
Efficient Global Occupancy Mapping for Mobile
Robots using OpenVDB

1st Raphael Hagmanns
Karlsruhe Institute for Technology (KIT) and

Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation

Karlsruhe, Germany
raphael.hagmanns@kit.edu

2nd Thomas Emter
Fraunhofer Institute of Optronics,

System Technologies and Image Exploitation
Karlsruhe, Germany

thomas.emter@iosb.fraunhofer.de

3rd Marvin Grosse Besselmann
FZI Forschungszentrum Informatik

Karlsruhe, Germany
grossebesselmann@fzi.de

4th Jürgen Beyerer
Karlsruhe Institute for Technology (KIT) and

Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation

Karlsruhe, Germany

Abstract—In this work we present a fast occupancy map
building approach based on the VDB datastructure. Existing log-
odds based occupancy mapping systems are often not able to
keep up with the high point densities and framerates of modern
sensors. Therefore, we suggest a highly optimized approach based
on a modern datastructure coming from a computer graphic
background. A multithreaded insertion scheme allows occupancy
map building at unprecedented speed. Multiple optimizations
allow for a customizable tradeoff between runtime and map
quality. We first demonstrate the effectiveness of the approach
quantitatively on a set of ablation studies and typical benchmark
sets, before we practically demonstrate the system using a legged
robot and a UAV.

Index Terms—occupancy mapping, map representation, UAV,
OpenVDB

I. INTRODUCTION

A detailed understanding of a potentially unknown environ-
ment plays a fundamental role in mobile robotic applications.
Different robots and environments come along with varying
requirements for the map building process in terms of ac-
curacy, efficiency and usablility. Common SLAM methods,
which attempt to map an environment while simultaneously
localizating the robot in it, usually have to find a balance
between these properties. Due to the complexity of the task, it
is still very challenging to perform SLAM while maintaining a
dense map representation. Compared to commonly used sparse
map representation, occupancy grids have many advantages as
they integrate all available information into a single represen-
tation which is easy to understand for an operator and also
allows for efficient queries.

2D projections of such dense reprenstations have been
used extensively for mobile robot navigation tasks. As robots

This work has been conducted within the competence center ROBDEKON
– Robotic Systems for Decontamination in Hazardous Environments, which
is funded by the Federal Ministry of Education and Research (BMBF) within
the scope of the German Federal Government’s Research for Civil Security
program under grant no. 13N14674.

Fig. 1: Map of the Fraunhofer IOSB site using the mapping
approach. Preprocessing using a custom factor graph approach
described in [2].

become more agile, scenes more complex and sensors more
capable, it is also desireable to adopt these structures for
the third dimension. For ground vehicles, so called 2.5D
elevation maps as suggested by Herbert et. al [1] may be
sufficient. However, for agile robots with complex kinematics
such as legged robots or UAVs, a full 3D representation of the
environment is essential.

To store the 3D map memory efficient and with certain
complexity guarantees for random access operations, differ-
ent datastructures have been suggested. The most prominent
example for such a 3D map representaion is the OctoMap [3]
framework by Hornung et al., working on octrees as hierar-
chical tree structure. It allows for a memory effiecient storing
through efficient pruning and propagating leaf states to higher
levels of the tree. OctoMap has been considered state-of-the-
art for a long time but as sensors are achieving higher rates
with millions of points per second, the insert operation of

ar
X

iv
:2

21
1.

04
06

7v
1

 [
cs

.R
O

]
 8

 N
ov

 2
02

2

OctoMap is not able to achieve real-time performance. As the
octree has a fixed layout, it is also difficult to later increase
the volume without performance overhead. One of the most
popular frameworks for global consistent mapping is VoxBlox
by Oleynikova et al. [4]. They incrementally build a Truncated
Signed Distance Map (TSDF) [5] instead of an occupancy
voxel grid and reach almost real-time performance on a single
core implementation using a hashmap representation instead
of a tree as fundamental datastructure.

OpenVDB is a modern framework developed in a computer
graphic context. Similar to OctoMap it is based on a hieracical
structure but it comes with certain accelerators to support
almost constant insertion and read procedures using a B+ tree
like structure. The main reason for the improved performance
is an advanced indexing and caching system. We therefore
leverage OpenVDB as underlying datastructure for our map
building approach and present its capabilities in further detail
in the upcoming Section II. OpenVDB as flexible backbone
allows not only fast insertions but also supports efficient
raycasting step samplers and a virtually infinite map size.

Only few works utilize the VDB datastructure as occupancy
representation so far. Our work was originally based on [6]
by Besselmann et al. and can be considered a successor with
a revised update scheme and optimized insertion procedure.
They bring up the idea to integrate data into a temporary
grid first to cope with discretization ambiguities which arise
when raycasting new data. In [7], Zhu et al. present a full
framework for occupancy and distance mapping, which also
uses a raycast based insertion scheme in order to create
the occupancy map. They put the focus on the Euclidean
Distance Transform step and disregard the map integration
itsself. Macenski et al. [8] built a spatio-temporal voxel layer
on top of OpenVDB. They focus on local dynamic maps and
therefore use a sensor frustrum based visibility check instead
of raycasting as integration scheme.

In our work we further push the limits of the underlying
OpenVDB structure by supporting a flexible multithreaded
raycasting insertion scheme into the map supported by addi-
tional ray-level hashing to avoid unnecessary operations. Fast
merging operations of single bit-grids allow for a minimal
lock time for modifying the global occupancy grid. Different
subsample strategies can be selected to allow for a dynamically
adjustable tradeoff between map accuracy and efficiency.

The main contribution of the work can be summarized as
follows:

• We present a real-time capable and multithreaded dense
mapping approach for efficiently creating occupancy
maps based on the VDB data structure.

• We introduce several optimizations in the integration
scheme allowing for a user-definable tradeoff between
map accuracy and efficiency.

• We conduct benchmarks on different operations and test
the whole pipeline in simulation and real environments.

• We open-source the codebase and a corresponding wrap-
per for the Robot Operating System II (ROS II [9]) which
enables fast prototyping for mobile robotic applications.

The remainder of this work is structured as follows. Sec-
tion II formalizes the problem of mapping and introduces
OpenVDB as underlying datastructure. We also give a detailed
overview on the insertion scheme and introduce various op-
timizations leading to improved performance. In Section III
we carry out different experiments to verify the effect of the
introduced optimizations. We summarize and conclude the
work and discuss potential future improvements in Section IV.

II. MAPPING PIPELINE

In this section, we first formalize the problem before dis-
cussing the proposed insertion scheme.

A. Problem Statement

The main goal of occupancy mapping is to create a map
Mocc which stores the occupancy probability p(xi|s1:t, z1:t)
for each cell xi ∈Mocc given some sensor measurements s1:t
and the corresponding robot poses z1:t, where 1:t denotes the
sequence from the start up to time t. We consider a cell to be
an obstacle if p(xi|s1:t, z1:t) exceeds a certain threshold φocc
and free if it falls below the threshold φfree. Note that being
marked as free is different from not being observed yet.

B. OpenVDB

The OpenVDB framework has been introduced by Museth
et al. in 2013 [10]. Originally it was designed for computer
graphic applications such as rendering animations of complex
mesh structures and time-varying sparse volumes such as
clouds. Since then, it has been widely adopted to different
applications as it allows for flexible modifications to its core
structure. At its heart it levereges a B+ tree [11] variant as main
datastructure. This structure is supported by hieracically orga-
nized caches to faciliate fast access to inner tree nodes. Such
a datastructure is ideal to store sparse voxelized environment
representations. The discretization of the space can be adjusted
by choosing the size of the leaf nodes accordingly. Other
adjustable parameters are the tree depth and branching factors
which can further improve the memory footprint depending
on the sparsity of the environment. Typical branching factors

Fig. 2: Illustration of the underlying VDB datastructure. Image
is adopted from the original publication [10]. The height of
the tree is typically 4 with one root node (gray) and two
internal layers (green, orange) as well as leaf nodes, which
store the actual tile values (blue). All nodes in lower levels
have a branching factor equal to a power of two. Root and
internal nodes store pointers to their respective child nodes.
An active bitmask for each nodes encodes if subsequent tiles
are active or not (gray values).

for the VDB datastructures are very large compared to the
octree branching factors, which are typically two in each
spatial dimension and thus lead to less shallow trees. The
schematics of the underlying tree structure is depicted in
Figure 2. The fixed height of the tree makes it possible to
implement insert and read operations in constant time on
average [10]. It also allows the framework to efficiently utilize
typical cache architectures on modern CPUs to further speed
up read operations for tiles with spatial proximity. Access to
the tree’s tile values is implemented via a virtually infinite
index space, which can be accessed by signed 32-bit integer
coordinates, allowing the map to grow in each direction
without additional overhead. As noted in Figure 2, tree nodes
additionally store bitsets indicating if subsequent nodes are
active or not. This allows for a fast traversal of a sparse
volume without the need to visit tile values explicitly. The
features of the tree structure are described in further detail in
the original work [10]. Moreover, VDB allows for efficient
raycasting operations using optimized index space iterators.
Therefore, we utilize a raycast based sensor insertion scheme
which is described in further detail in the following section.

C. Map Updates

The proposed structure is not tied to a specific sensor. Typ-
ical data comes from a LiDAR sensor, mimicing the raycast
operation which is also performed to create the obstacle map.
Cells store their occupancy probability in order to reflect not
only occupied but also free space. To represent time-dependent
updates we faciliate the very commonly used log-odds based
update scheme initially formulated by Moravec and Elfes
in [12]. Essentially we calculate

Mocc(xi|s1:t) =Mocc(xi|s1:t−1)+log

[
p(xi|s1:t)

1− p(xi|s1:t)

]
(1)

in each update step and for each xi ∈Mocc.
Algorithm 1 gives an abstracted overview on the insertion

process. Essentially we do parallel raycasting in coaligned
temporary grids, which are merged together in a later step. We
first create a coaligned mapMagg (line 2), which we later use
to aggregate the temporary maps. We then divide the incoming
points into different chunks which can be processed in parallel
(line 5). Points of each chunk are inserted by calculating
their respective end position in world coordinates (line 9) and
marching along the ray using OpenVDBs digital differential
analyzer (DDA) implementation (lines 19-22) and marking all
visited voxels as active. The only place where we need to lock
the threads is during the merge operation in lines 23-24. This
can be done efficiently as we simply XOR the boolean grids
together. As OpenVDB stores the active state of nodes in a
fast accessible bitmask, we can now efficiently iterate over
all active values in our aggregated map Magg (line 25). We
increase or decrease the occupancy value following Equation 1
(lines 27 to 29). If a voxel exceeds or falls below a certain
threshold it will be marked as occupied or unoccupied.

We suggest and implement two runtime optimizations,
which are roughly based on similar ideas used in Voxblox [4],

namely a subsampling and a bundling optimiztation. Subsam-
pling (cf. Figure 3c) uses an additional map Msub which
increases the resolution Mocc by a subsampling-factor δsub.
Typically, δsub is restricted to powers of 2, we use 4 in most
setups. In addition we use a Hashmap Hsub (line 3) storing for
each cell in Msub, if it has already been visited in the current
integration step. If this is the case, all subsequent integrations
are skipped (lines 12 and 13). This optimization comes with
the cost of inaccurate details but can save a lot of integration
steps especially in dense environments with large voxel sizes,
where a single voxel is hit multiple times.

Algorithm 1: Map Update Scheme
Input: Pointcloud P , Sensor origin o, Number of

Chunks c, Global Occupancy Map Mocc

1 Msub ← coalign(M) // Aligned Subsampling Map

2 Magg ← coalign(M) // Aligned Aggregation Map

3 Hashmap〈coord x, bool hit〉Hsub ← []

4 Hashmap〈int count, coord x, bool maxray〉Hbun ← []

5 Pi ← Equal Chunks of P for i = 1..c

6 foreach Pi ∈ P in parallel

7 Mtemp ← coalign(M) // Aligned Temporary Map

8 foreach p ∈ Pi do

9 rend = o+ (p− o) in Magg

10 rend sub = o+ (p− o) in Msub

11 is maxray ← check for max-length ray

12 if Hsub[rend sub] then

13 continue

14 if Hbun[rend].count > thresh then

15 (count, rend,maxray) = Hbun[rend]

16 else

17 Hbun[rend]+ = (1, rdir, is maxray)

18 continue

19 do

20 Mtemp[rdda].active = true

21 rdda ++

22 while rdda 6= rend

23 with MapLock(Mtemp) do

24 Magg | = Mtemp

25 foreach active value x ∈Magg do

26 if x then

27 increase occupancy on Mocc[x] following Eq. 1

28 else

29 reduce occupancy on Mocc[x] following Eq. 1

Output: Updated Mocc

· · · · · ·

Point Cloud

Position

(a) Default Raycasting

· · ·

(b) Parallelization

· · · · · ·

(c) Subsample Optimization

· · · · · ·

(d) Bundle Optimization

Fig. 3: Scheme of different optimizations on the insertion procedure. In (a), the standard raycasting process is visualized. When
enough rays hit a voxel so that φocc is exceeded, this voxel will be marked as occupied. Figure (b) visualizes the process of
dividing rays into different chunks which can then be processed in a multithreaded fashion. In (c) the target space is further
subsampled with a customizable subsampling map Msub. Rays which hit an already marked subsampled cell (the blue ray)
are skipped. In (d) multiple rays are aggregated and averaged if they hit the same target cell.

The bundling optimization on the other hand bundles mul-
tiple rays together. Again, we use a hashmap Hbun where we
insert incoming ray end points without actually integrating the
rays (lines 17 and 18). If a certain threshold is exceeded, we
integrate the whole bundle targeting the end cell rend at once.
In the map, we additionally store the original end points and
if the ray reached its maximum length. During the integration
of the bundle this information is used to average the final
end point rend. Again, this optimization favors environments
with a lot of redundant integrations. Figure 3d indicates that
only one orange bundle is inserted into the map, even if
multiple rays hit the cell (cf. Figure 3a). Both optimizations
can be enabled or disabled individually or together. While
enabling the optimizations leads to a deliberately impaired
map accuracy, it can be useful as more sensor data can be
integrated overall due to the additionally gained performance.
It is worth noticing that it is not necessary to deal with
discretization ambiguities introduced by sequential raycasting
presented in [6] as we use the same two step approach as in [6]:
First we activate all visited voxels in a seperate aggregation
map Magg before we integrate it into the global map Mocc.

III. EVALUATION

We will now present the results of experiments which
we conducted to measure the performance of our proposed
methods under different conditions. We first compare different
iterations of our method in a set of ablation studies to measure
the effect of different optimizations. In a next step we compare
the method on typical benchmark sets before we finally
conduct some real world experiments by capturing outdoor and
indoor scenes of our lab. All experiments are performed using
a machine equipped with a 6-core Intel©Core™i7-10850H and
32 GB of memory. As hardware platforms to carry out our
experiments we use a BostonDynamics Spot equipped with
an Ouster OS0-64 LiDAR for outdoor experiments as well as
a custom UAV platform with a solid-state LiDAR for indoor
experiments (see Figure 4 for details).

(a) BostonDynamics Spot with
additional sensors

(b) Custom UAV platform for
indoor usage

Fig. 4: The hardware setup used for indoor and outdoor ex-
periments. Both robots are equipped with a solid-state LiDAR
(Realsense L515) and provide a localization coming from a
multisensor-fusion approach.

A. Ablation Studies

We first compare different versions of our method with each
other and against baselines from other works. We use random
insertions of pointclouds with different sizes as a baseline
setting. All experimental results are averaged over 5 runs.
The results are presented in Table I. Even the basis variant
using OpenVDB is able to outperform OctoMap by a factor
of 2, in multiple settings this advantage grows up to a factor
of 30. Interestingly, the parallel integration scheme VDB-PAR
achieves almost linear speedup for small ray lengths. Figure 6a
gives further insight into that evaluation. The reason for the
performance drop for higher ray lengths is the increasing
amount of time required for the merge operations as insertion
performance stays constant for increasing submap sizes while
the merge workload grows cubic. This insight can be derived
from Figure 6b, where the different steps of an integration
procedure are measured. Consequently, the best parallelization

TABLE I: Runtime of different variants with 0.1m map resolu-
tion and n insertions each. Random refers to randomly sampled
points in a radius which is 1.2 · ray length as depicted in (b).
The structured environment (a) refers to a sampling where
(x, y) coordinates are sampled randomly but z coordinates
are restricted to a small width of 1m simulating a wall
structure. (*) VDB-BUN and VDB-SUB approaches are only
included as rough estimate and do not compare to the other
methods, as some rays are not casted, when using bundle or
subsampling optimizations. The parallel version VDB-PAR
runs on 12 threads and VDB-FMAP is the improved and
parallel variant restricted to a single core and with disabled
optimizations while VDB-MAP is the VDB based method
described in [6].

n method
runtime [ms]

ray length 6m ray length 60m
structure random structure random

50
00

0

OctoMap [3] 110 747 11676 42 593
VDB-EDT [7] 102 106 3 005 3 973
VDB-MAP [6] 55 74 863 1984
VDB-FMAP 54 71 906 2 075
VDB-SUB* 56 75 923 2 149
VDB-BUN* 31 40 491 1 083
VDB-PAR 10 20 1308 5 581

50
0

00
0

OctoMap [3] 796 2 189 44 072 223 672
VDB-EDT [7] 957 987 22 010 28 684
VDB-MAP [6] 547 709 6 042 11 364
VDB-FMAP 547 671 5 779 10 718
VDB-SUB* 288 583 5 011 10 998
VDB-BUN* 261 330 2 202 4 764
VDB-PAR 54 74 1979 10339

(a) Structured Raycasting (b) Random Raycasting

speedup can be achieved in low-range settings with a lot
of points to be integrated. This exactly matches the domain
of indoor mapping scenarios using high-resolution solid-state
LiDARs as we will show in the next sectione A detailed eval-
uation of different ray lengths is given in Figure 6c. OctoMap
and the VDB-EDT approach from [7] are outperformed in low
range (below 30m) scenarios by almost a magnitude.

The bundling optimization VDB-BUN guarantees to save
runtime, as the first ray to a specific voxel is skipped in every
case. This approximately halves the runtime over all settings.

TABLE II: Benchmarks on the cow-and-lady dataset. #Points
denote the amount of processed points over all frames. This
varies due to different processing speeds and different tempo-
ral alignments bewteen poses and pointcloud. Time measures
the total integration time and #Occupied Voxels counts the
number of occupied voxels after the integration procedure.

Name #Points
#Occupied

Voxels
Time per

frame [ms]

OctoMap [3] 0.463 · 109 0.332 · 106 388
VDB-EDT [7] 0.557 · 109 0.567 · 106 357
VDB-MAP [6] 0.518 · 109 0.536 · 106 263
VDB-FMAP 0.513 · 109 0.523 · 106 282
VDB-BUN 0.522 · 109 0.316 · 106 94
VDB-SUB 0.521 · 109 0.510 · 106 170
VDB-PAR 0.526 · 109 0.530 · 106 47

(a) VDB-FMAP (100%) (b) VDB-BUN (23.0%)

(c) VDB-SUB (39.7%) (d) Indoor lab map (100%)

Fig. 5: Qualitative visualization of different mapping optimiza-
tion effects on the cow-and-lady dataset in (a)-(c) as well as
the lab environment captured by an indoor UAV (cf. 4b) in
(d). The percentage denotes how many of the original points
are casted as rays using the respective optimization.

The subsampling optimization VDB-SUB on the other hand
only applies when many points reside in a small volume.
Consequently it saves the most runtime in a setting with many
points in a structured environment, whereas it is not faster or
even slower for different settings.

B. Benchmark and Real Datasets

We evaluate the presented methods on the indoor cow-and-
lady dataset released as part of VoxBlox [4]. It consists of
2831 depth frames captured by a Microsoft Kinect I as well

(a) Multithreading Performance
(500 000 points, 0.1m resolution)

1 2 4 8 12

102

103

104

Threads

R
un

tim
e

in
[m

s]

ray6
ray60

(b) Multithreaded Insertion Performance
(100 000 points, 0.1m resolution)

6 12 30 60 100

101

102

103

104

Maximum range in [m]

R
un

tim
e

in
[m

s]

par-insert
par-merge
par-integrate
normal

(c) Insertion Performance Comparison
(100 000 points, 0.1m resolution)

10 30 60 100
101

102

103

104

Raycast Length in [m]

R
un

tim
e

in
[m

s]

Octomap
VDB-EDT
VDB-FMAP
VDB-PAR

Fig. 6: Evaluation and comparison of map integration procedures. (a) and (b) examines the influence of multithreading on the
integration scheme, while (c) compares different ray distance limits with other approaches. Note the log-scale at the runtime.

as corresponding pose data. The results in Table II show that
VDB based methods outperform previous methods in terms of
simple integration performance. For the bundling optimization
VDB-BUN, the resulting amount of occupied voxels is only
half compared to the other variants. This indicates that the map
quality is reduced. On the other hand, the subsampling strategy
VDB-SUB only comes along with a negliglible reduction of
occupied voxels. This shows that mostly redundant rays are
omitted in the integration procedure while it is almost able to
halve the runtime. Again, the parallel version outperforms all
other versions without any reduction in accuracy.

Figure 5 examplarily shows an excerpt of the cow-and-lady
dataset after 500 frames for different integration strategies.
There are only few details (marked in red) of quality loss
for saving more than 60% of the integration steps using the
subsampling optimization and almost 80% using the bundled
integration. Figures 1 and 5d show that our mapping proce-
dure is capable of producing high quality maps of outdoor
and indoor environments using a legged robot or a drone,
respectively. Even without preprocessing the poses using a
factor graph [13], the resulting map quality is satisfactory, if
the pose drift is not too large (cf. 5d).

IV. CONCLUSION AND DISCUSSION

We presented an efficient map building approach for mobile
robots, especially suitable for agile robots in dynamic environ-
ments. The experimental evaluation demonstrates the effective-
ness of the approach particularly in indoor environments with
low sensor ranges, where the approach outperforms current
solutions. The parallel fusion of different maps allows not only
fast but also flexible integration of new sensor data into the
map. This leaves room for additional improvements such as
an extension with dynamic resolution adaption. Maintaining
a real-time distance map is also a valuable extension, which
could be implemented efficiently using the VDB datastructure.
In order to reduce global inconsistencies coming from drifts in
the localization, one could couple the VDB representation with

a factor graph backend. This has been tested in a prototyped
fashion as demonstrated in Figure 1 but can potentially be
improved by a tighter coupling.

REFERENCES

[1] M. Herbert, C. Caillas, E. Krotkov, I. Kweon, and T. Kanade, “Terrain
Mapping for a Roving Planetary Explorer,” in Proceedings, 1989 Inter-
national Conference on Robotics and Automation, 1989, pp. 997–1002.

[2] T. Emter and J. Petereit, “3D SLAM With Scan Matching and Factor
Graph Optimization,” in ISR 2018; 50th International Symposium on
Robotics, 2018.

[3] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees,” Autonomous Robots, 2013.

[4] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean Signed Distance Fields for On-Board MAV
Planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

[5] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and
R. Siegwart, “Signed Distance Fields: A Natural Representation for Both
Mapping and Planning,” 2016.

[6] M. Grosse Besselmann, L. Puck, L. Steffen, A. Roennau, and R. Dill-
mann, “VDB-Mapping: A High Resolution and Real-Time Capable 3D
Mapping Framework for Versatile Mobile Robots,” 2021.

[7] D. Zhu, C. Wang, W. Wang, R. Garg, S. A. Scherer, and M. Q. Meng,
“VDB-EDT: An Efficient Euclidean Distance Transform Algorithm
Based on VDB Data Structure,” CoRR, vol. abs/2105.04419, 2021.

[8] S. Macenski, D. Tsai, and M. Feinberg, “Spatio-temporal voxel layer: A
view on robot perception for the dynamic world,” International Journal
of Advanced Robotic Systems, vol. 17, no. 2, 2020.

[9] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[10] K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden,
P. Cucka, D. Hill, and A. Pearce, “OpenVDB: An Open-Source Data
Structure and Toolkit for High-Resolution Volumes,” in ACM SIG-
GRAPH 2013 Courses, ser. SIGGRAPH ’13. New York, NY, USA:
Association for Computing Machinery, 2013.

[11] R. Bayer and E. McCreight, “Organization and Maintenance of Large
Ordered Indices,” in Proceedings of the 1970 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, ser.
SIGFIDET ’70, 1970, p. 107–141.

[12] H. Moravec and A. Elfes, “High Resolution Maps from Wide An-
gle Sonar,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, 1985, pp. 116–121.

[13] F. Dellaert and M. Kaess, Factor Graphs for Robot Perception, 2017.

	I Introduction
	II Mapping Pipeline
	II-A Problem Statement
	II-B OpenVDB
	II-C Map Updates

	III Evaluation
	III-A Ablation Studies
	III-B Benchmark and Real Datasets

	IV Conclusion and Discussion
	References

