high accuracy in defect detection.

One popular model for transfer learning is VGG16, a deep
convolutional network pre-trained on the ImageNet dataset.
VGG16 is particularly suitable for image-based tasks, such
as defect detection, due to its ability to capture intricate
visual features.

Layer-wise Freezing and Unfreezing: A typical approach
starts by freezing the lower layers of the pre-trained model,
which capture general features like edges and textures. The
final layers, which are more specialized, are fine-tuned on
the new dataset. Gradually unfreezing earlier layers allows
the model to adjust to the specific characteristics of the
new data, such as unique textures or shapes found in de-
fect images.

Domain Adaptation Techniques: Domain adaptation en-
sures that the pre-trained model aligns with the specific
characteristics of the manufacturing data. Fine-tuning the
model to recognize particular types of defects or textures
ensures it is not just a general-purpose classifier but opti-
mized for the specific needs of the manufacturing environ-
ment.

Design Simulation Experiments

Simulation experiments serve as a cornerstone in diverse
disciplines, providing a platform to explore, optimize, and

predict behaviors of complex systems that might be chal-
lenging to investigate in the real world. From physics to
social sciences, these experiments offer a way to navigate
“what if” scenarios, validate theories, and guide decision-
making processes.

Designing a simulation experiment allows manufacturers to
evaluate the behaviour of machine learning models in a
controlled, virtual environment. By doing so, manufacturers
can:

● Test how models will respond to real-world scenarios
without disrupting actual production.

● Identify and mitigate potential risks or failure points in
the ML models before full-scale deployment.

● Fine-tune ML models for specific operational conditions
and edge cases that might not be present in the training
data.

● Ensure the models’ predictions or optimizations are
consistent, reliable, and beneficial under various pro-
duction conditions.

Real-Time Data Collection

Real-time data collection has become crucial in rapidly
changing environments.

Streaming data: Leveraging APIs to continuously gather
data from various sources.

Real-Time Logging: Continuously recording system logs
and operational data to monitor performance, identify bot-
tlenecks, and detect anomalies as they occur.

Sensor Networks: Using interconnected sensors to cap-
ture physical data in real-time, such as temperature, vibra-
tion, energy usage, and production efficiency, particularly
in manufacturing and industrial settings.

User interactions: Capturing real-time data based on user
behavior within applications, offering valuable insights into
user preferences and emerging trends.

This method enables datasets to be continuously updated,
ensuring AI models are trained with the most up-to-date
information available.

Integrating Domain Knowledge

One effective approach for reducing sample complexity is
integrating prior expert knowledge. In classical engineer-
ing, established theories and expert knowledge provide a
solid foundation for system understanding. Integrating this
domain knowledge into AI methods can significantly reduce
the amount of data required, boost system reliability, and
even enable extrapolation beyond known data points [7].

Integrating domain knowledge often requires additional ef-
fort to blend standard AI methods with external knowledge
sources and engineering models, sometimes in mathemat-
ical forms like differential equations.
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3.2. Data Preprocessing and Cleaning

In today’s data-driven landscape, the success of any AI sys-
tem relies significantly on the quality of its training data. AI
data preparation—the process of cleaning, organizing, and
structuring raw data—forms the crucial groundwork that al-
lows AI models to deliver accurate and dependable insights.
Without well-prepared data, even the most advanced al-
gorithms can fall short, leading to misleading results and
overlooked opportunities.

The overall process can be summarized as shown in Fig-
ure 5.

Figure 5: Data Preprocessing and Cleaning.

Data Integration

Integrating data frommultiple sources is essential for com-
prehensive analysis but can be a complex task. It involves
combining structured, semi-structured, and unstructured
data from diverse systems while addressing challenges
like format incompatibilities, data redundancy, and incon-
sistencies. Ensuring compatibility and consistency across
datasets is critical for creating a unified view, enabling ac-
curate insights, and improving the reliability of AI models.

Example

Combining simulated data with real-world data to en-
hance predictive maintenance models, ensuring the
simulated data accurately reflects real conditions.

Data Cleaning

It involves identifying and correcting errors, inconsisten-
cies, and inaccuracies to ensure data quality and reliability.

Handling Missing Values: Depending on the nature of the

data and the problem, you can impute missing values us-
ing techniques like mean, median, mode, or more advanced
methods such as k-NN imputation.

Removing Duplicates: Duplicate entries can introduce bias,
so they should be identified and removed.

Outlier Detection and Treatment: Outliers can skew model
results. Depending on the context, outliers can be removed,
capped, or adjusted.

Data Transforming

This could include normalization, aggregation, or other
techniques to make the data suitable for modelling.

Normalization: Scaling features to have a mean of 0 and
a standard deviation of 1. Useful for algorithms that are
sensitive to feature scales.

Standardization: Scaling features to lie between a given
minimum and maximum value, often between 0 and 1.

One-hot Encoding: Converting categorical variables into a
form that could be provided tomachine learning algorithms
to do a better job in prediction.

Feature Engineering

It is the process of transforming and creating features from
raw data to improve the performance of machine learning
models. It bridges the gap between raw data and model
training by enhancing the dataset’s relevance and predic-
tive power.

● Generating new features by combining or deriving in-
sights from existing ones.

● Creating interaction terms that capture the combined
effect of two or more variables.

● Applying domain-specific knowledge.

Data Reduction

It involves techniques to reduce the volume of data while
preserving its meaningful characteristics. It is essential for
improving computational efficiency, reducing storage re-
quirements, and enhancingmodel performance by focusing
on the most relevant information.

Dimensionality Reduction: Techniques like Principal Com-
ponent Analysis (PCA) or autoencoders can be employed to
reduce the number of features if the dataset is too large,
ensuring faster training without losing much information.

Feature Selection: This involves selecting the most critical
features that contribute to the prediction. Techniques can
be as simple as correlationmatrices ormore advanced ones
like recursive feature elimination.

Data Sampling: Selecting a representative subset of the
data, such as random sampling or stratified sampling, to
reduce size without losing diversity.
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Data Labeling and Annotation

It is a critical step in supervised and semi-supervised ma-
chine learning, where human annotators or automated sys-
tems assign meaningful labels to raw data to make it usable
for model training. Effective data labeling strategies ensure
high-quality and scalable annotations.

Automated Labeling: Using algorithms to label data auto-
matically, often employed in situations where patterns are
straightforward such as Rule-based systems, pre-trained
models, or simple heuristics.

Crowdsourcing: Leveraging platforms like AmazonMechan-
ical Turk to distribute labeling tasks to a large pool of non-
expert human annotators.

Active Learning: A strategy where a model identifies the
most informative data points to be labeled, often focusing
on data points it is most uncertain about.

WeakSupervision: Using noisy, limited, or imprecise sources
such as heuristics, data programming, or knowledge bases
to generate labels.

3.3. Dealing with Imbalanced Data

Unbalanced data occurs when certain classes are signifi-
cantly underrepresented compared to others. In manufac-
turing, this imbalance often results in AI models that per-
form poorly on the minority class, which may represent crit-
ical defects. This can lead to undetected quality issues, in-
creased waste, and potential financial losses.

Example

A small electronics manufacturer produces 10,000 cir-
cuit boards daily, with only 50 identified as defective.
Initial AI models were trained on this highly unbal-
anced dataset, leading to poor performance in de-
tecting defects. Consequently, some defective boards
passed through quality checks unnoticed, causing sig-
nificant customer dissatisfaction and returns.

Techniques for Addressing Imbalanced Data

Several techniques can be employed to mitigate the effects
of unbalanced data.

Resampling Techniques

● Over-sampling: This technique involves generating ad-
ditional synthetic samples for the minority class to bal-
ance the dataset. One popular method is the Synthetic
Minority Over-sampling Technique (SMOTE), which gen-
erates new instances by interpolating between existing
ones. While this reduces overfitting, it can introduce

noise if not carefully managed.

● Under-sampling: This method reduces the number of
samples in the majority class by selectively removing
instances. While it balances the dataset, there is a risk
of losing valuable information, potentially reducing the
overall model performance.

Ensemble Learning Methods

● Balanced Random Forest: A variant of the random for-
est algorithm, this method applies balanced bootstrap
sampling to ensure that each decision tree is trained on
a more balanced subset of data, improving performance
on the minority class.

● EasyEnsemble: This technique creates multiple bal-
anced subsets from the majority class and trains weak
learners on each subset combined with the minority
class. The final model aggregates these learners, yield-
ing robust performance on both majority and minority
classes.

Cost-sensitive learning It addresses class imbalance by
assigning higher penalties to themisclassification of minor-
ity classes. In manufacturing, this approach ensures that
the model focuses more on detecting defects, even if they
are rare, by incorporating the costs associated with differ-
ent types of errors.

Balancing Complexity

When training an AI system, it is essential to strike a bal-
ance between two undesirable extremes: underfitting and
overfitting. Both can significantly impact the performance
and generalization ability of the ML model [8].

Underfitting It occurs when the model is not trained for a
sufficient number of epochs or lacks the complexity needed
to capture the underlying patterns in the data. Conse-
quently, the model fails to adequately learn from the train-
ing data, leading to suboptimal predictions and poor per-
formance on both the training and validation datasets. This
scenario often arises from insufficient training time, overly
simplistic model architectures, or inadequate feature se-
lection.

Overfitting It happens when the model is trained exces-
sively or is too complex relative to the data. In this case, the
model fits the training data too closely, capturing not only
the underlying patterns but also noise and random fluctua-
tions. As a result, while the model may perform exception-
ally well on the training dataset, it struggles to generalize
to new, unseen data, yielding poor predictions. Overfitting
highlights the importance of focusing on the generaliza-
tion capacity of ML models, as their primary goal is to learn
broad concepts rather than memorizing specific examples.
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Figure 6 is an illustration of overfitting and underfitting. As
the number of weight update iterations grows, the model
progressively learns the training data, leading to improved
generalization performance. However, a critical ”breaking
point” or inflection point is reached, beyond which addi-
tional training increases the model’s accuracy on the train-
ing data but adversely affects its generalization ability.

Figure 6: Illustration of overfitting and underfitting.

To mitigate these issues:

● Optimize the model’s performance by adjusting hyper-
parameters using techniques like grid search or ran-
dom search. These methods explore different parame-
ter combinations and select the ones that yield the best
performance based on the validation data.

● Early stopping approach: monitoring the model’s per-
formance on a validation dataset during training and
halting the training process when the validation error
stops improving, thereby avoiding overfitting.

● Using regularization methods such as L1/L2 penalties by
adding constraints to the optimization process.

LossL1 = λ
n
∑
i=1
∣θi∣

LossL2 = λ
n
∑
i=1

θ2i

where λ is the regularization parameter controlling the
penalty strength, θi are the model coefficients.

LossElasticNet = λ1
n
∑
i=1
∣θi∣ + λ2

n
∑
i=1

θ2i

where λ1 controls the L1 penalty, λ2 controls the L2
penalty. These penalty terms are added to the main loss
function (e.g., Mean Squared Error, Cross-Entropy Loss)
to improve generalization and ensure better model per-
formance.

3.4. Model Verification and Validation

Once a model has been chosen, verifying and validating its
reliability and effectiveness becomes essential. Verification
and Validation serve as checkpoints that ensure a model
accurately represents the phenomena it aims to simulate
and performs as expected in real-world conditions.

Data splitting is a fundamental step in this process, where
the dataset is divided into training, validation, and test sets.
The training set is used to build the model, the validation
set is used for verification, and the test set is reserved for
final validation to assess the model’s generalizability. High-
quality, representative data is crucial during data splitting
to ensure that verification and validation processes yield
meaningful results. Resolving data issues during verifica-
tion ensures the model functions correctly before valida-
tion, where its true performance is tested on unseen data.
This structured approach ensures that the model is robust,
reliable, and ready for real-world application.

Data Splitting

Data is typically split into Training, Validation, and Test sub-
sets. The training set is for training the model, the valida-
tion set is for tuning hyperparameters, and the test set is
for evaluating model performance.

Holdout Method: The dataset is randomly divided into
three subsets: training, validation, and testing. This sim-
ple approach provides an efficient way to evaluate model
performance but may lead to variability depending on the
random split.

K-Fold Cross-Validation: The dataset is split into k sub-
sets (folds). The model is trained k times, each time using
k − 1 folds for training and the remaining fold for testing.
This method reduces variability by averaging performance
across all folds, providing a more robust evaluation.

Bootstrapping: A resampling technique where multiple
samples are drawn with replacement from the dataset to
train and evaluate themodel. Bootstrapping helps estimate
model performance when the dataset is small or limited,
capturing variability by creating diverse training sets.

Model Verification

To ensure the model is error-free and functions as in-
tended, aligned with its theoretical or conceptual founda-
tions.

Data Cleaning and Preprocessing: The verification phase
heavily relies on clean, well-preprocessed data to confirm
the model’s functionality.

Data Consistency Checks: Consistency checks ensure that
all data conforms to expected formats, ranges, and struc-
tures. Anomalies, like sudden spikes in time-series data,
might indicate data recording issues rather than true events.
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Data Transformation Validation: For models that require
feature transformations, it’s essential to verify these trans-
formations produce consistent outputs, especially if trans-
formations are applied dynamically.

Model Validation

To determine if the model’s outputs are valid and useful for
its intended purpose. Validation checks the model’s perfor-
mance on real-world data, making data structure, quantity,
and diversity foundational to assessing the model’s robust-
ness.

Validation Data Representativeness: Validation datasets
must cover the full range of scenarios the model will face
post-deployment. Underrepresented groups in the valida-
tion data can lead to biased predictions or erroneous out-
puts.

Cross-Validation with Data Diversity: Cross-validation re-
lies on splitting data into training and validation subsets.
Ensuring that each subset is representative prevents over-
fitting and promotes generalization across all data seg-
ments.

Data Quantity for Reliability: Sufficient data is needed for
the model to “see” enough variations in scenarios. Limited
or narrow data can lead to underfitting, where the model
fails to learn relevant patterns, or overfitting, where the
model performs well on training data but poorly on new
data.

Performance Evaluation

It is essential to monitor the ML model’s performance
against key metrics.

Prediction Accuracy: How accurately does the model pre-
dict machine failures or defects?

In classification tasks, metrics like accuracy, precision,
recall, F1-score, or AUC-ROC are commonly used. For
regression problems, mean squared error (MSE) or
mean absolute error (MAE) may be more appropriate.

Optimization Effectiveness: Is the ML model effectively op-
timizing production parameters, reducing waste, or lower-
ing energy consumption?

Response Time: How quickly does the model adjust its pre-
dictions or recommendations based on new data?

Robustness: How does the model perform under different
operating conditions or edge cases? Does it generalize well
to unseen data or scenarios?

Return on Investment (ROI): Does the simulation show
that the ML model delivers tangible benefits, such as re-
duced downtime, improved product quality, or enhanced
efficiency?

Sensitivity Analysis: This tests the model’s stability against
variations in input data, such as noise or outliers. It’s vital
to ensure that the model performs consistently under var-
ious conditions.

3.5. Continual Learning

As AI models are deployed in dynamic environments, data
patterns and requirements can evolve over time. To main-
tain model relevance and accuracy, it is crucial to estab-
lish continuousmonitoring and adaptive processes, we pro-
posed a continual learning (post deployment) cycle shown
in Figure 7.

Continual Learning

Model Deployment

Model Monitoring

Model Evaluation

Data Acquisition 

Data Observation

Model Retraining

Figure 7: Continual Learning Cycle.

Model Deployment and Monitoring

An effective deployment includes the following compo-
nents, listed in order of increasing implementation com-
plexity.

Continuous Integration/Continuous Deployment (CI/CD):
Setting up a strong CI/CD pipeline is essential to enable
rapid rollback to a previous model version if needed.

Model Monitoring: Monitoring the model’s performance
and behaviour is as valuable as monitoring messages and
API requests. Together, these insights allow your team to
understand the model’s behavior and quickly diagnose is-
sues.

A/B Testing: A hands-on method for assessing model per-
formance across different conditions is A/B testing.

CI/CD with Humans-in-the-Loop: This approach includes
testing the model on live samples before deploying it in
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production, which helps to reduce errors in real-world set-
tings. It’s a valuable method for verifying models against
known issues, as seen in self-driving AI, where each known
challenge undergoes extensive human validation.

Data Acquisition and Observation

After deployment, acquiring new data is essential to en-
sure AI models remain accurate and relevant in dynamic
environments. New data can capture changes in patterns,
user behavior, or system conditions that were not present
during initial training.

Once a robust model monitoring system is in place, detect-
ing data drift and performance degradation becomes more
effective.

A common approach is to use monitoring dashboards that
visualize key metrics over time.

Stability Metrics: Data Drift, Concept Drift, Model Drift.

Performance Metrics: Accuracy, Precision and Recall, AUC-
ROC, F1 Score, MAE and MSE.

Operations Metrics: Memory, compute resources, Latency,
Throughput, server load.

Input metrics: Model input distribution.

Continuous data acquisition allows for monitoring Data
Drift, bias monitoring.

Model Monitoring for Data Changes Implement systems
to track your models’ performance, keeping an eye on key
metrics and identifying signs of performance degradation
or concept drift, where the underlying data distribution
shifts. Setting up thresholds and alerts helps in the early
detection of these issues.

Continuous Bias Monitoring It is essential to ensure AI
models remain fair and unbiased post-deployment. Bias
can emerge over time due to changes in data distributions,
shifts in user behavior, or the introduction of new edge
cases.

● Diverse and Representative Training Data:

– Ensure that the data used for training AI models
reflects the full diversity of the population or sce-
narios the AI system will encounter.

– Conduct regular audits of the datasets to iden-
tify gaps or imbalances and take corrective action,
such as supplementing data from diverse demo-
graphics or environments.

● Bias Detection Tools and Techniques:

– Use statistical tools and algorithms designed to de-
tect bias in data and model outcomes. These tools
can help identify instances where the model’s pre-
dictions disproportionately favor or disadvantage

specific groups.

– Implement techniques like fairness metrics and
adversarial testing to ensure the model treats dif-
ferent demographic groups equitably.

Data-Driven Retraining and Model Updates

Regularly retrain your models using fresh data or update
them to reflect changes in the data distribution or evolving
problem context. This ensures that the models continue to
make accurate predictions based on the most current data.

Iterative ImprovementwithNewDataandFeedback Con-
tinuously enhance your models by incorporating feedback
from real-world usage, applying domain-specific insights,
and exploring new algorithmic techniques. This itera-
tive process ensures that your models adapt and improve
alongside changing data and business needs.

Monitoring data post-deployment is essential to ensure the
AI model continues to perform reliably in real-world condi-
tions.

Model Interpretability and Transparency

Model Interpretability and Transparency are critical aspects
of deploying AI systems, especially in applications where
understanding how a model makes decisions is essential.

● Build models that are interpretable, allowing stakehold-
ers to understand how predictions are made and why.
This is especially important in high-stakes applications,
such as healthcare or finance, where decisions have sig-
nificant real-world impacts.

● Provide clear documentation outlining the model’s de-
sign, data sources, and potential biases, so that users
can make informed decisions.

Effectively solving the data bottleneck is critical to the suc-
cess of AI systems. Addressing issues like data scarcity, im-
balances, and quality concerns not only improves model
performance but also builds a foundation for long-term
adaptability. Preprocessing and cleaning ensure data con-
sistency, while strategies for post-deployment monitoring
safeguard models against shifts in data patterns. By priori-
tizing these practices, organizations can confidently deploy
AI systems that remain reliable, accurate, and aligned with
evolving real-world demands.

17



4. Managing the Data Bottleneck

A robust data bottleneckmanagement solution empowers organizations to intelligently unify their
data, enabling better access, trust, and control. This capability is essential for achieving key busi-
ness objectives, as every effort to enhance customer experience, streamline operations, or drive
organizational transformation relies heavily on the effective use of data.

4.1. Data Management

Data management refers to designing and implementing
the frameworks, standards, and guidelines necessary to
address an organization’s entire data lifecycle needs. Es-
tablishing these structures is essential for understanding
and analyzing complex, large-scale data environments. By
treating data as a critical business asset, organizations rec-
ognize the importance of effectively managing it. Dataman-
agement involves the systematic collection, organization,
control, and accessibility of data to enhance productivity,
efficiency, and informed decision-making [9].

This process encompasses a wide range of tasks and pro-
cedures as shown in Figure 8.

 Data Management

Data
Architecture

Data
Versioning

Data Preparation
& Transformation

Data Catalogs

Data
Governance

Data
Warehousing

Data ContextData Storage

Figure 8: The Process of Data Management.

Data Architecture Defines the blueprint for data flow,
storage, and access, ensuring that systems, processes, and
policies align to meet organizational needs.

Data Warehousing Centralize all data sources, offering a
single, trusted environment from which analytical insights
can be derived. By consolidating disparate data into one
repository, they create a clear path to effective data analy-
sis.

Data Context It refers to the circumstances, conditions,
and metadata surrounding the data’s collection, including
its source, purpose, and any factors influencing its quality.
Without context, critical patterns or anomalies may be mis-
interpreted, leading to flawed insights and decisions. In-
corporating metadata, such as timestamps, environmental
conditions, or operational settings, provides the necessary
context to ensure that AI models are trained and deployed
with a comprehensive understanding of the data, enhanc-
ing accuracy and reliability.

DataVersioning It tracks andmanages changes to datasets
over time, ensuring each iteration is stored, labeled, and
retrievable. This allows rolling back to previous versions,
comparing changes, and maintaining an auditable history.
It is crucial for analytics, machine learning, and compli-
ance, enabling validation, reproducibility, and accountabil-
ity. By ensuring traceability and structure, data versioning
enhances data quality, collaboration, and decision-making.

Data Storage Solutions Efficient data storage is critical in
the AI workflow, ensuring that preprocessed data is securely
stored for analysis and model training. Scalable and flexi-
ble storage solutions manage large volumes of diverse data
generated by AI applications, supporting a range of tasks
from simple analytics to complex machine learning mod-
els.

As shown in Table 5, different storage solutions suit var-
ious data management needs. Choosing the appropriate
storage system impacts the efficiency, reliability, and cost-
effectiveness of AI workflows. Aligning the storage solu-
tion with the AI application’s specific requirements—such
as data size, structure, access frequency, and compliance—
maximizes data utility while minimizing bottlenecks.

18



Storage Solution Description Use Cases

SQL Databases Provide structured storage with well-defined
schemas and powerful querying capabilities.

Transactional data, relational databases.

NoSQL Databases Flexible storage for unstructured or semi-
structured data, including document and
graph stores.

Horizontal scalability and handling diverse
data types (Social networks, contentmanage-
ment).

Data Lakes Centralized repositories that store raw data in
its native format, whether structured, semi-
structured, or unstructured.

Big data analytics, ML workflows.

Cloud-Based Storage Storage Scalable solutions provided by cloud
platforms with global accessibility.

AI workflows with features like versioning,
backup, and disaster recovery.

On-Premises Storage Physical storage managed within an organi-
zation, ensuring full control over security.

Sensitive data storage, compliance.

Hybrid Storage Combines on-premises and cloud storage for
flexibility.

Store sensitive data locally while using the
cloud for scalability and advanced analytics.

Table 5: Overview of data storage solutions adapted from [10].

Data Catalogs It manages metadata to create a complete
picture of the data. They consolidate data dictionaries, de-
fine data elements, and centralize business rules, gover-
nance policies, and glossaries. This streamlines data dis-
covery, enhances collaboration, and ensures access to reli-
able data assets. By improving metadata management, or-
ganizations foster a transparent and connected data envi-
ronment, reducing complexity and empowering stakehold-
ers to use data effectively.

4.2. Data Governance and Usage Rights

Data governance establishes the framework for managing
data quality, security, and compliance, while usage rights
define who can access, use, and share data. Together, they
ensure data is used responsibly and ethically.

key questions that should be asked

● Ownership: Who is responsible for managing the
data?

● Access: Who is authorized to access specific
datasets?

● Security: What measures are in place to safeguard
data and ensure privacy?

● Compliance: How much of the organization’s data
adheres to current regulations?

● Approval: Which data sources are verified and ap-
proved for use?

Governance policies includemanaging data ownership, defin-
ing roles, and ensuring regulatory compliance. Usage rights
specify permissions and restrictions, addressing privacy

concerns and legal requirements. Effective data gover-
nance and clear usage rights promote trust, mitigate risks,
and maximize the value of data assets [11].

Data Security and Compliance They involve categorizing
data sources by their risk levels and establishing secure ac-
cess mechanisms. This ensures a balance between main-
taining robust security protocols and enabling seamless
user interactions with the data.

Data Stewardship It involves monitoring how teams uti-
lize data sources, with stewards taking the lead in promot-
ing best practices. Their role includes ensuring data access
aligns with security and quality standards while fostering
responsible data usage.

Data Transparency It is vital for effective data gover-
nance. All processes and procedures should operate within
a framework that allows analysts and business users to
clearly understand the origins of their data and be aware
of any special considerations or limitations associated with
the data. By implementing transparent governance models,
organizations empower users to confidently leverage data
for meaningful insights while maintaining compliance and
security.

Through strategic investment in datamanagement and gov-
ernance, organizations can unlock the full potential of their
AI initiatives. By addressing architecture, governance, stor-
age, and operational practices, organizations can create a
data environment that is both robust and adaptable.
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5. Use Case: Wear Condition Detection of Ball
Screw Drive Surfaces

In the domain of production, one significant area of focus in
the application of AI is predictive maintenance. This topic
encompasses the monitoring and evaluation of the wear
condition of a given component, as well as the subsequent
prediction of the point in time at which the component will
become unable to fulfill its intended function. In the con-
text of machine tools, the ball screw drive (BSD) plays a
central role in achieving high-precision production of work-
pieces. However, mechanical failures, such as pittings on
the surface of the BSD, frequently occur, resulting in unan-
ticipated machine downtime [12]. It is therefore desirable
to implement a predictive maintenance method capable of
detecting these pitting defects and, moreover, planning a
change of the BSD with a minimum of machine downtime.
A significant challenge arises from the often limited data
available in production environments, which are necessary
for training AI applications. This problem is addressed in
the following section, which outlines a solution based on
the CRISP-DM methodology. Most of the following content
is based on the dissertation of Tobias Schlagenhauf [13] and
can be found in much more detail and depth in the cited
document.

5.1. Business Understanding

A total of 38% of machine downtime among machine tools
is attributable to failure of machine axes, of which 38% is
also attributed to BSD-related causes [12]. Figure 9 illus-
trates the composition of a BSD. When the spindle is ro-
tated by an electric engine, the nut will undergo a transla-
tional movement. The two components are connected via
the balls located within the nut. A deficiency in lubrica-
tion results in dry contact between the balls and the sur-
face of the spindle, leading to the formation of pittings on
the surface. Consequently, the precision of the machine is
compromised, necessitating an unplanned machine down-
time to replace the ball screw drive. To address the issue
of unplanned machine downtime, it is essential to develop
a method for monitoring and quantifying the wear on the
spindle surface. Therefore, the initial step is to implement a
measurement system that enables themonitoring of sensor
signals during the normal operation of the machine, which
are correlated with the surface wear condition of the BSD.
The data should then be used to develop a supervised ar-
tificial intelligence model for the purpose of detecting pit-

tings on the spindle surface. Consequently, pretrained net-
works such as GoogLeNet and those developed in-house
should be tested and evaluated. Due to the necessity of
a substantial amount of labeled data, data augmentation
(see section 3.1) should be employed to achieve enhanced
detection accuracy with a reduced data set. The objective is
to develop an AI algorithm that attains a detection accuracy
of 99% with a feasible amount of labeled data.

Figure 9: Composition of a ball screw drive.

5.2. Data Understanding

To detect pittings on the spindle surface, several correlated
signals may be utilized, including acceleration measure-
ments taken on the nut acoustic emission measurements
taken on the nut, and current measurements taken from
the electrical drive engine. However, it should be noted
that these signals only provide indirect representations of
the spindle surface wear condition. To obtain direct repre-
sentations of the pittings, a camera-based measuring sys-
tem is necessary, as illustrated in Figure 10. With such a
system, it is possible to take images directly of the spindle
surface including the pittings, as shown in Figure 11. To gen-
erate a large dataset with sufficient data examples of wear
and depict the complete lifetime of BSD the sensor-system
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was integrated multiple times on a test-bench specifically
designed for lifetime tests of BSD. This test-bench allows
to continuously move up to five BSD under significant load
to actively induce wear. It has to be noted, that one such
test run still takes 40 days of continuous BSD movement.
During this time, the sensor-system automatically images
the whole BSD every four hours [13]. The resulting dataset
needs to be further prepared to be useful in the develop-
ment of a wear-detection system. This will be discussed in
the following section.

Figure 10: BSDcam – Camera system to make pictures of the
spindle surface directly mounted on the nut.

5.3. Data Preparation

To prepare the generated dataset for the training of a pit-
ting classification system the smaller sections of 150x150
pixels were cropped from the original high resolution im-
ages provided by the camera system. The size was chosen
to adequately represent both small and large scale dam-
age. The cropped image segments were manually labeled
by assigning them either to the class P (Positive for Pitting)
or N (No Defect). This resulted in a Dataset of 21853 labeled
images evenly distribute between P (10778 images) and N
(11075 images). Additionally the dataset includes very di-
verse images of all possible BSD conditions, especially re-
garding contamination. Some examples can be seen in Fig-
ure 11. The complete dataset was published in [14] to con-
tribute to the scientific community and ease the scarcity of
data for similar use-cases.

To further supplement the dataset, data-augmentation tech-
niques can be applied. By artificially increasing the size and
diversity of the dataset, the models robustness and detec-
tion accuracy can be enhanced. In this use case, domain-
specific transformations were applied to represent realistic
environmental and operational variances. These transfor-

Figure 11: Example images from the dataset, showing con-
tamination, pittings and no defect.

mations included slight rotations to simulate changes in
thread pitch, perspective transformations for camera angle
variances, and the addition of noise and blurring to mimic
contamination and particle interference. Brightness, con-
trast, and color variations were adjusted to mimic changes
in lighting conditions [13]. How this affected the results will
be discussed in the following section.

5.4. Modeling

To automate image classification deep-learning based ap-
proaches, convolutional neural networks (CNN) are the cur-
rent state of the art. Besides the quality of the dataset
used to train these models their architecture is of critical
importance for the classification accuracy. In the context
of the use-case presented in this section multiple state
of the art architectures were evaluated and a Design-of-
Experiments (DoE) study was carried out to test 486 dif-
ferent CNN-architectures. Additionally it was investigated
how the data-augmentation mentioned above affects the
results. Schlagenhauf [13] was able to achieve good results
with state of the art architectures (especially GoogLeNet)
but could increase the reached accuracy again using a cus-
tom architecture from the parameter study. The perfor-
mance of the best model was further increased by using the
augmented data, even though the accuracy already reached
values greater than 99% as shown in Figure 12.
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Figure 12: Accuracy results for the described use-case.

5.5. Validation

During the development of models as described in this use-
case it is important to periodically validate the systems per-
formance. Besides setting aside a portion of the training
data for validation it is also possible to check which areas
of an image were most important for the classification of
an image as showing pittings. Doing so ensures, that the
model actually learns to extract features that are specific
to pittings, ensuring good performance on new image data.
This can be done using a so called heat-map-approach ([13]
based on [15]). This calculates gradients of the CNN and vi-
sualizes them in a heat-map overlay of the images, thereby
highlighting areas that were particularly important for the
classification. Figure 13 shows this for the example use-
case.

Figure 13: Relevance of image areas for the classification of
pittings.

5.6. Deployment

Deploying a system as described above involves integra-
tion both hard- and software-components into a machine
tool. This means making sure, that the sensor-system is
sufficiently shielded against fluids and chips present in

the machine-tool environment. Further, it is necessary to
connect the system to the machine tool controller. While
the actual classification requires much less processing re-
sources than the training, it still exceeds the capabilities
of most control units, meaning additional edge-computing
hardware is necessary. This still needs to be connected to
the controller to trigger measurements and feed-back re-
sults to the controller and the user.

Since the use-case is a long-term application it is also nec-
essary to periodically check the quality of current image
data. There are a number of factors, that might affect im-
age quality. The camera sensor might degrade, contami-
nants might get on the lens or lighting conditions on the
shop floor might change with the time of day or even the
time of year. Only continuously monitoring the data quality
can ensure the peak performance of the described system.

Conclusion

With the camera system mounted on the nut of a BSD,
it is possible to directly capture the wear conditions of a
BSD surface. A data augmentation based extended im-
age dataset recorded with this system can then be used
to train different CNN architectures. Tests have shown that
a GoogLeNet architecture results in a validation accuracy
of greater than 99%. However, using a custom architec-
ture resulting from a parameter study, this accuracy could
be increased even further. Validation also showed that
the network calculates its predictions based on the pitting-
relevant parts of the image. Based on such a system, fully
automated and highly accurate wear condition monitoring
could be implemented in the axes of a machine tool.
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