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Excavating in the Wild:
The GOOSE-Ex Dataset for Semantic Segmentation

Raphael Hagmanns1,3, Peter Mortimer2, Miguel Granero1, Thorsten Luettel2 and Janko Petereit1

Fig 1. The GOOSE-Ex dataset was recorded over the course of a year in various locations across Germany, covering a wide range of environmental conditions. The left image
shows a smartphone image of the two recording platforms, which was semantically segmented using a model trained on a 64-class version of the GOOSE-Ex dataset to
demonstrate the platform generalizability of the dataset. The masks of the classes heavy_machinery and obstacle were removed to better highlight the platforms. The right part
of the figure shows exemplary ground truth annotations from different recording locations. This includes both pixel annotated images and annotated point clouds.

Abstract— The successful deployment of deep learning-based
techniques for autonomous systems is highly dependent
on the data availability for the respective system in its
deployment environment. Especially for unstructured outdoor
environments, very few datasets exist for even fewer robotic
platforms and scenarios. In an earlier work, we presented the
German Outdoor and Offroad Dataset (GOOSE) framework
along with 10000 multimodal frames from an offroad
vehicle to enhance the perception capabilities in unstructured
environments. In this work, we address the generalizability
of the GOOSE framework. To accomplish this, we open-
source the GOOSE-Ex dataset, which contains additional
5000 labeled multimodal frames from various completely
different environments, recorded on a robotic excavator and a
quadruped platform. We perform a comprehensive analysis of
the semantic segmentation performance on different platforms
and sensor modalities in unseen environments. In addition,
we demonstrate how the combined datasets can be utilized
for different downstream applications or competitions such as
offroad navigation, object manipulation or scene completion.
The dataset, its platform documentation and pre-trained
state-of-the-art models for offroad perception will be made
available on https://goose-dataset.de/.
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The perception of unstructured outdoor environments
presents significant challenges for autonomous systems, par-
ticularly in the domains of free space detection and obstacle
avoidance, as well as for manipulation tasks. Attaining
complete autonomy in these settings is challenging due to the
inherent variability of environmental conditions and terrain
types. In recent years, some effort has been made to adapt
advanced semantic segmentation models from structured
to unstructured environments. However, the adaptation of
these models to previously unseen environments and new
platforms is a challenging task due to the limited data
availability. A particular challenge arises from the platform
gap resulting from the platform-specific mounting of cameras
and LiDAR sensors, which complicates the transfer-learning
to different systems. The GOOSE framework presented in [1]
offers a robust basis for segmentation tasks, yet it is con-
strained to a single platform and a relatively small region.
The main objective of the proposed GOOSE-Ex dataset is
to facilitate adaptation to heterogeneous platform settings
in specialized environments. Platform variations include an
excavator setup as well as two quadruped robot setups with
varying sensors. We also add out-of-distribution sequences
to enable robustness investigations.

This paper presents a series of contributions designed to
enhance the perception of various robots in diverse unstruc-
tured environments.

• We present the GOOSE-Ex dataset, which consists of
5 000 calibrated pairs of pixel-wise annotated RGB
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TABLE I: Comparison of sizes and sensor modalities between existing offroad datasets. In terms of size, the RELLIS-3D and GOOSE provides more
annotated laser scans, but fewer annotated images. The CWT dataset also contains annotated sensor data from an autonomous excavator, but is notably
smaller than GOOSE-Ex. For the parts of GOOSE-Ex recorded with a quadrupedal robot platform, the RUGD and RELLIS-3D are the most similar
datasets in terms of the camera and LiDAR sensor height above ground.

Dataset Platform Sensors Annotated Sensor Modalities # Annotations # Classes

CWT [2] Excavator camera RGB 669 7
RUGD [3] Husky camera RGB 7 546 24

RELLIS-3D [4] Warthog stereo camera / LiDAR / INS RGB+Depth / Point Cloud 6 235 / 13 556 20
GOOSE [1] MuCAR-3 prism camera / LiDAR / INS RGB+NIR / Point Cloud 10 000 / 10 000 64

GOOSE-Ex (ours) Excavator, Spot prism camera / LiDAR / INS RGB+(NIR) / Point Cloud 5 000 / 5 000 64

images and point-wise annotated LiDAR point clouds
from a robotic excavator and a quadruped platform.
The dataset encompasses over 100 sequences from di-
verse environments, employing the same dataset format
and class hierarchy established in the GOOSE frame-
work [1].

• We open-source the dataset and accompanying tools to
enable rapid prototyping. We also provide additional
sensor data, such as near-infrared (NIR) channels of
many camera frames, surround views, and a high-
precision localization.

• We evaluate the performance of various state-of-the-
art models for semantic segmentation across different
dataset combinations and sensor modalities.

• To the best of our knowledge, GOOSE-Ex is the first
large-scale semantic segmentation dataset for excavator
platforms. This can accelerate the progress in a variety
of downstream applications, of which we showcase
some in Section V.

I. RELATED WORK

The release of datasets with dense semantic and instance-
wise annotations of pixels in color images [5–8] and 3D
points in LiDAR scans [9–11] have led to ever-improving
segmentation models for perception in autonomous driving in
urban environments. In recent years, there have been attempts
to replicate the results for navigation in unstructured outdoor
environments [1, 3, 4, 12–17].

Table I gives an overview of semantic segmentation
datasets similar to GOOSE-Ex and their main characteristics.
Not included in the comparison in Table I are datasets that
have been annotated in unstructured environments for other
specific tasks such as offroad free space detection [17–20],
place recognition [21], learning offroad dynamic models [22–
24] or end-to-end driving [25].

Currently, the recent GOOSE dataset [1] and the RUGD
dataset [3] include the largest number of annotated images
primarily focused on offroad scenes. The high reflectivity of
foliage in the near-infrared (NIR) spectrum [26] motivated
the inclusion of this image modailty in datasets like TAS-
NIR [27], Freiburg Forest [12] and GOOSE [1].

Many of the early datasets in this domain like the OFFSED
dataset [15], the TAS500 dataset [13] and the YCOR
dataset [14] lack the size and variety to train deep neural
networks that can generalize to a different robot platform.

Among the 3D point cloud datasets, the RELLIS-3D
dataset [4] and the GOOSE dataset [1] contain fused LiDAR
point cloud data of each annotated scene.

Semantic segmentation datasets have extended on existing
datasets before. IDD dataset [28] extended the semantic seg-
mentation schema used in the CityScapes dataset [6] to novel
object classes and novel driving scenarios. In a similar vein,
datasets were extended with adverse weather and lighting
conditions [29–33]. GOOSE-Ex uses the same semantic
segmentation scheme as the GOOSE dataset, but extends
both the acquisition platforms and domains beyond those
in GOOSE by including annotated data from an autonomous
excavator and a quadruped robot platform.

A growing number of autonomous excavators [2, 34] exist,
but most methods focus on planning excavation tasks [35–
37]. The recent CWT dataset [38] consists of 669 images
annotated for objects and a few relevant terrain types (see
Table I).

Previous datasets recorded on quadrupedal robots have
focused on robot navigation [39, 40], odometry [41], map-
ping [42] and 3D pose estimation [43]. Most image data from
quadrupedal robots is unlabeled [44], making RUGD [3]
and RELLIS-3D [4] the most similar semantic segmentation
datasets in terms of the sensor height above ground [45].
For both platform types, GOOSE-Ex provides a novel con-
tribution by providing semantically segmented camera and
LiDAR data that allows for robustness and fine-tuning of
the semantic segmentation models.

II. THE GOOSE-EX DATASET

We summarize the main aspects of the GOOSE framework
in Section II-A, which includes the organization of the
dataset, its structure, ontology, metadata, labeling policy,
and more. For additional details, we refer to our previous
work [1], where we published these definitions along with
the original GOOSE dataset. In the remaining sections, we
discuss the GOOSE-Ex dataset in detail.

A. GOOSE Framework

Annotation of RGB images and LiDAR point clouds
allows for 64 classes, enabling fine-grained segmentation
tasks, especially for the traversability analysis across differ-
ent vegetation and terrain types. It also enables fine-grained
downstream applications such as the barrel detection pre-
sented in Section V. For more general applications, we also
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Fig. 2: Best to inspect digitally. Histogram of the annotated pixels □ and points in the GOOSE-Ex dataset. The classes are split according to their
pixel volume into high-, mid- and low-volume classes. We omitted the ego-vehicle class in the point clouds and summarized classes with negligible
occurrences in the other bar. The pie charts show the category distribution from the main categories Vegetation ■, Terrain ■, Sky ■, Construction ■,
Vehicle ■, Road ■, Object ■, Void ■. The remaining categories Sign, Human, Water, Animal are summarized as Other ■.

suggest a rough division into categories, e.g. by aggregating
all vegetation classes. The GOOSE ontology is inspired by
different datasets and ontologies such as SemanticKITTI
[9], TAS500 [13], ATLAS [46], and RELLIS-3D [4] and
designed to be as compatible and extendable as possible.

The GOOSE-Ex dataset was manually labeled, but multi-
ple frames of a sequence were merged based on the platform
odometry to facilitate the annotation process and increase the
annotation quality. To achieve consistency across all datasets
in the GOOSE framework, the same labeling policy was used
for both the original GOOSE and GOOSE-Ex datasets. A
hierarchical structure of the raw data allows easy filtering
for environmental conditions or platform configurations. In
addition to the raw data, we provide the labeled frames
as a standalone data package in a format similar to the
SemanticKITTI [9] dataset.

B. Places

Figure 1 shows the different recording areas of the GOOSE
(blue) and GOOSE-Ex (green) datasets. We roughly divide
the GOOSE-Ex dataset into four different high-level settings:

generic setting, containing a mixture of typical offroad and
industrial regions

landfill setting, containing frames from inside and around a
landfill as a typical excavator operating environment

quarry setting, as special operating environment for large
machines, with complex surface geometries

construction site setting, including an excavator training
area with many different heavy machines

This subdivision allows to use specific parts of the dataset
to fine-tuning different operational scenarios.

C. Dataset Statistics

The distribution of classes and categories is shown in
Figure 2. For unstructured outdoor environments, the vege-
tation and terrain categories naturally make up the majority
of the dataset. Typical for excavator scenarios, soil is a
dominant class in the distribution across all environments.
The partitioning of the histogram into different settings
reveals plausible effects: The generic environment contains
the most vegetation and many different mid-volume classes.
Due to steep slopes in the terrain, the landfill setting contains
more sky than the others. The piles of trash at the landfill
also account for the increase of debris and obstacles. Gravel
and rock are naturally the most frequent classes in the quarry
setting. Other classes are very rare in the quarry environment,
except heavy machinery due to the large size of those
vehicles in quarry environments. Finally, the construction site
setting contains an equal appearance of classes with some
outliers such as road blocks and fences.

Of the 64 classes present in the GOOSE ontology, only 36
are present in the histogram, all remaining occurrences are
summarized in the other bars. This illustrates the general
problem of class imbalance in the natural environment.
However, we believe that fine-grained annotations can only
be advantageous as they allow to solve fine-grained object
recognition and segmentation tasks. If this kind of granularity
is not important for the task at hand, one can always refer
to the coarser division into categories.



III. PLATFORM SETUPS

To enhance the transfer learning possibilities onto unique
platforms, the GOOSE-Ex dataset was recorded on two
robotic platforms as illustrated in Figure 3.

A. Sensor Setup
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Fig. 3: Schematic of the sensor setups on the Fraunhofer IOSB research
excavator ALICE and quadruped robot SpotLow. All measurements are
relative to the IMU frame.

The main recording platform is the Liebherr R924 track
excavator ALICE [34] with drive-by-wire capabilities and
many modifications such as sensors for precise angle, force
and track odometry measurements. The main sensors we use
for the dataset collection include:

• 3 × Ouster OS1-64 Rev6 (■) [47]
• 1 × Ouster OS1-128 Rev6 (■), mounted at boom
• 2 × JAI FSFE-3200D (■): global shutter prism camera

with two 3.2MP sensors for both RGB and NIR (near-
infrared) equipped with a 6 mm 1/1.8" Fujinon TF6MA-
1 lens, 5 Hz, 59◦ hFoV

• 4 × Alvium G1-240C (■): global shutter camera
with 2.4MP resolution RGB sensor equipped with a
Lensagon B5M3428S123C lens, 5 Hz, 110◦ hFoV

• SBG Ekinox-D (■): Inertial Navigation System (INS)
with differential RTK-GNSS corrections received over
a base-station if available or over LTE using the NTRIP
protocol

As second platform, we equipped a Boston Dynamics Spot
robot with two different sensor setups to further increase
the platform generalizability. The setup includes computing
hardware as well as a differential SBG Ellipse-D RTK-
INS (■) for precise localization. The base platform already

includes six low-resolution surround camera streams, which
we utilize for the point cloud labeling and include in the raw
data. The remaining setup differs in the following way:
SpotLow equipped with

• Ouster OS1-64 Rev6 (■)
• Intel© RealSenseTM LiDAR Camera L515 (■), 5 Hz,

70◦ hFoV, rolling shutter
SpotHigh equipped with

• Ouster OS1-64 Rev7 (■)
• Alvium G1-240C (■) (see above)

B. Synchronization

We utilize the Precision Time Protocol (PTP, IEEE
1588 [48]) support of the sensors to synchronize the Ouster
LiDARs with the cameras and the INS system. Only the
RealsenseTM L515 camera of the SpotLow does not support
PTP, so we use the system clock with some exposure offset
instead. During post-processing, we leverage the ROS inbuilt
approximate time synchronizing mechanism to match point
clouds and camera images. The INS system provides the
grandmaster clock in the sensor network, receiving its time
stamps with 200 Hz via GNSS.

C. Calibration

We leverage a custom calibration suite to determine
both intrinsic and extrinsic parameters of all cameras
and LiDARs. For intrinsic and stereo calibration, we
assume the pinhole projection model and use a standard
checkerboard calibration procedure within our suite. For
extrinsic calibration, we build on [49] and [50], and use a
calibration target with Apriltags and three circular holes to
allow for target matching in both the point cloud and the
camera image. One of our LiDAR scanners on the excavator
moves along with the boom, so the extrinsic transformation
would change as the excavator moves. We therefore merge
all point clouds from different scanners with respect to the
INS frame, resulting in a single consistent transformation
that can be used for reprojection.

IV. EXPERIMENTAL EVALUATION

A. Training Split

Similar to [1], we divided the dataset into scenarios con-
sisting of multiple sequences, one per recorded rosbag. We
select sequences from different scenarios to define training
(3989 frames), validation (407 frames) and test (604 frames)
splits. We withhold the label files for the small test split to
include it in a public benchmark of all GOOSE datasets.
Of the 5000 total frames, 2800 are from the excavator, the
remaining 2200 from the Spot robot.

B. Evaluation Metrics

The standard metric for evaluating the semantic seg-
mentation on both images and point clouds is the mean
Intersection over Union (mIoU). For each class i, it compares



TABLE II: Comparison of the 2D image segmentation and 3D point cloud segmentation performance on the GOOSE-Ex test set. The IoU scores are
specified in percent. For class-based evaluation, classes with occurences less than 20 are omitted. No classes of the category Sky exist for the 3D point
cloud segmentation. The models were trained using the GOOSE dataset as a base and fine-tuned on the GOOSE-Ex dataset. Category models are trained
directly on category labels, whereas class IoU values are calculated per class and averaged afterwards.

network type mIoU↑ Vegetation Terrain Vehicle Object Constr. Road Sign Human Sky

2D

PP-LiteSeg [51] category 63.60 85.62 85.84 64.10 44.83 72.08 53.84 1.19 67.21 97.67
class 43.83 26.83 65.50 27.53 18.78 65.63 24.00 3.79 65.47 96.99

DDRNet [52] category 62.03 85.03 85.85 59.81 45.09 67.18 54.02 1.73 61.79 97.76
class 47.28 42.25 70.22 27.81 26.60 66.65 31.74 2.15 61.28 96.77

3D

PTv3 [53, 54] category 63.83 73.96 34.12 28.68 59.21 76.10 70.87 85.79 81.94 -
class 29.27 34.00 23.39 32.54 29.15 49.31 23.34 40.99 30.74 -

MSeg3D [55] category 36.26 51.55 80.71 42.53 29.81 19.26 14.11 32.33 19.78 -
class 20.87 27.52 27.78 30.67 1.61 41.99 40.38 17.86 0.00 -

TABLE III: Fine-tuning performance of the GOOSE-Ex dataset. The
number in brackets displays the IoU delta between the models trained
only on GOOSE and after the fine-tuning.

network split class
mIoU↑

category
mIoU↑

2D

PP-LiteSeg [51]
All 43.83 (+28.71) 63.60 (+24.91)
Alice 26.89 (+24.75) 47.89 (+22.31)
Spot 47.82 (+30.58) 64.71 (+20.58)

DDRNet [52]
All 47.28 (+39.79) 62.03 (+25.24)
Alice 28.29 (+25.39) 42.53 (+18.72)
Spot 49.63 (+39.56) 65.08 (+22.11)

3D

PTv3 [53, 54]
All 29.27 (+14.26) 63.83 (+32.96)
Alice 17.18 (+ 7.50) 57.42 (+29.13)
Spot 28.65 (+11.04) 70.71 (+30.07)

MSeg3D [55]
All 20.87 (+12.18) 36.26 (+22.18)
Alice 14.77 (+ 8.10) 34.23 (+20.14)
Spot 27.91 (+14.10) 60.85 (+31.03)

the prediction region with the ground truth region, resulting
in

IoUi =
∑I ∑x,y1(P(x,y) == i ∧ GT (x,y) == i)

∑l ∑x,y1(P(x,y) == i ∨ GT (x,y) == i)
(1)

with I being the image, P(x,y) the predicted label, GT (x,y)
the ground truth and 1 the indicator function. The IoU is
accumulated over the entire test-set and averaged over all
classes to yield the mIoU. The IoU metric is known to be
biased towards object instances and classes that cover large
areas of the image [6], therefore fine-grained datasets with
many classes as ours generally produce weaker mIoU results.

C. Semantic Segmentation

In Table II, we provide averaged IoU values for different
state-of-the-art 2D and 3D semantic segmentation models
which were trained on the full set of classes (class) as well
as IoU values for models trained on the broader category
labels (category). PPLiteSeg [51] uses an encoder-decoder
structure with a lightweight attention-based fusion model
in the decoder to enable real-time semantic segmentation.
DDRNet [52] is based on BiSeNet [56], which uses a typical
two-stream architecture and fuses both branches at different
depths in the network. For 3D segmentation, the recent Point
Transformer V3 [53] (PTv3) makes use of so-called Point

Transformer layers on the point cloud input as its build-
ing blocks in a encoder-decoder architecture similar to U-
Net [57]. We use the lidar-only variant of MSeg3D [55] that
uses a voxel-based feature encoder with sparse convolutions
for point-wise feature learning similar to Part-A2 [58].

We observe a good performance on labels with a high
presence in the data (e.g. vegetation, terrain, sky) and an
expected lower performance on poorly represented classes.
The results are very similar and comparable to those obtained
in [1], with the difference that the scenarios and platforms
represented in the GOOSE-Ex data are more diverse than
those of the original GOOSE dataset. When the category
models are evaluated on the original GOOSE test split, a
mIoU of 55.75% and 49.75% is obtained for PP-LiteSeg and
DDRNet respectively, showing good generalization capabili-
ties on all scenarios. A platform-specific comparison can be
seen in Table III. Here we observe a lower performance on
the excavator platform, due to an unorthodox field of view
that observes mostly ground pixels and points. The appearing
vegetation classes are harder to distinguish, especially for the
3D cases, and simple classes like Sky appear less often. As
stated above, the class results are quite low compared to other
datasets due to several very rare classes that produce IoU
values of zero. The impressive performance of the PTv3 [53]
model on categories suggests that 3D segmentation models
can provide valuable input for robust navigation solutions
even in difficult unstructured environments.

V. DOWNSTREAM APPLICATIONS

We verify the practicability of the GOOSE-Ex dataset on
multiple downstream applications.

A. Terrain Traversability Estimation

In many cases, coarse-grained semantic segmentation is
sufficient to interface a traversability analysis with a path
planner. GANav [59] proposes a group-wise attention mech-
anism to segment RGB images of unstructured environments
into navigable regions. The attention mechanism and the
corresponding group-wise attention loss help the transformer
architecture to efficiently fuse multi-scale image features.
The approach has originally been tested on the RUGD [3]
and the RELLIS-3D [4] datasets. We train GANav on the
GOOSE and GOOSE-Ex datasets and test on all four datasets



to verify the generalizability properties. We follow the orig-
inal categorization into 6 semantic classes: smooth, rough,
bumby, forbidden, obstacle, background.

TABLE IV: Results of GANav [59] trained and tested on different
datasets to investigate their generalizability.

mIoU↑

test train on
RUGD

train on
RELLIS-3D

train on
GOOSE

fine-tune on
GOOSE-Ex

RUGD [3] 89.08 15.38 21.59 29.35
RELLIS-3D [4] 24.76 74.44 36.86 45.56
GOOSE [1] 17.74 17.87 37.99 41.36
GOOSE-Ex 22.95 19.74 31.45 54.89

Rellis3D Test Frame Trained on GOOSE Finetuned on GOOSE-Ex

obstacle rough bumpy background

Fig. 4: GANav [59]: Qualitative Segmentation on Unseen Dataset.
Fine-tuning on GOOSE-Ex exhibits the best generalization to other
datasets like RELLIS-3D [4].

According to the GANav [59] segmentation results in
Table IV and Figure 4, the GOOSE-Ex fine-tuning achieves
the best generalization results across all four datasets. The
high mIoU results on the RELLIS-3D and RUGD test sets
trained on their respective train sets indicate a low inter-
set variance compared to the GOOSE datasests. Also, the
models have not been optimized for a high performance on
the GOOSE datasets.

B. Object Manipulation

Construction machines are often employed to manipulate
heavy or hazardous objects. For these tasks, it is crucial to
accurately identify and distinguish the target object from the
surrounding environment. We trained Mask2Former [60] as a
panoptic segmentation approach on the GOOSE-Ex datasets
to exploit the instance labels of many objects in the dataset.
Specifically, we trained a model for panoptic segmentation of
barrels, some qualitative results are shown in Figure 5. After
a fusion with the depth perception, this allows the excavator
to perform accurate pose estimation and subsequent grasping
of barrels in complex environments.

C. SLAM Benchmark and Semantic Scene Completion

Beyond the scope of semantic segmentation, the GOOSE-
Ex dataset can be used as an odometry or SLAM test set
for several tasks: Single-robot odometry estimation, loop-
closure detection based on images or point clouds, loop-
closure detection based on semantics, or even multi-robot
SLAM. Figures 6b-6d provide an overview of sequences of
selected scenarios that may prove useful for these tasks. All
sequences come with a GNSS-based ground truth estimate.

We have post-processed several groups of sequences with
a SLAM approach [61] based on GTSAM [62] to achieve
a high annotation density for different regions. By fusing

Fig. 5: Excavator ALICE grasping barrels (left) using panoptic
segmentation masks (right) obtained from a Mask2Former [60] model
trained on the GOOSE-Ex dataset.

(a) Semantic Scene GT for SSC Task on IOSB Campus

(b) IOSB Campus (c) Landfill (d) Construction Site

Fig. 6: A selection of sequences that can be used as testbed for
(semantic)-SLAM approaches. Dots • indicate an annotated frame. The
highlighted area in (b) corresponds to the reconstructed semantic
scene displayed in (a). Background maps: ©OpenStreetMap contributors

multiple frames we can generate ground truth semantic maps
that can be used to tackle the task of Semantic Scene Com-
pletion (SSC) [63] in unstructured environments. The goal
of the SSC task is to predict both geometry and semantics
for a specified target volume, given a single LiDAR scan as
input. We use the processing pipeline of SemanticKITTI [9]
to generate voxel maps with a voxel resolution of 0.2m.
Figure 6a shows an example region. We plan to release this
as standalone SSC dataset in the future, which would allow
fine-tuning SSC approaches for unstructured environments.

VI. CONCLUSION

We present the GOOSE-Ex dataset for semantic
segmentation in unstructured environments across domains
and platforms. In future work, we want to explore approaches
that benefit from the multimodality of the dataset and extend
the research scope from semantic segmentation to other
tasks such as semantic SLAM.
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