KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep Meta Reinforcement Learning for Rapid Adaptation In Linear Markov Decision Processes: Applications to CERN’s AWAKE Project

Hirlaender, Simon ; Pochaba, Sabrina; Lamminger, Lukas; Garcia, Andrea Santamaria ORCID iD icon 1; Xu, Chenran ORCID iD icon 2; Kaiser, Jan; Eichler, Annika; Kain, Verena
1 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)
2 Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Real-world applications of reinforcement learning (RL) face challenges such as the need for numerous interactions and achieving stable training under dynamic conditions. Meta-RL emerges as a solution, particularly in environments where simulations cannot perfectly mimic real-world conditions. This study demonstrates Meta-RL’s potential in the CERN’s AWAKE project, focusing on the electron line’s control. By incorporating Model-Agnostic Meta-Learning (MAML), we showcase how Meta-RL facilitates rapid adaptation to environmental changes with minimal interaction steps. Our findings indicate Meta-RL’s efficacy in managing Partially Observable Markov Decision Processes (POMDPs) with evolving hidden parameters, underlining its significance in high-dimensional control challenges prevalent in particle physics experiments and beyond.


Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 978-3-031-65992-8
KITopen-ID: 1000177433
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Erschienen in Combining, Modelling and Analyzing Imprecision, Randomness and Dependence. Ed.: J. Ansari, S. Fuchs, W. Trutschnig, M. A. Lubiano, M. Ángeles Gil, P. Grzegorzewski, O. Hryniewicz
Veranstaltung International Conference on Soft Methods in Probability and Statistics (SMPS 2024), Salzburg, Österreich, 03.09.2024 – 06.09.2024
Verlag Springer
Serie Advances in Intelligent Systems and Computing (AISC) ; 1458
Vorab online veröffentlicht am 10.08.2024
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page