
Unlocking the Potential of Composition
for General Neighborhood Definitions

Àlex Miranda-Pascual*
Karlsruhe Institute of Technology, Germany
Universitat Politècnica de Catalunya, Spain

alex.pascual@kit.edu

Patricia Guerra-Balboa*
Karlsruhe Institute of Technology, Germany

patricia.balboa@kit.edu

Javier Parra-Arnau
Universitat Politècnica de Catalunya, Spain

javier.parra@upc.edu

Thorsten Strufe
Karlsruhe Institute of Technology, Germany

strufe@kit.edu

Abstract—This paper is an extended summary of previously
published results [1].

The composability properties of differential privacy (DP) are
key to the construction of most DP algorithms. However, the new
neighborhood definitions and data domains in the literature are
not covered by the original composition theorems. For instance,
the parallel composition theorem does not translate well to
general neighborhoods. These limitations make it difficult to
compute accurate estimates of the privacy loss when composing
DP mechanisms in new settings.

To overcome this problem, we prove a general composition
theorem in a general framework, defined for any kind of data
domain or neighborhood definition. We also study the hypothesis
needed to obtain the best composition bounds. Our theorems
cover both parallel and sequential composition settings, as well
as any effect of preprocessing, allowing us to compute the final
privacy loss of a composition with greatly improved accuracy.

I. INTRODUCTION

Differential privacy (ε-DP) [2] is a well-known privacy
notion in the field of data protection. One advantage of DP
over other privacy notions is that DP possesses the key property
of composability: It is possible to form a new DP mechanism
by composing a finite number of given DP mechanisms and
to directly compute the privacy provided as a result of this
composition. Composability is key for the construction of most
DP algorithms, in particular, the privacy protection of adaptive
updates (e.g., in a streaming scenario or private learning)
requires composition to be computed.

Currently, DP composition is represented by two results:
sequential composition [2] and parallel composition [3].
Parallel composition is applied when all combined mechanisms
access mutually disjoint databases, the maximum loss before
combination corresponding to the total privacy loss after
composition. Sequential composition covers any case when
arbitrary DP mechanisms with access to the entire data are
combined. The total privacy loss in sequential composition
is computed as the sum of the losses of each composed
mechanism.

The problem is that the sequential and parallel composition
theorems were originally stated for tabular databases in the
unbounded [4] scenario and do not easily adapt to the
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newer settings. Nowadays, the literature works both with
different database domains (i.e., classes of the input databases
of a privacy mechanism) and with different neighborhood
definitions (also called granularity notions [2]), such as
bounded DP, edge-DP and free-lunch DP [5] and the existing
composition theorems may not extend directly in these cases.
For instance, Li, Lyu, Su, et al. [6] show that the proof of the
parallel composition theorem [3] does not hold if we change
the original granularity to bounded DP. Since composition for
new granularities is non-trivial or even impossible, the lack
of a general composition framework risks misapplying DP
composition, for example, by using parallel composition in a
bounded scenario.

To provide a context where all granularities can be com-
posed and where the final privacy loss can be systematically
computed, we use a general mathematical framework based on
the notion of d-privacy [7] to present the general composition
theorem (III.1). Our results compute the privacy loss after
composition in any domain and granularity notion, both
existing and future, and even allow combining different
domains and granularity notions. Besides, our result allow
a more accurate calculation of the privacy loss upon any
possible composition of DP mechanisms, including the effect of
preprocessing, leading to better bounds than the sum obtained
using sequential composition (see Example III.2).

Furthermore, we study the application of our theorem to
the setting where we compose over disjoint databases (as in
parallel composition). Here, we derive sufficient conditions
to obtain the “max εi” bound. Besides, for the cases where
this bound cannot be achieved, we provide a new variation
on composition (see Section III-A) that allows us to achieve
better results. In particular, we provide a solution to the open
problem of Li, Lyu, Su, et al. [6] by giving the lowest possible
privacy loss for the composition of bounded DP mechanisms
executed on mutually disjoint databases (Corollary III.5).

Our contributions are as follows:
• We prove the general composition theorem (III.1), a new

result that allows us to reduce the estimated privacy
loss and design improved DP mechanisms in general
contexts. We propose corollaries for composition over
disjoint inputs.

• We introduce a new setting that allows us to reduce the



privacy loss in some cases. In particular, we provide the
minimum privacy loss for the bounded case when the
mechanism accesses disjoint parts of the database.

All proofs are in the long version of [1] (arXiv:2308.14649).

II. BACKGROUND

Differential privacy (DP) [2], in its original definition, aims
to hide the presence or absence of any private record in the
database such that an analyst can extract statistics about the
whole population while limiting the ability of an adversary to
learn private information about individuals. Formally,

Definition II.1 (Differential privacy [2]). Let DX be the class
of all databases drawn from X and ε ≥ 0. We say a randomized
mechanism M with domain DX is ε-differentially private (ε-
DP) if for all neighboring D,D′ ∈ DX and all measurable
S ⊆ Range(M),

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S}. (II.1)

An important part of DP is the concept of neighborhood,
also referred to as the granularity notion of DP [2]. In
Definition II.1, two databases D,D′ ∈ DX are neighboring
if and only if they “differ” on at most one element, i.e.,
|D△D′| := |(D ∪ D′)\(D ∩ D′)| ≤ 1. This granularity
notion, called the unbounded granularity notion [4], protects
the presence or absence of a record in a database. However, in
many use cases, one aims to protect a different property about
the dataset, e.g., the value of a specific sensitive attribute, or
entire groups of individuals. To adapt DP to protect different
sensitive properties one must change the granularity in the
original definition. We can define any granularity over any
class of databases D as follows:

Definition II.2 (G-neighborhood). Given a database class D,
we define the G-neighborhood relation as a binary symmetric
relation ∼G between elements in D. We say that D,D′ ∈ D
are G-neighboring if D ∼G D′.

In this case, we say a mechanism M with domain D is G ε-
DP (ε ≥ 0) if it verifies P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S}
for all D ∼G D′ in D and all measurable S ⊆ Range(M).

We denote the unbounded neighborhood by U . Another
particularly popular granularity notion is the bounded (B)
neighborhood definition [4]. A pair of databases D,D′ ∈ D
are bounded neighboring if D can be obtained from D′ by
changing the value of exactly one record for another (i.e.,
the Hamming distance between D and D′ is one). Therefore,
bounded DP protects the values of the records [5], and it is
broadly used in several contexts such as private learning.

Note that, given a data domain D, we can construct a
canonical metric dGD for each granularity G over D by defining
the distance dGD(D,D′) as the minimum number of neighboring
databases in D you need to cross to obtain D′ from D
(with dGD(D,D′) = ∞ if it is not possible) [7]. In particular,
dGD(D,D′) = 1 if and only if D ∼G D′ (and D ̸= D′).

Then, from the group property of DP [3], M is G ε-DP if and
only if for all D,D′ ∈ D and all measurable S ⊆ Range(M),

P{M(D) ∈ S} ≤ eεd
G
D (D,D′) P{M(D′) ∈ S}.

This property motivates using metrics over D to measure
privacy protection, which is formalized with dD-privacy [7].

Note that having an (extended pseudo-)metric dD implies that
(D, dD) is an (extended pseudo-)metric space, which we will
call privacy space. Thus, dD-privacy is defined as follows:

Definition II.3 (dD-privacy [7]). Let (D, dD) be a privacy
space. Then, a randomized mechanism M with domain D
is dD-private if for all D,D′ ∈ D and all measurable S ⊆
Range(M), P{M(D) ∈ S} ≤ edD(D,D′) P{M(D′) ∈ S}.

A direct relation exists between original DP and dD-privacy:
For any granularity notion G over D, a mechanism M with
domain D is εdGD-private if and only if it is G ε-DP [1].

A. Introduction to the Composition Theorems

In many cases, the information we need to extract can be
obtained as a function of some query answers. This can be
modeled as s = h(s1, . . . , sk), where h is an arbitrary deter-
ministic function and si = fi(D) is the output of an arbitrary
query (where fi can even be the identity). Instead of protecting
s directly, we can discretize the problem by obtaining s̃i,
the private output of si, and computing s̃ = h(s̃1, . . . , s̃k).
To do this, we take k ε-DP mechanisms M∗

i such that
M∗

i (fi(D)) = s̃i and consider the composed mechanism
M (i.e., such that M(D) = (M∗

1(f1(D)), . . . ,M∗
k(fk(D)))

for all D ∈ D). Being able to derive the privacy level of M
from those of M∗

i becomes a useful tool: The question arises
whether the composition of the mechanisms M is ε-DP and
what the value of ε would be in this case.

The original DP answers this question thanks to the compos-
ability property: The composition M of k εi-DP mechanisms
Mi is also ε-DP, where ε depends directly on ε1, . . . , εk.
This property holds even if M∗

i (fi(D)) uses the output of
M∗

j (fj(D)) for any or all j < i in its computation (the
so-called adaptative composition), which we will implicitly
assume possible for the rest of the paper.

In the classic unbounded scenario of DP, there are two
composition theorems: the sequential and parallel composition
theorems. Sequential composition refers to the case where
every M∗

i takes as input the whole database D (i.e., fi = id):

Theorem II.4 (Sequential composition (SC) [2]). For i ∈ [k],
let Mi with domain DX be an [unbounded] εi-DP mecha-
nism. Consider the mechanism M with domain D such that
M(D) = (M1(D), . . . ,Mk(D)) for all D ∈ DX . Then M
is [unbounded] (

∑k
i=1 εi)-DP.

Alternatively, the composition is parallel if each M∗
i uses

only data from a subset Di ⊆ D that is not used by any other,
i.e., fi defines a partition. Formally,

Definition II.5 (Partitioning function). A partition {Xi}i∈[k] of
X extends naturally as a partition function p = {pi}i∈[k] of the
elements D ∈ DX , i.e., pi(D) ⊆ D is the multiset such that
element x ∈ D has multiplicity mpi(D)(x) = 1Xi

(x)mD(x).

Theorem II.6 (Parallel composition [6]). Let {pi(D)}i∈[k]

be a partition of D for all D ∈ DX as defined in Def-
inition II.5. For i ∈ [k], let Mi with domain {pi(D) |
D ∈ DX } be an [unbounded] εi-DP mechanism. Consider
the mechanism M with domain DX such that M(D) =
(M1(p1(D)), . . . ,Mk(pk(D))) for all D ∈ DX . Then M
is [unbounded] (maxi∈[k] εi)-DP.

http://arxiv.org/abs/2308.14649


Parallel composition is highly desirable because it provides
a lower bound than the one obtained through the more general
sequential composition. However, unlike sequential compo-
sition that extends from unbounded DP to other granularity
notions without problem and without altering the expression
final privacy budget

∑n
i=1 εi [8], parallel composition does not

extend well for other granularity notions and general D: For
example, if we consider the same hypothesis of Theorem II.6
but we impose Mi to be bounded DP instead, then we can
obtain that M is not bounded DP [1].

Similarly, the generalization of Theorem II.4 to dD-privacy
is direct [7]. However, the extension of parallel composition
remains unexplored for general granularities. This opens a
new question about how to measure the privacy of composed
mechanisms in general. To answer this question, we introduce
general composition rules that allow composing DP mecha-
nisms with different domains and granularities.

III. THE GENERAL COMPOSITION THEOREM

In this section, we introduce our generalized version of the
composition results. Since the theorem does not impose any
condition on the privacy metric of the initial Mi, our results
can be used for any privacy space and any possible independent
composition strategy, generalizing both Theorems II.4 and II.6.

Theorem III.1 (Generalized composition theorem). Let D be
a database class and, for all i ∈ [k], let (Di, di) be a privacy
space, and let fi : D ! Di be a deterministic map. For all
i ∈ [k], let M∗

i : Di ! Ri be di-private mechanisms. Then
mechanism M = (M∗

1 ◦ f1, . . . ,M∗
k ◦ fk) is dD-private with

dD(D,D′) :=

k∑
i=1

di(fi(D), fi(D
′)) for all D,D′ ∈ D.

When we apply this theorem to Mi that satisfy Gi εi-DP
mechanism we obtain that the composed mechanism M is G
ε-DP with

ε = max
D∼GD′

k∑
i=1

εid
Gi

Di
(fi(D), fi(D

′)) ≤ max
D∼GD′

∑
i : fi(D) ̸=fi(D′)

riεi

where ri := maxD∼GD′ dGi

D (fi(D), fi(D
′)) for any well-

defined granularity G in the domain D.
It is important to note that our composition theorem (III.1)

provides the privacy level of the resulting mechanism by
construction. This means that we cannot generally impose
the privacy level of the composed mechanism M, but we
can compute it. In particular, sequential composition for dD-
privacy can be obtained for all metrics: If we select Di = D
and fi = id, we obtain that M is (

∑k
i=1 di)-private. We

can also end up with extreme cases where dD(D,D′) = ∞
for certain D,D′ ∈ D, which does not provide privacy
between these databases. Theorem III.1 showcases the effect of
preprocessing and allows considering interesting composition
strategies that provide tighter, more precise bounds than
sequential composition even if the inputs are not disjoint:

Example III.2. Consider a database class D = DX where
each record x ∈ X corresponds to an ambulance and includes
its position and the labels of at least three hospitals associated
with the ambulance. We want to know the number of available
ambulances for each of the k hospitals, so we consider M

such that M(D) = (M∗(f1(D)), . . . ,M∗(fk(D))) where
M∗ outputs the noisy count of records in its input, and fi(D)
is the subdatabase of D ∈ D of ambulances assigned to
hospital i. Since each ambulance only collaborates with at
most three hospitals, for all D ∼U D′ there are at most
three indices i ∈ [k] such that fi(D) ∼U fi(D

′), and
fi(D) = fi(D

′) for all other indices. Applying then the
composition theorem (III.1), we obtain that M is dD-private
with dD(D,D′) =

∑k
i=1 d

U
D (fi(D), fi(D

′)) ≤ 3dUD (D,D′) <
kdUD (D,D′).

Unlike the sequential setting, the case in which the
mechanisms take as input disjoint subsets of the ini-
tial database (as in parallel composition) does not gener-
ally yield analogous results to Theorem II.6. If we take
{fi}i∈[k] = {pi}i∈[k], a k-partitioning function (as in Def-
inition II.5), and we apply Theorem III.1, we obtain that M
is dD-private with dD(D,D′) =

∑k
i=1 di(pi(D), pi(D

′)) ≤
Ip(D,D′)(maxi∈[k] ∆pi di(D,D′)) for all D,D′ ∈ D, where
Ip(D,D′) := #{i | pi(D) ̸= pi(D

′)} and ∆pi is the smallest
value such that di(pi(D), pi(D

′)) ≤ ∆pi di(D,D′). This fact
is coherent with what we know: Assuming D = DX and Di =
pi(D), if di = εid

U
Di

, then Ip(D,D′) = 1 and ∆pi ≤ 1 for all
D ∼U D′, and therefore dD = (maxi∈[k] εi)d

U
D . However, if

we consider instead bounded DP mechanisms, then there exist
D,D′ ∈ D such that di(D,D′) = dBDi

(pi(D), pi(D
′)) = ∞

for some i and thus dD(D,D′) = ∞ [1]. Therefore, we have
no better expression for dD without imposing extra conditions.

For canonical metrics over a granularity G, the best bound
generally achievable is the maximum over the privacy bounds
of Mi, or formally: If Mi are εid

G
Di

-private mechanisms, then
the composed mechanism M is (maxi∈[k] εi)d

G
D-private. This

bound is achieved for unbounded DP (i.e., Theorem II.6), but
not for bounded DP. To ensure we achieve the best bound, it
is sufficient that

∑k
i=1 d

G
Di
(pi(D), pi(D

′)) = dGD(D,D′). This
equation can be hard to check in general, but it holds if the
partitioning function verifies:

(C1) dGD-compatibility: For all G-neighboring D,D′ ∈ D, there
exists at most one j ∈ [k] such that pi(D) = pi(D

′) for
all i ̸= j, i.e., Ip(D,D′) ≤ 1 for all D ∼G D′; and

(C2) the sensitivity ∆pi of pi with respect to dGD and dGDi
is at

most 1 (i.e., dGDi
(pi(D), pi(D

′)) ≤ 1 if dGD(D,D′) = 1).
However, these conditions may be difficult to achieve. In

particular, for the bounded granularity notion we have that
Ip(D,D′) is either 1 or 2 for all D ∼B D′, and ∆pi = ∞.

Addressing C1 for the bounded case is potentially simple,
we just need to perform the maximum over the privacy budget
of two mechanisms instead of one (since Ip(D,D′) ≤ 2).
However, C2 is much harder to address. In the next section, we
introduce a new setting, the common-domain, that in particular
allows us to drop condition C2 and compute tight bounds for
composition over disjoint databases in bounded DP.

A. Common-Domain Setting

In this section, we analyze the particular case where we
have k dD-private mechanisms Mi with domain D, protecting
any database of D ∈ D, but the computation of M depends
exclusively on the information contained in fi(D) and not on
the total information of D. For instance, when we use a Laplace
mechanism [2] to compute the number of records belonging



to a certain subclass, the mechanism can take as input the
whole database but the output only depends on the records in
the subclass. In this case, we can provide new composition
rules that allow us to obtain better privacy bounds.

We formalize this scenario with the common-domain setting
that relates to the perspective in which Mi = M∗

i ◦ fi
are di-private instead of M∗

i , i.e., Mi and M have the
same “common” domain D. Importantly, if Mi are di-private,
we can bound the privacy loss by at least dD(D,D′) =∑k

i=1 di(D,D′) < ∞ if all di(D,D′) < ∞; unlike when
we impose the privacy constraints in M∗

i , where we can
obtain dD(D,D′) = ∞ even if all di(D,D′) < ∞. In the
common-domain setting, note that Mi depends exclusively on
fi(D), which is formalized under the notion of dependency:

Definition III.3 (Dependency). Let M be a randomized
mechanism and let f be a deterministic map, both with domain
D. We say that M is f -dependent if there exists M∗ with
domain f(D) such that M = M∗ ◦ f .

Under these conditions, we obtain the following result:

Theorem III.4 (Composition theorem for common domain).
For all i ∈ [k], let (D, di) be a privacy space, and let fi be
a deterministic map over D. For all i ∈ [k], let Mi : D !
Ri be a mechanism satisfying di-privacy and fi-dependency.
Then mechanism M = (M1, . . . ,Mk) is dD-private*1 with
dD :=

∑k
i=1 d

fi
i , where

dfii (D,D′) := min
D̃∈Sfi

(D), D̃′∈Sfi
(D′)

di(D̃, D̃′)

and Sfi(D) = {D̃ ∈ D | fi(D̃) = fi(D)}.

Note that
∑k

i=1 d
fi
i (D,D′) ≤

∑
i : fi(D) ̸=fi(D′) di(D,D′)

are better bounds than
∑k

i=1 di given by the general composi-
tion (Theorem III.1). We can also easily translate the result for
granularities: If we take Mi to be G εi-DP (i.e., εidGD-private),
we obtain that M is G ε-DP (i.e., εdGD-private) with

ε = max
D∼GD′

∑
i : fi(D)̸=fi(D′)

εi.

Looking into disjoint inputs in this setting, we see condition
C2 is trivially satisfied. Therefore, we only need to impose
that the partitioning function is dGD-compatible (C1) to ensure
that the composition M of k εid

G
D-private, pi-dependent

mechanism Mi : D ! Ri is εdGD-private with ε = maxi∈[k] εi.
In general, Theorem III.4 is not affected by the sensitivities

∆pi, resulting in a smaller privacy loss than that obtained by
sequential composition. This is especially useful in the bounded
case, where dropping condition C2 allows us to compute a
reasonable bound when considering a partition of the database:

Corollary III.5. Let p be a k-partitioning function of Defi-
nition II.5. For all i ∈ [k], let Mi : D ! Ri be mechanisms
satisfying bounded εi-DP and pi-dependent. Then mechanism
M = (M1, . . . ,Mk) with domain D is bounded ε-DP with
ε = maxi,j∈[k]; i ̸=j(εi + εj).

We thus provide a solution to the problem posed in [6],
obtaining a tight bound for composition over disjoint databases
in bounded DP, which was previously missing.

1We refer to it as dD-privacy* since dD is not a metric (it does not verify
the triangle inequality).

IV. CONCLUSIONS

In this paper, we provide a general composition theo-
rem (III.1) for dD-privacy. This result facilitates the com-
putation of the final privacy guarantee of any composed
mechanism over any data domain and even under mixed
privacy requirements, which have been unexplored so far.
In particular, we prove better bounds than those existing in
the literature when the effect of preprocessing is taken into
account, including for intermediate settings between sequential
and parallel composition, and we introduce a new setting that
allows for further improvements.

In addition, since the original parallel composition theo-
rem [3] does not generalize to all metrics, we also prove
additional hypotheses to obtain the best possible privacy
loss when the composed mechanism inputs disjoint sets.
We conclude that these conditions are only satisfied for
some particular metrics, such as dUDX

, but not in general.
Nevertheless, the common-domain setting allows us to obtain
a better bound than

∑k
i=1 di, even when the best bound is

not achieved. In particular, we prove a significantly better
bound on the privacy loss for bounded DP when the composed
mechanisms are applied to disjoint databases (Corollary III.5).
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