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A B S T R A C T

Data Visualizations such as charts/plots, and diagrams are multi-dimensional rep-
resentations commonly used to explore data and communicate insights. They are
available in diverse layouts and styles, each tailored to specific analytical needs.
For example, with a smartwatch, one may monitor monthly sleeping cycles with
a quick glance at a visual plot. Unfortunately, it is estimated that in 2020, approx-
imately 70% of visual content existed in inaccessible modalities for readers with
visual impairments. People sharing this content might lack the expertise to make
their content accessible or fear the time and labor required to achieve such goals.
On the other hand, People with Visual Impairment (PVI) might not be confident in
the available assistive tools to enable them to interpret the content independently.

In this thesis, our research focuses on developing visual content analysis systems
to assist sighted individuals to make their content accessible and to provide end-
to-end access for PVI. More specifically, we investigate how to digitize documents
and visuals while ensuring adherence to accessibility guidelines. To this end, we
first investigate how to construct and convey layout information from deep learn-
ing models to tactile modalities. This approach is based on the idea that diverse
categories of documents and variations in visuals can be primarily differentiated
by their layout. Similarly, the advantage of tactile materials, compared to mere
textual descriptions, lies mainly in their presentation layout. We further explore
an application designed to jointly involve inexperienced users and deep learning
models to make the conversion process more flexible.

Tactile materials and alternative text are not merely visual drawings or plain
texts; they must comply with established standards. Assisting users and training
models to author high-quality accessible content involves ensuring both compre-
hensiveness and adherence to accessibility standards. In a setup where the model
is running end-to-end with a blind participant, or a sighted individual is author-
ing a chart description, we investigate how deep learning can support adherence
to these standards and enhance the overall quality.

Given the diverse nature of documents and visuals, we finally ask how to cope
with this diversity and adapt models’ performance accordingly. Capturing this di-
versity within the training process is crucial to ensure the robustness of the models
in real-life scenarios, such as captured and scanned samples.

Our investigations have unfolded significant insights into accessible digitization,
including new benchmarks for connecting vision-language models with assistive
technologies. We have developed valuable and intelligent systems from which
both inexperienced sighted and blind individuals can benefit. These advancements
promise to enhance the usability and accessibility of digital content, making it
more inclusive for all users.
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Z U S A M M E N FA S S U N G

Datenvisualisierungen wie Diagramme/Plots und Schaubilder sind mehrdimen-
sionale Darstellungen, die häufig zur Datenexploration und zur Kommunikation
von Erkenntnissen verwendet werden. Sie sind in verschiedenen Layouts und Sti-
len verfügbar, die jeweils auf spezifische analytische Anforderungen zugeschnitten
sind. So kann man zum Beispiel mit einer Smartwatch monatliche Schlafzyklen mit
einem schnellen Blick auf ein visuelles Diagramm überwachen.

Leider wird geschätzt, dass im Jahr 2020 etwa 70% der visuellen Inhalte in un-
zugänglichen Modalitäten für sehbehinderte Leser existierten. Personen, die diese
Inhalte teilen, verfügen möglicherweise nicht über das Fachwissen, um ihre Inhalte
zugänglich zu machen, oder befürchten den Zeit- und Arbeitsaufwand, der erfor-
derlich ist, um solche Ziele zu erreichen. Andererseits sind Personen mit Sehbehin-
derungen (PVI) möglicherweise nicht überzeugt von den verfügbaren Hilfsmitteln,
die es ihnen ermöglichen sollen, den Inhalt eigenständig zu interpretieren.

In dieser Arbeit konzentrieren wir uns auf die Entwicklung von Systemen zur
Analyse visueller Inhalte, die sehenden Personen dabei helfen sollen, ihre Inhalte
zugänglich zu machen, und gleichzeitig einen End-to-End-Zugang für PVI zu ge-
währleisten. Insbesondere untersuchen wir, wie Dokumente und visuelle Inhalte
digitalisiert werden können, wobei die Einhaltung der Zugänglichkeitsrichtlinien
sichergestellt wird. Zu diesem Zweck untersuchen wir zunächst, wie Layoutinfor-
mationen von Deep-Learning-Modellen in taktile Modalitäten übertragen werden
können. Dieser Ansatz basiert auf der Idee, dass verschiedene Kategorien von Do-
kumenten und Variationen von Visualisierungen hauptsächlich durch ihr Layout
unterschieden werden können. Ebenso liegt der Vorteil von taktilen Materialien
im Vergleich zu bloßen Textbeschreibungen hauptsächlich in ihrem Layout. Dar-
über hinaus erforschen wir eine Anwendung, die unerfahrene Nutzer und Deep-
Learning-Modelle gemeinsam einbindet, um den Konvertierungsprozess flexibler
zu gestalten.

Taktile Materialien und Alternativtexte sind nicht nur visuelle Zeichnungen
oder einfache Texte; sie müssen den etablierten Standards entsprechen. Die Un-
terstützung von Nutzern und das Training von Modellen zur Erstellung qualitativ
hochwertiger, zugänglicher Inhalte erfordert sowohl Vollständigkeit als auch die
Einhaltung der Zugänglichkeitsstandards. In einer Situation, in der das Modell
End-to-End mit einem blinden Teilnehmer arbeitet oder ein sehender Nutzer eine
Diagrammbeschreibung verfasst, untersuchen wir, wie Deep Learning die Einhal-
tung dieser Standards unterstützen und die Gesamtqualität verbessern kann.

Angesichts der Vielfalt von Dokumenten und Visualisierungen stellt sich schließ-
lich die Frage, wie mit dieser Vielfalt umgegangen und die Leistung der Modelle
entsprechend angepasst werden kann. Diese Vielfalt im Trainingsprozess zu erfas-
sen, ist entscheidend, um die Robustheit der Modelle in realen Szenarien, wie z. B.
bei erfassten und gescannten Proben, sicherzustellen.

Unsere Untersuchungen haben bedeutende Erkenntnisse zur barrierefreien Di-
gitalisierung hervorgebracht, einschließlich neuer Benchmarks für die Verbindung
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von Vision-Language-Modellen mit assistiven Technologien. Wir haben wertvolle
und intelligente Systeme entwickelt, von denen sowohl unerfahrene sehende als
auch blinde Personen profitieren können. Diese Fortschritte versprechen, die Be-
nutzerfreundlichkeit und Zugänglichkeit digitaler Inhalte zu verbessern und sie
für alle Nutzer inklusiver zu machen.

Figure 1: Cloud of frequently used keywords in the thesis.
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1
I N T R O D U C T I O N

This thesis is driven by the end-goal of ensuring equal access rights for all
individuals, regardless of their sensory impairments, specifically in the do-
main of accessible visualizations. To achieve this goal, this thesis presents
two types of AI-based algorithms adhering to accessibility guidelines: those
that assist sighted people in converting their charts into accessible formats,
and those that enable independent, end-to-end access for PVI individuals.
Our development seeks to contribute to the field of visualization accessi-
bility by developing and integrating the latest deep learning techniques
into assistive technologies, reducing labor effort, and ensuring high-quality
content.

1.1 accessibility of visualizations and documents

The last few decades have demonstrated that we live in the age of "Big Data." As
the volume and complexity of data increase, people require more powerful rep-
resentation forms that allow them to capture insights at a glance. The challenge
becomes "how to interpret this data effectively." As a result, people often create
compelling visualization images and use them as supportive materials. These visu-
alizations not only make complex data more understandable but also enhance the
communication of insights. However, they are frequently shared as raster images,
consisting solely of pixels, which makes them inaccessible to PVI individuals. Ac-
cording to the World Report on Vision 2020 by the WHO [144], approximately 596

million people worldwide suffer from vision impairment. In Europe, there are esti-
mated to be over 30 million PVI, with an average of 1 in 30 Europeans experiencing
sight loss [52]. Imagine you open an article about climate change and encounter
the following text:

“12, 8, 15, 5, 10, 50, 100, 150, 7-day average temperature”

You might wonder what this is supposed to be. Perhaps it’s a mistake, with
the author accidentally pasting something from a spreadsheet and forgetting to
remove it before publishing the article. What is shown above is a typical output
a PVI person might hear from their screen reader when encountering a data vi-
sualization on a document or website. While one person sees a compelling chart
with statistics about temperature variations over a week, another person hears an
incomprehensible string of dates and numbers without context.

Screen reader software makes this inaccessibility especially evident. When it
encounters an image, video, or other media, it reads aloud the alternative (alt) text
provided in the embedded alt attribute of the <img> tag. Often, visualizations are

1
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simply not detectable by screen readers, rendering them invisible to the user [165].
In other cases, as in the example above, parts of the visualization are recognized
by the screen reader but result in an output that is neither comprehensible nor
useful. Upon closely examining the example text above, one might speculate that
the numbers at the start ("12, 8, 15, 5, 10") are the tick marks of one axis of a chart,
and the following numbers ("50, 100, 150") are tick marks of the other axis. The text
"7-day average temperature" at the end might be a legend or a label of a data series
in the chart. However, without visual context, it is difficult to determine what the
visualization is actually conveying.

Tactile materials offer an alternative to screen readers by providing haptic per-
ception, where visual elements are depicted as raised dots with different heights
indicating various elements on an embossed sheet, wood, or other materials. Al-
though screen readers provide one-dimensional audio/text information, tactile ma-
terials allow PVI individuals to form their own interpretations of images rather
than relying on written descriptions. However, as you may infer, these materials
require significantly more effort and expertise from sighted individuals to design
and produce.

The accessibility of data visualizations for people with disabilities has histor-
ically been neglected by research [119]. However, this field is now experiencing
increasing interest from the vision and linguistic research communities, address-
ing the issue from different angles. Some researchers are exploring how to gener-
ate meaningful image descriptions using Vision-Language (V-L) models [93, 173],
while others are investigating tactile modalities and exploring ways to streamline
the creation process [48]. Additionally, another group [95] has examined the cur-
rent state of the field and identified opportunities and challenges for improvement.

In this thesis, we approach the problem in two distinct yet related directions.
From the perspective of sighted individuals, who may be non-experts, we consider
intelligent applications that enable them to adapt their content with accessible
modalities. The other direction focuses on PVI individuals, where we consider an
end-to-end approach that allows them to independently access image content.

1.2 motivation and goals

The primary motivation of this thesis is to enhance the accessibility of vi-
sual content for PVI, thereby ensuring equal access to information. More
specifically, it aims to broaden the boundaries of assistive technologies by
developing and leveraging state-of-the-art deep learning models. This in-
volves not only building benchmarks and systems but also learning stan-
dards and guidelines.

The goal of this thesis is to propose innovative and effective solutions for visual
content analysis that adhere to accessibility guidelines and improve the quality
and usability of accessible visualizations. In particular, we aim to develop AI-based
algorithms that assist sighted individuals to facilitate the conversion of visual con-
tent into high-quality alt-text and tactile formats. Additionally, we aim to create
end-to-end systems that enable PVI to access and interpret visual content indepen-
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dently. In the following chapters, we will explore how we developed intelligent
user interfaces based on our AI models to assist in digitizing visualizations and
filling accessibility gaps. Through these efforts, we strive to reduce labor efforts,
ensure high-quality accessible content, and foster inclusive digital experiences.

Figure 2: Thesis contributions can be visualized as a 2x2 matrix. Each column represents
an accessible modality: tactile and text, respectively. Each row corresponds to the
targeted group: sighted assistants and PVI individuals.

1.3 thesis focus

A typical type of data visualization found in documents is charts. Sharif et al. [165]
have found in an empirical study that PVI face significant barriers when accessing
these types of data, as they are often either not detectable, incomprehensible, or
barely usable. Sharif et al. have called for more research on making charts more ac-
cessible for people with disabilities. Given my passion for document analysis and
the use of deep learning models for deep document understanding tasks, I have
taken this need for more research as an opportunity to focus on the accessibility of
charts.

Working closely with the "Center for Digital Accessibility and Assistive Technol-
ogy" team at KIT 1, which assists PVI in their university education, has allowed
my research to contribute to two research directions, as seen in Figure 2. The first
direction focuses on assisting sighted individuals in 1 reconstructing charts into
tactile modalities (Figure 2-1) and 2 authoring high-quality alt-text (Figure 2-2).
The second direction aims to enable blind individuals to access content indepen-
dently by providing 3 end-to-end tactile materials (Figure 2-3) and improving
the 4 robustness and reliability of such systems for integration with assistive
technologies (2-4). In my thesis, all contributions were primarily driven by inter-
viewing and working closely with relevant individuals and conducting thorough
user studies. Although we had a limited number of participants, the long-term

1 https://www.access.kit.edu/english/index.php

https://www.access.kit.edu/english/index.php
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discussions during the three-year research period led us to propose novel contri-
butions.

1.4 research questions

This thesis is one contribution towards answering the call for more research in
the specific area of accessible visualizations for PVI individuals. The overarching
question this work seeks to address is:

“How can we utilize deep learning models to enhance visualization accessibility for PVI?”

This question has been further divided into three research questions, each ad-
dressed by different parts of this work. Together, their results contribute to answer-
ing the overarching question. These questions and their resulting contributions are
as follows:

RQ1: How can we digitize and depict the layout information of documents and
charts for PVI using deep learning models?

The diverse categories of documents and variations in charts are primarily dis-
tinguished by their layout. Similarly, tactile materials offer advantages over textual
descriptions mainly through their presentation layout. Localizing the content in
a document page requires skimming through the layout, and understanding the
metadata content of charts requires detailed layout information. The challenges in-
clude not only detecting the layout but also understanding the inter-relationships
between instances. Previous work has attempted to address this problem using
sparse high-level representations such as bounding boxes. In contrast, our work
contributes with more dense, low-level pixel-wise paradigms, providing a more
detailed, dense paradigms.

RQ2: How can V-L models be trained to comply with accessibility standards to
generate high-quality accessible modalities

Building on the first question, whether an AI model is assisting in authoring
alt-text or creating tactile materials, it must be aware of accessibility standards,
particularly when working with inexperienced users who are prone to errors. This
section discusses how V-L models can be trained to adhere to accessibility stan-
dards and generate high-quality accessible modalities, including tactile and audi-
tory formats. The focus is on developing models that ensure both compliance and
usability, providing support for inexperienced users in creating accessible content.

RQ3: What strategies can models employ to cope with the diverse designs and
input formats of visualizations, ensuring robustness and effective handling of
real-life scenarios?

The scarcity of well-annotated accessible data remains a significant challenge.
Collecting such data requires meticulous quality checks, and labeling from scratch
is similarly difficult. Hence, learning to handle real-life samples while ensuring ac-
cessibility compliance is a major challenge. This work contributes to understanding
how V-L models can learn better representations of complex chart images from a
few samples, thereby reducing hallucinations and enriching semantic information.
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Moreover, we discuss strategies for benchmarking model robustness to the diverse
nature of charts, aiming to better understand real-life performance and integration
with assistive technologies.

1.5 thesis outline

In this thesis, we analyze state-of-the-art models for visual chart under-
standing, ranging from simple x-y plots to multi-panel and compose charts.
Our approach includes preprocessing educational materials like textbooks
and slides, applying layout analysis neural networks to recognize figures,
and then analyzing contextual information to generate high-quality sum-
maries and tactile materials. This process aims to improve the accessibility
of educational content for PVI.

Chapter 2: Related Work. This chapter provides an overview of the existing liter-
ature and previous research related to document and graphical content analysis,
highlighting relevant accessibility concerns. First, we discuss several state-of-the-
art document and chart understanding models, covering tasks ranging from lay-
out analysis to metadata extraction for content summarization and reconstruction.
Next, we present a detailed list of available benchmarks, emphasizing their limited
applicability for assistive technologies. Finally, we investigate and present recent
chart assistance systems to provide preliminary knowledge and insights into assis-
tive technology for chart understanding.

Chapter 3: Accessible Digitization of Documents and Visuals. To apply con-
ventional deep learning approaches to assistive technologies, we require a post-
processing step that converts their outputs into accessible modalities. In this chap-
ter, we analyze various methods for fine-grained localization to extract metadata
from different document and chart regions. We then explore how to present these
detailed paradigms in assistive technologies, both for sighted individuals using in-
terfaces to convert content into tactile materials and for PVI individuals to access
this content haptically. In summary, this chapter discusses the construction and
refinement of an "accessible layout" through deep learning models.

Chapter 4: Learning to Comply with Accessibility Standards. Previous deep
learning approaches to chart analysis have shown promising performance on var-
ious benchmarks; however, the majority are trained without considering compli-
ance with accessibility guidelines and standards. For assistive technologies, whether
an AI model is assisting in authoring alt-text or creating tactile materials, it must
adhere to accessibility standards, especially when collaborating with inexperienced
users. In this chapter, we discuss two case studies: first, how to train and utilize
models to guide sighted users in authoring high-quality alt-text; second, exploring
new perspectives on how vision-language models can generate tactile materials
from images while managing cognitive aspects and adhering to the guidlines.
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Chapter 5: Capturing the Diverse Nature of Visualizations. Diverse chart types
pose a challenge in employing a single model for all charts, as chart styles and
structures can vary significantly even within the same chart class. Although dif-
ferent styles and structures create appealing visualizations, they also theoretically
introduce higher dimensionality and many variables. In this chapter, we investi-
gate how assistive technologies can address this problem. We begin by evaluating
the robustness of available state-of-the-art models to input diversity in comparison
to human performance in a user study. Subsequently, we propose a new train-
ing approach utilizing pre-text tasks to equip models with better adaptability to
diverse visualizations.

1.6 published contributions

The contributions presented in this thesis were published at several computer
vision-related venues. The first step in our system chain for chart accessibility is an-
alyzing document layout, localizing the chart, and extracting fine-grained relevant
information (Chapter 3).The proposed approach for document layout accessibility
is published in [131]. Following the detection of the chart, in the work of [134], we
analyze the chart’s fine-grained elements, exploring inter-relations and relevant
information from the segmented instances. At [132], We demonstrate a use case
of our findings in a designed user interface, which streamlines the conventional
tactile material creation process. In Chapter 4, we discuss the limited capabilities
of current deep learning models to comply with accessibility guidelines. We tackle
this problem with a introducing a new datasets and novel neural architectures for
both text and tactile modalities: first, by authoring high-quality alt-text through
image retrieval as a reference for sighted people [133]; second, by providing a so-
lution for PVI to access charts through end-to-end tactile material generation from
raster images [130]. Finally, in Chapter 5, we introduce an approach to enhance the
robustness of vision-language models to handle the diverse nature of chart inputs
without the need to synthesize additional data, thus avoiding bias towards certain
styles. In the paper [135], We tackle this from the vision encoder side by empower-
ing it to better digest and encode the input image into the latent space. A full list
of my publications can be found in Section C.
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B A C K G R O U N D A N D R E L AT E D W O R K

This thesis addresses the task of chart accessibility for PVI, which requires a
high-level understanding of both the textual and visual content from chart
images. To this end, we propose several novel deep learning techniques
for chart processing and converting them into accessible modalities. Tra-
ditionally, this task has been approached using classical computer vision
heuristics, which require extensive tuning and laborious work. Addition-
ally, the available benchmarks are often either synthetic or fail to adhere to
accessibility guidelines.

In this chapter, we present a broad overview of the latest chart analysis models,
benchmarks, and systems, focusing on accessibility issues, particularly in chart-
to-text and chart-to-tactile settings. Section 2.1 reviews networks for object local-
ization employed on document and chart images, including both end-to-end ap-
proaches and heuristic methods. We explore methods for visual and textual em-
bedding based on vision-only models as well as multi-modal representations using
vision-language neural networks. In Section 2.2, we compare popular datasets for
pixel-wise recognition in educational materials, discussing their limitations from
an accessibility perspective. Finally, in Section 2.3, we discuss several use cases of
models and benchmarks for assistive technologies, such as user interfaces to assist
sighted individuals in creating tactile materials and authoring alt-text.

2.1 document and chart visual analysis

The fields of computer vision and natural language processing have significantly
reshaped research in document and chart analysis. Some researchers define this
field as the acquisition of knowledge from documents, often involving extensive
handcrafting [8]. Others describe it as the task of extracting suitable symbolic repre-
sentations from documents, such as text, that computers can subsequently process
[82]. However, based on my study on accessibility, I would define it as a field that
aims to make knowledge accessible to people in the symbolic representation
that they need, not necessarily just for computer processing. For example, sum-
marizing a scientific paper helps researchers quickly grasp key findings. Likewise,
transforming document visuals into print tactile formats for PVI. Recent years have
seen increase interest from AI communities in this field, as seen in Figure 3, Un-
fortunately, the accessibility field has not kept pace with these advancements and
is lagging behind. According to statistical investigations, the number of papers
addressing document and chart accessibility concerns has decreased significantly,
with only 276 papers in 2023 compared to 545 in 2022. Next, we discuss in detail
the layout and robustness analysis concerning accessibility aspects.

7
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Figure 3: The number of papers addressing document accessibility (acc) concerns over the
past 10 years has remained significantly lower and has been consistently decreas-
ing over time.

2.1.1 Document Layout Analysis

Document Layout Analysis (DLA) technology involves detecting and identifying
internal components within a document image using algorithmic methods. This
often includes logical grouping methods that utilize contextual information for
layout understanding. Common document categories encompass text, titles, fig-
ures, tables, and equations, and these groupings are primarily determined by the
document type [61]. To represent the layout, researchers have explored various
forms of description, initially using rectangular regions (bounding boxes) [66, 80],
and are now advancing towards using segmentation masks [15].

From the early 1990s to the present day, techniques in DLA can be broadly
classified into two main groups: heuristics, and deep learning methods.

Hueristics. Falls into mainly two criteria. The first criterion concerns "how" the doc-
ument is analyzed, employing either bottom-up, top-down. Bottom-up techniques
begin at the pixel level, progressively grouping these pixels into larger areas, from
connected components to meaningful text or non-text regions (e.g., figures). No-
table algorithms in this category include RLSA [182], Docstrum [142], and Voronoi
diagrams [96]. In contrast, top-down techniques start with the entire document and
break it down into basic components, as seen in the X-Y cut algorithm [139]. The
second criterion differentiates techniques based on whether they analyze the phys-
ical or logical document layout. Physical layout analysis identifies homogeneous
regions on the page, while logical layout analysis assigns functional information,
or labels, to these regions. Methods are classified according to the downstream
tasks they support. For example, Strouthopoulos and Papamarkos [171] used an
Artificial Neural Network (ANN) to classify 8×8 document patches as graphics or
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halftones. Wu et al. [188] segmented text regions using split-or-merge operations
guided by a binary SVM classifier. After segmentation and classification of page
objects, post-processing techniques may be applied to generalize results across dif-
ferent layouts [14].

Deep Learning. In the realm of deep learning-based approaches, object detectors
have been extensively studied in computer vision. Adapting models like Faster
R-CNN [157] and Mask R-CNN [91] has led to notable improvements in object
detection performance. For instance, DOLNet [129], which employs a dual back-
bone ResNext-101 with deformable convolution, achieves impressive results across
seven different document benchmarks. Similarly, HiM [22] and VSR [198] are state-
of-the-art methods for DocBank [104] and [200], respectively. These methods utilize
a Region Proposal Network (RPN) in combination with textual embedding and a
graph structure to refine document objects in a multi-modal manner. Since the in-
troduction of the transformer architecture [180], the DLA community has started
leveraging transformer-based models for various tasks, including the analysis of
scientific articles. LayoutLMv3 [80] is notable for being the first multi-modal archi-
tecture that does not rely on pre-trained visual extractors. By integrating visual,
textual, and linear embeddings in a transformer-based model, it achieves state-of-
the-art performance on benchmarks like PubLayNet [200] and others. Additionally,
models such as DocFormer [5] and DiT [102], which belong to the same family,
have demonstrated remarkable results, particularly in ICDAR table competitions
[63] and RVL-CDIP [71] datasets.

Layout & Accessibility. Among the aforementioned state-of-the-art work, none
have truly considered accessibility as a motivation or addressed the needs of PVI.
On the other hand, the accessibility community explores this field to find alterna-
tive methods that allow PVI readers to interact with spatial layout information [18].
For instance, T. Ishihara and H. Takagi [83] proposed an algorithm for analyzing
the visual layout of objects in presentation slides. They utilized grouping heuristics
called the parent-child relationship to find inter-relations between different objects,
forming a tree-structured graphical user interface known as DocExplorer. Another
recent work by L. Lu [185] proposed SciA11y, a tool to convert PDF documents
into a sequential HTML representation suitable for screen readers. This tool uses
the textual layer of the PDF file to segment different entities and is specifically
designed for structured scientific documents.

A notable observation is that the AI and accessibility communities have
differing focuses. The AI community concentrates on extracting metadata
and analyzing context for tasks such as QA, summarization, or indexing. In
contrast, the accessibility community aims to improve human-document in-
teractions. Furthermore, the AI community mainly uses digital documents
for training and evaluation, while the accessibility community deals with
documents found in real-world situations, such as scanned or captured doc-
uments. This thesis aims to bridge this gap by incorporating accessibility
considerations into AI-driven solutions.
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2.1.2 Chart Understanding

Chart understanding requires that a model can interpret chart content and execute
tasks based on given instructions. This domain includes both low-level recognition
tasks like data extraction [107] and high-level tasks such as question-answering
(QA) [90, 121, 126], summarization [93, 143], and re-construction [70].

Pipeline Methods. Since charts frequently contain OCR text crucial for data inter-
pretation and often require numerical calculations, chart understanding demands
strong text recognition and computational reasoning abilities from the model. Early
methods [59, 78, 107] used pipeline approaches, employing off-the-shelf OCR tools
or component detectors to convert charts into data tables and other textual forms.
These pipelines then utilized language models to perform the specified tasks. How-
ever, these approaches were limited by their inability to optimize jointly and suf-
fered from error accumulation.

End-to-end Methods. Recent research [70, 108, 120] has transitioned to end-to-
end methods utilizing multimodal large language models (MLLM). These studies
adopt the framework of MLLMs [106, 113, 115] and enhance chart understanding
through supervised fine-tuning [145] with extensive chart instruction data [70, 122,
124]. While these models show improved performance, their large parameter sizes
make them challenging to train or deploy in resource-constrained environments,
such as assistive technologies. The latest work so far, TinyChart [196] demonstrates
that a 3B MLLM can achieve state-of-the-art performance on several chart under-
standing tasks by employing the Program-of-Thoughts (PoT) learning strategy [31],
which trains the model to generate Python programs for numerical calculations,
thereby reducing the burden of learning complex numerical computations.

Table 1: Performance of state-of-the-art models on Chart-to-Text (BLEU4 [146]) and Chart-
QA (5% relaxed accuracy) benchmarks.

Model #Param Resolution Chart-to-Text Chart-QA

Pix2struct [99] 282M 1024×1024 10.30 56.00

Matcha [108] 282M - 12.20 64.20

UniChart [120] 201M 960×960 12.48 66.24

ChartInstruct [122] 7B 960×960 12.81 61.52

ChartLlama [70] 13B 336×336 14.23 69.66

ChartAst [124] 13B 448×448 15.50 79.90

TinyChart [196] 3B 768×768 17.18 83.60

As shown in Table 1, where the models are listed in chronological order, we
observe a trend: earlier shallow models exhibit lower performance despite bene-
fiting from higher resolution images, while newer, larger models achieve better
results due to pretraining on large synthetic datasets. Currently, the community is
moving toward balancing these two approaches. Smaller models are favored for
their efficiency but still benefit from pretraining on available large created bench-
marks. This shift is likely driven by the need to integrate these models into human
assistive systems, such as document reading tools.
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Accessible Charts. People with visual impairments often struggle with bitmap
images of charts [13, 169]. To address this, the Web Content Accessibility Guide-
lines recommend offering a textual description of the chart alongside its graphical
representation as alternative text[38]. Yet, such descriptions are rarely created by
authors [13]. To reduce the manual effort in this task, some works automate al-
ternative text generation [10, 54, 92]. Unfortunately, such tools have several issues,
such as producing irrelevant information and hallucinations [92, 173].

While the alternative text is useful for describing charts, it is not always enough
for those with visual impairments [4, 187]. There are three alternative ways to
present graphical information for visually impaired people: 1 Tactile graphics,
using relief elements for haptic perception [164], 2 Alternative Text, describing
graphical content in words [41], or with screen readers [16, 204] and 3 Soni-
fication, mapping raw data values to a diverse range of sounds, varying pitch,
frequency, and tone to enable easy distinction between line trends [20, 75, 76].

Tactile graphics can be in different formats: embossed paper, swell paper, ther-
moform, laser cut, and 3D printed [21]. These formats typically provide better
dot resolutions, utilizing various pin height levels to represent more information,
and they’re cost-effective and portable for individuals with visual impairments [51,
101]. However, they lack the capability for advanced interaction. The second for-
mat is digital tactile displays, which can be refreshed and offer additional features
such as zooming, interaction buttons, and audio output [131]. Nonetheless, this
option tends to be more expensive and offers lower pin resolution.

Having access to a chart’s raw data, which includes plot data, titles, axis labels,
and descriptions, is highly beneficial. For example, some works use this data to
create tactile graphics like Audio-Tactile charts, which combine touch interaction
with audio feedback [6, 48]. Similarly, Sonification and alternative text descriptions
benefit from raw data access. In terms of raw data extraction methods, they can
be categorized as: (1) Manual, requiring human intervention without automated
tools, like Data Thief [177], (2) Semi-automatic, combining automatic features with
some human intervention [81, 89, 123, 160, 177, 179], and (3) Fully automatic, with
no manual intervention [36, 98], though they have limitations in the conversion
accuracy.

Given the importance of raw data, vector graphics, such as SVGs, offer a promis-
ing alternative representation [64]. SVGs, created using a chart’s raw data, have
features that make them more accessible than bitmap images [56]. Their structure
supports tactile printable graphics creation [97]. For instance, Braille printers can
emboss raised dots to mark outlines [97]. Additionally, methods like LineSpace
[172], which use 3D printer filament to print SVG file elements, show the potential
of SVGs. In conclusion, SVGs can complement traditional alternative text descrip-
tions for charts.
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2.1.3 Robustness Aspects of Visualizations Models

Existing works in chart analysis focus on clean image data, typically collected
digitally from the web or scientific papers, often overlooking real-world issues such
as noise and disturbances. As mentioned earlier, a major gap in assistive systems
is their aim to help PVI individuals in their daily lives, accessing samples that
could be captured or scanned and are available in the wild. Consequently, when
these solutions are applied in real-world scenarios, they often exhibit significant
performance drawbacks, as we will discuss later.

Robust Visual Architectures. A robust visual architecture is essential for reliable
visual analysis. Significant research has been conducted in the areas of object de-
tection [45, 69, 184] and image classification [43, 128, 147]. Modas et al. [128] intro-
duced several primitives that enhance robustness in the field of image classification.
The R-YOLO model [184] presents a robust object detector capable of performing
under adverse weather conditions. The Fully Attention Networks (FAN) model
[201] aims to strengthen robust representations through fully integrated attention
mechanisms. Additionally, a Token-aware Average Pooling (TAP) module [68] has
been proposed to involve the local neighborhood of tokens in the self-attention
process. Despite these advancements, applying existing robust methods directly
to domain-specific tasks such as DLA does not yield optimal performance due to
unique challenges.

Document Robustness. Document restoration and rectification focus on enhancing
document image quality by correcting distortions. DocTr++ [55] investigates unre-
stricted document image rectification. In [16], the robustness of document image
classification against adversarial attacks is examined. Auer et al. [7] present a chal-
lenge for robust document layout segmentation. To address this, Zhang et al. [197]
develop a WeChat layout analysis system. Robustness evaluation on the RVL-CDIP
dataset [71] is conducted for document classification. Tran et al. [176] propose a ro-
bust Document Layout Analysis (DLA) system utilizing a multilevel homogeneity
structure. Recently, Y. Chen et al. [33] have systematically studied real-world chal-
lenges for the first time. They examined extensive perturbation types, encompass-
ing three datasets, five perturbation groups, 12 distinct types, and three severity
levels for each type.

At the time of writing this thesis, there has not yet been a notable study in
the chart or visualization domain that measures the robustness and relia-
bility of models against perturbations and noisy samples.
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2.2 benchmarks chart understanding

Figure 4: Some of the visualizations worked on in this thesis are categorized by type on
the left. The visual settings on the right highlight how the dimensionality and
complexity of visualizations increase with different configurations that users may
incorporate, including metadata, annotations, styles, and various layouts.

As shown in Figure 4, charts can be categorized into different types based on
how the data is presented and the visual settings authors may include, such as
bars oriented in various directions, additional plot area annotations, and styling
of the data. However, most chart analysis methods have been demonstrated and
tested on collections of digital images. Furthermore, it is notable that the majority
of methods used for chart understanding, as discussed in Section 2.1.2, rely heavily
on supervised learning. Consequently, the amount of labeled data has consistently
been a crucial and complex issue in this field. There are two main problems related
to the collection and annotation of charts: 1 charts can be considered a form of
artwork, resulting in highly diverse structures; thus, many benchmarks either syn-
thesize predefined templates or collect more structured samples from the web and
scientific articles; 2 not all available data comes with structured information for
automatic annotation, necessitating a choice between manually inspecting a small
amount of data with expert assistance or excluding a vast amount of unlabeled
charts. These challenges significantly impact the robustness and generalization of
proposed model frameworks due to the lack of variability in available benchmarks.

Synthesizing Data. A solution to bridge the gap between expensive annotation
procedures and large automatically labeled collections is the generation of syn-
thetic data, which inherently includes annotations (e.g., [202]). While this approach
opens new possibilities, it is challenging to generate data that faithfully replicates
real data. Although several benchmark datasets have emerged with this concept,
and VL models have shown improvements in overall performance [70, 186] by
learning fine representations, the use of synthetically generated data raises con-
cerns about model robustness and biases towards certain visualization styles [11,
23].
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Downstream Benchmarks. Chart Question-Answering (Chart-QA) addresses qu-
eries about charts with some datasets PlotQA [126] and ChartQA [121] focusing
on visual and arithmetic reasoning, while others focus on open-ended explanatory
question answering (OpenCQA) [91]. Additionally, Chart-to-Text involves creating
natural language summaries from charts [143, 203], and Chart-to-Table focuses on
converting charts into data tables [36].

Accessibility Benchmarks. There have been very few chart datasets that address
accessibility concerns. Although they follow the same downstream tasks as de-
tailed previously, their textual outputs are further curated and processed according
to accessibility standards. Notably, HCI Alt Text [35] and VisText [173] have been
developed specifically to address chart summarization for PVI. Both datasets are
rich in textual semantics. VisText creates synthetic chart images using the Vega-Lite
visualization tool, then utilizes crowdsourcing to generate summaries at different
levels. In contrast, HCI Alt Text compiles figures from accessibility venues, filter-
ing for those with alternative text. However, this dataset, intended primarily for
analysis, comprises only 511 chart images, making it challenging to train effective
data-driven methods. To overcome these constraints, we present later our AltChart
dataset, which follows a similar methodology to HCI Alt Text but expands the
collection to 10,000 chart images, manually annotated with 10 text semantics.

The chart-to-tactile task involves reconstructing charts as tactile materials
for PVI individuals, requiring not only chart comprehension but also the
optimization of extracted metadata to balance cognitive load (amount of
data presented) and tactile resolution (what to eliminate). We are the first to
address this issue and have proposed the ChartFormer dataset & model to
facilitate this task.

2.3 chart digitization systems for accessibility

Our review in this section builds upon the fundamental elements of earlier studies,
which include: (1) accessible charts, (2) chart deconstruction, and (3) chart summa-
rization.

Image to Vector Graphic Conversion. Having determined SVG as a suitable for-
mat for an alternative representation, we now describe techniques for converting
bitmap images to vector graphics. Tools such as LibreOffice Draw can be used
to convert images to a LibreOffice vector graphic format [58], but this method is
time-consuming [150]. To address these challenges, Jayant et al. introduced an auto-
mated solution that converts bitmap images into Adobe Illustrator vector graphics
[87]. However, this tool requires manual training on similar charts and directly
translates charts into printable graphics, which is not ideal for tactile charts due to
braille embosser constraints [50]. Several guidelines have been introduced to gov-
ern the conversion process [60, 151]. Goncu et al. proposed a tool that converts pie
and bar chart data into SVG [65], arguing against a one-size-fits-all approach for
accessible chart representation. Offering multiple output options can diminish bar-
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riers between BVIP and sighted users [65], making the original and tactile charts
more alike, potentially facilitating BVI’s interpretation of chart data [51].

User Experience Analysis. Usability is vital when designing interactive user inter-
faces [178]. Recent applications emphasize intuitive design. Tools such as ChartDe-
tective [123] and PlotDigitizer [81] are web-apps that adhere to design best prac-
tices, incorporating Visual Information-Seeking Mantra principles [168]. However,
the former tool, ChartDetective, accepts only vector graphic charts in PDF format,
and neither tool supports accessible output formats.

Enhancing UX also involves offering a magnified view around the mouse pointer,
improving application accuracy. While tools like im2graph [179] and WebPlotDigi-
tizer [160] emphasize such explorations.

From 2006 to 2023, across various chart analysis tools [81, 177], manual calibra-
tion of chart axes, involving setting four calibration points to map pixel values
to the x-y plane, has remained a consistent feature. Despite the potential ben-
efits of automation, its implementation is limited by current algorithms, which
only achieve 61.7% accuracy in axis detection [134]. Thus, manual methods, either
by prompt-based clicking [160, 177] or drag-and-drop [81], are preferable. Semi-
automation also aids in text value entry. Im2Graph [179] and ChartDetective [123]
employ OCR to recognize image text [26, 138]. After calibration, various techniques
exist for extracting plot data, often resulting in CSV files [81, 89, 123, 160, 177, 179].
WebPlotDigitzer and PlotDigitizer offer semi-automatic extraction, letting users
edit detected data markers. Im2graph employs a color-based line detection ap-
proach. Data markers, which can mimic curves and match exported values, are
commonly used due to their predictable results.





3
A C C E S S I B L E D I G I T I Z AT I O N O F D O C U M E N T S
A N D V I S U A L S

What sets tactile materials apart is their presentation of layout information.
Layouts define how different elements in an image are organized. These
different arrangements create various types of data visualizations and doc-
uments. For example, a newspaper layout facilitates the quick scanning
of multiple articles to find an interesting story, while a presentation slide
layout emphasizes visual impact. The spatial structures can significantly
enhance educational activities beyond simple reading, such as skimming
documents, memorizing information, and comparing texts. Therefore, dig-
itizing the layout is a crucial step towards making visuals and documents
accessible for PVI individuals.

This chapter is based on the publications [134] (ICDAR 2023), [131] (PETRA 2023)
and [132] (IUI 2024).

3.1 introduction

Due to the visual and spatial nature of document layout, PVI individuals rely
on assistive technologies such as screen magnifiers, screen readers, and Braille
displays to engage with documents and visuals. Screen readers and one-line Braille
displays render content solely through audio and audio-Braille feedback, lacking
information about the spatial arrangement and order. Consequently, all elements
become serialized, stripping away the visual context and leading to a substantial
loss of semantics [149].

Tactile materials provide a more spatially aware alternative by allowing PVI
individuals to physically interact with the layout of documents. These materials
present visual elements as raised textures that can be felt, offering a better under-
standing of spatial relationships and structures.

While printed tactile materials offer an affordable alternative, they often require
a sighted person to extract and reconstruct this information for PVI individuals.
Beyond the labor involved, converting a presentation deck or a research paper for
PVI individuals is time-consuming and demands expertise. As a result, readers
with visual impairments can access layout contents, but only in a linearized form.
This means that layout information, such as a document’s design or structural ar-
rangement, is mostly absent. The challenge remains in how this layout information
can first be digitized and then provided in an equally effective way to them.

This chapter investigates the potential of deep learning models to assist in pro-
jecting layout information in accessible modalities. We approach this investigation
in two paths: first, we address how AI output formats such as bounding boxes
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and segmentation masks can be reformed for tactile accessible content. As a re-
sult, various document layout analysis models are trained, and an approach has
been developed to present these outputs on a 2D refreshable tactile display. The
second path focuses on assisting sighted individuals in digitizing more complex
inter-related visual content such as line charts. Based on preliminary interviews
and user studies, an intelligent interface was developed to guide non-experts in
the process of tactile material creation.

Beginning with addressing the accessibility of document layouts in section 3.2,
we specifically address the accessibility of bounding box modalities for PVI in-
dividuals. This is the first step for them to locate elements such as figures and
captions. This is followed by the accessibility of visuals in section 3.3, which re-
quires more fine-grained details involving the use of segmentation masks and the
development of metadata tracing concepts. Finally, in section 3.4, we combine both
contributions to prototype an intelligent interface that replaces the conventional,
long-time-consuming process of tactile material creation.

3.2 accessible document layouts

In this section, we present our new tactile layout reader, designed to empower
independent access to documents and enhance document navigation through pin-
pointed audio-tactile explanations. Utilizing a state-of-the-art object detection-driven
tactile interface, it generates a high-level abstraction of the document structure.
This optimized interface is suitable for both 2D refreshable displays and Braille-
embossed documents, offering both audio and tactile representations.

YOLO v8 Model

Touch & Bu ons
Interac ons

Tac le Document
Layout

Audio Feedback

Datasets

Layout Extrac on
Module

Tac le Representa on
Module

(a) (b)

DocLayNet

Our Dataset 
(Slides,  Journals,

etc..)

Figure 5: The pipeline of the tactile document interface consists of: (a) the layout extraction
module, which utilizes the YOLOv8 [174] detection model and an OCR model
to extract metadata from each predicted bounding box; and (b) the tactile rep-
resentation module, responsible for converting document metadata into a tactile
format. This module handles touch and button interactions and provides audio
feedback for the auditory representation of text elements.
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3.2.1 Design of Layout4Blind System

To meet this need, we developed the Layout4Blind system. The system comprises
two primary modules, as depicted in Figure 5. The first module involves the lay-
out extraction process, utilizing a trained detection model to automatically extract
metadata from documents. This metadata includes spatial layout information and
textual data. The extracted metadata is stored in JSON format, which is then used
by the second module—the tactile user interface system. This module presents the
extracted metadata on 2D refreshable tactile displays and handles user interactions.

Dataset. To extract the layout effectively, we needed to train models on a compre-
hensive document layout dataset. Initially, we utilized the DocLayNet dataset [148],
which is a substantial collection of real documents encompassing various fields
and languages. However, this dataset alone did not sufficiently cover the extensive
range of document structures we aimed to address. To enhance the model’s robust-
ness against diverse document layouts, we augmented our dataset, Layout4Blind,
with a small batch of documents featuring more complex layouts, such as multi-
column newspapers, magazines, and slides. Table 2 provides the statistics of our
dataset. The dataset is categorizes into three main types: Artistic, Educational, and
Multi-column, with each type containing specific subcategories. Each category in-
cludes an equal count of 100 documents, ensuring a balanced representation across
different document structures. Figure 6 illustrates a few samples. The dataset is
split into training, validation, and test sets with a ratio of 80:10:10.

Document Type Subcategories Image Count Bounding Box Count

Artistic Flyer, Poster, Infographic, Brochure
100 images/type

500

Educational Slides 400

Multi-column Books, Magazines, Newspapers 600

Table 2: Types of documents, their respective image counts, and bounding box counts in
the enhanced dataset

Layout Extraction. To extract the spatial layout information from documents, we
utilized object detection models. The object detection task involves identifying and
locating objects within an image by drawing bounding boxes around them. This
process is crucial for understanding the structure and organization of document
elements, such as text blocks, images, and tables. We chose to use models from the
YOLO (You Only Look Once) family [174] for our experiments. The YOLO models
are well-suited for this task due to their fast inference time on edge devices, which
is beneficial for assistive technology applications. They are single-shot detectors,
meaning they detect objects in a single pass through the neural network, making
them much faster compared to other object detection models that require multiple
passes or stages. We conducted multiple experiments with variations of YOLO
models to achieve optimal performance in detecting and classifying the various
elements within document layouts.
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In this experiment, we considered three families of YOLO models—YOLOv3,
YOLOv8, and YOLOv10—using the implementation from Ultralytics1, with mul-
tiple variations of each. All models were trained to identify 12 different data cat-
egories, as detailed in the first column of Table 4. These categories are further
grouped into five meta-classes: title, text, table, mathematical content, and images.

Model Variation mAP50 mAP50:95

YOLOv3 Large 82.5 50.6

YOLOv8

Tiny 83.1 51.4

Large 84.7 53.1

YOLOv10
Tiny 89.2 68.5

Small 90.5 71.3

Table 3: Performance of different YOLO model variations in terms of mAP50 and
mAP50:95

YOLO-v10 (small) demonstrated superior performance with a mAP50 of 0.905
and 7.2 million parameters, in contrast to YOLOv8 (Large) with a mAP50 of 84.7
and 43.7 million parameters. One can choose according to the trade-off between
performance and inference time. During the inference phase of our model, we
collected the predicted bounding boxes and confidence scores, then stored the
high-confidence predictions (e.g., greater than 0.5) in JSON format.

(a) (b) (c)

Figure 6: Samples from Layout4Blind dataset illustrating its diversity: (a) a multi-column
journal article, (b) two magazine pages, and (c) slides from different lectures.
These images highlight the variety of document layouts present in our dataset.

Model Training & Evaluation. For this experiment, we trained two YOLOv8 vari-
ations: YOLOv8s, which consists of 7.6 million parameters, and YOLOv8x, with
88.8 million parameters. We pre-trained the models with DocLayNet [148] for 30

epochs, followed by fine-tuning with 2 epochs on our custom dataset. YOLOv8s
achieved a mean Average Precision (mAP) of 72.5, while YOLOv8x showed supe-
rior performance with a mAP of 78.6. For our user study, we utilized the larger
model, YOLOv8x.

1 https://github.com/ultralytics/

https://github.com/ultralytics/
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(a) (b) (c) (d)

Figure 7: Layout retrieval output: (a) Multi-column document image, (b-c) predicted
bounding-box with and without shifting, (d) sample JSON file for a single el-
ement.

Bounding Boxes Refinement. Since the bounding box format poses high spar-
sity for tactile experiences, directly mapping it to tactile modality causes prob-
lems for PVI individuals in differentiating between separate instances. That is why,
upon the retrieval of bounding boxes for the document layout, we perform post-
processing steps to improve the usability of the predicted results. Instead of pre-
senting the four edges of a bounding box, we calculate the center point and assign
a tactile letter indicating the object class to it. Although computing the centre of
each bounding box provides a more compact format for sensing the layout, it still
poses a challenge for multi-column elements. These elements may have slight cen-
tre point shifts while they are at the same level, making it difficult to classify and
discern their position. Similarly, in the vertical direction, list items, for example,
could be better understood if all centre points are well-positioned. This applies
to sighted individuals as well, as they tend to align content in a grid-like format.
To address these challenges, we propose an alignment algorithm to further post-
process the centre points in both the horizontal and vertical directions as depicted
in Figure 7 (c), ensuring that the layout is accurately depicted without causing
any deformation from the original layout. This ensures that the information is pre-
sented in a clear and organized manner, making it easier for users with PVI to
interact with the layout.

The output result of the object detection is then stored as a JSON intermediate
representation. We followed the COCO dataset [105] format to store the bounding
boxes, centre points, and class categories in a normalized format relative to the
image resolution for better scalability for different tactile displays. This ensures
that the layout is accurately depicted on the tactile display, regardless of the res-
olution or the zoom level. In addition to localization information, we incorporate
audio metadata as text as shown in Figure 7 (d). This is done for text elements
such as figure and table captions, titles and paragraphs in digital documents. If
the metadata is not present, we use EasyOCR [85] to populate it.

3.2.2 Tactile Interface

Our tactile document interface design was guided by the Visual Information Seek-
ing Mantra (VISM) proposed by Shneiderman [167], which emphasizes an ap-
proach to presenting data that is most effective for users. The Mantra, summa-
rized as ’Overview first, zoom and filter, then details-on-demand,’ provides a
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Table 4: Supported classes and their tactile representation.

Detected Sub Classes Mapped Main Classes Tactile Representation

Document title,

section title, header
Title (t) t

Paragraph, footer, caption,

page number, list-item
Text (x) x

Table Table (b) b

Equation, code Math (m) m

Figure Image (i) i

framework for developing user interfaces by describing how information should
be visually structured to facilitate exploration and understanding. We followed a
user-centered design process, by collaborating with a blind user, to create a tactile
document interface that implements the three main concepts defined in the VISM.
As shown in Figure 8. The initial component is the "Element Guide", which forms
a vertical rectangular region where we draw horizontal lines. These lines indicate
the existence of a document element, such as text, images, etc., at that specific
level. These lines align with the y-values of the bounding box centers that hold
each element. The second component is the "Class Identifier" area, where a Braille
character is placed at the center of the bounding box. This character represents the
layout class, for example, "x" for a text element. The last part is the "Divider Line,"
which separates the previously mentioned sections, aiding users in distinguishing
between the first two components.

Class IdentifierElement Guide

Divider

Figure 8: The interface designed for the 2D refreshable tactile display.

Interactions. The interface is designed with fundamental interactions to facilitate
document exploration and the transition between the different available views for
PVI. The zoom and filter concepts are defined in the VISM as methods for reducing
the complexity of the data representation by removing unnecessary information
from view and allowing the user to explore certain information in more detail. In
our interface, this was achieved by the control buttons. The Braille translation will
be displayed on the screen if the selected element is a text. If the element is an
image, the caption will be presented. In cases where no caption is available for the
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(a) (b)

This is page 1 in document “PDF File
1”. There are currently 3 elements
displayed on the screen. The
elements include 1 title, 1 text and 1
image.

x

i

t

/Home/files/odf/arti

1

..

...

...

...

x

i

t

/Home/files/odf/ar

1

..

...

...

...

Figure 9: View of the tactile interface interactions.

image, a standard text message is displayed informing the user that this is an image
without a caption. The principle of "details-on-demand" of VISM is realized by
allowing the user to select a particular element in the document. while in overview
mode and receive short acoustic information about it without requiring the user
to switch to another view. The acoustic information consists of the initial sentence
within the selected element, offering users a concise overview of the element’s
content.

3.2.3 User Study

An exploratory study was conducted with two blind users (both male, P1 and
P2) to evaluate our final prototype of the interface. Our participants had prior
experience using 2D tactile displays and screen reader software.

For our user study, we used three pages as materials: two pages from a news-
paper with multiple columns (Figure 10-a and 10-c) and one page from a lecture
slide (Figure 10-b), each presenting a challenging layout for screen readers.

The interface was tested on the Metec Hyperbraille 2D tactile display [125], mo-
tivated by its capability to enable an interactive experience and the exploration of
diverse modalities. The device features 60 by 104 actuators and a resolution of 10

dpi. In the following section, we discuss the implementation of the two compo-
nents in detail.

The study consisted of four sessions. The first session was an introductory ses-
sion where each participant was provided with a training document Figure 10 (a)
containing step-by-step instructions for 15–20 minutes on how to use the interface.
In the second session, the participants used the new interface to read two doc-
uments 10 (b) and (c) on the tactile display. In the third session, they used the
NVDA [136] screen reader on a computer to read a different document. Following
these sessions, participants performed the following tasks:

• Task 1: Skim the document and give a quick summary of the topic and the
main key points.

• Task 2: Answer a specific question about the document.

• Task 3: Explain the structure of the document.
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(a) (b) (c)

[b]

Figure 10: User study samples with the alligned bounding boxes. (a) & (c) are from 3 & 6

columns news paper. (b) is from a lecture slide dick.

3.2.4 Results & Discussion

Completion Time. For both tasks 1 and 2, participants took nearly four times
longer to complete the tasks using the screen reader compared to using our inter-
face, which averaged 1.8 minutes per task. This significant reduction in completion
time highlights the efficiency of presenting the layout for a quick document access.

Task Completion Rate. Both participants successfully skimmed the document and
extracted the main ideas for task 1 and correctly answered the questions for task
2. However, this success came at the cost of increased time when using the screen
reader. For task 3, participants were unable to accurately describe the document’s
structure when using the screen reader. They resorted to guessing based on the se-
quential reading order, lacking information about the horizontal order of elements.
This finding underscores the importance of spatial layout information. Upon com-
pletion of the study, participants were asked to evaluate their experience with doc-
ument skimming through the Layout4Blind system. Both users strongly agreed that
the interface made skimming documents straightforward and intuitive. They did
not find the navigation interactions complex, nor did they feel that an extended
period was required to learn how to use the system effectively. P1 noted, "The
interface allowed me to quickly decide whether the document was useful for me."

However, participants also identified areas where the system could be improved.
One participant observed inaccuracies in the predicted classes, such as a title be-
ing mistakenly classified as a paragraph. P2 remarked, "The system made it easier
to grasp the overall topic and structure, but there were times when I had to rely
on guessing because of the misclassified areas." Additionally, the participants sug-
gested enhancements to improve the system’s usability. One recommendation was
to introduce a button that would allow users to control which classes to focus on,
such as keeping only figures or titles visible. They also suggested adding an au-
dio description at the beginning of the interaction to provide an overview of the
document layout, including details such as the number of columns, the types of
elements present, and the overall type of document (e.g., slide, receipt).
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(a) (b) (c)

(d) (e) (f)

Figure 11: Diverse mathematical graphics covered in our Line Graphics (LG) dataset, in-
cluding 100 bar charts (a), 320 line graphics (b, d-f) and 100 scatter plots (c).
These samples pose significant challenges for existing document analysis meth-
ods.

3.3 accessible visualization layouts

With the rapid growth of available data visualizations, there is a need for improved
digitization techniques that allow for wider accessibility and reproducibility. While
automatic digitization of document layouts and text content has been a long-
standing focus of research, the digitization of graphical elements, such as statistical
plots, has been underexplored. In this section, we address the task of fine-grained
visual understanding of mathematical graphics, presenting a new benchmark and
a methodology to trace and extract metadata from line charts.

3.3.1 Motivation for New Dataset

During courses, graphs are a vital supplement to lecturers’ speech as they effec-
tively summarize complex data or visualize mathematical functions. However, one
downside of this medium is the difficulty of automatic information extraction, as
graphs contain very fine-grained elements, such as fine lines, small numbers or
axes descriptions, while the traditional document analysis frameworks focus on
coarse structures within complete pages [27, 37, 193] or slides [72, 73]. The process
of separating distinct regions of a plot and assigning them a semantic meaning
at a pixel-level, known as graph segmentation, is an important prerequisite step
for graph understanding. One application of using pixel-level data to fully auto-
mate the process is to generate an imposed document or 2D refreshable tactile
display that can be easily interpreted through touch for people with blindness or
visual impairment. Hence, end-to-end full automation of plot digitization could be
achieved.

Presumably, due to the lack of annotated datasets for fine-grained analysis of
plots, the utilization of modern deep semantic segmentation architectures has been
rather overlooked in the context of mathematical graphs.
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In this section, we introduce the task of fine-grained visual understanding of
mathematical graphics and present the Line Graphics (LG) dataset, which includes
pixel-wise annotations of 10 different categories. Our dataset covers 520 images of
mathematical graphics collected from 450 documents from different disciplines,
such as physics, economics, and engineering. Figure 11 provides several examples
of statistical plots collected in our dataset. By providing pixel-wise and bounding
box annotations, we enable our dataset to support two different computer vision
tasks: instance, semantic segmentation and object detection.

The key findings and contributions of this section can be summarized as:

• We introduce the task of fine-grained visual understanding of mathematical
graphics, aimed at reducing manual user input when digitalizing documents.

• We collect the Line Graphics (LG) dataset as a benchmark for semantic seg-
mentation and object detection in line graphics. As well as perform extensive
evaluations on 7 state-of-the-art semantic segmentation models, analyzing
the impact of factors such as image resolution and category types on the
performance.

• Propose a methodology for tracing line plot data using instance semantic
segmentation.

LG Dataset. Our dataset contains 520 mathematical graphics manually extracted
from 450 documents, comprising a total of 7238 human-annotated instances. The
goal is to facilitate the automatic visual understanding of mathematical charts by
offering a suitable and challenging benchmark. To ensure that each image presents
a unique and challenging point for analysis, the similarity levels between cropped
images were kept as low as possible. Documents in the LG dataset were collected
from five different disciplines and their top published subcategories to achieve
broad coverage, as shown in Figure 12. The collection process involved a manual
search using scientific keywords and careful inspection of each document down-
loaded from sources such as arXiv and Google Scholar, ensuring a consistent and
uniform distribution of documents across all categories.

Formal sciences social sciences humanities Natural sciences professions
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Figure 12: Statistical distribution of documents in our dataset grouped by different dis-
ciplines. Our dataset was collected from 18 distinct disciplines from formal-,
social and natural sciences as well as humanities and professions.
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Figure 13: Example annotations of our Line Graphics (LG) dataset. From top to bottom
are the challenging line graphics and the ground truth with fine-grained anno-
tations of 10 classes, which are complemented by 5 coarse categories.

To ensure a comprehensive and robust labeling process, we categorized line
chart pixels into five coarse and ten fine-grained classes. The primary focus was
on creating fine-grained categories that offer a wide range of variations and chal-
lenges for further analysis. This was achieved through a thorough review of charts
by three annotators with research experience, who identified the most frequent
and critical object types encountered in such charts. Based on this review and an
inspection of related work, we arrived at ten relevant categories. These categories
can be further grouped into three coarse categories: the Title class (e.g., plot title),
the Spine class (e.g., "spine" with no label data), and the Label class (e.g., x-axis
labels).

Dataset Properties. To facilitate instance-level segmentation, we provide annota-
tions for each instance separately in COCO JSON format [105]. For example, each
line has a unique ID in the line mask, which will become handy in later steps like
line tracing. Our dataset includes a wide range of instance counts, styles, and lo-
cations, without any aforementioned limitations, offering a comprehensive range
of variations for all classes, see Figure 13. We have covered a wide array of plot
types, including those that feature multiple chart types like bar, scatter, and line
charts as well as plots with repeated classes like multiple y or x-axes and ticks.
The text content in our dataset is annotated with variations in integer, decimal,
and DateTime formats, as well as tilt. Furthermore, we have taken into account dif-
ferent markers, patterns, and sizes for line and spine classes, and added the class
"other" to represent the annotated plot area explanatory text, focus points, and ar-
rows. The background variations in our dataset include color (single or multiple),
gradient, and RGB images, ensuring a comprehensive representation of real-world
scenarios.
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Figure 14: multi-line charts structural complexities.

3.3.2 Line Tracing

Line charts, particularly those with multiple lines, present several structural com-
plexities. We identify two primary structural patterns that cause issues: crossings
and occlusions. Figure 14 illustrates these examples. In these cases, the visual at-
tributes of the line segments, such as color, style, and markers, are often obscured
or blended with adjacent lines. As a result, methods that rely heavily on low-
level image features like color, gradients, and texture often fail. Additionally, most
keypoint-based line extractors face two significant challenges: a) the inability to
predict distinct keypoints for each line at crossings and occlusions, and b) difficul-
ties in the subsequent keypoint grouping step, which struggles to extract features
from an already occluded local image patch. Recent approaches have tried to ad-
dress occlusion by incorporating explicit optimization constraints. However, these
methods still rely on low-level features and proximity heuristics, which may limit
their robustness. It’s important to note that humans can intuitively gather contex-
tual information from surrounding areas to fill in gaps in such cases.

To tackle the challenges of occlusion and crowding, we employ an instance seg-
mentation model based on an encoder-decoder transformer architecture, utilizing a
masked-attention pixel decoder that provides the visual context necessary to iden-
tify occluded lines. We adopt the architecture and hyperparameter settings from
existing works, using SwinTransformer-tiny [116] as the backbone to balance accu-
racy and inference speed. To ensure a manageable number of line predictions, we
limit the number of line queries to 100. The transformer decoder is trained end-to-
end with a set prediction objective, where the loss function is a linear combination
of classification loss and mask prediction loss, weighted at 1 and 5, respectively.
The mask prediction loss itself is a combination of dice loss and cross-entropy loss.
All experiments are conducted using the MMDetection framework [28] based on
PyTorch.
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Figure 15: Line tracing system.

From Pixel Domain to Raw Data Domain. Once the predicted line masks for an
input image are obtained, we sample foreground points at regular intervals, see
Figure 15. Linear interpolation is applied to the initial sampled points to address
any gaps or breaks in the predicted line masks. These extracted points in the pixel
domain can be scaled to obtain the corresponding raw data values, provided that
at least two calibration points are defined on each axis. In the next section, we
will manually set sampling rates, data formats, and calibration points from the
intelligent interface.

3.3.3 Experiments

The models were trained on an A40 GPU with an input resolution of (2048, 1024).
Our evaluation metric is Mean Intersection over Union (mIoU). During training, we
applied common data augmentation techniques such as random flipping, scaling
(ranging from 0.5 to 2), and cropping. The batch size was set to 8 with an initial
learning rate of 6e−5, using a poly-learning rate decay policy. The models were
trained for 50K iterations. For testing, we employed a single resolution scale to
ensure fairness in comparison. To understand the choice of models, we further
analyze the properties of the selected models in conjunction with our proposed
line graphic segmentation task.

Line Chart Segmentation Experiments. We consider 7 state-of-the-art semantic
segmentation models for this task as showin in Table 5. The efficiency-oriented
CNN model MobileNetV3 [77] with only 1.14M parameters obtains 56.22% mIoU
score on the proposed LG dataset. The high-resolution model HRNet [183] has
57.60% in mIoU and the DeepLabv3+ [29] model has 61.64%, but both have param-
eter >60M. We found that the PSPNet [199] with pyramid pooling module in the
architectural design can achieve better results with 62.04%. In Table 5, the recent
Transformer-based models achieve relatively better results than the CNN-based
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models. For example, the SegFormer [191] model with pyramid architecture and
with 81.97M parameters can obtain 65.59% in mIoU with a +3.55% gain compared
to PSPNet. The Swin Transformer [116] with hierarchical design and shifted win-
dows has 66.61% in mIoU, but it has the highest number of parameters. However,
the state-of-the-art CNN-based SegNeXt [67] utilizes multi-scale convolutional at-
tention to evoke spatial attention, leading to the highest mIoU score of 67.56% in
our LG dataset. Furthermore, the SegNeXt [67] achieve 4 top scores on 5 coarse
classes, including Title, Spine, Label and Legend. Besides, it obtains 6 top scores out
of 10 fine classes, which are xtitle, ytitle, xpsine, yspine, xlabel, and legend. The results
show that a stronger architecture for the semantic segmentation task can achieve
better results in the proposed LG benchmark, yielding reliable and accessible math-
ematical graphics.

Table 5: Semantic segmentation results of CNN- and Transformer-based models on the test
set of LG dataset. #P: the number of model parameters in millions; GFLOPs: the
model complexity calculated in the same image resolution of 512×512; Per-class
IoU (%): the Intersection over Union (IoU) score for each of coarse and fine classes;
mIoU (%): the average score across all of 10 fine classes.

Model Backbone #P(M) GFLOPs
Coarse Per-class IoU

mIoU
Title Spine Label Legend Line

MobileNetV3 [77] MobileNetV3-D8 1.14 4.20 45.06 43.68 68.74 60.86 62.12 56.22

HRNet [183] HRNet-W48 65.86 93.59 52.48 44.4 67.95 53.34 61.91 57.60

DeepLabv3+ [29] ResNet-50 62.58 79.15 55.41 46.14 74.72 67.07 32.97 61.46

PSPNet [199] ResNetV1c 144.07 393.90 57.12 43.77 78.52 67.75 62.30 62.04

SegFormer [191] MiT-B5 81.97 51.90 58.36 54.13 76.79 67.09 69.67 65.59

Swin [116] Swin-L 233.65 403.78 62.26 52.85 76.57 68.91 71.01 66.61

SegNeXt [67] MSCAN-L 49.00 570.0 63.79 54.61 80.29 69.09 65.07 67.56

Model
Fine Per-class IoU

ptitle xtitle ytitle xspine yspine spine xlabel ylabel legend line

MobileNetV3 [77] 09.03 55.36 70.81 53.47 40.21 37.36 67.83 69.65 60.86 62.12

HRNet [183] 31.30 55.85 70.30 44.68 50.20 38.36 65.42 70.48 53.34 61.91

DeepLabv3+ [29] 30.30 62.21 73.74 49.47 47.57 41.39 73.65 75.79 67.07 32.97

PSPNet [199] 22.92 68.09 80.39 47.09 53.11 31.12 77.28 79.76 67.75 62.30

SegFormer [191] 37.25 61.10 76.75 60.37 55.83 46.21 73.35 80.23 67.09 69.67

Swin [116] 49.21 59.44 78.15 59.48 55.33 43.74 71.96 81.54 68.91 71.01

SegNeXt [67] 36.57 73.95 80.85 61.77 56.20 45.88 80.68 79.91 69.09 65.07

Line Tracing Evaluations. Formally, To compare a predicted data series with ground
truth, we calculate a similarity score by aggregating the absolute differences be-
tween each predicted value and its corresponding ground truth value. In our work,
we adopted the same metric used by ChartOCR [118] and the CHART-Info chal-
lenge 2. Specifically, we first compute pairwise similarity scores between each pre-
dicted and ground truth line using L2 distance. Then, we perform a bipartite as-
signment that maximizes the average pairwise score. This is similar to the mean av-
erage precision (mAP) calculation used to evaluate Object Detection performance.

2 https://chartinfo.github.io/tasks.html

https://chartinfo.github.io/tasks.html
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Line Tracing Experiments. The performance of various systems for line data ex-
traction, evaluated using the similarity metric defined earlier, is shown in Table
6. It can be observed that our LG dataset proves to be the most challenging of
all, as it is diverse and composed of real charts from scientific journals. Line Trac-
ing demonstrates state-of-the-art results on LG real and Adobe synthetic datasets.
The performance difference illustrated in the table are in fact occur when the the
number of lines and the complexity of the chart increases. The Line Tracing model
performs significantly better, keeping track of the line even in occlusions and cross-
ing points.

Table 6: Evaluations of various line tracing approaches on AdobeSynth [39] and LG
datasets.

Model Dataset (only line instances)

- AdobeSynth19 [39] LG Dataset

ChartOCR [118] 84.67 55

LineEX [166] 82.52 81.97

Line Tracing (Ours) 87.51 83.1

3.4 intelligent interface for chart accessibility

Converting charts into accessible formats requires considerable effort from sighted
individuals. Digitizing charts with metadata extraction is just one aspect of the
issue; transforming it into accessible modalities, such as tactile graphics, presents
another difficulty. To address these disparities, we developed Chart4Blind, an intel-
ligent user interface that converts bitmap image representations of line charts into
universally accessible formats. Chart4Blind achieves this transformation by gener-
ating Scalable Vector Graphics (SVG), Comma-Separated Values (CSV), and alter-
native text exports, all comply with established accessibility standards. Through in-
terviews and a formal user study, we demonstrate that even inexperienced sighted
users can make charts accessible in an average of 4 minutes using Chart4Blind,
achieving a System Usability Scale rating of 90%. In comparison to existing ap-
proaches, Chart4Blind provides a comprehensive solution, generating end-to-end
accessible SVGs suitable for assistive technologies such as embossed prints (pa-
pers and laser cut), 2D tactile displays, and screen readers.

To address this goal, we started with a series of need-finding interviews to guide
our design choices. The tool design emphasizes clear progress indicators during
conversion, consistency in the conversion steps, intuitive data input methods, and
integration of AI tools for efficient data extraction. To validate our tool, we con-
ducted a usability study with 10 sighted participants aged 22-34 years. The study
revealed that the Chart4Blind tool is valuable for converting line charts into acces-
sible formats and helps sighted users understand accessibility guidelines with an
average System Usability Scale rating of 90%. To validate the accessibility of the
produced graphic for PVI in particular, we conducted a follow-up study with 3

blind individuals, asking open-ended questions regarding the output of our inter-
face and collecting valuable feedback for future improvement.
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This work introduces Chart4Blind, an intelligent user interface designed to con-
vert bitmap image representations of line charts into universally accessible formats,
and has the following major contributions:

• Chart4Blind System: Through a series of interviews and feedback, we de-
signed an intuitive tool for converting bitmap line charts into multiple univer-
sally accessible formats. It also supports collaborative efforts where multiple
people can work together and assist in the conversion process. Chart4Blind
has a user-friendly interface and can be utilized by individuals with varying
levels of experience.

• Integration of Intelligent Features: The tool incorporates intelligent deep
learning models to ensure a seamless conversion process, particularly OCR
and line tracing segmentation models. Users can interact with the model
predictions through simplified actions, such as drag-and-drop.

• Usability Study: A thorough usability study involving sighted people aged
between 22-34 years to validate the effectiveness of the Chart4Blind system.
Furthermore, another user study was conducted specifically with blind par-
ticipants to assess the output quality and accessibility. The tool achieved an
average System Usability Scale rating of 90%.

3.4.1 Prototype Development

To gain a comprehensive understanding of how sighted individuals approach the
creation of accessible line charts for PVI, and to identify how future tools can
efficiently support their efforts, we conducted a series of exploratory need-finding
semi-structured interviews. our need-finding interviews were carried out with the
primary objective of uncovering these specific design requirements. Our inquiries
primarily aimed to:

• Understand the limitations of common interfaces and user practices for con-
verting charts into accessible formats.

• Pinpoint the features that users find important in such a tool.

• Gain insights into how AI tools are explored in prior research and could
facilitate the creation of accessible charts.

We conducted a semi-structured interview with four sighted participants (P1-
4, 2 female, and 2 male, age range 25-40 years) who would use the Chart4Blind
user interface. All sighted individuals exhibited proficiency in working with line
charts, familiarity with accessibility guidelines, and practical experience in convert-
ing chart materials.
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During our need-finding study, we asked participants open-ended questions
about their experiences, challenges, and requirements for the chart conversion pro-
cess. We asked the following questions:

1. Describe your workflow for converting charts into an accessible format.

2. What challenges did you encounter during this process?

3. What specific computer-based tools do you utilize for the conversion process?

We followed up by inquiring about the steps they found most challenging and
time-consuming. Depending on the interview, we additionally asked:

1. Could you estimate the time required for chart conversion?

2. Which features of your current tools do you find most useful?

Findings. Despite the diverse tools used, we identified common steps in the con-
version process, highlighting an opportunity to streamline this task into a unified
tool. However, participants encountered challenges involving inexperienced indi-
viduals for assistance, as the existing tools were not designed for this purpose. Ex-
tensive tutorials were necessary to prepare individuals for the task. Additionally,
the process lacked the potential for parallelization due to limitations in (real-time)
data-sharing mechanisms within the current tools. P1 emphasized how these chal-
lenges prevented effective crowdsourcing efforts. In response to these findings, we
propose developing a user interface that caters to both experts and non-experts,
presenting clear and consistent steps (UR-1). Furthermore, the tool facilitates a
more parallelizable process to encourage concurrent contributions (UR-2).

Design Principles. Based on our interview findings, we have identified key design
principles that guide our Chart4Blind system:

• Clear Progress Indication: The tool should provide users with a clear view
of their current progress during chart conversion, indicating what has been
completed and what remains.

• Maintain Consistent Steps: The tool should ensure that the steps in the con-
version process remain consistent regardless of chart complexity, allowing
for a more parallelized process.

• Intuitive Data Input: The tool should allow for an intuitive approach to make
sure that all necessary information needed for an accessible chart is added.
In addition, the tool should also support intuitive interactions such as drag-
and-drop for textual content and drop-down lists for axis label formats (e.g.,
linear, logarithmic).

• Automated Selection Tools: To reduce the efforts spent extracting metadata,
the tool should integrate an automated solution to ease the task of element
selection (e.g., lines, texts). In our case, we choose AI-driven tools for line
segmentation, text extraction, and chart description when needed.
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• Ready-to-Use Accessible Exports: The tool should provide users with ac-
cessible output for various modalities such as tactile printing and digital
displays used with a screen reader.
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Figure 16: The pipeline of Chart4Blind consists of the input of a bitmap line chart, fol-
lowed by the Data Extraction Module, which includes an AI-based line segmen-
tation and optical character recognition step, and a manual correction step by
a sighted user (a). The Rendering Module updates the information in real-time
and ensures an accessible representation (c). The system allows the export of
the information to an SVG and a CSV format. The SVG can be accessed with a
screen reader or printed as a tactile graphic (d). The metadata can be exported
as accessible CSV as well.

Chart4Blind System Flow. Figure 16 shows the pipeline of Chart4Blind system.
When a user uploads a line chart image, a toolbar appears that is linked to our AI-
based Data Extraction Module, which is responsible for extracting the chart’s textual
and visual data. After calibrating four axis points, this intelligent module converts
pixel values from the RGB image domain into the original data points domain. For
example, if the x-axis represents years, the module can predict the corresponding
year for a given pixel point within the plot area. Subsequently, our SVG viewing
mode, connected to the Rendering Module, generates the SVG view in real-time
as users update field information. All session information is stored upon consent
acceptance, and a unique Token is assigned to facilitate collaborative work. The
final step includes the export of the visual data to a printable tactile graphic format
(SVG) and to a textual description (CSV). The following paragraphs describe the
two main modules in more detail.

OCR Feature. To categorize the textual content in the line chart, we followed the
analysis outlined in [173] and [134]. The chosen categories are shown in Table
7. For each category, a corresponding text field has been added within the meta-
data tab in the interface. We utilize the Tesseract OCR system [170], operating on
the user’s browser even when offline. This particular model has demonstrated a
good performance in the ICDAR chart text understanding challenge [194]. We em-
ployed a template-based approach [1] to auto-fill chart descriptions. This equipped
the chart with a summary of the encoded elements and descriptive statistics (e.g.,
extremes, outliers, etc.), corresponding to Levels 1 and 2, as proven preferable by
many BVI individuals [117].
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Table 7: Text fields present in the Chart4Blind interface.

Property Fields

Calibration Axes calibration points

Chart Information
Plot title

Axes titles

Axes labels

Additional Information
Chart description

Data point description

Rendering Module To address UR-1 and UR-5 findings, we incorporated a real-
time view to track conversion progress. Users can switch between modes to visual-
ize textual or line drawings. Our rendering module displays a real-time SVG view
using D3.js and exports results at the end of the session. D3.js was chosen for its
memory efficiency and rich feature set, surpassing other DOM manipulation meth-
ods [12]. It also complies with W3C [181] standards and enables interactive chart
creation, beneficial for future audio integration to test screen reader accessibility.

Considering the space and size constraints of printed charts on embossed pa-
per, adherence to several print guidelines for tactile illustrations [47, 137, 141] is
essential. Related requirements are summarized as follows:

• Lines should be capable of being distinguished by touch, either by using
different thicknesses or different types of symbols such as a dotted or dashed
line.

• Lines of < 0.4 mm thick should not be used, as it can be difficult to obtain a
sufficient bump on capsule paper.

• Text in tactile illustrations should be written in Braille and oriented horizon-
tally. A margin of at least 3.0 mm should be left around the Braille characters.

Our rendering module offers an additionally accessible visualization mode, al-
lowing users to export SVGs that align with printing guidelines for tactile graph-
ics [141]. This includes a reduced number of axes labels, typically limited to 3 to
5 labels depending on the page size due to the size of Braille script. The (default)
digitally accessible SVG mode is more suitable for 2-D tactile displays and screen
readers (Figure 17-(b)), enabling the embedding of more visual content with cor-
responding description tags (e.g. <desc>). Figure 17 illustrates a sample rendering
outputs for both digital and print-accessible SVG modes.

Chart4Blind Interface. Informed by insights obtained from need-finding inter-
views with our participants and guided by our design principles, we developed
the Chart4Blind interface. This interface allows users to upload a chart image and
facilitates the generation of an accessible version with text descriptions in diverse
formats. In the course of our design process, we engaged two participants from
the need-finding interviews to gather expert feedback. We carefully considered
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(a) (b)
Figure 17: Rendering Module view for a bitmap line chart. (a) displays the digitally accessi-

ble SVG view, ideal for screen readers, and refreshable tactile devices. (b) shows
the print-accessible SVG view, suitable for print modalities such as embossed
papers or laser cut.

(a)

(b)

(c)
(d)

(e)

Figure 18: An overview of Chart4Blind interface sections: (a) Home menu for actions like
upload, undo, redo, and tutorials. (b) AI toolbar with OCR and segmentation
models. (c) Canvas for the uploaded chart, allowing interaction for calibration
points and predicted line adjustments. (d) Rendering Module for real-time SVG
visualization before export. (e) Metadata section for visualizing extracted line
data and seamlessly drag-and-drop of textual content.

this feedback to enhance the seamless conversion process within the interface. The
interface components are illustrated in Figure 18.
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3.4.2 User Study with Sighted

We conducted a user study to see if the current implementation of Chart4Blind
fulfils our design principles in terms of supporting user requirements discussed in
the previous findings section to semi-automatically support the creation of acces-
sible charts according to current standards [141]. We also conducted a follow-up
study measuring the accessibility of our exports involving BVI individuals.

Participant. We invited a total of 10 sighted participants (T1-10, age range 22-
34 years). Similar to the previous study, we collaborated with ACCESS@KIT to
recruit participants via email lists. They did not receive any compensation. We
screened participants for basic knowledge of charts: all participants were familiar
with reading line charts and frequently worked with them. While their educational
backgrounds varied, none of the participants had prior experience with chart ac-
cessibility or the conversion process. The study was part of a series of studies
which were approved by the ethical review committee of Karlsruhe Institute of
Technology.

Study Design. We prepared three line charts from our test set, for the conversion
process and one simple chart for the tutorial session to help users become familiar
with the tool. We consider three levels of complexity of charts to experiment with
the conversion process, which we define as follows:

• Simple: Few lines with few data points and labels.

• Compound: Two or more lines with different label formats.

• Dense: Complex lines such as long sinusoidal waves or overlapping trends
with text annotations.

We randomly selected line charts meeting the established criteria to ensure di-
versity (see Figure 19). These charts were collected from the recent LG dataset [134],
featuring real charts from public documents across 5 distinct fields (e.g., social sci-
ence, natural science, etc.). The charts are provided in PNG format, accompanied
by the ground-truth hierarchical segmentation masks for all visual and textual
elements.

Each participant completed a total of 3 sessions, progressing from Simpler to
Denser charts. For each session, we recorded task completion time (measured in
seconds), mouse clicks, SVG, and CSV exports. Heatmaps were generated using
the recorded mouse clicks. Line point quality was measured using the Frechet
Distance [3], and the SVGs were utilized in the follow-up study, as discussed later.
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(a)

(b) (d)

(c)

Figure 19: Four line charts with different complexities utilized for the user study: Simple
charts (a) and (b) each contain one simple line trend for the tutorial and main
session respectively. (c) A compound chart with additional lines overlapped,
and visible axes. (d) A dense chart featuring relatively complex trends, point
annotations, and less visible axes.

Procedure. After completing the consent form, participants were invited to a face-
to-face user study. They went through a tutorial session to familiarize themselves
with the Chart4Blind tool. During the tutorial, we presented the Chart4Blind tool
using a sample chart (Figure 19 (a)) that was not used in the subsequent sessions.
Additionally, participants were guided to an accessibility tutorial to understand
the expected results. In order to get comfortable with the tool, we allowed the
participant to interact with it for 15-20 minutes.

In the main sessions, each of the 10 participants was provided with three charts
(see Figure 19 (c-d)) and asked to upload them and start the conversion process.
Participants were informed that they were free to choose their preferred approach,
whether utilizing the integrated AI tools or performing manual metadata labelling.
They were also informed that they could revisit both the tool and accessibility
tutorials at any time without losing progress if they had any questions.

After completing all the trials, the participants were presented with the SUS sur-
vey [88], followed by open-ended questions to express their opinions and thoughts.
The entire experiment took approximately 90 minutes to complete. We developed
an offline experimental system to facilitate the study, setting up Chart4Blind on a
local laptop, with the tool accessible through the Chrome browser.

3.4.3 Results & Discussion

Task Performance. We measured the average time in seconds spent on each chart
as illustrated in Figure 19. For the initial tutorial part, users took, on average,
9min and 5sec (STD: 3min and 45sec), with differences among users—some were
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interested in understanding more about accessibility guidelines, while others chose
to go through the tutorial via GIF animations only.

For the main session, we observed that participants completed the conversion
process in an average of 4min and 36sec (STD: 2min 55sec). We informally asked
the most experienced participant about how long it takes on average to create a
chart with the tools she used (LibreOffic Draw). She reported a 10 minutes dura-
tion.
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Figure 20: On the left, average conversion task completion time in minutes:seconds. On
the right, a radar chart depicting the number of clicks for the top 5 sections
interacted with in Chart4Blinds.

Interaction Patterns. To conduct a more comprehensive analysis of the time spent,
we closely examined user click patterns and the duration they spent on various
parts of the interface. In Figure 19-b, a radar chart demonstrates the average num-
ber of clicks on the top 5 interacted components of the UI. The analysis suggests
an influence on completion time when incorporating the segmentation model. All
users started with initial predictions, later making slight adjustments to the mis-
aligned points, specifically focusing on points situated around the corners of the
curved lines (see Figure 19-c). This trend indicates a decline in segmentation perfor-
mance in these specific areas, suggesting a need for improvement in future work.
However, in contrast to annotating the entire line manually, this discrepancy in
performance is minimal compared to the overall number of points. In the case of
the Dense chart, users edited 10.0% of the overall points.

Further investigation revealed that the time spent varied based on the elements
within the charts. For instance, in charts with more textual components like the
Compound chart, users tended to spend more time engaging with the text fields.
On the other side, in the Dense chart, users engaged more with the rendering
module, likely due to a few misaligned points caused by the curved lines. As users
gained more experience and knowledge of accessibility guidelines, we observed a
decrease in interactions with the menubar in each subsequent session.
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Post-study Feedback. Sighted user satisfaction was assessed through a SUS survey
[88] conducted after the interview. The study yielded an average score of 90. All
participants either agreed or strongly agreed that the Chart4Blind tool is valuable
for converting line charts into accessible formats and helps to understand the ac-
cessibility guidelines. Additionally, they agreed that they would recommend this
tool to other colleagues.

We conducted a follow-up discussion to gather participant insights, covering the
following aspects:

• Describe your experience with the tool.

• What did you find most intuitive and why?

• What parts do you find difficult or confusing and why?

• What suggestions or functions you would like to see or improve in the tool?

All participants expressed a positive experience with the tutorials, finding them
informative enough to create an accessible chart. They felt confident following the
conversion process through the rendering view, even without prior experience. T8

remarked, "I didn’t feel the difference in converting Dense and Simple charts; they
both took similar effort," indicating that the tool was seamless to utilize regardless
of chart complexity.

6 participants found the line segmentation feature valuable as it significantly
reduced the effort required to trace lines manually. A few participants also valued
the OCR and drag-and-drop features equally alongside the segmentation model.

Interviews further revealed that while Chart4Blind generally met their needs,
some participants suggested the following improvements: Three participants men-
tioned that automating the calibration step would be helpful, expressing an occa-
sional lack of confidence when placing calibration points. T5 explained, "This chart
[Dense] has a transparent axis with light gridlines; maybe other charts have no axis.
I can’t locate efficiently even with the zoom window."

Our sighted participants found the template-based summaries good but ex-
pressed a preference for more contextual summarizations reflecting domain knowl-
edge presented in the chart. T10 suggested further integration of natural language
models to enhance chart summarization.

3.4.4 Exploratory Evaluation of Output Accessibility with Blind Users

As an exploratory effort to evaluate output accessibility with assistive technologies,
we conducted a remote study. We recruited three visually impaired individuals via
the ACCESS@KIT center email list. We randomly selected three converted charts
from our test set, and sent them to the participants, including embossed prints via
mail and SVG exports via email. For the full user study materials refer to Appendix
A.1. Participants were instructed to review the charts using a screen reader first
and then explore the corresponding embossed print. We utilized the SoSciSurvey
tool [100] to create an online questionnaire accessible with screen readers. The
complete version of the survey is available in the Appendix A.1. Participants were
guided to answer two questions:
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• Could you describe your experience in using a screen reader to access the
provided SVG? Were both the SVG and the accompanying chart description
digitally accessible to you?

• Please discuss your interaction with the provided embossed print. Were you
able to access both the visual and textual elements effectively?

All participants are familiar with the usage of screen readers, and with reading
charts on tactile prints provided by ACCESS@KIT due to their studies in STEM
subjects.

A few notable points were analyzed: two participants found the template sum-
marization informative, while one preferred more comprehensive descriptions that
also summarize the overall trends and patterns of the data. Furthermore, partici-
pants reported a few missing elements: plot title in chart (a), as well as missing
legends in charts (b) and (c), highlighting potential errors made by sighted users
when converting the graphics to an accessible format. Regarding the tactile prints,
one participant mentioned that a few labels were very close to the border of the
text bounding box, making it slightly more difficult to interpret.

In response to these observations, we made updates to the SVG rendering at-
tributes to maintain a larger distance between the border and the inner text. Addi-
tionally, we are actively working on implementing a status system that notifies the
user if any information is still missing before the export.
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3.5 chapter conclusion

In this chapter, we introduced an approach for PVI individuals to access 2D doc-
ument layouts, allowing them to locate text, images, equations, and various other
elements. For this application, we developed new tactile interactions that provide
both haptic and audio feedback, as well as control buttons for additional details.
We evaluated the interface through user studies to ensure its effectiveness.

We then integrated a system for analyzing the layout of document visualizations
using segmentation models and proposed the first benchmark for this task. Based
on the hierarchical segmentations obtained, we developed a line tracing system
specifically for line charts. We compared different networks and settings to achieve
state-of-the-art performance in this task.

Towards the end of this chapter, we integrated our tracing approach and de-
signed an intelligent user interface that streamlines the conventional process of
creating tactile materials. This tool allows sighted participants to quickly extract,
visualize, and export line chart images into accessible audio-tactile formats. We
also conducted a formal user study to evaluate this tool.

In summary, this chapter represents a significant step towards enabling PVI in-
dividuals to localize visualizations and providing sighted individuals with tools
to extract underlying data from images. The subsequent chapters will explore how
these multi-stage approaches can be implemented using vision-language models,
ensuring compliance with accessibility standards while maintaining robustness
and efficiency. Here is a more detailed summary of the contributions of each sec-
tion in this chapter:

Contribution 1: We are the first to propose a multi-modal (audio-tactile)
interface that allows PVI individuals to access two-dimensional document
layouts.

Contribution 2: For the first time, we explore semantic segmentation for vi-
sualization metadata extraction. We also developed a practical line tracing
system specifically for line charts. A new benchmark was proposed, and
comprehensive experiments were conducted.

Contribution 3: We propose Chart4Blind, an intelligent user interface that
streamlines the chart-to-tactile conversion process for sighted users. A do-
main expert assessed the tool and found it especially valuable for complex
tasks, where it has the potential to reduce labor effort.



4
L E A R N I N G T O C O M P LY W I T H A C C E S S I B I L I T Y
S TA N D A R D S

Whether an AI model is assisting in authoring alt-text or creating tactile
materials, it must be aware of accessibility standards, especially when col-
laborating with inexperienced users prone to errors. For instance, simply
extracting data points from a line chart does not necessarily imply that the
chart is now accessible. The extracted data needs to be reformed to align
with the cognitive load and sensory capabilities of PVI individuals—one
may not want to hear thousands of line values. This chapter discusses how
models can be tailored to comply with accessibility standards and generate
high-quality accessible modalities, both tactile and auditory.

This chapter is based on the publications [133] & [130] at (ICCHP 2024).

4.1 introduction

Vision-language models continue to improve in generating chart descriptions and
reconstructing visual content. However, from an accessibility perspective, the crit-
ical issue is not just in generating descriptions but in ensuring that these descrip-
tions are truly accessible to PVI users by complying with established accessibility
guidelines and standards. Despite advancements in VLMs, there has been limited
effort focused on aligning these descriptions with the required standards. More-
over, even in the few attempts made, there are still frequent issues with quality
and consistency, which affect their usability and effectiveness for PVI people. In
this chapter, we present the Alt4Blind interface to aid sighted users in writing high-
quality alt-text, and later, we discuss the development of the ChartFormer model,
an end-to-end image-to-tactile conversion model that complies with accessibility
standards.

4.2 complying to standards through image retrieval

Alt text is a metadata field associated with an image that "serves the equivalent pur-
pose" as the image, according to WCAG 2.0’s A level (required) criteria 1. The W3C
categorizes images into seven classes, each requiring specific content for the asso-
ciated alt text 2. While decorative images should not receive alt text, other classes,
such as “informative” images, should include a “short description conveying the
essential information presented by the image.” At an intermediary level, “func-

1 https://www.w3.org/TR/WCAG20/

2 https://www.w3.org/WAI/tutorials/images/
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tional” images (e.g., images serving as buttons) should only convey the function-
ality of the icon. Other groups, such as Document Visualizations, classify images
based on content type rather than purpose, including diagrams, graphs, photos,
and art [25]. This group offers further considerations for alt text, including how to
incorporate context, tone, language, and maintaining a neutral, factual description
[24].

Alt text can originate from two primary sources: manually created by humans
or (semi-)automatically generated by AI systems. Human-generated descriptions
are often accurate but typically require expertise. Recent studies have highlighted
a significant alt-text deficiency in publications, as shown by an analysis of 3,386

author-written alt-texts from HCI publications, where only 50% addressed extrema
or outliers, and just 31% included details on major trends or comparisons con-
veyed by the graph [35]. Conversely, automatically generated captions are quicker
to obtain and require no expertise but may suffer from information inaccuracy.
Therefore, crafting high-quality alt text, particularly for charts, is a complex task.

Understanding the appropriate content to include in alt text is challenging [117];
indeed, the W3C provides a decision tree to help authors determine the neces-
sary information 3. However, existing alt-text interfaces do not sufficiently address
the complexities of image classes impacting alt text content. To improve accessibil-
ity, several commercial platforms have incorporated automatic alt-text generation.
For instance, PowerPoint recently updated its automatic captioning system for im-
ages in slides [159]. Social media platforms, such as Facebook, have developed
automatic alt text features that provide a list of tags for items identified in an
image, prioritizing people, followed by objects, and then elements of the setting
[189]. These features represent significant advancements in alt text coverage on
their respective platforms. However, questions regarding author interaction with
and review of automatic alt text are increasingly important given its growing use.

Although these automatic tools enable the captioning of considerably more im-
ages on these platforms, their accuracy is not guaranteed. Sighted users are often
presented with a suggested alt-text prediction and may accept it without further re-
view due to a lack of knowledge. This lack of awareness regarding content quality
raises concerns about accuracy. Hence, it is crucial to understand authors’ experi-
ences in creating alt text.

In this section, we investigate strategies to enhance the quality of alt text and
foster greater engagement among authors in its creation. A significant focus of our
investigation is on promoting positive behaviors that contribute to user awareness
of accessibility. Additionally, our approach includes the development of a web tool
designed to streamline the process, augmented by a novel deep retrieval model.

4.2.1 Guiding Users to Author High-Quality Alt-text: Methodology & Dataset

To address these issues, we initially conducted interview sessions with six par-
ticipants possessing varying levels of accessibility expertise, ranging from none
to advanced (working in the field of accessibility). We conducted exploratory in-
terviews with these participants (experts: P1-P3, non-experts: P4-P6) to identify
effective methods for authoring high-quality alt text.

3 https://www.w3.org/WAI/tutorials/images/decision-tree/

https://www.w3.org/WAI/tutorials/images/decision-tree/
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Figure 21: Sample Charts from the Alt4Blind dataset: (a) vertical panel line charts, (b) com-
posite line-error bar chart, and (c) horizontal bar chart.

The interviews were structured as open-ended discussions. To facilitate the con-
versation, we followed these steps:

1. We introduced a basic line chart featuring three distinct lines and provided
the W3C guidelines for writing image descriptions (illustrated in the upper
left of Figure 23-2.

2. Participants were then instructed to write a description for a blind person.

3. Following this, we inquired about the challenges faced and their perspective
on essential features for a web tool designed for this task.

The interviews took place during one-hour face-to-face sessions, during which
we took written notes.

Interviews. Following the interviews, participants with limited experience in alt
text creation highlighted their unfamiliarity with the concept, noting that alt text is
often embedded within hidden tags. They emphasized the necessity of review-
ing several examples before attempting to write alt text themselves. Moreover,
they indicated that reading the guidelines alone was insufficient for producing
comprehensive alt text, as the guidelines offer general, abstract recommendations
that do not necessarily address specific image contexts. In contrast, expert partic-
ipants, drawing on their extensive experience, were able to produce informative
summaries. When questioned about the source of their expertise, they also at-
tributed it to the review of multiple samples. This clearly suggests that examining
high-quality examples in conjunction with reading guidelines would significantly
enhance the user experience.

Technically speaking, this is an image retrieval task where the system could
retrieve and rank samples that fit the user’s specific case. It is akin to someone
capturing an image of a dress and searching for similar or exact matches online
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for shopping purposes. Based on these insights, we developed our subsequent
chart retrieval dataset and model.

Figure 22: Our retrieval system leverages both the text and image encoder modules of the
fine-tuned CLIP model. This ensures similarity at both visual and contextual
levels.

Chart Retrieval Dataset. To provide high-quality reference images for use in this
study, we first collected 25,000 images with alt text from publicly available HCI-
related conferences over the past decade, thereby expanding the HCI Alt-Text
dataset [35]. Subsequently, we filtered out images that were not charts, signifi-
cantly short alt text, or lacked semantic content, resulting in a dataset of 5,000

chart images. This represents a tenfold increase over the previous dataset. These
selected images, characterized by rich semantics, will serve as high-quality refer-
ences for participants using our intelligent interface. Our dataset encompasses a
diverse range of chart types, including common forms such as Line, Bar, Area, Pie,
and Scatter charts, as well as unique visualizations not previously included, such
as multivariate and panel charts (see Figure 21). We employed the 4-level semantic
model proposed by Lundgard et al. [117] to assess alt text quality. Initial scoring
was performed using ChatGPT-4, evaluating the number of semantic elements and
levels present in each alt text. The highest quality samples were then manually re-
viewed for further validation.

4.2.2 Model & Interface Design

Image retrieval involves searching for images similar to a given query image or
text, with a focus on ensuring the top results include similar chart semantics. To
this end, we employed CLIP ViT-B/32 [152] as our baseline model. The CLIP ar-
chitecture integrates both a text and an image encoder, each generating a 512-
dimensional feature vector. The CLIP model utilizes an unsupervised contrastive
pre-training approach to cluster samples in latent space. We fine-tuned the model
on our dataset with a batch size of 16 for 10 epochs. During the inference phase
(Figure 22), we input the image, extract the encoders’ representations, and com-
pare them to samples from the dataset. The top three candidates with the highest
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Figure 23: Alt4Blind UI: (1) Menu bar offering access to guidelines and a tutorial. (2) Space
for uploaded images featuring a function bar (zoom, move, fit). (3) Text field
for user input, accompanied by a button to update the retrieved image. (4) Re-
trieved charts based on the uploaded image, can be further enhanced with text
query.

cosine similarity scores are then retrieved. Our model achieved 92% in Precision at
3 (P@3) and 85% in Recall at 3 (R@3), demonstrating high capabilities in displaying
similar chart images within the top three results. The model can also be queried
with text input, which is useful when the user types their own summary and seeks
similar suggestions.

Alt4Blind Interface. To provide a better streamlined experience for users, our pro-
totype leverages the capabilities of React JS4, a robust JavaScript library for build-
ing dynamic user interfaces. The interface includes a user-friendly landing page
where users can drag-and-drop chart images and access a tutorial designed to
guide first-time users through the process.

Users can refer to the guidelines provided in a pop-up window, ensuring they
are well-informed about best practices for alt-text creation. Once an image is up-
loaded, the backend model retrieves three images that are contextually and visu-
ally similar, as previously described. These similar images are displayed on the
main page, allowing users to interact with each reference. Users can enlarge the
images to view the full alt-text, see the reference paper, and copy or learn from the
given summary.

The interface also includes a "Get Similar" button, located to the right of the
text field, enabling users to refresh the list of suggested candidates based on the

4 https://react.dev/

https://react.dev/
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summary they input. This feature ensures that users can continually refine their
search to find the most relevant examples. As shown in Figure 23.

Finally, The interface have the option to export the alt-text as an HTML tag, SVG
tag, or plain text, depending on their preference. This functionality allows for easy
integration of the alt-text into various document formats.

4.2.3 User Study

To evaluate the efficacy and usability of the Alt4Blind interface, we conducted a
comprehensive user study with six participants (P1-P6), encompassing both ex-
perts and non-experts in accessibility. The participants were presented with Panel
and Multivariate charts, which were unfamiliar to all. The chart samples are de-
picted in Figure 21-(a) and (b). The participants were instructed to follow a struc-
tured protocol:

1. Review the guidelines and participate in the tutorial chart session first.

2. Use Alt4Blind to upload the chart and create alternative text for the image
provided.

3. Describe their experience in detail.

During the sessions, we recorded user interaction behaviors using manual notation.
Each session lasted approximately one hour.

4.2.4 Results & Discussion

All participants completed the guideline review and tutorial session without dif-
ficulty, gaining a basic understanding of the process required for creating alt-text.
Participants P4-P6, who were less experienced, found the feature allowing the copy-
ing of sentences from similar charts especially useful in crafting their descriptions.
They noted that this feature significantly improved their confidence and the qual-
ity of their alt-text. Expert participants (P1-P3) as well appreciated the ability to re-
view high-quality examples. P1 suggested increasing the number of similar charts
displayed from three to a larger number to provide more options. P3 suggested
a feature to replace irrelevant images among the selected similar charts, suggest-
ing an enhancement in the relevance and customization of the AI retrieved results.
Overall, participants found the interface intuitive and user-friendly.

Limitations. Our tool has proven effective in enabling both inexperienced and
experienced users to author high-quality alt texts. However, it could be further
enhanced with additional intelligent functionalities, such as LLM-based feedback
and descriptions, which are currently under development. While the current im-
plementation aids users in creating alt text, we believe integrating captions into the
tool is crucial, as captions and alt texts often complement each other. The existing
user interface does not allow users to control the similar chart section, a feature
multiple participants requested to improve their interaction experience. Future it-
erations should offer users the ability to omit, replace, or view additional charts.
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Although our initial investigations are promising, they were conducted with a lim-
ited number of users and lacked comprehensive control measures. Future studies
should involve a larger and more diverse group of participants, including individ-
uals with blindness and visual impairments.

4.3 end-to-end tactile material creation

One of the key elements of the educational process is to provide students with ap-
propriate scientific materials that facilitate the acquisition of knowledge and skills.
These materials often engage multiple senses, enhancing understanding and re-
tention. For example, visual aids such as diagrams, schematics, and charts help
students grasp difficult concepts, with sight playing a crucial role in familiarizing
students with these resources. However, PVI individuals face significant challenges
in their cognitive processes due to the lack of visual input. This required the devel-
opment of methods to present information that sighted people can access without
difficulty.

While the problem of textual materials for PVI individuals was addressed early
on through the use of the Braille alphabet, which allows the representation of 63

characters using raised dots, adapting drawings and graphs to the needs of the
blind is much more complex. Technological solutions are required to make these
materials accessible. Screen readers with speech synthesizers can provide audio de-
scriptions of information presented in graphics. However, these descriptions must
be prepared in advance and, in many cases, simply reading an audio description is
insufficient. Tactile printouts, which allow users to feel graphics and obtain infor-
mation through touch, are more effective [2]. A tactile image is a printed graphic
in which shapes are represented by raised dots and lines. This requires careful
preparation according to strict rules and guidelines so that a blind person can ac-
curately interpret the shapes [19]. Several factors influence the perception of tactile
graphics:

• Arrangement of objects: Overlapping or widely spaced objects can introduce
errors and prolong the understanding process.

• Limiting the number of objects: Too many objects can disorient the user dur-
ing analysis.

• Complexity of the structure of objects: More complicated objects take longer
to understand.

• Differentiation of objects: Features of objects should be distinctly different to
avoid confusion.
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Figure 24: Conventional process of converting raster images into tactile material

Given the challenges of making visual information accessible to PVI individuals,
the conventional approach as shown in Figure 24, often involves having expert
sighted users manually redraw components using graphic software. This process
typically requires extensive time and effort, as it involves simplifying complex
visuals, ensuring clarity, and adhering to accessibility guidelines.

A further step involves using intelligent approaches to streamline this process
through the automatic or supported creation of accessible visual content. By utiliz-
ing current advancements in vision and language models, it is possible to signifi-
cantly reduce the time and effort required to adapt charts and diagrams for PVI in-
dividuals. As we demonstrated earlier, one could use these models to help extract
metadata such as data points from line charts and textual content with few user
interactions [134]. Many researchers have followed similar approaches for different
types of visualizations [1], yet they all require human involvement as the models
are trained to perform a single task: extracting the data. Hence, we ask: how can we
develop models that not only perform the primary task but also comply with accessibility
standards, ensuring end-to-end usable content for PVI individuals?. This question drives
our exploration into creating the ChartFormer model and dataset.

4.3.1 Dataset & Standards

These tactile charts are often created using vector graphics software such as Inkscape
and LibreOffice Draw, and saved in the Scalable Vector Graphics (SVG) format.
SVGs are XML-based files that store geometrical shapes using mathematical for-
mulas in a hierarchical structure. This format offers several advantages for creating
accessible graphics [46]. First, each element in an SVG can be assigned different
styles, which translates into distinctive textures in the tactile version. Second, SVG
files can hold supplementary textual descriptions, enhancing interactivity when
used with screen readers or tactile displays. Third, SVGs can be resized without
blurring or distortion, making them ideal for varying paper sizes or zooming on
tactile displays [131]. Creating an SVG chart from a raster image requires careful
simplification of both textual and visual content to support tactile formats while
preserving the integrity of the chart information. This process includes reducing
textual content, such as limiting the number of axis labels, and focusing on crucial
visual elements, like emphasizing significant scatter points in a scatter plot. Due
to these complexities, crafting vector graphics is not a trivial task.

Therefore, we first addressed the need for a benchmark to better evaluate and
train deep learning models for this task. By establishing a comprehensive bench-
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mark, we can assess the performance of these models and ensure they comply with
accessibility standards.

Dataset. ChartAssistants [124], a recent work, stands out for its comprehensive col-
lection of chart images, each paired with detailed metadata. Although it lays a solid
groundwork for converting charts to code, it cannot generate accessible visualiza-
tions. In contrast, datasets oriented towards accessibility, like VisText [173], have
focused on making visualizations accessible through chart summarization tasks,
but none have considered the tactile modality. To our knowledge, we propose the
first dataset for the task of Chart2Tactile conversion.

                            Miles per gallon over hp                        

(a) (b)

Figure 25: A scatter plot sample: (a) the original synthesized raster image; (b) the tactile
version following accessibility guidelines.

Our dataset comprises 10,000 tactile chart images, spanning 4 categories (line,
bar, scatter and error-bar charts) each accompanied by time series data and a
raster version. We identified the VisText [173] and ChartX [190] datasets as the
most suitable choices. VisText offers 8,822 images, complete with their data tables
and accessible summarizations, featuring univariate time series. ChartX contains
48K chart data covering 22 topics, 18 chart types, with each chart including four
modalities: image, CSV, Python code, and text description. A sample raster image
is presented in Figure 25-(a).

Standards. Rendering the metadata as tactile charts necessitates adherence to es-
tablished guidelines to ensure that the charts are accessible by individuals with
visual impairments. This process involves not only the translation of visual infor-
mation into a tactile format but also the thoughtful consideration of how various
elements can be differentiated by touch. We followed various tactile printing guide-
lines [49, 141] to create accessible SVGs. The key requirements we adhered to are
summarized as follows:

1. Elements should be distinguishable by touch, using varying thicknesses or
symbol types such as dotted or dashed patterns.

2. Thin elements should be avoided.

3. Text in tactile illustrations should be in Braille, oriented horizontally.

Additionally, we collaborated with an expert from the Center for Digital Acces-
sibility and Assistive Technology5 at Karlsruhe Institue of Technology, specializing

5 https://www.access.kit.edu/english/index.php

https://www.access.kit.edu/english/index.php
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in converting educational materials for people with blindness and visual impair-
ments. Their feedback included the following recommendations:

1. Enclose text content with a bounding box for better exploration and distin-
guishing separate texts more effectively.

2. For dense charts such as scatter plots, only significant, non-overlapping points
should be drawn to avoid clutter.

3. Embed description tags for both text and visual elements to enable accessi-
bility via screen readers.

For transforming metadata into SVGs, we used the svgwrite Python package6.
For each time series, we synthesized an SVG template and rendered a raster image
using Vega-Lite7. To ensure accuracy, we manually selected samples from each cat-
egory of the data and conducted a thorough verification process. A tactile sample
is illustrated in Figure 25-(b).

                            Miles per gallon over hp                        

                            Stock Price Over Time                        

Styles
svgwrite 

Metadata

ChartFormer

Raster charts
Accessible SVG charts

Figure 26: The ChartFormer takes a raster x-y plot as an input. The essential metadata and
styles are extracted, which are then used to populate the svgwrite templates.
For better viewing resolution, please visit our project page.

4.3.2 ChartFormer Model

We selected the state-of-the-art publicly available model LLaVA-1.5 [111] as our
baseline. This choice was motivated by the desire to provide accessibility centers
with a cost-effective solution that does not require additional expenditures. At the
time of selection, LLaVA-1.5 was top-performing in vision tasks such as document
question answering, which we anticipated would expedite the training process for
chart data.

We utilized the baseline weights from ChartLLama [70] and adopted the same
hyperparameters for training. The model was then fine-tuned for 10 epochs us-
ing our dataset, aiming to analyze x-y raster chart images and extract simplified
metadata with appropriate styling for svgwrite code, see Figure 26). The specific
information extracted includes:

• Chart Type and Titles: Identification of the x-y chart type and extraction of
titles for the plot, axes, and legend. This step is crucial for providing context
and clarity.

6 https://svgwrite.readthedocs.io/en/latest/

7 https://vega.github.io/vega-lite/

https://svgwrite.readthedocs.io/en/latest/
https://vega.github.io/vega-lite/
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• Axes Range and Labels: Determination of the axes range with 3 or 4 labels
that cover the entire period. Labels must conform to specific encodings (e.g.,
int, float, fraction, date/time, text) to ensure accuracy.

• Time-Series Data Extraction: Extraction of time-series data necessary for draw-
ing the chart, forming the core of the visual representation.

The extracted data is rendered using predefined svgwrite code templates for
each chart category. For scatter plots, we ensure clarity by drawing 10 points per
label unit and separating overlapping points, following the SVG Guidelines de-
scribed above.

4.3.3 Experiments

We conducted a pilot user study with four people with PVI (three males and one
female, aged 21-29) to evaluate the effectiveness of the generated SVGs on a Hy-
perBraille 2D tactile display 8.

Procedure. The user study images were randomly sampled from the LG dataset
[134], which includes real charts. At the beginning of the session, a test graph was
provided to introduce the participants to the available interactions. Afterwards,
the 3 line charts shown in Figure 27 were displayed on the HyperBraille and the
participants were asked to explain and identify the key elements, titles, labels and
legends and count lines, in each graph, as well as name few points intersection
and line trend. For the full user study materials refer to Appendix A.2

(a) (b) (c)

Figure 27: SVG-formatted line charts used in the user study, showcasing varying complex-
ities: (A) a single line; (B) two lines; (C) six lines. For better viewing resolution,
please visit our project page.

Results & Discussion. All participants successfully completed tasks related to
charts (A) and (B), which involved identifying intersections and counting lines.
They could also accurately describe the line trend as increasing, decreasing, or
constant. However, in chart (C), participants encountered difficulties in counting
all intersections, likely due to the chart’s high density. Two participants used zoom
features on the tactile display to discern closely positioned elements and inter-
sections more clearly. Audio descriptions were also suggested by one participant
as a way to facilitate access to the chart’s textual elements. A common suggestion
from all participants was regarding SVG rendering, specifically to address the stair-
casing effect in the tactile output. The need for smoother line rendering to avoid
jagged or stair-like appearances was emphasized.

8 https://metec-ag.de/en/produkte-graphik-display.php

https://metec-ag.de/en/produkte-graphik-display.php
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Limitations Although our system has been positively received by the participat-
ing people with blindness and visual impairments and collaborators, we believe
there is still significant room for improvement: (1) Our system mainly targets x-
y plots with two axes and charts of a single type. Future implementations could
encompass other chart types. (2) Adding an interface to our system could allow
sighted individuals to modify the chart before exporting it, ensuring that textual
and visual details are accurately represented. (3) Conducting a larger, formal user
study is necessary to assess the performance and furthermore, to experiment with
different types of charts beyond just line charts.

4.4 chapter conclusion

In this chapter, we introduced two new tasks for the chart analysis field: image
based chart retrieval and chart-to-tactile tasks. Additionally, we developed a novel
vision-language model application for assistive technologies that not only stream-
lines the creation of accessible materials but also promotes good practices and
compliance with standards.

First, we presented a new alt-text authoring interface that assists users by retriev-
ing similar charts to use as a reference for authoring high-quality alt-text. This
chart retrieval task is achieved through our novel model, which retrieves charts
based on both contextual and visual elements such as label formats, colors, mark-
ers, etc. Our pilot user study demonstrated that presenting similar charts to au-
thors is more effective than AI-assisted approaches, which cannot always ensure
the generated alt-text conforms to standards.

We also investigated the tactile modality and proposed the chart-to-tactile task.
We conducted an extensive analysis of our dataset and demonstrated the potential
of using vision-language models for tactile creation.

In summary, this chapter represents the first attempts to investigate the compli-
ance of vision-language models with accessibility standards and guidelines. It also
lays the groundwork for the community to address further limitations and chal-
lenges identified in the proposed tasks. Below is a more detailed summary of the
contributions from each section in this chapter:

Contribution 1: We present the image-based chart retrieval task, where
charts are retrieved based on contextual and visual semantics. The
Alt4Blind model and benchmark were proposed, along with an applica-
tion interface developed for alt-text authoring to assist sighted individuals
in creating high-quality alt-text.

Contribution 2: For the first time, we introduce the image-based chart-to-
tactile task. This challenge is accompanied by a comprehensive benchmark,
and we propose an approach to adapt vision-language models for vector
graphics tactile material creation.
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C A P T U R I N G T H E D I V E R S E N AT U R E O F
V I S U A L I Z AT I O N S

Authors often present complex data using appealing designs to help users
envision the topic, increase engagement, and enhance memorability. How-
ever, we strive to make visualizations accessible and address these issues
while improving generalization across different chart styles. Current ap-
proaches tend to train on specific classes of visualizations with limited
styles, primarily because their data are mostly synthetically generated. Con-
sequently, there is a essential need for systems that can adapt to the diverse
nature of visualizations. This raises the question: How can document as-
sistive technologies and models cope with the diverse designs and input
formats of visualizations? In this chapter, we discuss how to benchmark
model robustness to the diverse nature of charts and how to learn better
representations to handle real-life scenarios effectively.

Part of this chapter is based on the publication [135] at (ICDAR 2024).

5.1 introduction

Authored Visual Diversity. Where would we be without charts? Not only are
charts more appealing to our eye than raw data, but they also make it much sim-
pler for us to spot trends. The old saying “a picture is worth a thousand words”
also applies to charts. Managers don’t always want to look at every record in a
spreadsheet; they would rather make their decisions based on trends, whether
they be good or bad. That is why there has been recent advancement in graphing
software giving us new tools to compose artistic charts rival those of professional
artists, see Figure 28. Most of these software provide visualization models, where
data serves as the starting point for the design or analysis process, after which
designers, developers, and analysts select can alter the visual mappings, labels,
notions, to make that data more legible and actionable. Over the past 50 years,
a large body of research has successfully focused on developing and optimizing
visual mappings and interactions, creating a diversity of different visualization
genres tailored to unique data, tasks, audiences, and contexts. For example picto-
rial visualizations that uses icon-based language to visualize dataset points.

Source-Based Variations. In fact, author variations are not the only challenge for
adaptability. Visualizations captured in the wild using different devices, such as
cameras or scanners, also introduce another type of variation, as illustrated in Fig-
ure 29. Orientation, distortion, resolution differences, lighting conditions, etc., are
all potential factors that can affect the captured images. According to our obser-
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vations, perturbed chart images cause significant performance drops among all
state-of-the-art chart analysis models. A simple experiment involving the input of
two identical charts but collected from scanned and phone captures sources into
GPT-4.0 demonstrated the instability and hallucination in the authored summa-
rization.

Most available datasets include only digital charts with up to 3-4 types that are
synthetically generated using uniform templates, severely lacking in variability. So
far, state-of-the-art chart analysis models have primarily focused on extracting data
from charts and performing knowledge-based tasks such as question-answering,
summarization, and chart-to-table conversion. This lack of style and input diver-
sity hinders the development of a multi-domain, general chart analysis field. Con-
sequently, current research is not adequately addressing these requirements or
considering robustness aspects, leading to more hallucinations and poor context
capturing. This issue is particularly critical for assistive technology applications.
Therefore, in this section, we raise the question of how vision-language models
can adapt to these scenarios. We first comprehensively analyze the robustness of
available models for both chart summary and chart-QA tasks. Then, we present a
new training approach to equip large models with adaptability skills, specifically
focusing on enhancing performance for the chart summary task.

Figure 28: Variations of the chart in Microsoft Excel. (a) Various chart types (b) Sample pie
chart variations.
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Figure 29: Three images of the same chart collected from different sources: (a) digital, (b)
scanned, and (c) printed version. The summaries contain inaccuracies, with the
false statements underlined. For full responses refer to Appendix A.3.

(a) (b) (c)

Figure 30: Sample chart from the "blotches" perturbation at three levels: (a) level 10, (b)
level 5, and (c) level 1.

5.2 robustness benchmark

The democratization of artificial intelligence and deep learning systems has raised
public concern regarding the reliability of these new technologies, particularly in
terms of accessibility and robustness. These concerns, among others, have moti-
vated the creation of new European regulations known as the Accessibility Act
and the AI Act, which aim to regulate the use of these systems by the public.

In the context of a substantial increase in incoming documents, both at the in-
dividual level (e.g., mail, educational materials) and within large companies, doc-
ument visual analysis based on computer vision techniques has proven to be an
effective method for automatically extracting data from documents such as ID
cards, invoices, and tax notices.

Unfortunately, these techniques have proven to be inaccessible to people with vi-
sual impairments and vulnerable to different input sources, such as phone-captured
or scanned documents, as we have discussed previously. The robustness of chat
comprehension models, particularly from an accessibility perspective, has not yet
been thoroughly investigated. In fact, there have been few attempts and bench-
marks for document robustness analysis, and the conclusions of these studies
might not apply to visualizations and accessibility. Charts, for example, have differ-
ent semantic information than most images; they contain interrelated text, diverse
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layouts, and often a stylish design. This is why the robustness of visual models
for chart analysis (e.g., alt-text authoring) should be evaluated in an appropriately
controlled setting. In this section, we evaluate the robustness of several state-of-
the-art visual models and define the different robustness levels based on human
user studies for the chart-QA task.

5.2.1 Robustness Benchmark Dataset

For our experiments, we used the ChartQA dataset [121], a large-scale collection
of real-world charts and question-answer pairs designed for benchmarking chart-
related question answering. Masry et al. compiled this dataset by crawling charts
from four sources: (1) Statista (statista.com), an online platform with charts on
topics like economy, politics, and industry; (2) Pew Research (pewresearch.org),
which publishes reports with various charts on social and economic issues, demo-
graphic trends, and public opinion; (3) Our World In Data (OWID) (ourworldindata.
org), a platform with thousands of charts on global issues such as economy, fi-
nance, and society; and (4) OECD (oecd.org), a global organization providing
reports and data analysis for policymaking. The dataset includes 9.6K human-
authored question-answer pairs and 23.1K machine-generated ones. Sample data
are presented in Appendix A.4.

5.2.2 Human Perception for Perturbed Visualizations

To understand model perception of noisy chart image inputs, we first need to eval-
uate human perception and abilities for this task. To address the varying difficulty
levels of noisy images, we conducted a structured user study with a large group of
participants. This study aimed to determine the different levels of difficulty, which
can be compared to the performance of vision-language models. By involving hu-
man chart question-answering, we identified the levels of understanding, creating
a more structured evaluation approach for these models. In the following section,
we discuss the details of the user study.

Participants To evaluate human perception against AI, we designed a user study
on JotForm1 and recruited 43 participants who are over 18 years old, university
graduates, experienced in reading charts and answering questions, and able to
complete the survey in English. We adhered to best practices for ethical human
subjects survey research, and all participants provided consent for their responses
to be used for academic research purposes. We also complied with GDPR data
protection regulations. The study could be conducted on laptops or phones, and
three randomly selected participants were compensated with a prize of 10 euros.

Procedure. We selected 10 perturbations suitable for accessibility settings (see Ta-
ble 8), i.e., challenges PVI users may experience when capturing or scanning visu-
als. The perturbations as well as their severity levels were adapted from [33]. Par-
ticipants were presented with a different chart image for each perturbation, shown
at severity level 10, and asked whether they could understand the content of the

1 www.jotform.com

statista.com
pewresearch.org
ourworldindata.org
ourworldindata.org
oecd.org
www.jotform.com
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Table 8: List of perturbations tested in the user study with examples from PVI cases.

Perturbation Real-life Experience for PVI Users

Blotches Spots or smudges on the camera lens or printed chart.

Color Faded print colors.

Dilation Overexposure causing text to appear overly thick and blurred.

Erosion Worn out or faded text on old or damaged documents.

Elastic Transform Curved text from taking a picture of a bent document.

Fibrous Noise Scratches or lines from a dirty scanner glass.

Gaussian Blur Out-of-focus images due to shaky hands while capturing.

Motion Blur Blurred images from moving the phone while taking a picture.

Shifting Misaligned text from poorly scanned documents.

Uneven Brightness Uneven lighting causing dark or overly bright areas.

Figure 31: Statistical results from the robustness user study, showing the frequency count
of correct and incorrect responses versus the perspective level chosen by the
participants.

chart. If they answered "yes," they were then asked a question about the chart and
required to type their response. If "no" then lower severity level is shown. Upon
completion, they moved to the next perturbation type. See Figure 30 for an exam-
ple of different levels of the perturbation images. For more information about the
survey, refer to Appendix A.4.

Findings Most of the participants (93%) were able to answer the questions correctly.
We only considered the correct answers in the statistical evaluations. We analyzed
the participants’ results to determine the three suitable levels to compare with the
vision-language models. For each perturbation, we counted the number of correct
answers per level, as shown in the bar chart in Figure 31. The "difficult" level is
determined by "the highest level where at least one person answered correctly."
The "medium" level is identified as the mode of correct answers, while the "easy"
level is defined as the level where 90% of participants answered correctly. Table
9 below shows each level number number of each perturbation. One exception
was the "color" perturbation, where most participants failed. They were confident
that the chart was visually clear, but the missing color information misled them
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when trying to trace the two intersecting lines to determine the right answer (see
Figure 40 in Appendix A.4). For other perturbations, it was visually obvious that
something couldn’t be fully understood, so all participants’ responses fell into
similar levels.

Table 9: The chosen perturbation levels for each category based on the analytical results of
the user study.

Perturbation Easy Level Medium Level Difficult Level

Tutorial 2 7 10

Blotches 2 6 10

Color 5 7 10

Dilation 4 9 10

Elastic Transform 3 5 9

Erosion 4 5 10

Fibrous Noise 3 4 8

Gaussian Blur 4 5 10

Motion Blur 3 5 10

Shifting 1 7 10

Uneven Brightness 3 4 10

5.2.3 Vis-Lang Models Robustness Evaluation

Following the human perception evaluations, we conducted a thorough and com-
prehensive evaluation of state-of-the-art chart understanding models on the task
of chart QA. In line with Chart-QA [121], we used a relaxed accuracy measure for
numeric answers, allowing for minor inaccuracies that may result from the auto-
matic data extraction process. Specifically, we considered an answer correct if it
was within 5% of the gold answer. For example, if the ground-truth answer is 100,
any answer between 95 and 105 would be considered correct. For non-numeric
answers, an exact match was required to consider an answer correct. We call our
benchmark as "CHAOS" Chart Analysis with Outlier Samples. The average results
for each method are presented in Table 10. For the sake of comprehensiveness, we
also experimented with document-related VLMs and general-oriented VLMs. As
shown in the table below, even the introduction of fine noise at the easy level signifi-
cantly degrades the model’s perception abilities. At the hard level, the performance
degradation is even more pronounced. Among the models, TinyChart [196] consis-
tently demonstrated decent performance across all levels of perturbation, likely
due reduce the burden of learning numerical computations through a Program-
of-Thoughts (PoT) learning strategy, which trains the model to generate Python
programs for numerical calculations. This suggests that specialized chart-related
models, particularly those with robust analysis tools, are better suited for han-
dling noisy and perturbed data. The overall trend shows that as the perturbation
level increases, the model’s ability to accurately interpret chart data diminishes,



5.3 adapt to diversity 61

emphasizing the need for further enhancements in model robustness to handle
real-world visual challenges effectively.

Table 10: Results on CHAOS benchmark of ChartQA.

Model #Param Resolution
Inference

Throughput

ChartQA CHAOS

Clean Easy Mid Hard

General

Llava1.5 [114] 13B 336×336 1.94 it/s 55.32 33.10 6.31 0.61

Qwen-VL [9] 9.6B 448×448 1.65 it/s 61.60 39.00 9.22 0.40

Document-related

UReader [195] 7B 224×224(×20) 1.67 it/s 59.30 40.29 13.80 0.55

DocOwl1.5 [79] 8B 448×448(×9) 1.56 it/s 70.50 53.90 16.00 1.10

Chart-related

ChartInstruct [122] 7B - - 66.64 52.90 24.13 2.74

ChartLlama [70] 13B 336×336 1.94 it/s 69.66 60.49 13.72 0.92

ChartAst [124] 13B 448×448 1.47 it/s 79.90 62.97 18.32 1.80

TinyChart@768 [196] 3B 768×768 3.14 it/s 83.60 77.50 49.35 5.30

5.3 adapt to diversity

Generated descriptions through Vision-Language (VL) models, unlike determinis-
tic systems, are faster to obtain and require no expertise, but are highly susceptible
to hallucinations [110]. Recent advancements in large VL models have significantly
improved chart analysis field, enabling tasks like chart2text [93], chart2table [34],
and chart2code [124], among others. However, these models are often trained on
synthetically generated datasets or existing real chart corpus, which are either lim-
ited in size or do not meet accessibility guidelines. This limitation can result in
semantically weak summaries that are brief and potentially inaccurate. To address
this, we introduce introduces AltChart, a dataset particularly suitable for VL mod-
els with 10,000 real chart images with human-authored chart summarize, adhering
to accessibility guidelines and semantically rich.

VL models have shown improvement in overall performance when scaling the
pretraining corpus [70, 186]. The increased sample size enables these models to
learn fine-grained representations. However, the use of synthetically generated
data raises concerns about model robustness and biases towards certain visual-
ization styles [11, 23]. To address these limitations, we investigate whether vision
encoders could develop better representations through different training means.

Pretext tasks are among the methods that have shown promising performance
in preparing models for complex tasks [156]. They challenge models to resolve
smaller image-level tasks as a preliminary step before the mainstream one. Conse-
quently, we have conducted experiments with multi-pretext tasks and found that
it can achieve state-of-the-art performance on widely recognised chart summariza-
tion benchmarks. We also find that other available annotation types in datasets
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(e.g., bounding boxes, segmentation masks, key points, etc..) could be made useful
for vision language models with pretext tasks as they can be defined accordingly.

5.3.1 Background

High-quality alternative text is characterized by its semantic richness. Semantics
could be words, phrases, or sentences grouped to define the theme of the overall
text. Each semantic element helps further streamline the interpretation of the de-
scribed content. For example, see Figure 32. Defining and extracting these textual
semantics guides the model to form a representation of the patterns that an acces-
sible description could embody. In this work, we use the term ’semantic’ to refer
to the textual keywords as shown in the aforementioned figure.

We build on the work of Lundgard, A., et al. [93], who conducted a thorough
examination of visualizations, focusing specifically on the semantic depth of effec-
tive chart descriptions. They expanded the summarization guidelines framework
with a more general conceptual model covering four levels of semantic content:

• L1: Chart construction properties (e.g., axes, encodings, title).

• L2: Statistical concepts and relations (e.g., outliers, correlations, statistics).

• L3: Perceptual and cognitive phenomena (e.g., trends, patterns).

• L4: Domain-specific insights (e.g., context relevant to the data).

The study suggests two key points: Firstly, it indicates that captions should com-
municate key trends and statistics, while also considering the preferences of the
reader. Secondly, it highlights the importance of using existing accessibility guide-
lines as a foundation to enrich chart summarization research.

5.3.2 AltChart Dataset

While models for high-level understanding and especially for question answering
have made extraordinary strides in recent years, there is still a wide gap to human
performance. They still can’t cope with the diverse nature of data a human can
observe in daily life. We analyzed five current benchmarks and developed our
dataset, designed to bridge some of the identified gaps in current research. Our
dataset specifically targets L1 and combines L2 and L3 to simplify the annotation
process. We decided to exclude L4 from our current dataset due to the domain
knowledge required beyond input chart images, such as document-level topics.
With the interest to explore this level in future research.

Existing Datasets. Table 11 lists the top five related datasets for chart summariza-
tion task. The Chart-to-Text dataset [93] compiles descriptions for charts from Pew2

and Statista3, covering line, bar, pie, and area charts. ChartSumm [155] expands on
this by nearly doubling the dataset size and including longer summaries. However,
our analysis shows that both datasets focus mainly on Statistical and Perceptual

2 https://www.pewresearch.org/
3 https://www.statista.com/
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(L2L3) sentences, with 91% and 94% of their content, respectively, missing foun-
dational visual sentences (L1). AutoChart [202], while offering a balanced mix of
sentence levels through synthesized charts and template-based captions, suffers
from limited variation. These datasets fall short on accessibility standards. In con-
trast, our dataset uses real charts and summaries collected from accessible venues,
doubling the chart categories to include new challenging types like Compose and
Panel charts.

More recently, datasets like HCI Alt Text [35] and VisText [173] have been de-
veloped to specifically address chart summarization for BVI individuals. Both
datasets are rich with L1 and L2L3 semantics. VisText creates synthetic chart im-
ages using the Vega-Lite visualization tool, then used crowdsourcing for L2L3 sum-
marize, while machine learning models are employed for L1 captions. In contrast,
HCI Alt Text compiles figures from accessibility venues, filtering for those with
alternative text. However, this dataset, intended primarily for analysis, comprises
only 511 chart images. This limited size makes it challenging to train effective data-
driven methods. To overcome these constraints, we adopted a similar methodology
to HCI Alt Text, but expanded our collection to 10,000 chart images and manually
annotated them with 10 text semantics.

Table 11: Overview of the five most related datasets. Our AltChart dataset includes real-
charts and real-summarize, with a broader range of categories and semantics.

Name Data Type Categories Semantics Image Count

Images Descriptions

Chart-to-Text [93] real real 4 ✗ 44,085

HCI Alt Text [35] real real 2 2 511

ChartSumm [155] real mixed 3 ✗ 84,363

AutoChart [202] synthetic synthetic 3 ✗ 23,543

Vistext [173] synthetic mixed 3 2 8,822

AltChart (Ours) real real 8 10 10,000

5.3.3 Dataset Construction

Considering the existing limitations in available data, such as the lack of semanti-
cally rich descriptions, short descriptions, or adherence to accessibility guidelines,
we dedicated efforts to creating the AltChart dataset. We began by crawling HCI
publications from five ACM4 conferences (CHI, ASSETS, DIS, UIST, W4A) span-
ning 2015 to 2023. Our focus was on papers containing alt-text tags. This process
yielded 8,000 PDFs and 43,510 images.

To capture high-quality images with alt-text in our corpus, we undertook three
steps: (1) We fine-tuned a BERT-based classifier [42] on the HCI Alt Text dataset to
determine whether the alt text corresponded to a chart and for sentence-level clas-
sification (L1/L2L3). The model achieved an F1 score of 93% on the test set. (2) We

4 https://dl.acm.org/conferences/

https://dl.acm.org/conferences/
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Table 12: Comparison of three leading datasets in terms of comprehensive summariza-
tion. AltChart stands out with significantly higher average sentence and word
counts—nearly double those of the others—and showcases the most balanced L1

to L2/L3 sentence ratio.

Dataset Avg. Summ. L1:L2L3 Ratio

Sentence Count Word Count

ChartSumm 2.0 45.44 1.17 : 98.83

Vistext 2.26 42.6 56.2 : 43.8

HCI Alt Text 3.66 77.0 74.2 : 25.8

AltChart 5.67 136.35 44.9 : 55.1

reviewed the predictions and filtered out the false positives. (3) Throughout the an-
notating phase, we further eliminated images lacking L1/L2L3 descriptions, those
shorter than three sentences, or not adhering to alt-text guidelines (e.g., present-
ing incorrect information), ultimately retaining 10,000 images. These steps ensured
that our corpus was semantically rich and included longer author-written descrip-
tions. A comparison analysis was conducted to verify this, as illustrated in Table 12.
We randomly split our dataset into training, validation, and test sets using chart
IDs to prevent data leakage across sets, resulting in an approximate 80:10:10 ratio.
Next, we discuss our dataset annotation process.

Data Annotations and Properties For each image, we recorded the paper’s DOI,
the figure number, and both the image caption and its alt-text. To annotate descrip-
tions, we followed the protocol outlined by Lundgard, A., et al [117]. In a given
batch of 300 images, each description was semantically tagged using 10 attributes
keys as seen in Figure 32. GPT-4.05 was then employed to tag the remaining de-
scriptions. Each tagged result underwent verification by our annotators. While our
primary aim in using these semantic tags was to facilitate our pretext tasks, the
annotations can also be useful for analyzing the data structure and enhancing
accessibility by identifying missing attributes. The AltChart dataset encompasses
a range of eight chart types: line, bar, area, scatter, multivariate, panel, pie, and
box charts. For clarification, multivariate and panel charts represent two new cate-
gories not previously addressed in earlier benchmarks. Multivariate charts refer to
those displaying more than one data type (e.g., combining lines and bars), while
panel charts (Figure 32-b) are a collection of multiple charts within a single figure
sharing common elements, such as a unified legend or axis.

5.3.4 Capturing Context

Building a pretrained multimodal foundation model typically involves two steps.
First, textual inputs are encoded using a language model such as T5 [154], BERT
[42], or recent architectures like Llama 2.0 [175]. Second, a vision encoder pro-
cesses the input image, which may focus on parts of images [32], by using Fas-

5 https://openai.com/gpt-4
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<L1> This <chart_type> line plot </chart_type>, titled
<chart_title> "Patents Citing HCI Research," </chart_title>
represents <y_title> the number of patents citing HCI
research </y_title> from  the <x_encoding> years
</x_encoding> <x_range> 1990 to 2015 </x_range> across
four key venues: <legend> CHI, CSCW, UIST, and UbiComp
</legend></L1>. <L2L3><statistics> Within the last five
years, 2010-2015, the citations have significantly increased
across all venues </statistics>. <extrema> CHI is highlighted
as the most cited venue, with 400 citations in 2015,
followed by UIST with 150 in the same year </extrema>.
This suggests an implicit correlation: papers from these
venues that are cited by patents often achieve a higher
number of academic citations within the HCI community,
indicating their significant impact and relevance in both
academic research and practical applications.</L2L3>

<L1> A plot labeled <chart_title> "Fork Depth Shows
Significant Backtracks" </chart_title> shows  <chart_type>
three horizontally stacked line graphs </chart_type> with a
<encoding> shared X axis </encoding> labeled <x_title>
"normalized time in project" </x_title> which ranges
<x_range> from 0 to 1 </x_range>. <y_title> The Y axis is
labeled "Depth of Fork"  </y_title>, which is the distance
from the root node of the version tree, and ranges
<y_range> from 0 to 20, 0 to 5, and 0 to 4 on each of the
graphs </y_range></L1>. <L2L3> <statistics> All three
graphs show a steadily decreasing line with sharp increases
</statistics>. <comparison> The top image is noticeably
more scattered than the other two </comparison>.</L2L3>

Text Semantics

L1
Chart type
Title
Range
Encoding
Legend

L2L3
Statistics
Extrema
Comparison

(a)

(b)

Figure 32: Two chart samples from AltChart with their annotated summaries. Semantics
are indicated by a color code, where <semantic-name> marks the beginning
and </semantic-name> marks the end of the semantic segment.

tRCNN [158], or use recent, larger transformers (e.g, VIT [44]) that encode the
entire image [103]. These models are initially trained on extensive web content for
comprehension tasks such as text-to-text [57] and image-to-text [153] are mainly
trained with natural images. To adapt these models for specific domain tasks, a
second fine-tuning iteration is often necessary to ensure that the model develops
a meaningful latent space for the targeted task. For instance, Donut [94] intro-
duced an OCR-free Transformer, trained end-to-end for document understanding.
Subsequently, Nougat [17] fine-tuned Donut, making it effective for converting
academic documents into markdown language. Charts, however, present a unique
challenge compared to natural images or textual documents. The complexity of
user questions often involves sophisticated mathematical calculations. As a result,
multimodal foundation models often struggle when addressing tasks related to
charts [53].

Recent works have addressed chart-related tasks using various techniques. Some
approaches involve modifying the architecture by developing adapters to interpret
charts, while others introduce more comprehensive benchmarks for fine-tuning.
Matcha [109] builds upon Pix2Struct [99], incorporating numerical reasoning knowl-
edge into the image-to-text model by learning from textual math datasets. UniChart
[120] employs a visual instruction tuning approach [115] and fine-tunes the Donut
base model with real charts for multiple low-level tasks (e.g., extracting table data)
and high-level tasks (e.g., generating summaries). Unlike UniChart, a recent model
named ChartLlama [70], based on LLaVA-1.5 [112], proposes an extensive chart-
related benchmark leveraging GPT-4. This benchmark is synthetically created with
multiple steps to ensure high quality.
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Although these models generate generally appealing outputs for sighted indi-
viduals, they raise significant concerns regarding accessibility. It is important to
remember that while a summary accessible to blind individuals is also accessible
to sighted individuals, the reverse is not necessarily true. J. Tang and Bogust et al.
[173] were the first to experiment with the abilities of VLMs to generate accessible
summaries, but only with synthetically generated charts. In contrast, our proposal,
AltChart, ensures that our pretraining corpus comprises real charts from accessible
resources, which are semantically rich for everyone.

The aforementioned state-of-the-art approaches mainly follow a similar strategy,
extending the size of the pretraining corpus, which leads to higher performance
on specific benchmarks but also tends to suffer from catastrophic forgetting [30,
192] and lacks consistent summary structure among similar visual inputs. We in-
stead question whether “less can be more.” We demonstrate in our work how
pretraining vision encoders with multiple pretext tasks such as, classification and
colorization, can achieve state-of-the-art performance. Pretext tasks have already
shown promising performance with vision models in previous studies [86, 163].
Furthermore, Pretext tasks could enable the use of other annotations format that
were previously not possible to train with VLMs, such as segmentation masks.
We also believe that pretext tasks could help us address challenging samples (e.g.,
those with high loss values) with simpler substream tasks.

Pretext Training. Although larger datasets may improve performance, as demon-
strated by several SOTA works, the critical factor is how effectively the model
learns from this synthetic data. The capability of these models to handle the varia-
tions and complexities of real-world charts remains a challenging issue. With this
in mind, we pose a question: Can we improve the vision encoder hidden repre-
sentations to a degree that minimizes our reliance on synthetic data? To address
this, our approach leverages pretext tasks to guide the vision encoder in capturing
essential covariant and invariant chart features, thereby reducing hallucinations in
descriptions. Next, we discuss the details of our pretext task implementations, as
outlined in Figure 33.

Chart Pretext Tasks. An effective feature extraction process should include both co-
variant and invariant features [127]. Covariant features, which adapt to transforma-
tions such as scaling or rotation (e.g., vertical axis labels, font sizes), enhance vision
encoders’ ability to recognize objects despite spatial changes. Meanwhile, invariant
features maintain consistency by capturing key characteristics that remain constant
across various scenarios (e.g., multi-line charts often include legends). This duality
is crucial to ensure a comprehensive and reliable interpretation of chart images.
These features, covariant and invariant, are developed through pretext tasks using
both self-supervised and supervised training methods, respectively.

Self-Supervised Tasks. is to learn image representations directly from pixels, with-
out relying on predefined semantic annotations. This process typically involves
applying transformations to input images and training sub-models to predict the
properties of the transformation. In this work, we have chosen three traditional
tasks, namely:
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Figure 33: Overview of our vision encoder’s training approach, starting from the top-left
with tasks including puzzle solving, colorization, rotation, and classification.
Sample outputs for each corresponding task are shown on the bottom-right of
the figure.

1. Rotation Prediction [62]: rotating chart images by various degrees and hav-
ing a sub-model to predict the angle of rotation. This helps in learning the
orientation and geometry of chart components.

2. Jigsaw Puzzle Solving [140]: scrambling charts to multiple segments and
training a sub-model to reorder them correctly. This teaches the model about
the spatial relationships within chart elements.

3. Colorization [zhang2016colorful]: feeding grayscale chart images into a sub-
model for colorization. This helps in developing features that distinguish
between chart components (e.g., different pies in a pie chart).

Supervised Tasks. defined as the utilization of a small amount of labelled data to
capture consistent representations. Given the chart analysis topic, different datasets
provide varying types of annotations. For example, AltChart and Vistext lack pixel-
level semantic annotations, while the Chart-to-Text benchmark offers bounding
box annotations for text. To ensure applicability across all benchmarks, we lever-
age the classification of chart categories task. However, one may explore additional
approaches, such as masked element identification, when segmentations or bound-
ing boxes are available.

5.3.5 Implementation Details

All pretext tasks need to be evaluated against quantitative metrics to ensure their
effectiveness. To facilitate this evaluation, we employ a shallow backbone network
complemented by a task-specific head. In the following sections, we will detail the
transformation functions, sub-models, and our formation of the loss function.

Transformation Functions. Given an image I, we apply the transformation func-
tions g(.), f(.) and h(.) to generate a transformed image and corresponding ground-
truth labels for rotation, puzzle solving, and colorization tasks, respectively.
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For rotation, the image undergoes one of four rotational levels: 0°, 90°, 180°, and
270°. This process follows the methodology described in [62], where the network
is tasked with identifying the correct rotation angle. In the puzzle-solving task, the
image is divided into a 3x3 grid, resulting in nine 64x64 pixel patches. To avoid
overfitting, each patch’s location is randomly jittered by up to seven pixels, in line
with the approach of N. Mehdi et al. [140], thus creating nine distinct 64x64 pixel
tiles. We define 100 possible permutations (puzzle configurations), each associated
with a unique index. The function f(.) outputs the nine image tiles along with the
index of the corresponding permutation, serving as the ground-truth label. The
model’s objective is to accurately classify the correct permutation index. For the
colorization operation, the image is transformed into a grayscale image using the
formula R+G+B

3 as in [40], and the sub-model is trained to predict the a and b
color channels in the CIE Lab color space. The development of the loss function
for these operations is discussed in the following section.

Loss Function. three pretexts and one supervised task are present in our formula-
tions. three of which; rotation, puzzle solving, and the supervised tasks end with
a softmax activation layer hence we utilized the traditional Cross-Entropy Loss
Lrotation, Lpuzzle and Lcateg respectively to output probability values between
0 and 1. For the colorization we utilized the conditional GAN loss LcGAN with re-
gression mean absolute error loss LL1 as proposed in Pix2Pix [84]. Given N images
in a batch, The colorization loss Lcolor is then computed as follows:

LcGAN(G,D) =
1

N

N∑
i=1

logD(Iig, Iiab) + log (1−D(Iig,G(Iig, z))) (1)

LL1(G) =
1

N

N∑
i=1

|Iiab −G(Iig, z)| (2)

Lcolor = LcGAN(G,D) +αLL1(G) (3)

In Equation 1, the generator, G, takes a grayscale image Iig and produces a
2-channel image Iab. The discriminator, D, concatenates both images to decide
whether they are fake or real. It’s important to note that both models are condi-
tioned on the grayscale image, meaning the noise vector is omitted [84]. The mean
absolute error LL1(G) in Equation 2 aims for pixel-wise comparison between the
generated image and the ground truth to introduce a form of self-supervision.
Since L1 has been shown to produce contrastive results , the parameter α is in-
troduced to balance its overall impact. Our final loss Ltotal is formed as follows:

Ltotal = γ1Lcolor + γ2Lrotation + γ3Lpuzzle + γ4Lcateg (4)

In calculating the total loss, we sum each one with its respective gamma param-
eter γ1−4, allowing us to fine-tune their contributions.
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Convolutional network. In our experiments, we utilize a ResNet-18 network [74].
Two modifications are applied: (1) The standard 3-channel convolutional layer in-
put is adjusted to align with the vision encoder output’s shape (2) After the final
FC layer, following the final FC (Fully Connected) layer, we implement average
pooling and linearly project the output to match the number of classes for each
specific pretext task. For the colorization task, a U-Net decoder [161] is concate-
nated to the vision encoder to function as the generator. The discriminator is again
a ResNet-18.

Hyperparameters. For our pretext tasks, we use a default image resolution of
224×224, unless specified otherwise. We set the parameter α = 100 in Equation
3 and an equal impact for all losses, γ1−4 = 0.25 in Equation 4. Both the ResNet
and the U-Net decoder are initialized with their pre-trained weights, obtained from
MMpretrain6 and MMsegmentation7 respectively.

5.3.6 Experiments

In this section, we conduct both quantitative and qualitative comparisons of four
SOTA methods against AltChart.

Experimental Setups. In this study, we conducted all training processes on a clus-
ter equipped with four NVIDIA-40 GPUs. We utilized publicly available source
code from GitHub for each model. Initially, all models were trained on the Chart-
2-Text dataset. We then fine-tuned these pre-trained models on the other datasets
listed in Table 13 (Vistext and AltChart), with the exception of our baseline model,
which is described subsequently. For fine-tuning, the training epochs were set to
5, and the LoRa adapter was employed. We did not alter the input resolution for
any of the approaches from their initial configurations. Each experimental run took
approximately 8-10 hours to complete.

Baselines & Evaluation Metrics. We compare our model against four baselines: (1)
Vistext [173], a VL-T5-based model that achieves SOTA results in generating acces-
sible chart summaries. (2) Matcha [109], an adaptation of Pix2Struct for charts, pre-
trained on mathematical reasoning and chart data extraction tasks. (3) UniChart
[120], a model based on Donut [94], further pre-trained on multiple chart analysis
tasks, achieving SOTA on Chart-2-Text [93] and ChartQA [121]. (4) ChartLLama
[70], a fine-tuned LLaVA 1.5 [112] model trained on a large chart corpus syntheti-
cally generated with GPT-4.

To conduct the comparison on our benchmarks, we first reproduced and ran
inference with each of the baseline models, evaluating their summarization perfor-
mance using the BLEU4 score [146]. Furthermore, given that the BLEU4 score [146]
primarily focuses on n-gram matching between the generated and reference texts,
it may overlook essential aspects such as semantic similarity, informativeness, and
factual correctness [162]. Hence, we also performed a qualitative evaluation and
error analysis of the outputs.

6 https://github.com/open-mmlab/mmpretrain
7 https://github.com/open-mmlab/mmsegmentation
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Training Details. As a baseline, we utilized the Donut model, primarily chosen
for its relatively low number of parameters, scaling to millions, in contrast to
the LLaVA model, which scales to billions. Initially, we employed the base Donut
weights, pretrained for text reading tasks as an alternative to OCR engines. These
base weights cannot comprehend chart images. We initially train the transformer
encoder for 3 epochs on pretext tasks as previously described, followed by train-
ing the entire model (vision+language components) for an additional 2 epochs on
summarization tasks.

Table 13: Results of state-of-the-art methods on three datasets of chart summarization are
presented, with BLEU4 as the evaluation metric. The number of training param-
eters is also reported.

Model #Params
VisText Chart-2-Text AltChart

L1 L2/L3 avg. Pew Statista avg. L1 L2/L3 avg.

Vistext - image guided [173] 224M 9.0 2.0 5.5 14.2 44.2 29.2 - - -

Matcha [108] 282M 6.0 4.0 5.0 12.2 39.4 25.8 16.5 8.0 12.2

Unichart [120] 201M 6.3 5.2 5.75 12.4 38.2 25.3 22.7 13.9 18.3

ChartLLama - 13B [70] 500M 35.0 6.0 20.5 14.2 40.7 27.45 35.0 14.2 24.6

Ours (AltChart) 180M 37.6 5.6 21.6 15.1 46.0 30.55 44.1 14.6 29.3

Comparison of State-of-the-Art Models. Our novel chart summarization model
achieves state-of-the-art performance on diverse datasets, pushing the boundaries
of both efficiency and quality. As shown in Table 13, we evaluate our method
against different chart models, such as MatCha, UniChart, and ChartLlama on
three datasets: VisText, Chart-2-text, and our proposed AltChart. Each dataset of-
fers unique challenges, with VisText and AltChart testing different summarization
levels and Chart-2-text utilizing data from two distinct sources: Pew and Statista.
Despite having fewer trainable parameters (180M) than other text-based models,
our approach boasts superior efficiency and adaptability. It readily applies to dif-
ferent benchmarks and swiftly trains for downstream tasks.

Apart from the significant efficiency, our method has outstanding performance,
yielding state-of-the-art scores on all three datasets. For instance, on VisText, it
delivers a remarkable 37.6% score on L1 test, outperforming ChartLlama by 2.6%,
and achieves exceptional results on L2/L3 test. Similar success manifests in the
Chart-2-text dataset, where it scores 15.1% and 46.0% across the two data sources. It
shows the genearlizability of the proposed method. Our proposed AltChart dataset
unveils the potential of our method. In the structured summarization test, it sur-
passes the previous best score by 9.06% (reach 44.1% on L1) and obtains a best
14.6% on the more challenging L2/L3 test. These remarkable improvements across
diverse datasets showcase the effectiveness and generalizability of our pre-training
method. Our model sets a new standard for both efficiency and quality.

Qualitative Analysis. To present the qualitative results of the proposed AltChart
benchmark, we conduct a visualization comparison in Fig. 34. The visualization
showcases a chart summarization example from the proposed AltChart dataset,
comparing our method with other models like UniChart and ChartLlama. Each
case displays the input chart image followed by summaries generated by all three
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UniChart

According to a survey conducted by the Pew Research Center, blacks give greater
priority to criminal justice reform than whites. Specifically, 73% of blacks prioritize
criminal justice reform as a top priority, while only 44% of whites prioritize it.
Hispanics prioritize criminal justice reform as a top priority, while only 48% of
Hispanics prioritize it as a priority. The chart shows that the majority of blacks. The
chart reveals a top priority, with only 39% of them as a top priority, where
Hispanics, where Hispanics priorities, where Hispanics priorities, where Hispanics

ChartLLama

The data indicates a significant divergence in the perception of prioritizing the
reform of the criminal justice system among different racial groups. A striking 73%
of blacks express the view that this should be a top priority, contrasting with 48%
of Hispanics and merely 39% of whites who share the same sentiment.

AltChart
(Ours)

The image displays a horizontal bar chart from a Pew Research Center survey
conducted from January 7-14, 2016. The chart, titled "Blacks give greater priority
to criminal justice reform than whites, Hispanics.”  It shows that 73% of Black
respondents view criminal justice reform as a top priority, significantly higher
compared to 39% of White and 48% of Hispanic respondents. Overall, 44% of the
total survey participants consider it a top priority.

 

Input Image

Figure 34: Qualitative analysis of chart summarization.

models. On the left side of the visualization is the same input chart image that is
a horizontal bar chart, and on the right side from top to bottom are the prediction
from UniChart, ChartLLama, and ours. Among them, UniChart made some wrong
description about this chart, such as “44% of whites” is incorrect. UniChart strug-
gles in this case, producing repetitive and unclear summaries. ChartLlama also
falters, offering basic and incomplete descriptions that miss key details like the to-
tal value. In contrast, our method delivers accurate and detailed summaries for the
input bar chart. For instance, it can correctly identify the chart type as “horizon-
tal bar chart” and timeframe “January 7-14, 2016”. Apart from that, our method
can provide insightful descriptions such as “Overall, 44% of the total survey par-
ticipants consider it a top priority”. This comparative analysis demonstrates our
model’s ability to generate comprehensive summaries, surpassing existing models.

Table 14: Ablation study of the prefix tasks. The metric used is the average BLEU4 score of
L1 and L2L3.

Self-supervised Supervised Result

✓ 27.90

✓ 25.30

✓ ✓ 29.35

Ablation Study. To isolate the impact of our proposed pre-training tasks on chart
summarization performance, we conduct an ablation study on the proposed Alt-
Chart dataset. As shown in Table 14, we divide the experiments into two groups:
self-supervised and supervised training, allowing for clear comparisons between
different pre-training paradigms. The reported score is the average of the BLEU4

scores from the L1 and L2/L3 summarizations. Self-supervised training can achieve
a score of 27.9%, while supervised training alone can reach 25.3%. This 2.6% gain
highlights the effectiveness of self-supervised learning in enriching the model’s un-
derstanding of charts. Pushing the boundaries further, our combined approach that
leverages both self-supervised and supervised training delivered the best score of
29.35% in structured chart summarization.
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5.4 chapter conclusion

In this chapter, we address the emerging need for robust assistive technologies.
These technologies not only need to meet accessibility guidelines but also ensure
robustness against the input variations that PVI may query. For the first time, we
present a robustness benchmark for chart analysis models. We conducted a human
user study to understand the needs and level of perception of humans, categoriz-
ing the results into three levels: easy, mid, and hard.

We then evaluated eight state-of-the-art chart understanding models and demon-
strated the importance of considering robustness and consistency in model perfor-
mance. Our findings highlight that while synthetic sample training is a common
trend in chart analysis, it may harm overall robustness, even though it performs
well with digital samples due to their high-quality and high-resolution nature.

To address these challenges, we introduced AltChart, a state-of-the-art chart
summarization model that generates rich, accessible summaries. Our model em-
ploys pretext tasks as a pretraining technique, reducing reliance on synthetic data.
This approach allows the use of various annotation formats during training to
acquire robust feature representations, which were missing in earlier models. Ad-
ditionally, we present the AltChart dataset, the largest accessibility-compliant real
visualization summarization dataset with rich semantics.

In summary, this chapter represents a significant step towards enhancing the
robustness of VLMs in the context of accessibility and assistive technologies. De-
veloping models is the first step in solving emerging problems, but we also recom-
mend conducting robustness benchmarks and improving datasets to address the
needs of PVI. Here is a more detailed summary of the contributions of each section
in this chapter:

Contribution 1: Introduced CHAOS, a robustness benchmark for chart
analysis models. Based on human perception evaluations through a user
study, we categorized chart images into three levels: easy, mid, and hard.
The emerging need for robustness improvements was highlighted, and sug-
gestions for future research were discussed.

Contribution 2: Proposed the AltChart model, achieving state-of-the-art
performance on chart summarization tasks. For the first time, the model
utilized pretext tasks before training to equip vision encoders in VLMs
with better chart embedding capabilities.

Contribution 3: Released the richest textual alt-text dataset publicly for
the vision, NLP, and accessibility communities. The dataset consists of 10k
visualization images with rich semantic annotations.



6
C O N C L U D I N G R E M A R K S

This thesis has advanced the research field of chart analysis to enhance
document visual accessibility. Previous approaches have either trained on
digital origin data, avoiding real-life cases where PVI might capture charts
with noisy cameras, or have not addressed accessibility concerns at all. Our
methodological contributions enable networks to perform new tasks for
chart comprehension. We demonstrated how supervised learning can guide
networks to comply with accessibility standards and guidelines. Addition-
ally, our contributions extend to novel user interfaces and interaction pat-
terns that save labor time and enhance output quality. Here, we summarize
the main contributions and open pathways for exploring the accessibility
of visualizations and documents.

6.1 impact on the field

While AI has made significant strides in chart image analysis, including summa-
rization and visual reasoning, high-level understanding of charts has been limited.
In this thesis, we address the problem of enhancing chart comprehension tasks
via deep learning models, specifically from the accessibility perspective. We target
diverse types of charts frequently used in documents and educational materials,
analyzing various structures rich and chart type variations. Our focus is on ac-
cessibility for PVI, maintaining the high-quality creation of accessible modalities,
namely, alternative texts and tactile materials. These modalities have challenging
guidelines that inexperienced users might find difficult to adhere to. To that end,
we enhance accessibility on three different yet related levels:

• We first introduce new methods to extract metadata from charts to stream-
line the conventional process of creating accessible modalities. Among these
methods, we propose a line tracing approach for line charts, an interactive
display for sighted assistants, and a tactile interface using a bounding box
paradigm for PVI. Our approaches were thoroughly evaluated through struc-
tured user studies with the target group.

• We propose two new tasks for the chart understanding field: chart retrieval
and chart-to-tactile conversion. Both tasks advance the capabilities of VLMs
for better adherence to accessibility guidelines.

• We explore the robustness capabilities of chart understanding models. Through
a thorough comparison with human perception, we provide insights and
recommendations to the community. Notably, our AltChart model achieves
state-of-the-art performance in chart summarization tasks.
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6.1.1 New research directions

Next, we summarize the key contributions made in this thesis:

Better Representation of Deep Learning Outputs. With the increasing require-
ment for accessibility of documents and visuals, they need to be presented to a
wide range of people, including those with visual impairments, who require spe-
cific representations such as tactile materials and alt-text. In Section 3.2, we pro-
vide insights on how deep learning output paradigms, such as detection bounding
boxes and segmentation masks, are valuable not only for extracting metadata but
also for creating more comprehensive interactions and insights for PVI. These rep-
resentations aim to facilitate computer vision research with a greater consideration
of different output usability for various use cases.

Conventional Processes to Intelligent Ones. One major challenge for sighted as-
sistants who help convert educational materials is the required expertise and time-
consuming conversion process. In this thesis, particularly in Section 3.4, we discuss
various approaches to assist this process with deep learning models that offer in-
telligent interactions, making the process more engaging and less labor-intensive.

High-Quality Alt-Text Authoring. Beyond AI-generated alt-text, we experimented
with the image retrieval approach to guide authors in writing high-quality alt-text
(see Section 4.2). We collected and annotated valuable visuals available with alt-text
from HCI conferences and developed the first image-based chart retrieval model
that also facilitates text queries.

VLMs Generating Tactile Materials. For the first time, we considered the task
of converting images to tactile formats for document visuals. An end-to-end ap-
proach was proposed in Section 4.3 to equip VLMs with the capability to generate
accessible SVGs that can be printed or accessed digitally. We formalized this task
and provided a publicly available open-source dataset, ChartFormer.

Out-of-Domain Samples Adaptation In real life, we often encounter changes in
environmental conditions or sensor types. Research on domain-invariant represen-
tations is vital for assistive technologies, which are highly susceptible to distri-
butional shifts. In Section 5, we discuss the problem of low robustness of VLMs
in understanding scanned, captured, and new variations of visualizations. These
improvements and advancements represent significant steps towards making as-
sistive technologies more robust and accessible, ensuring that they can better serve
the needs of diverse user groups, including those with visual impairments.
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6.1.2 Collected Datasets and Benchmarks

Throughout this thesis, we introduce multiple tasks for chart understanding that
were not previously addressed and collect several accompanying datasets. Most
prominently, the AltChart dataset encompasses 10K chart images with semanti-
cally annotated and rich alt-text collected from HCI conferences. We ensured that
the images include a high variety of graphical and structural types.

Additionally, we synthesized the first chart-to-tactile dataset, ChartFormer, us-
ing real RGB chart images and synthesized SVG files. This dataset demonstrates
how the capabilities of VLMs can be extended beyond image generation to vector
graphic material creation.

For the task of chart metadata extraction, we propose the LG dataset, which
includes over 500 visualizations with fine-grained semantic segmentation labels
for 10 classes. Unlike previous methods that include a single label per pixel, our
dataset supports multi-label hierarchical annotations where regions can belong to
several semantic categories (e.g., label and x-axis). We demonstrated the possibili-
ties of this dataset with a line tracing system.

Finally, we propose a novel robustness benchmark for the chart analysis field,
CHAOS. This evaluation benchmark scheme assesses VLM models on summariza-
tion and chart QA tasks and is based on human perception evaluation through a
thorough user study. To foster further research on accessibility enhancements, we
have made all our datasets publicly available.

6.1.3 New tools and insights

In this thesis, we developed three intelligent user interfaces to streamline the cre-
ation and transformation of accessibility materials. Two of these interfaces assist
sighted individuals in the process, while one is a tactile interface designed for PVI.

We introduced Chart4Blind (see Demo1), an interface that utilizes our deep learn-
ing backend system to trace chart data and present it in a tactile view before export.
This system requires minimal interaction from the sighted user to create educa-
tional tactile materials. We also later present the Alt4Blind2 tool for the alt-text
modality. This tool offers a new approach to authoring alt-text by presenting simi-
lar charts to the user-uploaded image as references. This method helps in develop-
ing good practices and raises awareness about the importance of alt-text.

Finally, we developed Layout4Blind (see Demo3), a tactile representation of doc-
uments on 2D refreshable tactile displays for PVI. The interface is equipped with
intelligent control features integrated with deep learning models in the backend.
These features include audio feedback on request to classify and locate document
blocks. The interface not only enables users to understand document structures
and locate visuals but also assists in quickly skimming and scanning the docu-
ment, which is crucial when time is limited or doing literature review.

1 https://moured.github.io/chart4blind/

2 https://moured.github.io/alt4blind/

3 https://github.com/moured/accessible-document-layout/tree/main

https://moured.github.io/chart4blind/
https://moured.github.io/alt4blind/
https://github.com/moured/accessible-document-layout/tree/main
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Figure 35: Towards unified accessibility-oriented model.

6.2 open questions for future work

While models for high-level understanding and especially for question an-
swering have made extraordinary strides in recent years, there is still a
wide gap to human performance. Due to the nature of our proposed ap-
proaches, we can directly infer the reasoning of our models and, thus, we
can easily deduct weak spots in the data and overall architecture. Our the-
sis opens doors to new methodologies for improving model robustness and
accessibility, providing a foundation for future advancements in these ar-
eas. Below, we highlight some of the directions we are working on and
considering for our future work.

Unified Accessibility Model. In our current work, we focus on investigating tactile
and alt-text modalities separately. However, future efforts should aim at develop-
ing unified and general understanding models that are more robust and capable
of better visual perception. There is a rising need for models that can interact with
PVI users and handle different modalities seamlessly. Such a model would be able
to manage various user interfaces and actions through APIs and other methods.

Addressing Other Impairments. While blindness and visual impairments are sig-
nificant sensory deficiencies, other types such as color blindness and hearing im-
pairments should also be considered. Charts are rich with color information, so
future work could explore how color information can be effectively represented
by VLMs. This includes recolorization, summarization, and chart QA based on
required sensory considerations.

Chart Referral. For sighted users, visual question answering is a common way
to gain insights from a query image (e.g., "What is the highest value in this line
trend?"). Sighted users can easily spot hallucinations and redirect the model with
follow-up questions. However, for PVI users, confirming the correctness of results
is challenging. We are working on developing a grounding dataset and model
for the chart QA task, aiming to provide localization and a way for PVI users to
interact with VLMs more effectively.
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a.1 chart4blind questionnaire

The online questionnaire implemented in SoSciSurvey consisted of five pages: an
initial page to confirm that the user has the necessary materials before starting,
followed by three pages, one for each chart. All three pages had the same questions,
with the only difference being the name of the chart (chartx). The survey concludes
with a final goodbye page.

a.1.1 Start Page

Thank you for participating in our survey! Please ensure you have downloaded
the three files sent to you by email, named chart1.svg, chart2.svg, and chart3.svg.
Also, confirm you have received the postal mail containing three embossed papers.
Each embossed paper corresponds to one of the digital chart files. You can identify
each chart by checking the top left corner, where the chart ID – chart1, chart2, or
chart3 – is located.

(Selection Question Type)

• Have you successfully downloaded the three chart files (chart1.svg, chart2.svg,
and chart3.svg) sent to your email? (Yes/No)

• Have you received the postal mail with the three embossed papers? (Yes/No)

• Were you able to identify each chart by the chart ID in the top left corner?
(Yes/No)

If you encounter any issues with the steps mentioned above, please contact us
by sending an email to omar.moured@kit.edu Next, there will be three pages, one
for each chart, with two questions on each page. Please proceed by clicking the
"Next" button.

a.1.2 Pages 2-4

First, use the screen reader to go through ’chartx.svg’, and then answer the follow-
ing question.

(Text Input)

• How would you describe your experience with using a screen reader to ac-
cess and interpret the information in chart1.svg? Please include details about
the ease of navigation, clarity of the alt-text, and any challenges you faced.
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Next, examine the printed tactile version of chartx and answer the following
question.

• Please describe your experience interacting with the tactile printed chartx.
Were you able to effectively perceive and understand both the visual and
textual elements? Share any challenges or observations you encountered.

a.1.3 Goodbye Page

Thank you for completing this questionnaire! We would like to thank you very
much for helping us. Your answers were transmitted, you may close the browser
window or tab now.

a.1.4 Embossed Tactile Images

The following printed tactile charts were sent to our blind and visually impaired
participants for the user study.

(a)

(b)

(c)

Figure 36: Three printed tactile charts sent to our BVI individuals. The left row displays
the original chart images, while the right row presents the tactile versions.
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a.2 chartformer user study samples

Figure 37 illustrates the HyperBraille view of the samples generated with the Chart-
Former model.

Figure 37: HyperBraille view of user study samples.
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a.3 scanned & captured chart comprehension with chatgpt4

ChatGPT-4 Vision module was used to author alt-text for each of the samples in
Figure 38 below. Used prompts: "Author alt-text including the key points of the
following chart. Make sure that the alt-text adhere to accessibility guidelines."

Figure 38: Alt-text created by GPT4 vision module for three same charts collected from
different sources, digital, scanned and captured with phone.
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a.4 chart-qa robustness user study

The online questionnaire implemented in JotForm 1 consisted of 10 image pertu-
bations applied to 10 disntinused charts. The users are [something] with an initial
page to confirm that the user has understood the necessary steps before starting,
followed tutorial pertubation. Each chart has its own question and users are re-
quested to answer based on the pertubation level they find convinent.

a.4.1 Start Page

• Survey Structure: You will be shown images affected by 10 different types of
perturbations (noise categories). Each type includes 10 levels of noise inten-
sity, starting from level 10 (most perturbed) down to level 1 (least perturbed).

• Your Task: Your initial task is to determine if you can comfortably read and
clearly understand the image content in a way that allows you to answer any
question about it.—respond with "Yes" or "No." If you answer "Yes," a follow-
up question about the chart’s content will be posed. If you answer "No," the
next image displayed will have reduced level of noise, continuing until the
original image (without noise). You should stop at the level where you can
understand the content; ideally, this should be before reaching level 1.

• Tutorial: We’ll guide you through a quick tutorial before beginning the actual
survey.

• Privacy and Data Use: No personal details are required to participate. Please
note that if you exit the survey before reaching the final page, your data will
not be saved.

• Need Help? If you encounter any unclear steps or issues, feel free to reach
out to the responsible researchers, Omar Moured, Yufan Chen or Jiaming
Zhang at their email addresses.

a.4.2 Perturbation Pages

Ten perturbations were experimented with. For each perturbation, we have 10 lev-
els. Users start from the most severe level, level 10, and answer the question "Can
you see and understand the chart?" If they click "yes," a follow-up question ap-
pears, and they enter their answer. If they click "no," the next lower level (e.g., level
9) is presented. This process continues until they enter their answer, after which
the next perturbation is shown. The study takes approximately 15 minutes on av-
erage to complete. Below, we show three examples from the total page: "blotches"
noise (Figure 39), "color" perturbation (Figure 40) at both level 10, and medium
noise, level 5 for elastic transform (Figure 41).

1 https://jotform.com/

https://jotform.com/
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Figure 39: A sample bar chart image from the tutorial page with "blotches" noise at level
10.
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Figure 40: A sample multi-line chart image from the second page with missing "color"
information at level 10.
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Figure 41: A sample line chart image from the "elastic transform" perturbation at medium
level 5.
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