
Advancing Model Explainability in Pervasive Computing

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Yiran Huang

Tag der mündlichen Prüfung: 28. Nov. 2024

1. Referent: Prof. Dr. Michael Beigl

2. Referent: Prof. Dr. Oliver Amft

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervi-

sor, Prof. Dr. Michael Beigl, for his invaluable guidance, encouragement, and

unwavering support throughout my PhD journey. His expertise and dedication

have been instrumental in shaping both my research and my professional de-

velopment. I am also immensely grateful to my co-supervisor, Prof. Dr. Oliver

Amft, for his insightful feedback and continuous support, which have greatly

enriched my work.

I would like to extend my heartfelt thanks to Dr. Till Riedel, the head of the

SDSC project, for providing me with the opportunity to participate in such a

significant research initiative. His leadership and advice have been invaluable

throughout the course of the project.

A special thank you goes to my office colleagues and friends, Dr. Haibin

Zhao, Dr. Yexu Zhou and Chaofan Li. Our countless discussions, collabo-

rations, and shared experiences have greatly contributed to the success of my

research. I also wish to acknowledge Likun Fang, with whom I have had the

pleasure of co-authoring several papers, for her collaborative spirit and insight-

ful contributions.

I would also like to thank Alexander Studt and Ployplearn Ravivanpong,

with whom I worked on the SDSC project, for their helpful insights and team-

work. Long Wang and Dr. Michael Hefenbrock deserve special mention for

their critical feedback on my writing, as well as for co-authoring a paper with

me. Their mentorship has been invaluable.

I am deeply thankful to Bowen Wang, who introduced me to TECO and

set me on this path, as well as to Ployplearn Ravivanpong, who offered me

tremendous support during my early days at TECO. My sincere thanks also go

to Melissa Alpman and Zina Tsiouma for their kind administrative support and

assistance throughout my time at the institute.

I

On a more personal note, I would like to express my deepest gratitude to my

wife, Qiuyu Gong, and my daughter, Keying Huang, for their endless love, pa-

tience, and encouragement. They have been my source of strength throughout

this journey. I also wish to thank my parents, Junjie Huang and Ruirong Wang,

for their unwavering support and belief in me.

Finally, I am grateful to all the colleagues and friends who have shared this

journey with me. Without your support, this thesis would not have been possi-

ble.

II

Abstract

Pervasive computing technologies are increasingly integral to numerous do-

mains, necessitating enhanced explainability due to their human-centered de-

sign. However, task difficulty and data complexity pose substantial challenges

for Explainable Artificial Intelligence (XAI) methodologies. Particularly, the

predictive performance of interpretable models is often limited within these do-

mains. Furthermore, the inherent complexities of pervasive computing, char-

acterized by noisy, high-volume, and temporally dependent data, exacerbate

the difficulty in developing effective explanatory methods. Prevalent XAI ap-

proaches, especially those dependent on saliency maps, typically fail to ade-

quately elucidate the underlying decision-making processes of complex mod-

els.

This dissertation aims to advance the field of XAI within pervasive com-

puting by addressing these critical challenges. It is structured around three

principal objectives: First, it seeks to improve the predictive performance of in-

terpretable models through the introduction of an innovative automatic feature

engineering framework, coupled with an optimization algorithm specifically

designed for pervasive environments. Second, the dissertation conducts a com-

prehensive literature review and model architecture analysis to systematically

identify key data elements leveraged by high-quality models in the domain.

Third, utilizing these key data elements, it proposes novel post hoc explana-

tion methods, including a tree-search approach for exploring model decisions

and a Markov chain-based technique to elucidate temporal dynamics. These

contributions collectively represent a significant advancement in the field of

XAI for pervasive computing, facilitating the development of more effective

and interpretable artificial intelligence systems within this complex domain.

III

Zusammenfassung

Pervasive computing-Technologien spielen in zahlreichen Branchen eine

zunehmend wichtige Rolle und erfordern aufgrund ihres menschenzentri-

erten Designs verbesserte Erklärbarkeit. Die Komplexität domänenspezi-

fischer Daten und Aufgaben stellt erhebliche Herausforderungen für Meth-

oden der erklärlichen künstlichen Intelligenz (XAI) dar. Insbesondere ist

die Vorhersageleistung interpretierbarer Modelle in diesen Domänen oft be-

grenzt. Darüber hinaus, die inhärenten Komplexitäten des Pervasive Comput-

ing, gekennzeichnet durch lärmende, umfangreiche und zeitabhängige Daten,

verschärfen die Schwierigkeit, wirksame Erklärungsmethoden zu entwickeln.

Die gängige XAI-Ansätze schaffen, insbesondere jene, die auf Saliency Maps

basieren, typischerweise nicht, die zugrundeliegenden Entscheidungsprozesse

ausreichend zu erhellen.

Diese Dissertation zielt darauf ab, das Feld der XAI innerhalb des Per-

vasive Computing voranzutreiben, indem diese kritischen Herausforderun-

gen angegangen werden. Die Forschung ist um drei Hauptziele strukturi-

ert: Erstens strebt sie danach, die Vorhersageleistung interpretierbarer Modelle

durch die Einführung eines innovativen automatischen Feature-Engineering-

Frameworks zu verbessern, ergänzt durch einen speziell für pervasive Umge-

bungen entwickelten Optimierungsalgorithmus. Zweitens führt die Arbeit eine

umfassende Literaturrecherche und eine Analyse der Modellarchitektur durch,

um systematisch Schlüsseldatenelemente zu identifizieren, die von qualita-

tiv hochwertigen Modellen genutzt werden. Drittens schlägt sie, basierend

auf diesen Schlüsseldatenelementen, neue post-hoc-Erklärungsmethoden vor,

einschließlich eines Baumsuchverfahrens zur Erkundung von Modellentschei-

dungen und einer auf Markov-Ketten basierenden Technik zur Erläuterung

zeitlicher Dynamiken. Diese Beiträge stellen insgesamt eine bedeutende Weit-

erentwicklung im Bereich der XAI für Pervasive Computing dar, die die En-

V

twicklung effektiverer und interpretierbarer KI-Systeme in diesem komplexen

Bereich erleichtert.

VI

Contents

1. Introduction 1
1.1. Pervasive Computing and Explainable Artificial Intelligence . 1

1.1.1. Significance of Pervasive Computing 2

1.1.2. The Shift Towards Complex Models 3

1.1.3. The Role of Explainable Artificial Intelligence 4

1.2. Importance of Interpretable Models 7

1.3. Challenges and Goal . 9

1.4. Dissertation Outline and Contribution 11

1.4.1. Part I: Advancing Interpretable Models 11

1.4.2. Part II: Unveiling Key Decision Elements 14

1.4.3. Part III: Innovating Post hoc Explanation Techniques . 15

1.5. Publication List . 16

2. Background 19
2.1. Overview of Explainable Artificial Intelligence (XAI) methods 19

2.2. Genetic Algorithm . 21

2.3. Monte Carlo Tree Search . 22

2.4. Deep Learning Model . 24

2.4.1. Overview of Deep Learning Models 24

2.4.2. The Black-Box Nature of Deep Learning Models . . . 25

I. Advancing Interpretable Models 27

3. Improve Model Performance with Feature Engineering 29
3.1. Introduction . 30

3.2. Related Work . 31

VII

3.3. Method . 32

3.3.1. The Transformation Tree 33

3.3.2. The Selection Policy 34

3.3.3. The Expansion Policy 37

3.3.4. The mCAFE Algorithm 39

3.4. Evaluation . 41

3.4.1. Performance of mCAFE 43

3.4.2. Ablation Study . 44

3.4.2.1. Selection Policy 44

3.4.2.2. Expansion Policy 46

3.4.3. Length of Feature Engineering Pipeline 47

3.4.4. Performance of mCAFE on Different Predictive Models 51

3.5. Discussion . 51

4. Improve Model Performance with Parameter Optimization 53
4.1. Introduction . 54

4.2. Related Work . 57

4.3. Method . 58

4.3.1. Individual Coding Design 59

4.3.2. Populations Generation 59

4.3.3. Individual Growth and Fitness Calculation 60

4.3.4. Individual Selection 61

4.3.5. Crossover and Mutation 63

4.3.6. New Individual Generation 64

4.3.7. Neural Network Feature Extraction 66

4.4. Evaluation . 66

4.4.1. Benchmark Models 68

4.4.2. Benchmark Datasets 68

4.4.3. Experiment Setup . 69

4.4.4. Result . 70

4.5. Discussion . 70

5. Explain with Large Language Model 73
5.1. Introduction . 74

VIII

5.2. Related Work . 75

5.3. Method . 76

5.3.1. Components of Prompt 76

5.3.2. Extract Classification Rules 77

5.3.3. Generate Lookup Table 78

5.3.4. Translate Data to Description 80

5.4. Evaluation . 81

5.4.1. Experiment Setup . 81

5.4.2. Result . 83

5.5. Discussion . 84

5.5.1. Limitation . 84

5.5.2. Summary . 86

II. Unveiling Key Decision Elements 89

6. Summarize the Decision-making Elements of High-quality Models 91
6.1. Introduction . 92

6.2. Observation . 93

6.2.1. Data Processing . 93

6.2.1.1. 1D Transformation 94

6.2.1.2. 2D Transformation 94

6.2.1.3. 3D Transformation 95

6.2.1.4. Summary of Key Data Process Trends . . . 95

6.2.2. Model Architecture 96

6.2.2.1. Traditional Machine Learning Approaches . 96

6.2.2.2. Deep Learning Architectures 97

6.2.2.3. Hybrid and Advanced Architectures 98

6.2.2.4. Ensemble Methods 99

6.2.2.5. Summary of Key Architectural Trends . . . 99

6.3. Discussion . 100

7. Prove Element Importance through Innovative Model Design 101
7.1. Introduction . 102

IX

7.2. Observation . 103

7.2.1. Automatic Remaining Useful Life Estimation Frame-

work with Embedded Convolutional LSTM as the

Backbone . 103

7.2.2. TinyHAR: A Lightweight Deep Learning Model De-

signed for HAR . 105

7.3. Discussion . 108

III. Innovating Post hoc Explanation Techniques 111

8. Explain with Spatial Information 113
8.1. Introduction . 114

8.2. Related Work . 116

8.2.1. Explainable Artificial Intelligence 116

8.2.2. Monte Carlo Tree Search 117

8.3. Method . 117

8.3.1. Tree Representation and Algorithm Framework 118

8.3.2. Monte Carlo Tree Generation 120

8.3.3. Action Set Selection and Refinement 123

8.4. Evaluation . 124

8.4.1. Classification Game: Comparing Local Patterns with

Positive Impact . 124

8.4.2. Misclassification Game: Testing the Improvement of

Complex Model through Retraining 127

8.4.3. Extracting Explanation from MCT 129

8.5. Discussion . 132

9. Explain with Temporal Information 135
9.1. Introduction . 136

9.2. Related Work . 137

9.3. Method . 138

9.3.1. Segment & Clustering Module 138

9.3.2. Perturbation Module 141

X

9.3.3. Explanation Module 141

9.4. Evaluation . 143

9.5. Discussion . 147

10. Explain with other Information 149
10.1. Introduction . 150

10.2. Related Work . 151

10.3. Method . 152

10.3.1. Problem Definition and Individual Coding 152

10.3.2. Population Generation 154

10.3.3. Fitness Function Design 155

10.3.4. Growth . 158

10.3.5. Crossover and Mutation 159

10.3.6. Explanation . 160

10.4. Evaluation . 162

10.4.1. Benchmark Dataset 163

10.4.2. Target Models . 164

10.4.3. Benchmark Algorithms 164

10.4.4. Experiments Design 164

10.4.5. Experiment Setup . 165

10.4.6. Evaluation . 165

10.5. Discussion . 170

11. Final Discussion and Future Work 171
11.1. Discussion on Improving Interpretable Model Performance . . 171

11.2. Discussion on Extracting Model Decision Elements 173

11.3. Discussion on Post-hoc Explanation Methods 174

11.4. Conclusion . 175

11.5. Future Work . 176

Bibliography 179

XI

List of Figures

1.1. An example to demonstrate the function of XAI. The left sub-

plot (a) shows the original input signal. The right subfigure (b)

shows the interpretation of our proposed method. 6

1.2. The structure, content, and contributions of the dissertation

chapters and their interrelationships. 17

3.1. Representation of feature transformation with a tree structure.

Here, each node corresponds to a state D and each edge cor-

responds to a transformation (action). The distributions on the

edges show the distribution over the mean success (reward = 1)

probability when taking the action in the parent state. 35

3.2. The Surrogate network consist of 2 Long Short-Term Memory

(LSTM) layers of size 32 and a two fully connected layers of

size 32 with a ReLU activation function. 38

3.3. The mCAFE framework: each iteration (episode) includes four

phases: selection, expansion, roll-out, back-propagation. B is

the number of iterations. 39

3.4. Example of an episode of mCAFE. The beta distributions of

the edges in the selected path are displayed next to the cor-

responding edge. Blue denotes the distribution before back-

propagation and orange after back-propagation. 41

3.5. Comparing the performance between mCAFE-ucb and mCAFE. 46

3.6. Comparing the performance of Multi-Layer Perceptron (MLP)

and LSTM model in predicting the Q value. 46

XIII

3.7. Comparing performance of mCAFE with neural network ex-

pansion policy (with nn), mCAFE with random expansion pol-

icy (with random) and mCAFE with fix expansion policy (with

fix) on all the regression dataset. Classification task is eval-

uated with F1-score and regression task is evaluated with (1-

relative absolute error). 48

4.1. The pipeline of the proposed algorithm. 58

5.1. Extract classification rules from train dataset 76

5.2. the pipeline of generating lookup table 80

5.3. The example of ask GPT to explain the given feature 80

5.4. Explanation of shake hand 85

8.1. Illustration of action selection (a) and refinement (b). 123

8.2. (a) Ranks of local pattern importance and masked image for

each method. (A) Shows the input instance. (B) Shows the ex-

planation created by each algorithm. The local patterns colored

in blue have a positive local pattern importance according to

each method. (C) Shows the masked image which is no longer

predicted as 7. (b) Shows the Monte-Carlo Tree (MCT) cre-

ated by McXai from the example of (a). The state x is the input

instance. The value of each edge is written beside the corre-

sponding edge. The path [a1,a4,a7] is the best path containing

the actions with the highest expected value of the considered

states. 127

8.3. Two examples of complex model prediction probabilities . . . 132

9.1. Explanation for the example data entry given the TS-MULE,

which 1). only contains the feature importance, 2). only shows

the original data instead of summarizing the characteristic of

the trend. 145

10.1. The pipeline of the proposed ExTea algorithm. 153

XIV

10.2. Comparison of ExTea performance with different parameter

setting. The line next to the violin describes the value range

of the corresponding parameter. The violin describes the ker-

nel density estimate of achieving the best result. 169

XV

List of Tables

1.1. Abstract framework of the dissertation. 12

3.1. Average percentage of time for each process in the first 20

episodes. 43

3.2. Comparing performance of without feature engineering (Base),

reinforcement-based model (RBM) [91], Cognito [90], random

selection, and mCAFE in 100 episodes using 15 open source

datasets. Classification tasks (C) are evaluated with the F1

score, and regression tasks (R) are evaluated with (1-relative

absolute error). 45

3.3. The performances of mCAFE with different predictive mod-

els on Automatic Machine Learning (AutoML) benchmark

dataset [51]. The improvements brought by the mCAFE are

shown in parentheses. Classification task is evaluated with F1-

score and regression task is evaluated with (1-relative absolute

error) . 49

3.4. Comparing performance of mCAFE with different maximum

pipeline length on 3 classification datasets (F1-score) and 3 re-

gression datasets (1-relative absolute error). 50

4.1. The processes executed in process pool. 62

4.2. The neural network for feature extraction. 67

4.3. Accuracy performance of the proposed algorithm 70

5.1. Translate data to description 82

5.2. The accuracy of experiments on 3 datasets 84

XVII

7.1. In the early fusion convolution, the kernel height is fixed, that

is, the same as the number of features. The sliding direction

of the convolution kernel is along the time axis. In the late

fusion convolution, the kernel height is 1. Each feature has its

own convolution kernel. The convolution kernel also has only

one sliding direction, namely the time axis. In hybrid fusion

convolution, the kernel height is also 1. But it has two sliding

directions, one is the time axis and the other is the feature axis.

Because of weight sharing, it can save many parameters. It

should be noted that when the number of filters is greater than

1, the output of the early fusion convolution is 2-dimensional.

The outputs of the two remaining convolutions are 3-dimensional.106

7.2. Overview of the proposed Algorithm. 107

8.1. A framework of the McXai algorithm. 119

8.2. Comparing average number of steps (NoS) needed to take to

change the prediction of complex model according to the sug-

gestion of the LIME, SHAP and McXai methods. 126

8.3. Comparing performance of complex model: mnasnet0_5,

mnasnet1_0, DenseNet121, WideResNet and GoogleNet in

these three different situations: (1) trained with training set

Dtrain (base_score) (2) trained with training set Dtrain and

Dboth (score_both) (3) trained with training set Dtrain and Dmis

(score_mis) . 129

8.4. An example of the explanation of the three different methods:

McXai, Grad-cam, LIME. The first row shows the original

image, McXai’s explanation, Grad-cam’s explanation, LIME’s

explanation in order. The lower right part is the MCT gener-

ated by the McXai and the lower left part is the corresponding

’performance’ and ’value’ attributes of each edge in the MCT. 130

9.1. (a). Description of the Whole Model Pipeline. (b). Details of

the Hyperparameter Optimization Procedure for the Segment

& Clustering Module. 139

XVIII

9.2. (a). Transitions graph of HMM, showing the importance of

different state transitions. (b). The state sequence of the inter-

ested data entry (IDE) and the background color showing the

feature importance. (c). The Correspondence between the state

and the cluster core. The x-coordinates in Figures (b), (c) both

represent timestamp. 144

9.3. Attack Success Rate (ASR) of different modification methods. 146

10.1. An example of the ExTea explanation. 161

10.2. Summary of the datasets used in the experiments. 163

10.3. Ratio of information needed to support the model decision, the

smaller the better. The bold numbers denote the smallest ratio

in the corresponding groups. 166

10.4. Comparison of ExTea performance with and without growth

processes. The x-axis represents the number of generation

(epoch) and the y-axis indicates the ratio between the final cog-

nitive block length and the input sequence length. 168

XIX

1. Introduction

1.1 Pervasive Computing and Explainable Artificial Intelli-
gence

Pervasive computing, also known as ubiquitous computing, refers to the em-

bedding of computational capabilities into everyday objects and environments,

allowing them to communicate and perform useful tasks without requiring di-

rect human interaction [170]. This concept, originally introduced by Mark

Weiser in the early 1990s, envisions a world where computers become seam-

lessly integrated into the fabric of our lives [175]. As pervasive comput-

ing is increasingly integrated into various domains such as smart grids and

healthcare [34; 171], the growing task difficulty and data complexity neces-

sitate the use of increasingly complex Machine Learning (ML) models [128].

This evolution from simple rule-based systems to complex deep learning net-

works [100] has significantly enhanced their capabilities, allowing them to per-

form more complex and varied tasks with higher predictive performance 1.

However, this evolution also introduces greater opacity in the decision-making

processes of these systems [38], prompting vital questions regarding the trans-

parency and trustworthiness of Artificial Intelligence (AI) decisions in per-

vasive environments [101], especially in applications where decisions signifi-

cantly impact human property, lives, and safety [10].

To address these challenges, XAI is introduced. It is a collection of tech-

niques and methods designed to make the decision-making process of AI sys-

tems transparent and understandable. However, related research in the field

of pervasive computing remains limited [131]. On the one hand, because of

the task complexity, current interpretable models often struggle to achieve the
1Predictive performance refers to how well a model or algorithm can predict outcomes based on

given input data. Common metrics for assessing predictive performance include accuracy, preci-
sion, mean squared error, etc.

1

same level of accuracy as their more complex counterparts. On the other hand,

existing post hoc explanation methods 2 frequently fail to provide sufficient

domain-specific insight. Based on these challenges, this dissertation aims to

advance the field of XAI within pervasive computing by improving the predic-

tive performance of interpretable models and developing novel domain-specific

post hoc explanation methods. By enhancing both model predictive perfor-

mance and explainability, this research seeks to make AI-driven systems in

pervasive computing more transparent, trustworthy, and effective.

1.1.1 Significance of Pervasive Computing

The significance of pervasive computing is particularly evident in its diverse

applications, which span across numerous sectors, enhancing efficiency, safety,

and user experience [1].

In energy applications, the integration of pervasive computing within smart

grids has revolutionized energy management. Smart grids equipped with per-

vasive computing technologies can optimize energy distribution, reduce losses,

and enhance reliability. For example, in Hamburg’s central renewable smart

grid, the excess capacity necessary to prevent blackouts was significantly re-

duced from 95% to 65% through advanced monitoring and predictive analyt-

ics [22]. This optimization not only ensures a stable energy supply, but also

contributes to more sustainable energy consumption practices.

In addition, Human Activity Recognition (HAR) represents another crucial

application of pervasive computing. HAR involves the use of ML algorithms

to identify and predict human activity based on data from wearable devices,

smartphones, or ambient sensors [149]. This technology has profound impli-

cations for various fields, including healthcare [20], fitness [62], and elderly

care [172]. For example, in elderly care, HAR systems can detect falls or

unusual patterns of movement, triggering alerts to caregivers or emergency

services promptly [96]. This capability enhances the safety and independence

of elderly individuals living alone, providing peace of mind to their families.

Moreover, fitness applications use HAR to track and analyze physical activi-

2Post hoc explanation method refers to explainable artificial intelligence techniques that are applied
after a model has been trained and is making predictions [5].

2

ties such as running, walking, or cycling, offering users detailed insight and

personalized recommendations to improve their health and predictive perfor-

mance [118].

In summary, pervasive computing, through its wide-ranging applications,

has become a cornerstone of modern technological advancement. Its integra-

tion into various sectors underscores its potential to transform everyday life by

making environments smarter, more responsive, and more efficient. However,

this ubiquitous characteristic also fosters mutual trust between humans and the

AI system. This necessitates a continuous focus on enhancing transparency

and trustworthiness, especially as these embedded systems increasingly rely

on complex models.

1.1.2 The Shift Towards Complex Models

Initially, pervasive computing systems relied on simple and transparent mod-

els, such as rule-based systems and linear networks [159]. These models had

understandable operations and decision-making processes, which made them

highly interpretable and easy to trust [141]. However, as the range of applica-

tions for pervasive computing expanded and the complexity of tasks increased,

the models themselves evolved to handle these new demands [100]. Modern

models, such as deep learning networks and ensemble methods, exhibit sig-

nificant increases in complexity to address the sophisticated requirements of

new applications. These advanced models often involve numerous layers of

nonlinear transformations and a large number of parameters [86], which col-

lectively enhance their predictive performance in complex tasks such as image

recognition, natural language processing, and autonomous decision-making.

Despite these advancements, the increased complexity of these models has

introduced new challenges, particularly concerning transparency and explain-

ability. Unlike their simpler predecessors, deep learning model operates as

"black boxes," making it difficult to understand how they arrive at specific de-

cisions. This opacity has raised significant concerns regarding the trustworthi-

ness and accountability of AI-driven decisions in pervasive computing envi-

ronments [3; 104].

3

1.1.3 The Role of Explainable Artificial Intelligence

XAI is a critical approach in AI that aims to clarify the predictive outcomes

and decision-making processes of ML models. This transparency is essen-

tial in critical applications like predictive maintenance [152], product quality

assessments [150], and medical assistance [113]. For example, in predictive

maintenance, XAI enables engineers to understand the reasons behind pre-

dicted failures of machine components, facilitating timely and targeted inter-

ventions. In product quality assessments, XAI sheds light on the factors leading

to product defects, allowing manufacturers to enhance production processes. In

brainwave analysis, XAI helps researchers and clinicians interpret AI-driven

insights from Electroencephalogram (EEG) data, crucial for diagnosing neuro-

logical conditions and personalizing treatments. In these contexts, explainabil-

ity ensures that AI systems are transparent, fair, and credible, which is vital for

gaining user trust and enabling informed decision-making.

In addition, legal frameworks like the General Data Protection Regulation

mandate clarity in automated decision-making, ensuring that individuals can

understand and contest decisions made by AI systems. The Artificial Intelli-

gence Act proposed by the European Commission in 2021 further emphasizes

the necessity of explainability, identifying it as one of the seven key require-

ments to build trustworthy AI systems [40].

XAI serves three primary functions in pervasive computing environments

namely justification, validation, and discovery [121].

Justification. This answers the question "Why did the model give the deci-

sion?". It involves providing clear explanations for AI decisions, particularly

in high-stakes scenarios such as predictive maintenance or medical interven-

tions, where erroneous decisions can have severe consequences. For example,

in medical support systems, understanding the rationale behind a diagnosis or

treatment recommendation is crucial for healthcare providers to make informed

decisions and ensure patient safety [10].

Validation. This answers the question "Is the model right for the right rea-

son?". It focuses on ensuring that AI models make accurate decisions based

4

on sound reasoning, adapting effectively to pervasive computing environments

that are often characterized by incomplete or noisy data. The wolf vs. husky

classification problem [134] highlights this necessity by showing how a com-

plex model can mistakenly learn to differentiate wolves from huskies based on

irrelevant features, such as snow in the background of wolf images, rather than

the animals’ actual characteristics.

Discovery. This answers the question "Do the explanation reveal new infor-

mation?". It involves using explanations to uncover new insights or unintended

biases in AI models. This function is vital for continuous improvement and

innovation, as it allows developers to understand the underlying patterns and

biases in the data, leading to the development of more accurate and fair models.

For example, XAI can reveal biases in predictive policing algorithms, prompt-

ing corrective measures to ensure fairness and equity [57].

To demonstrate the three core functions discussed, we employ a HAR ex-

ample from a Wii 3 system, specifically the recognition of a clockwise cir-

cular motion using sensor data from the Wii accelerometer, as illustrated in

Figure 1.1-(a). In this figure, the x-axis represents the timestamps, while the

y-axis denotes the corresponding acceleration values. For classification, we

utilize the TinyHAR model [187], which accurately classifies the input as a

clockwise circular motion.

Figure 1.1-(b) visualizes part of the explanation of the proposed ExTea al-

gorithm [78]. The orange-highlighted regions in the figure represent data seg-

ments identified by ExTea as critical to the model’s decision. The arrow above

these segments, along with the "X" marks, indicates that the relative positions

of these segments are crucial, reversing their order would result in a misclassi-

fication by the model. The cyan regions adjacent to the orange segments show

areas where the data segments can shift forward or backward without affecting

the model decision. In addition, the yellow areas within the orange segments

indicate the allowed range of perturbation within these segments.

From this analysis, several insights can be derived:
3The Wii is a home video game console developed by Nintendo, featuring innovative motion control

technology. The players use a handheld controller, the Wii Remote, equipped with an accelerome-
ter and infrared sensors to detect motion and position, enabling an intuitive and immersive gaming
experience by translating physical movements into in-game actions.

5

(a) (b)

1.5

0

-1.5

0 100 200 300 0 100 200 300

1.5

0

-1.5

(a) (b)

Figure 1.1.: An example to demonstrate the function of XAI. The left subplot
(a) shows the original input signal. The right subfigure (b) shows
the interpretation of our proposed method.

• The orange data segments, and the fact that their sequence cannot be

reversed, suggest that the model bases its decision on the order in which

the acceleration increases in both the positive and negative directions.

• By comparing this with our common sense, we can verify that the

model’s reasoning aligns with the expected interpretation.

• The small move region allowed for the data segment implies that the

participant that executed the clockwise circular motion during data col-

lection performed the action at a relatively consistent speed. This leads

the model to recognize the time interval between the two data segments

(the increase in acceleration in both directions) as important element

for decision making, which contradicts our expectations. To improve

the model, we could consider instructing participants to vary their speed

during motion capture. Alternatively, applying targeted data augmenta-

tion techniques could enhance data diversity and mitigate this effect.

In summary, XAI is integral to the advancement and deployment of AI in

pervasive computing. It not only enhances transparency and trust, but also

ensures that the AI systems are accountable and aligned with ethical and legal

standards. As AI continues to permeate various aspects of daily life, the role of

6

XAI will become increasingly critical in fostering trustworthy and responsible

AI development.

1.2 Importance of Interpretable Models

The rapid evolution of complex models within the field of pervasive com-

puting has significantly enhanced researchers’ ability to process and analyze

intricate datasets, thereby facilitating the creation of intelligent and efficient

computing systems [180]. These advanced methods possess the capability to

autonomously extract intricate features from the data, consequently surpassing

the predictive performance of interpretable models. Concurrently, the emer-

gence of XAI approach has provided a partial explanation of the decision-

making processes of these complex methods. This development raises a pivotal

question: Why should the deployment of interpretable models continue to be a

consideration in the realm of pervasive computing?

We can approach this question from several perspectives. Firstly, a key ad-

vantage of interpretable models is their high level of transparency in both train-

ing and decision-making processes. In pervasive computing environments, sys-

tems often handle sensitive personal data, including health monitoring, smart

home, and personal assistant applications [43]. In these contexts, user trust

is essential. Interpretable models offer a transparent decision-making process

that enables users to understand and trust the system’s output. For instance,

in a health monitoring system, it is crucial for doctors and patients to under-

stand how the model arrives at a particular diagnosis to make informed treat-

ment decisions [165]. XAI Methods designed to explain these models, such

as LIME [134] and SHAP [110], often simplify or locally approximate the

model’s behavior to provide explanations. However, these explanations often

fall short in accurately representing the model’s true reasoning, as they may

only capture local behaviors and not the global decision-making process. Stud-

ies [4; 104; 138] have shown that these explanation methods can produce ex-

planations that do not fully align with the actual workings of the model. This

discrepancy highlights the importance of developing inherently interpretable

models to ensure accountability and trust in the use of complex systems.

Additionally, in pervasive computing environments, many applications ne-

7

cessitate real-time responses. For example, intelligent traffic management sys-

tems must process large amounts of sensor data and make decisions in very

short time frames [183]. Interpretable models, typically lighter in compu-

tational load than complex deep learning models, can provide faster predic-

tions. In contrast, deep learning models, while powerful, often involve exten-

sive computational requirements and longer processing times due to their nu-

merous parameters and complex architectures. This can lead to latency issues

in time-sensitive applications, making them less suitable for scenarios where

prompt decision-making is critical [147].

Besides, in some pervasive computing applications, data may be scarce or

incomplete. For instance, some environmental monitoring systems may only

have access to limited sensor data. Interpretable models can utilize scarce data

more effectively due to their reliance on simpler assumptions and structures

that can be trained and validated with fewer data. For example, in agricultural

systems with limited weather and soil data, simple linear models can effec-

tively predict crop growth [84]. In contrast, deep learning models generally

require large amounts of high-quality data to achieve optimal predictive per-

formance. Their complex architectures and high number of parameters make

them prone to overfitting when trained on limited or incomplete datasets, lead-

ing to unreliable predictions and poor generalization [53]. This makes them

less suitable for applications where data availability is limited.

Pervasive computing systems are typically distributed across various envi-

ronments and require efficient deployment and maintenance [56]. Interpretable

models are easier to deploy and run on resource-constrained devices due to

their lower complexity and computational requirements. Additionally, these

models are easier to debug and maintain. For instance, in a smart home sys-

tem, rule-based models can be quickly deployed to various devices, and when

system anomalies occur, they can be reviewed to quickly locate them. In con-

trast, deep learning models often face significant challenges in these areas.

Their high computational demands and complex architectures make them dif-

ficult to deploy on devices with limited resources. Furthermore, debugging

and maintaining deep learning models is more complicated due to their "black

box" nature, which obscures the reasoning behind their decisions and makes

8

identifying the source of errors more challenging [104; 138].

In summary, the necessity of interpretable models in pervasive computing

has been demonstrated from four key perspectives: explainability, real-time

requirements, data scarcity, and deployability. Therefore, despite some lim-

itations in predictive performance, interpretable models possess irreplaceable

value in the field of pervasive computing and cannot be ignored.

Considering the critical role of XAI in pervasive computing, it is essential

to either enhance the predictive performance of existing interpretable models

or to develop new robust models that maintain interpretability. Such efforts are

pivotal in addressing existing disparities between predictive performance and

explainability, thereby ensuring that pervasive computing systems are both ef-

fective and comprehensible. This strategic focus is vital for sustaining the inte-

gration of XAI into pervasive computing applications, promoting transparency

and trustworthiness.

1.3 Challenges and Goal

In pervasive computing, XAI approach faces multiple challenges due to the

complexities associated with pervasive environments and the inherent limita-

tions of current XAI methods. Specifically, it includes the following five chal-

lenges.

(i) C1: The complexity of tasks and data in the pervasive computing
domain poses a huge challenge for interpretable models, which demands
advanced interpretability without compromising performance. Task com-

plexity necessitates complex techniques in feature extraction and optimization,

which often clash with the need for simplicity in interpretable models. For

instance, decision trees provide clearer insights but lack scalability and robust-

ness in managing large, noisy datasets. Conversely, more complex models like

random forests offer improved predictive performance, but at the expense of

explainability.

(ii) C2: Pervasive computing imposes stringent constraints on model
deployment, which further complicates the optimization of interpretable
models. Models deployed in such environments are frequently subject to con-

straints such as limited computational resources, reduced power availability,

9

and the need for low-latency inference 4.

(iii) C3: The specific characteristics of pervasive computing, such as
diverse data sources, large volumes of noisy data, and temporal depen-
dencies, further complicate the application of XAI. For instance, interpret-

ing data from pervasive systems, especially time-series data, presents distinct

challenges that differ from those encountered in more static domains like im-

age recognition. Unlike image data, where domain experts can easily identify

critical information, time series data often lack intuitive features that clearly in-

fluence model predictions. This is evident in specific applications, such as the

classification of insect species using field-deployed sensors, where frequency

and temporal patterns are critical but difficult to explain in an interpretable

manner. Such challenges highlight the need for explanation methods that can

handle the frequent and temporal patterns present in pervasive computing data.

(iv) C4: Generic saliency-based explanations are insufficient to explain
the decision-making process in pervasive computing domain. Currently,

most XAI techniques, especially those in the image domain, rely on saliency

maps to explain complex models. While saliency maps are effective in high-

lighting which parts of the input data influence the model decision, they often

fall short in explaining the decision-making process itself. This lack of clar-

ity can lead to oversimplified explanations that do not adequately capture the

model’s reasoning. In pervasive computing, where domain-specific knowledge

plays a crucial role, generic saliency-based explanations are insufficient. The

field requires more advanced explanation methods that can not only indicate

"where" in the data the model is focusing but also provide insights into "how"

the model processes this information to arrive at its decision.

(v) C5: The reliability of some existing post hoc XAI methods, such as
those based on local surrogate models, is doubtful. While these methods are

popular for explaining complex models, they sometimes fail to faithfully rep-

resent the internal workings of the model across all data points [134]. Besides,

their explanations are local by nature, which means they only approximate the

model’s behavior for specific instances. This limitation becomes problematic

in pervasive computing, where continuous streams of dynamic and often highly

4Inference time in model prediction refers to the amount of time it takes for a machine learning or
deep learning model to process a single input and generate a prediction or output.

10

interdependent data are the norm. As a result, explanations generated by these

methods may not fully encapsulate the complex, temporally-aware reasoning

processes inherent in advanced AI systems.

These challenges have significantly influenced the direction of my research.

This dissertation aims to enhance XAI performance in pervasive computing

by not only enhancing the predictive performance of interpretable models but

also developing innovative explanation methods targeting the aforementioned

challenges. The goal is to overcome the limitations of current XAI approaches

and to derive more comprehensive insights into the models used in pervasive

computing environments.

1.4 Dissertation Outline and Contribution

Figure 1.1 illustrates the abstract framework of this dissertation. When model-

ing the collected pervasive computing data, two primary approaches are avail-

able. The first approach involves using interpretable models, which, due to

the inherent complexity of the data and the task, typically result in high ex-

plainability but suboptimal performance (as depicted in the upper part of the

Figure 1.1). The second approach employs more complex models, such as

deep learning architectures, which generally offer superior performance but

at the expense of reduced explainability (shown in the lower part of the Fig-

ure 1.1). The objective of this dissertation is to address this trade-off and strive

for a balance between model performance and interpretability (right side of

the Figure 1.1). To achieve this, the overall objective has been divided into

three sub-goals, each corresponding to a part of the dissertation: Part I: "Ad-

vancing Interpretable Models", Part II: "Unveiling Key Decision Elements",

and Part III: "Innovating Post hoc Explanation Techniques" (center of the Fig-

ure 1.1). A detailed discussion of each part follows.

1.4.1 Part I: Advancing Interpretable Models

In pervasive computing, the complex nature of data (C1) and deployment con-

straint (C2) pose substantial challenges to the predictive performance of in-

terpretable models. Despite these difficulties, the necessity for interpretable

11

O
ptim

ization&
M
odelD

esign

M
odels

Sum
m
arization

Posthoc
M
ethod

D
esign

P1:Advancing Interpretable M
odels

P2:U
nveiling Key

D
ecision Elem

ents
P3:Innovating Post hoc
Explanation Techniques

Table
1.1.:A

bstractfram
ew

ork
ofthe

dissertation.

12

models in this field remains critical, prompting the first research question:

Q1: How can the predictive performance of interpretable models within

the pervasive computing domain be enhanced?

One primary issue affecting the predictive performance of interpretable

models is the inadequacy of the features generated through traditional feature

extraction processes. These features often fail to address the target problem

comprehensively, and the models themselves have limited capabilities in gen-

erating new, effective features. To address these issues, we have developed

a novel automatic feature engineering approach that incorporates advanced

exploratory techniques and emphasizes temporal dependencies that are often

overlooked by traditional methods. This led to the creation of an automatic fea-

ture engineering framework, mCafe, which outperforms state-of-the-art meth-

ods on common benchmark datasets.

Beyond feature engineering, the predictive performance of interpretable

models also depends on appropriate feature selection, model selection, and

parameter tuning. To address these aspects, we introduce a novel ML model

optimization algorithm designed for constrained pervasive computing environ-

ments characterized by uneven search spaces and complex parameter interde-

pendencies.

Conversely, understanding features in the pervasive computing domain fre-

quently demands specialized knowledge, such as interpreting changes in en-

ergy over time. Large Language Models (LLMs) exhibit significant potential

in knowledge storage, causal inference, and text generation. However, their

limitations in processing raw signals present a substantial challenge for em-

ploying LLMs as interpretable model. To overcome this obstacle, we propose

an LLMs proxy scheme that integrates traditional feature extraction methods

with LLMs. This approach not only enables accurate classification of a given

sample, but also provides clear explanations for classification decisions.

Based on these three studies, we make the following contribution:

13

Contribution 1: Enhancement of interpretable model predictive perfor-

mance through a feature engineering, constrained AutoML methodol-

ogy and novel interpretable model design.

1.4.2 Part II: Unveiling Key Decision Elements

To dig deeper into the cause of Challenge C3, C4 and advance the development

of post hoc XAI methods to address these challenges in pervasive computing,

it is essential to first comprehend the models used in this field and the data

they leverage for decision-making. This leads to the formulation of the second

research question:

Q2: What data elements do high-quality models utilize for decision-

making in the pervasive computing domain?

In response, we conducted a systematic literature analysis of 108 peer-

reviewed research articles. We categorized these articles according to their

training methodologies employed and extracted the relevant data features uti-

lized in each. In addition, we analyze the model architecture to determine the

emphasized features. These dual analyses have elucidated the critical data ele-

ments leveraged by high-quality models in this domain.

Our ongoing research extends to the design and testing of new model archi-

tectures to refine how models focus on crucial data elements. These efforts

improve the predictive performance of the model and prove the importance of

the discovered data elements in decision-making processes. This leads to our

second significant contribution:

Contribution 2: Summarization of training processes and model ar-

chitectures, identifying the key data elements utilized by high-quality

models in the pervasive computing domain.

14

1.4.3 Part III: Innovating Post hoc Explanation Techniques

Understanding the bases of high-quality model decisions informs our approach

to addressing XAI challenges (C3, C4, and C5), leading to the third research

question.

Q3: How can the data elements uncovered be utilized in post hoc XAI

method design?

In contrast to image-based classification, where information is typically more

centralized, sensor-based classification often involves extended time periods

and multiple data pipelines. In this context, the interactions between features

of different sensors at various timestamps play a crucial role in the decisions

made by the model. However, current XAI methods struggle to explain this

complexity effectively.

To solve the problem, we conceptualize the explanation of model decisions

as a tree-search problem. Given samples and their corresponding classifica-

tions, the root node of the tree represents the data samples to be interpreted.

Each node in the tree corresponds to the data sample with certain masked infor-

mation. Consequently, each leaf node provides an explanation, and the change

in logits between parent and child nodes reflects the relationship between dif-

ferent data segments. This tree-search approach enables us to systematically

explore the relationships among various data segments and link them to the

final explanation.

In addition, to incorporate time series information into the explanation, we

represent the original samples as state sequences by clustering data segments

into distinct states. This method leverages state transitions to capture the tem-

poral dynamics of the original signal, reframing the explanation of decisions

as the task of identifying the state transition graph that most likely generates a

given sample.

Part II outlined the seven key decision-making elements essential to a high-

quality model. Developing an explanation method for each element individu-

ally is both tedious and time-consuming. To address this, we propose a unified

approach that explores all these elements simultaneously using a single algo-

15

rithm, and identify an effective method for presenting the exploration results.

Given the multi-objective nature of this problem, we have chosen a genetic al-

gorithm as the most appropriate solution. We incorporate the exploration of

each element into the fitness function, categorize the potential of individuals

within a pyramidal pool, and employ a Baldwin-effect-like operation to opti-

mize individuals within the same generation. Furthermore, we establish logical

rules for generating explanatory texts, enhancing the clarity and comprehensi-

bility of the final explanations. Our contribution is summarized as follows:

Contribution 3: Integration of local data pattern, temporal dependence,

noise, and other data elements discovered in Part II into explanations

using novel proposed post hoc techniques.

Figure 1.2 provides a summary of the dissertation’s structure, main content,

and contributions of each chapter. Their content and contributions align with

the above-mentioned overview. Structurally, Chapters 3, 4, 5, 8, 9, and 10

follow the IRMED format, where each chapter is structured into five sections:

introduction, related work, methodology, evaluation, and discussion. These

chapters correspond to individual research papers. Meanwhile, Chapters 6 and

7 are organized using the IOD format, comprising three sections: introduction,

observations, and discussion. These chapters correspond to two distinct papers,

with the observations section summarizing the findings of multiple researches.

1.5 Publication List

Most of the chapters in this dissertation are based on published papers. The

content of these chapters is largely consistent with that of the original paper, so

each chapter can be read independently. The following section summarizes the

author’s published works that are directly related to the contributions of this

dissertation.

Part I: Insight into the Interpretable Model

16

Structure Content Contribution

Part III: Innovating Post hoc Explanation Techniques

• I (ntroduction)
• R (elated work)
• M (ethod)
• E (valuation)
• D (iscussion)

Improve ability to
explain black box

models in
pervasive
computing

domain

Chapter 8

Chapter 9

Each proposes a
novel post-hoc

explanation
method based on
the information
discovered from

the previous part.

Serve
as

basic
inform

ation
Provide

idea
forcandidate

optim
ization

Part I: Advancing Interpretable Models

Improve
performance of

interpretable
model in
pervasive
computing

domain

Chapter 3

Chapter 4

Chapter 5

Propose a novel
automatic feature

engineering
method

Propose a novel
evolutional
algorithm

Propose a novel
interpretable

method based on
Chatgpt

• I (ntroduction)
• R (elated work)
• M (ethod)
• E (valuation)
• D (iscussion)

Part II: Unveiling Key Decision Elements

Chapter 6
• I (ntroduction)
• O (bservation)
• D (iscussion)

Serve as basic for
post-hoc

explanation
method design

Discover what data
elements are
important for

model decision
making

Chapter 7 Prove the
importance of the
found elements

Chapter 10

Figure 1.2.: The structure, content, and contributions of the dissertation chap-
ters and their interrelationships.

Y. Huang, Y. Zhou, M. Hefenbrock, T. Riedel, L. Fang, and M. Beigl. Auto-

matic feature engineering through monte carlo tree search. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases,

pages 581–598. Springer, 2022

Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and M. Beigl. Optimizing automl

for tiny edge systems: A baldwin-effect inspired genetic algorithm. In 22nd

IEEE International Conference on Pervasive Computing and Communicaitons

(PerCom 2024), 2024

Y. Huang, Z. Xue, H. Ma, and M. Beigl. Generate explanations for time-series

classification by chatgpt. Explainable Artificial Intelligence, Malta, 17th–19th

June 2024, 2024 17

Part II: Insight into Model Decision Elements
Y. Huang, H. Zhao, Y. Zhou, T. Riedel, and M. Beigl. Standardizing your

training process for human activity recognition models: A comprehensive

review in the tunable factors. EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Services, 2024

Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and M. Beigl. Optimizing automl

for tiny edge systems: A baldwin-effect inspired genetic algorithm. In 22nd

IEEE International Conference on Pervasive Computing and Communicaitons

(PerCom 2024), 2024

Y. Zhou, M. Hefenbrock, Y. Huang, T. Riedel, and M. Beigl. Automatic

remaining useful life estimation framework with embedded convolutional

lstm as the backbone. In Machine Learning and Knowledge Discovery in

Databases: Applied Data Science Track: European Conference, ECML PKDD

2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part IV, pages

461–477. Springer, 2021

Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl. Tinyhar:

A lightweight deep learning model designed for human activity recognition.

In Proceedings of the 2022 ACM International Symposium on Wearable

Computers, pages 89–93, 2022

Part III: Insight into the Post hoc Technologies
Y. Huang, N. Schaal, M. Hefenbrock, Y. Zhou, T. Riedel, and M. Beigl.

Mcxai: local model-agnostic explanation as two games. In 2023 International

Joint Conference on Neural Networks (IJCNN), pages 01–08. IEEE, 2023

Y. Huang, C. Li, H. Lu, T. Riedel, and M. Beigl. State graph based explanation

approach for black-box time series model. In World Conference on Explain-

able Artificial Intelligence, pages 153–164. Springer, 2023

Y. Huang, Y. Zhou, H. Zhao, L. Fang, T. Riedel, and M. Beigl. Extea:

An evolutionary algorithm-based approach for enhancing explainability in

time-series models. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 429–446. Springer, 2024

18

2. Background

2.1 Overview of XAI methods

Depending on the techniques used, XAI can be broadly classified into the fol-

lowing categories:

(i) Feature Importance Methods: These methods determine the signifi-

cance of individual features in model predictions. They include model-based

methods, such as the Gini index or mean-decrease impurity methods, which

employ decision trees or random forests to assess feature importance. Addi-

tionally, model-independent methods rank the importance of features without

relying on a specific model structure.

(ii) Locally Interpretable Methods: These methods focus on explaining

the predictions of complex models at individual data points by constructing

local models. For example, LIME (Local Interpretable Model-agnostic Ex-

planations) [134] provides such local explanations. SHAP (SHapley Additive

exPlanations) [110] uses a game-theoretic approach to quantify the contribu-

tion of each feature to a prediction, based on Shapley values.

(iii) Visualization Methods: Graphs and charts illustrate the internal struc-

ture of the model and its prediction results, aiding in understanding the model.

The Partial Dependence Plot (PDP) [44] demonstrates how the model’s pre-

diction results change with a target feature while keeping other feature val-

ues fixed, thus revealing the overall impact of specific features on model out-

put [44]. The Individual Conditional Expectation (ICE) [52] plot, an extension

of PDP, offers a more detailed interpretation by showing how predictions vary

with features across different data points. By comparing trends across these

data points, the model’s sensitivity and inconsistency to feature changes can be

assessed [9].

(iv) Rule-Based Methods: These methods explain the behavior of a model

19

by extracting rules and logical conditions. For example, anchor point methods

explain model predictions by generating highly accurate "anchor points" [135].

An anchor point is a set of sufficient conditions ensuring that the model’s pre-

dictions remain unchanged under those conditions. Initially, features are ran-

domly selected as anchors, which are then expanded by adding more features

and evaluating their coverage and accuracy. The anchor with the best coverage

and accuracy is selected as the final interpretation. The RuleFit method com-

bines decision trees and linear regression. It extracts rules from decision trees

and inputs these rules as features into a linear model for training [44]. This

approach creates sparse, easily interpretable linear models while maintaining

the predictive power of complex models. Association rule learning [92] in-

volves converting high-dimensional data into low-dimensional representations

through dimensionality reduction techniques. Association rules are then gen-

erated from these low-dimensional representations to explain the features and

patterns of the original high-dimensional data.

(v) Prototype-Based Methods (PBM): These methods explain the behav-

ior of a model by comparing examples using prototypes and data [93]. Pro-

totypes are typical data points representing a particular class, while critiques

are anomalous data points that deviate from the prototypes and do not meet

the model’s expectations. The algorithm first selects a set of typical data points

from the dataset that best represent each category as prototypes. Then, it identi-

fies data points significantly different from the prototypes as critique instances,

revealing the model’s limitations and anomalous behavior. During model train-

ing, a set of prototype images is learned, representing different categories. In

the prediction phase, the similarity between the input images and each pro-

totype image is calculated. The model decision-making process is explained

by demonstrating the similarity between the input images and the prototype

images.

(vi) Counterfactual-Based Approaches: These methods explain the model

predictions by generating instances that differ from, but are close to, the cur-

rent instance [169]. The process begins by identifying the desired change in

the model’s prediction. Counterfactual instances are then generated by al-

tering the input data characteristics. The goal is to find the smallest feature

20

change that causes the desired change in the prediction of the model. The dif-

ferences between the original and counterfactual instances are displayed to ex-

plain the model’s prediction basis. For instance, Pawelczyk et al. [126] propose

a method to generate counterfactual explanations using adversarial attacks.

Goyal et al. [55] employ an optimization algorithm to generate counterfactual

instances that achieve the target prediction results with minimal modification

of features. Visualizing the original and counterfactual instances intuitively

demonstrates the feature changes and their impact on the prediction results.

(vii) There are several approaches in the field of XAI that combine multiple

techniques to provide comprehensive explanations. Assaf et al. [11] introduced

an attention layer to a deep neural network to generate an importance score for

each feature. This mechanism creates a feature importance mapping by calcu-

lating the contribution of each input feature to the prediction result through the

attention layer. The importance of features and their impact on the prediction

results are then visually represented, often using heat maps. Causal inference

methods are employed to understand the causal relationships between features

and explain the predictive results of the model. For instance, causal diagrams

and intervention methods are used to identify which changes in feature lead to

changes in predicted outcomes.

This section provides a broad categorization of existing XAI methods which

are essential to understand how model transparency can be achieved in various

domains, including pervasive computing. These methods form the foundation

upon which we develop our novel post hoc techniques, specifically tailored to

the unique challenges of pervasive computing environments. Understanding

these XAI methods also underpins our work in identifying critical data ele-

ments and advancing interpretability, as discussed in Parts II and III.

2.2 Genetic Algorithm

The Genetic Algorithm (GA) [67] is a heuristic optimization technique inspired

by the principles of natural selection and genetics, which is particularly effec-

tive in solving complex optimization problems where the search space is large,

discrete, nonlinear, or poorly understood.

To apply GA, potential solutions to a problem are first encoded as chromo-

21

somes, which are typically represented as binary strings. In addition, a fitness

function is designed to measure how well a chromosome solves the target prob-

lem. The algorithm begins with an initial population of randomly generated

chromosomes. It includes three core operations namely selection, crossover,

and mutation:

• Selection: This process simulates natural selection, where chromosomes

with higher fitness scores are more likely to be selected to pass their

genes to the next generation.

• Crossover: This operation combines the genetic information of two

parent chromosomes to produce offspring. It is typically done by ex-

changing segments of the parent chromosomes at one or more crossover

points.

• Mutation: This operation introduces random changes to the gene of a

chromosome to maintain the diversity among the chromosome within

the population and prevent premature convergence to a local optimum.

The GA iterates through these steps, creating successive generations of solu-

tions. The population is expected to evolve toward an optimal or near-optimal

solution to the problem.

Genetic algorithms offer an optimization approach that simulates natural se-

lection, particularly useful for complex search spaces such as those encoun-

tered in model optimization tasks. Their ability to explore uneven, high-

dimensional search spaces is directly related to the optimization challenges

faced in constrained pervasive computing environments, as highlighted in

Part I. These principles are later employed in our novel approach to explain-

ability optimization.

2.3 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [30] is a powerful algorithm for decision-

making under uncertainty in domains with large or complex state spaces.

MCTS has gained significant attention due to its success in various board

22

games, e.g., Go and in complex real-world applications like robotics and au-

tonomous systems.

MCTS operates by constructing a search tree incrementally. In the tree, each

node represents a state in the decision process, and the edges represent actions

leading to subsequent states. The core idea is to use Monte Carlo simulations

to estimate the value of decisions, gradually refining these estimates as more

simulations are performed. It consists of four main steps:

• Selection: Starting from the root node, the algorithm selects child nodes

to explore based on a policy that balances exploration and exploitation.

A commonly used policy is Upper Confidence Bound for Trees (UCT),

which selects nodes that maximize the potential reward while consider-

ing the uncertainty in their value estimates.

• Expansion: Once a node is selected, it is expanded with one or more

child nodes that generated correspond to possible actions from that state.

If a node is fully expanded (i.e., all possible actions have been consid-

ered), the algorithm moves to the next step.

• Simulation: Also known as rollout, this step involves running a simu-

lation from the newly added node to a terminal state (or a pre-defined

maximal depth) using a default policy. The outcome of the simulation

provides an estimate of the value of the decision path that led to the

expanded node.

• Backpropagation: The result of the simulation is then propagated back

up the tree, updating the parameters of all nodes along the path from the

expanded node to the root. This process reinforces good decisions (those

leading to high rewards) and de-emphasizes poor ones.

MCTS is a decision-making algorithm that balances exploration and ex-

ploitation, particularly useful in complex environments with uncertain out-

comes. The explanation of model decisions as a tree search problem, as pro-

posed in Part III, is based heavily on these principles. Understanding MCTS

allows us to systematically explore relationships between data segments, ulti-

mately improving explainability in sensor-based classification.

23

2.4 Deep Learning Model

Deep learning represents a class of algorithms that leverage multilayer neural

networks to model complex patterns in data. These models have revolution-

ized numerous fields, such as computer vision, natural language processing,

and speech recognition, by achieving unprecedented levels of predictive per-

formance. However, one of the most significant and often criticized charac-

teristics of deep learning models is their black-box nature, which refers to the

difficulty of explaining how these models make decisions.

2.4.1 Overview of Deep Learning Models

At the core of deep learning are artificial neural networks, which are inspired

by the structure of human brain. These networks consist of multiple layers

of interconnected nodes (neurons), where each neuron processes input data,

applies a non-linear transformation via an activation function, and passes the

output to the next layer. The primary structure of deep learning models includes

the following:

(i) Feedforward Neural Networks [136]: It consists of multi-layer and each

layer contains multiple neuraons. Information flows in one direction, from the

input layer through hidden layers to the output layer. This structure is effective

for basic tasks. However they do not inherently model temporal or spatial

dependencies within data.

(ii) Convolutional Neural Networks [99]: It is designed for processing

grid-like data such as images. It emploies convolutional layers to detect local

patterns (like edges and textures) in the data. Their success in image-related

tasks stems from their ability to learn hierarchical features, from low-level

edges to high-level concepts like objects.

(iii) Recurrent Neural Networks [139]: It is particularly designed for

sequential data as they maintain a memory of previous inputs through hid-

den states. Variants like LSTM [66] networks and Gated Recurrent Unit

(GRU) [26] networks address issues like vanishing gradients, allowing the

model to capture long-term dependencies in sequences.

(iv) Transformers [166]: Since 2017, Transformers have become the foun-

24

dation of modern natural language processing. They use self-attention mecha-

nisms to capture relationships between words in a sentence, regardless of their

distance from each other, making them more effective than Recurrent Neural

Network (RNN) for many tasks.

2.4.2 The Black-Box Nature of Deep Learning Models

Despite their impressive capabilities, deep learning models are often criticized

for their black-box nature, which describes the opacity of the models’ decision-

making processes. This opacity comes mainly from the following sources:

(i) Complexity and Non-linearity: Deep neural networks rely on numerous

layers and millions of parameters. Each neuron in a layer applies a weighted

sum of its inputs, followed by a non-linear activation function. These non-

linearity, combined with the depth of the network, leads to highly complex

decision boundaries that are difficult to disentangle or explain. This complexity

makes it nearly impossible to directly interpret how the model arrived at a

particular decision.

(i) Lack of Transparency The decision process of traditional ML models

such as linear regression or decision trees, can often be traced back to individ-

ual features or rules. Deep learning models, however, obscure the relationship

between input features and predictions. The interactions between neurons and

layers are intricate, and the contribution of each feature to the final output is

not straightforwardly discernible.

(i) Challenge of Interpretation Current deep learning explanation methods

often rely on post hoc techniques, such as feature importance scores, attention

mechanisms, or visualization methods like saliency maps. These approaches

provide some insight into what the model may be focusing on, but they do not

fully open the black box. Moreover, most of these explanation are based on

approximations and can sometimes be misleading.

The black-box nature of deep learning models complicates model deci-

sion interpretation, especially in applications that involve pervasive computing.

This section explains why existing deep learning models fail to provide trans-

parent explanations, setting the stage for the novel interpretability techniques

we propose in Part III. These challenges motivate our contribution to improve

25

interpretability without sacrificing predictive performance.

26

Part I.

Advancing Interpretable Models

27

3. Improve Model Performance with Feature
Engineering

While recent advances in deep learning have achieved superior performance

relative to traditional models, the explainability of deep learning models re-

mains a significant challenge. Specifically, explanations derived from deep

learning models often fail to accurately reflect the underlying reasoning of the

model [4; 104; 138], limiting their utility in fields where transparency is cru-

cial, such as healthcare in the pervasive computing domain. For decades, inter-

pretable ML models, such as decision trees and logistic regression, have been

preferred for their transparency and ease of comprehension [173]. Today, tradi-

tional interpretable models continue to be relied upon. However, performance

limitations remain the biggest obstacle to generalizing interpretable models in

the pervasive domain. To expand the applicability of these interpretable mod-

els, it is crucial to enhance their performance while respecting the constraints

imposed by the specific tasks and data. Feature engineering, which involves

the extraction of meaningful features from raw data, plays a pivotal role in

this enhancement. In this section, we explore how feature engineering can be

leveraged to improve the performance of traditional interpretable ML models.

Corresponding Publication:. Y. Huang, Y. Zhou, M. Hefenbrock, T. Riedel,

L. Fang, and M. Beigl. Automatic feature engineering through monte carlo tree

search. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 581–598. Springer, 2022

29

3.1 Introduction

In automated, highly integrated systems, it is crucial for users to understand and

trust the decision-making process of models to confidently use these systems in

critical applications [134]. Moreover, legal and ethical standards necessitate a

certain level of transparency [54]. Consequently, interpretable models are often

preferred over deep models due to the inadequate explanatory power of post

hoc explanation techniques. However, pervasive computing, characterized by

extensive environment sensing, data collection, and processing, often results in

diverse and dynamic data. This complexity limits the predictive performance

of interpretable ML models, thereby affecting their effectiveness in complex

environments. Thus, improving the performance of interpretable ML models

is essential to advance the explainability in pervasive computing.

Predictive performance improvement often hinges on the combination of

sophisticated algorithms and extensive domain knowledge. This expertise is

particularly evident in data preprocessing, where raw data is systematically

transformed to optimize ML workflows, a process known as feature engineer-

ing. Predominantly driven by heuristic searches by domain experts, feature

engineering is crucial for enhancing model performance.

However, the complexity of pervasive computing data often leads to infor-

mation loss and high labor costs in expert-driven feature extraction. Automated

Feature Engineering (AFE) addresses these issues by automatically generating,

extracting, and selecting features from raw data using algorithms and auto-

mated tools. It aims to improve the efficiency and quality of feature generation

by reducing human intervention, thereby enhancing the performance of ML

models.

Despite its potential, AFE faces significant challenges. The search space

for potential feature transformations, such as addition, logarithmic, or trigono-

metric operations, expands rapidly, making the search process computationally

intensive. Additionally, assessing the efficacy of these transformations requires

extensive model training and evaluation, further complicating the process. To

address these challenges, various strategies have been developed. For instance,

Cognito [90] employs a transformation tree to model the exploration space,

utilizing heuristic strategies like depth-first and balanced traversal for efficient

30

search. A reinforcement learning approach, using a Q-learning algorithm with

linear approximation, has also been introduced to refine the automation of fea-

ture engineering.

Although these methods have been successful, further enhancements are

needed to address two key issues:

• Choice of search hyperparameters and dynamic adaptation of heuris-

tic strategies: Fully heuristic approaches risk convergence to local op-

tima. Strategies such as epsilon-greedy and Upper Confidence Bound

(UCB) [12] mitigate this risk but require meticulous tuning of hyperpa-

rameters to adapt dynamically.

• Sequential information in composite transformations: Current methods

do not fully leverage the order sensitivity of feature transformations,

often simplifying the sequence’s representation with linear or convolu-

tional neural models [91; 181].

To address these shortcomings, we present a novel algorithm called Monte

Carlo tree search for Automatic Feature Engineering (mCAFE). We choose

Thompson sampling as an automatically adjusting selection policy, in com-

bination with an LSTM network to capture the sequential information in the

feature transformation sequences, while the main structure follows a Monte

Carlo Tree Search (MCTS) [30].

3.2 Related Work

In recent years, substantial research has focused on domain-specific feature

engineering. For instance, Guo et al. [61] investigate how to share information

through feature engineering in multi-task learning tasks, while Schelling et

al. [142] aim to find suitable features to improve class separation. However,

there has been limited new research on feature engineering methods applicable

to all types of data.

FCTree, proposed by Fan et al. [41], utilizes both original and constructed

features as splitting points in a decision tree to partition the data. It constructs

local features in regions where the local error is high and the existing features

31

are not sufficiently predictive. FEADIS [37] employs a random combination of

mathematical functions, including ceiling, modulus, and sine, alongside feature

selection methods to construct new features, which are then greedily selected

and added to the original feature set. The Data Science Machine (DSM) [85]

applies transformations to all features simultaneously, followed by the selec-

tion of features and optimization of the model in the generated dataset. A

similar approach was used by Lam et al. [98].

In contrast, ExploreKit [88] iteratively increases the constructed features.

To manage the exponential growth of the feature space, ExploreKit employs

a novel ML-based feature selection approach to predict the usefulness of new

candidate features. Similarly, Cognito [90] introduces a tree-like exploration of

the transformation space using hand-crafted heuristic traversal strategies, such

as depth-first and global-first. However, these strategies do not consider factors

such as episode budget constraints. An improvement in this area was proposed

by Khurana et al. [91], which uses a reinforcement learning-based feature en-

gineering method to explore the available feature engineering options within

a given budget. LFE [120] treats each feature individually, predicting the best

transformation for each through a learning-based method. Nevertheless, none

of these methods account for the order of feature transformations.

More recently, a graph-based method was proposed by Zhang et al. [181],

which guides exploration of the transformation space using a deep neural net-

work.

3.3 Method

We model the feature engineering problem as a classic episode-based re-

inforcement learning problem, where an agent interacts with the environ-

ment. The search begins from the initial state representing the original dataset

D0 ∈ D , where D denotes the state space. From D0, a transformation t ∈ T

(action) can be chosen to transform the dataset, applying t to all the features

contained within it. The new state D′ is then obtained by concatenating the data

of the old state D with t(D), i.e., D′ = [D, t(D)]. This ensures that the new state

retains all information from previous states, reflecting the Markov property.

For each state D, a ML model can be trained to obtain its n-fold cross-

32

validation performance. Since our goal is to find the optimal sequence of

length L, we define a feature engineering pipeline as an ordered sequence

(t1, · · · , ti, · · · , tL) consisting of L transformations. The i-th entry of the se-

quence represents the decision in the i-th step, i.e., the transformation applied

to the data to generate new features.

Overall, the environment can be summarized by the 3-tuple (D ,T ,r), where

D represents the state space, T represents the transformation (action) space

and r ∈ {0,1} represents the rewards. The reward r indicates whether a trans-

formation pipeline of length L has improved over the best-performing model

found so far.

MCTS refers to a category of sampling-based algorithms designed for tree

search, which are utilized to identify optimal decisions within extensive search

domains. This method has been effectively implemented in various related

issues, such as feature subset selection [46]. To manage large search spaces,

MCTS represents the search area as a tree structure and explores it iteratively.

It incrementally prioritizes the most promising sections of the search tree based

on a given evaluation function.

Evidently, our search space for feature transformations can be represented

as a tree, enabling the application of MCTS to find an optimal transformation

pipeline for constructing features on the original dataset. We will discuss the

construction of this tree, the selection policy (Thompson sampling), and a sur-

rogate model-based expansion policy using an LSTM. Finally, we will outline

the overall mCAFE algorithm.

3.3.1 The Transformation Tree

We illustrate the reinforcement task using a transformation tree with a maxi-

mum depth L, where each node represents a state (dataset), each edge repre-

sents an action (transformation), and each path from the root to a leaf node

represents a feature engineering pipeline. Each edge in the tree is associated

with a distribution that indicates the mean success probability (reward = 1) of

taking the action in its parent state.

The nodes in the tree are divided into two categories:

• Root node D0: This is the initial state for each pipeline and represents

33

the original dataset.

• Derived nodes Di, where i > 0: Each derived node has one parent node

D j , where i > j ≥ 0. The connecting edge corresponds to the action

t ∈T applied to the parent node, i.e., Di = [D j, t(D j)].

In this way, we translate the feature engineering problem into the task of ex-

ploring the transformation tree to find the node that maximizes the expected

reward.

Figure 3.1 shows a complete transformation tree for a pipeline with L = 2

and two available actions, T = {log,add}. Each node in the tree represents a

candidate dataset for the feature engineering problem. For example, the derived

nodes D4 and D5 represent the following datasets:

D4 = {D0,add(D0), log(D0), log(add(D0))},

D5 = {D0, log(D0),add(D0),add(log(D0))}.

Because the order in which the transformations are applied is different, al-

though the transformations in D4 and D5 are the same, the resulting datasets

are not identical.

We can find the optimal node by traversing this tree. However, the com-

plexity of this task grows exponentially as L and the number of available trans-

formations |T | increases. Since traversing all possible nodes of the tree is

prohibitive, mCAFE focuses on optimizing the selection policy πs and the ex-

pansion policy πe to reduce the number of evaluations required to find a good

transformation sequence.

3.3.2 The Selection Policy

The selection policy πs determines the balance between exploration and ex-

ploitation, guiding the selection of known parts of the MCTS. The Upper Con-

fidence Bound (UCB) and ε-greedy are the two most commonly used selection

policies, both of which come with strong theoretical guarantees on regret 1.

1the amount lost for not selecting the optimal action in each state

34

Figure 3.1.: Representation of feature transformation with a tree structure.
Here, each node corresponds to a state D and each edge corre-
sponds to a transformation (action). The distributions on the edges
show the distribution over the mean success (reward = 1) probabil-
ity when taking the action in the parent state.

While these policies have proven successful in various reinforcement learning

settings, they are not ideal for feature engineering applications. This is mainly

due to their requirement to explicitly define the exploration-exploitation trade-

off through parameters like ε in ε-greedy and λ in UCB. Furthermore, ε-

greedy does not dynamically adapt this trade-off, always maintaining a fixed

ε% exploration rate.

To address these problems, we use Thompson sampling as the selection pol-

icy. Here, we introduce Thompson sampling and adapt it to the feature engi-

neering case.

Consider the state space D , the action space T and rewards r ∈ {0,1}.
Thompson sampling selects an action based on the probability of it being

the optimal action. Representing the set of N observations O = {(r, t,D)}N ,

where D ∈D , t ∈T , we model the probability of different rewards of each

action with a parametric likelihood distribution p(r|t,D,θ) depending on the

parameters θ . The prior distribution of these parameters is denoted by p(θ).

Consequently, the posterior distribution given a set of observations O can be

calculated using Bayes rule, i.e., p(θ |O) ∝ p(O|θ)p(θ). Thompson sampling

35

implements the selection policy πs by sampling a parameter θ from the pos-

terior distribution p(θ |O), and taking the action that maximizes the expected

reward. Hence,

πs(D) = argmax
t∈T

E [r|t,D,θ] where θ ∼ p(θ |O) . (3.1)

Since, in the case of feature engineering, each state D ∈ D satisfies the

Markov property, we can simplify the problem of which action to take on state

D, to whether taking the action t ∈ T leads to a performance improvement.

This can be modeled as a classic Bernoulli bandit problem, where the variable

θ = (θ1,θ2, · · ·) denotes the expected values of a Bernoulli random variable

expressing the probability of taking the selected action in a given state (and

obtaining a reward of one). The distribution of the parameter θt can be mod-

eled through a beta distribution

p(θt |α,β) =
Γ(α+β)

Γ(α)Γ(β)
θ

α−1
t (1−θt)

β−1,

where Γ is the Gamma function. Γ(α+β)
Γ(α)Γ(β)

serves as a normalization constant

that ensures that the integration of the density function over (0,1) is 1. The

parameters α and β control the shape of the distribution and the mean of the

distribution is α

α+β
. It denotes the expectation that taking the corresponding

action will lead to a performance improvement. The higher α , the larger the

mean and therefore the probability of the action being selected. On the other

hand, the larger β , the lower the probability.

The beta distribution is conjugate to the Bernoulli distribution (i.e., the pos-

terior distribution p(θ |O) inherits the functional form of the prior distribution

p(θ)).

Given an observed sample O = (r, t,D), the posterior distribution of the pa-

rameters θ is given by

θt ′ ∼ Beta
(︁
α +1r=1,t ′=t ,β +1r=0,t ′=t

)︁
, t ′ ∈T . (3.2)

The parameter α is incremented when the action leads to an improvement

in performance. Otherwise, the parameter β is incremented. In this view, α

represents the number of successes in the Bernoulli trial and β represents the

36

number of failures.

Furthermore, the support of the beta distribution is (0,1), independent of

parameterization. This ensures that there is always a non-zero probability for

each action to be selected.

Consequently, there is always a non-zero probability to take each path in the

tree.

Figure 3.1 shows an example of the tree representation. Each edge in the

tree maintains a beta distribution Beta(α,β). By comparing the two transfor-

mations on D0 with the same β , we can see that the higher the value of α the

more the distribution is shifted towards sampling larger values (higher proba-

bilities of success).

In each step, an edge is selected based on the sampling result. This ensures

the priority of high-quality edges while also allowing inferior edges to be se-

lected occasionally.

By using Thompson sampling as the selection policy, we avoid choosing

hyperparameters to balance the exploration and exploitation trade-off. In con-

trast, the trade-off is adjusted dynamically through the posterior distribution of

the parameter θ , which is updated along with the observation. Even though

α and β represent hyperparameters, their choice is arguably more intuitive as

α = β = 1 describes a uniform distribution.

The requirement to construct and sample from a beta distribution for each

action may rise efficiency concerns, as this process is slow compared to an

ε-greedy selection.

However, this is not an issue for feature engineering as in each episode, the

selection phase takes little time compared to the other phases of the algorithm.

This will be further explored in Section 3.4 (see Table 3.1).

3.3.3 The Expansion Policy

The selection policy πs guides the selection of actions in parts of the search

space that have been explored. Outside of the explored search space and be-

yond the leaves of the MCTS, the expansion policy πe guides the selection of

actions t. It expands the child nodes to the tree and selects the one with the

maximum expectation reward (Q value) as the next exploration candidate

37

Figure 3.2.: The Surrogate network consist of 2 LSTM layers of size 32 and
a two fully connected layers of size 32 with a ReLU activation
function.

πe(D) = argmax
t∈T

E [r|t,D,θ]

= argmax
t∈T

Q̂(D, t).
(3.3)

Given the vast state space D , directly calculating the expectation is infeasi-

ble. To address this, mCAFE employs a surrogate network Q̂(D, t) as depicted

in Figure 3.2. This network takes the selected action t and the action sequence

used to generate the leaf node state D as input, and outputs the expected reward

of taking this action in the given state.

The surrogate network comprises three key components:

• Binary Encoder: This component encodes an action into a binary code.

• LSTM Layer: Featuring a hidden size of 32, this layer handles varying

input sequence lengths and captures their sequential information.

• Fully Connected Layer: With an input size of 32 and a ReLU activation

function, this layer maps the LSTM output to the expected reward.

Each edge in the tree maintains a beta distribution. We collect training data

from all existing edges in the tree and update the surrogate model after each

iteration (episode).

38

Figure 3.3.: The mCAFE framework: each iteration (episode) includes four
phases: selection, expansion, roll-out, back-propagation. B is the
number of iterations.

Utilizing the surrogate model Q̂(D, t), the expansion policy is defined by

selecting the action t that maximizes the expected reward as predicted by the

surrogate model.

3.3.4 The mCAFE Algorithm

The mCAFE algorithm employs MCTS to explore the target space, with the

selection policy gradually favoring actions that lead to more promising regions

of the search space. This approach aims to find the optimal sequence of actions.

The four main phases of the general MCTS scheme have been modified as

follows (Figure 3.3):

• Selection Starting from the root node, mCAFE iteratively selects the

child nodes according to the selection policy πs until a leaf node is

reached.

• Expansion At a leaf node of the transformation tree, all available child

nodes are expanded. One of these nodes is then selected for further

exploration according to the expansion policy πe.

• Roll-out Rather than evaluating the performance of the current node,

mCAFE focuses on whether the expected performance of its descen-

dant nodes exceeds the best performance achieved so far. To achieve

39

this, mCAFE combines n-fold cross-validation with the general roll-out

process as follows. Assuming that the current node is at depth l in the

MCTS tree, mCAFE completes the feature engineering pipeline by sam-

pling L− l transformations from T randomly with replacement, where L

is the predefined length of the pipeline (transformation sequence). This

process is repeated n times to generate n different pipelines, correspond-

ing to the number of iterations in n-fold cross-validation. A reward

r = 1 is returned if the mean evaluation score of these transformation

sequences is higher than the best performance so far; otherwise, r = 0.

• Back-propagation The reward from the roll-out process is back-

propagated along the path from the node selected in the expansion pro-

cess to the root node. During this back-propagation, the parameters α

and β in each edge on the path are updated according to the update rule

described in Section 3.3.2.

The algorithm stops after the computational budget is exhausted, e.g. the

algorithm stops when the number of episodes reaches 100 in the experiment.

Figure 3.4 illustrates an episode of the mCAFE algorithm. Starting from

the root node D0, the algorithm selects the explored nodes according to the

selection policy πs until it reaches the leaf node D4. Next, an unexplored node

D7 is selected and expanded into the tree according to the expansion policy πe.

If the depth l of the current node (expanded node D7) is smaller than the

predefined pipeline length L (maximum depth), an action is selected randomly

and applied to the current node to create a new node, which then becomes the

new current node. This process is repeated until the depth l of the new node

exceeds the pipeline length L.

Finally, the current node is evaluated and its reward is back-propagated, up-

dating the parameters of the beta distributions along the path from D0 to D7.

Since r = 1, the α parameters of all edges along the path are incremented,

while the β parameters remain unchanged. Consequently, the beta distribution

of each edge in the path shifts slightly to the right, increasing the probability

of selecting the corresponding actions in future iterations.

40

Figure 3.4.: Example of an episode of mCAFE. The beta distributions of the
edges in the selected path are displayed next to the corresponding
edge. Blue denotes the distribution before back-propagation and
orange after back-propagation.

3.4 Evaluation

In this section, we design six different experiments to address the following

questions: (i) How well does the mCAFE approach compare to the state-of-the-

art [91]? (ii) Is the sampling-based selection policy necessary for the mCAFE

algorithm? (iii) Is the sequential information of the transformation sequence

important for the prediction of the Q value? (iv) Is the surrogate-based expan-

sion policy necessary for the mCAFE algorithm? (v) How should the hyperpa-

rameter L (pipeline length) be chosen in the mCAFE algorithm? (vi) How does

mCAFE perform with different predictive models?

For the first five experiments, we use the same benchmarks as in [91]. We

attempted to reproduce their work, but some datasets were excluded from

41

the experiment because the results of the base model differed significantly

from those reported by [91], such as ’Amazon Employ’ and ’Wine Qual-

ity Red’. Additionally, datasets like ’Wine Quality White’, ’Higgs Boson’,

’SVMGuide3’, and ’Bikeshare DC’ were removed because their sizes differed

from those cited in the original paper [91]. To mitigate this issue in future

work, we have published our code and datasets in https://github.com/

HuangYiran/MonteCarlo-AFE.git.

The last experiment is conducted on the AutoML benchmark datasets [51],

maintaining the same hyperparameter settings as in the first five experiments

for both our work and the baseline.

We use episode budgets instead of time budgets for the following three rea-

sons:

• Dominance of Candidate Evaluation Time: In feature engineering tasks,

the time spent on candidate evaluation predominates over the overall

time spent. This evaluation time is inevitable for all evaluation-oriented

optimization methods in feature engineering tasks. Table 3.1 shows the

average percentage of time taken by mCAFE for each step in the first 20

episodes, with the roll-out phase (random transformation selection and

candidate evaluation) consuming an average of 97% of the total time.

• Variability Across Datasets: The run time varies significantly across

datasets due to differences in data size and sensitivity to various trans-

formations.

• Impact of Implementation and Environment: The algorithm’s implemen-

tation and the operating environment greatly influence run time.

By addressing these questions through our designed experiments, we aim to

thoroughly evaluate the effectiveness and efficiency of the mCAFE algorithm

across different scenarios and conditions.

For the first five experiments, we use the random forest model from the

sklearn package (version 0.24) with default parameters and an episode bud-

get of B = 100, following [91] to ensure comparability of results.

The pipeline length is set to L = 4 based on the results of the third experi-

ment, and all beta distributions are initialized with (1,1) to represent a uniform

42

https://github.com/HuangYiran/MonteCarlo-AFE.git
https://github.com/HuangYiran/MonteCarlo-AFE.git

Table 3.1.: Average percentage of time for each process in the first 20 episodes.
Size Time spent in percentage (%)

Dataset Rows Feat. Selection Expansion Roll-out Back-propagation

SpecFact 267 44 0.01 0.04 96.94 3.01
PimaIndian 768 8 0.02 0.05 97.29 2.66
Lymphography 148 18 0.01 0.04 96.98 2.97
Ionosphere 351 34 0.01 0.06 96.37 3.56
AP-omentum-ovary 275 10936 0.01 0.02 98.57 1.40
SpamBase 4601 57 0.01 0.01 98.74 1.24

prior. To reduce computation time, we sub-sample datasets with a large num-

ber of data points, considering up to 104 data points per dataset. To maintain

comparability, we did not tune any hyperparameters of the feature engineer-

ing algorithms for specific datasets or prediction models, except for the last

experiment.

For unbalanced datasets, we apply the F1-score to assess classification per-

formance and use 1 - Relative Absolute Error (RAE) as the metric for regres-

sion tasks, following [91]. All performances are obtained under 5-fold cross-

validation, meaning the parameter n in the roll-out process is set to 5.

This setup ensures that our experiments are comparable to the baseline and

provides a consistent evaluation framework for assessing the effectiveness of

the mCAFE algorithm.

In the experiment, we used the transformation functions T = { Log, Exp,

Square, Sin, Cos, TanH, Sigmoid, Abs, Negative, Radian, K-term, Difference,

Add, Minus, Product, Div, NormalExpansion, Aggregation, Normalization,

Binning }.

3.4.1 Performance of mCAFE

We evaluated the improvement of the mCAFE algorithm by comparing it with

the following methods: (i) Original Dataset (Base): No feature engineering ap-

plied. (ii) Reinforcement-Based Model (RBM): Uses a discount factor of 0.99,

a learning rate of 0.05, and an episode budget B = 100. (iii) Tree-Heuristic

Model (Cognito): Employs a global search heuristic for 100 nodes. (iv) Ran-

dom Selection: Selects and applies transformations randomly from the avail-

able transformation set to one or more features in the original dataset. If the

43

addition of new features improves performance, the new feature is retained.

This process is repeated 100 times to generate the final dataset.

The performance of these methods is summarized in Table 3.2. The results

show that mCAFE achieves the best scores on all regression datasets compared

to the reinforcement-based model and yields superior results on most classifica-

tion datasets. However, mCAFE performs worse than the reinforcement-based

model on the ’Credit Default’ and ’SpamBase’ datasets, with the difference on

’SpamBase’ being not significant.

3.4.2 Ablation Study

The proposed selection and expansion strategies are crucial components that

support the performance of the mCAFE algorithm. To verify their importance,

we designed two ablation experiments.

3.4.2.1 Selection Policy. We compare the performance of the traditional

UCB with ε-greedy policy (mCAFE-ucb) to the proposed model using a

Thompson sampling-based selection policy (mCAFE-ts). The parameter λ of

UCB is set to 1.412 as proposed by [29], and ε is set to 0.1. The mCAFE al-

gorithm keeps the same settings as in the previous experiments. Performance

for classification tasks is measured with the F1 score, and regression tasks are

measured with (1 - Relative Absolute Error).

Figure 3.5 categorizes the comparison results into four categories: (i)

mCAFE-ts achieves better results: mCAFE-ts outperforms mCAFE-ucb in

terms of measured performance. (ii) mCAFE-ts is faster: mCAFE-ts requires

fewer episodes to achieve the same result as mCAFE-ucb. (iii) Tie: mCAFE-

ucb and mCAFE-ts achieve the same result and require a similar number of

episodes (difference smaller than 5). (iv) mCAFE-ucb achieves better re-

sults: mCAFE-ucb obtains the same results and requires fewer episodes than

mCAFE-ts.

The results in Figure 3.5 demonstrate the significance of the selection strat-

egy. mCAFE-ts achieved better performance in 64.7% of the datasets and tied

on 13.3%.

44

Ta
bl

e
3.

2.
:C

om
pa

ri
ng

pe
rf

or
m

an
ce

of
w

ith
ou

t
fe

at
ur

e
en

gi
ne

er
in

g
(B

as
e)

,
re

in
fo

rc
em

en
t-

ba
se

d
m

od
el

(R
B

M
)

[9
1]

,
C

og
-

ni
to

[9
0]

,
ra

nd
om

se
le

ct
io

n,
an

d
m

C
A

FE
in

10
0

ep
is

od
es

us
in

g
15

op
en

so
ur

ce
da

ta
se

ts
.

C
la

ss
ifi

ca
tio

n
ta

sk
s

(C
)

ar
e

ev
al

ua
te

d
w

ith
th

e
F1

sc
or

e,
an

d
re

gr
es

si
on

ta
sk

s
(R

)a
re

ev
al

ua
te

d
w

ith
(1

-r
el

at
iv

e
ab

so
lu

te
er

ro
r)

.
D

at
as

et
C

/R
R

ow
s

Fe
at

.
B

as
e

R
B

M
C

og
ni

to
R

an
do

m
m

C
A

FE

Sp
ec

Fa
ct

C
26

7
44

0.
68

6
0.

78
8

0.
79

0
0.

74
8

0.
85

5
±

0.
03

6
Pi

m
aI

nd
ia

n
C

76
8

8
0.

72
1

0.
75

6
0.

73
2

0.
70

9
0.

77
3
±

0.
02

6
G

er
m

an
C

re
di

t
C

10
01

21
0.

66
1

0.
72

4
0.

66
2

0.
65

5
0.

76
4
±

0.
02

6
Ly

m
ph

og
ra

ph
y

C
14

8
18

0.
83

2
0.

89
5

0.
84

9
0.

68
0

0.
96

7
±

0.
01

6
Io

no
sp

he
re

C
35

1
34

0.
92

7
0.

94
1

0.
94

1
0.

93
4

0.
96

2
±

0.
01

4
C

re
di

tD
ef

au
lt

C
30

00
0

25
0.

79
7

0.
83

1
0.

79
9

0.
76

6
0.

79
6
±

0.
00

6
A

P-
om

en
tu

m
-o

va
ry

C
27

5
10

93
6

0.
61

5
0.

82
0

0.
75

8
0.

71
0

0.
83

1
±

0.
03

6
Sp

am
B

as
e

C
46

01
57

0.
95

5
0.

96
1

0.
95

9
0.

93
7

0.
95

3
±

0.
01

6
O

pe
nm

l_
61

8
R

10
00

50
0.

42
8

0.
58

9
0.

53
2

0.
42

8
0.

74
3
±

0.
01

5
O

pe
nm

l_
58

9
R

10
00

25
0.

54
2

0.
68

7
0.

64
4

0.
57

1
0.

77
6
±

0.
01

8
O

pe
nm

l_
61

6
R

50
0

50
0.

34
3

0.
55

9
0.

45
0

0.
34

3
0.

62
2
±

0.
01

0
O

pe
nm

l_
60

7
R

10
00

50
0.

38
0

0.
64

7
0.

62
9

0.
41

1
0.

80
3
±

0.
01

0
O

pe
m

m
l_

62
0

R
10

00
25

0.
52

4
0.

68
3

0.
58

3
0.

52
4

0.
76

5
±

0.
01

2
O

pe
nm

l_
63

7
R

50
0

50
0.

31
3

0.
58

5
0.

58
2

0.
31

3
0.

63
7
±

0.
02

1
O

pe
nm

l_
58

6
R

10
00

25
0.

54
7

0.
70

4
0.

64
7

0.
54

9
0.

78
3
±

0.
02

0

45

0 1 2 3 4 5 6 7
Number of datasets

mCAFE-ts gets better result

mCAFE-ts is faster

Tie

mCAFE-ucb gets better result

Figure 3.5.: Comparing the performance between mCAFE-ucb and mCAFE.

PimaIndian Lymphography AP_omentum-ovary SpamBase
0.00

0.02

0.04

0.06

M
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

MLP LSTM

Figure 3.6.: Comparing the performance of MLP and LSTM model in predict-
ing the Q value.

3.4.2.2 Expansion Policy. In the expansion process, we use an LSTM neu-

ral network to approximate the expectation reward (Q value) of taking an ac-

tion because it can capture the sequential information of the transformation

sequence. To demonstrate the importance of this sequential information for the

prediction of Q values, we designed an experiment to compare the performance

of using a MLP and an LSTM as the surrogate model in mCAFE.

To ensure comparability, the MLP model used here contains two hidden lay-

ers, each with 76 dimensions, resulting in a similar number of parameters as the

LSTM surrogate model mentioned earlier. The evaluation criterion is the Mean

Absolute Error (MAE), with a lower value indicating a better model. Both

models are trained for 100 epochs. Figure 3.6 shows that the LSTM model

achieves significantly better results than the MLP model across all datasets.

To assess the contribution of different expansion policies to mCAFE, we

compared the performance of three models: mCAFE with an LSTM-based

46

expansion policy, mCAFE with a random expansion policy, and mCAFE with

a greedy expansion policy, which consistently selects the best action explored.

Each model utilized the same initial parameters as the previous experiment

and was evaluated ten times in each dataset. The performance results for the

regression datasets are illustrated using a box plot in Figure 3.7. Our anal-

ysis reveals that mCAFE with the neural network expansion policy achieved

the best performance on all datasets except two. Specifically, mCAFE with

the random policy outperformed on the ’Openml_618’ dataset, while mCAFE

with the fixed expansion policy excelled on the ’Openml_586’ dataset. Addi-

tionally, mCAFE with the neural network expansion policy was outperformed

by the mCAFE with the random expansion policy on the ’AP-omentum-ovary’

dataset.

The primary distinctions among these three expansion approaches lie in

their utilization of previous observations and the dispersion of selected ac-

tions. mCAFE with a greedy expansion policy selects actions based solely

on their performance in the initial layer. While this method provides stability,

it restricts the exploration of new transformations, likely contributing to its un-

derperformance in most cases. Conversely, mCAFE with a neural network ex-

pansion policy leverages performance information from previous observations

to predict the expected rewards of future actions, facilitating more informed

and potentially advantageous decision-making.

3.4.3 Length of Feature Engineering Pipeline

The length of the feature engineering pipeline, denoted as L, determines the

number of actions selected in each roll-out step and the length of the final

transformation sequence. This parameter affects the mCAFE algorithm’s per-

formance, not only in terms of final results but also in time and memory con-

sumption. Generally, a larger L increases both time and memory usage while

also producing a larger number of features after transformation.

To identify an optimal L given resource constraints, we conducted an exper-

iment comparing the performance of the algorithm with different L values.

Figure 3.4 illustrates the relationship between L and the best performance

achieved by the mCAFE algorithm for six datasets. Here, L = 0 represents the

47

O
p
e
n
m

l_
6
3
7

O
p
e
n
m

l_
6
0
7

O
p
e
n
m

l_
6
2
0

O
p
e
n
m

l_
6
1
8

O
p
e
n
m

l_
5
8
6

O
p
e
n
m

l_
6
1
6

O
p
e
n
m

l_
5
8
9

D
a
ta

 s
e
t

0
.6

0
.7

0
.8

Performance

L
S

T
M

 b
a
s
e
d
 p

o
lic

y
R

a
n
d
o
m

 p
o
lic

y
G

re
e
d
y
 p

o
lic

y

Figure
3.7.:C

om
paring

perform
ance

ofm
C

A
FE

w
ith

neuralnetw
ork

expansion
policy

(w
ith

nn),m
C

A
FE

w
ith

random
expan-

sion
policy

(w
ith

random
)and

m
C

A
FE

w
ith

fix
expansion

policy
(w

ith
fix)on

allthe
regression

dataset.C
lassifica-

tion
task

is
evaluated

w
ith

F1-score
and

regression
task

is
evaluated

w
ith

(1-relative
absolute

error).

48

Ta
bl

e
3.

3.
:T

he
pe

rf
or

m
an

ce
s

of
m

C
A

FE
w

ith
di

ff
er

en
tp

re
di

ct
iv

e
m

od
el

s
on

A
ut

oM
L

be
nc

hm
ar

k
da

ta
se

t[
51

].
T

he
im

pr
ov

e-
m

en
ts

br
ou

gh
tb

y
th

e
m

C
A

FE
ar

e
sh

ow
n

in
pa

re
nt

he
se

s.
C

la
ss

ifi
ca

tio
n

ta
sk

is
ev

al
ua

te
d

w
ith

F1
-s

co
re

an
d

re
gr

es
si

on
ta

sk
is

ev
al

ua
te

d
w

ith
(1

-r
el

at
iv

e
ab

so
lu

te
er

ro
r)

B
as

e
pe

rf
or

m
an

ce
Pe

rf
or

m
an

ce
w

ith
m

C
af

e
A

ut
oM

L
be

nc
hm

ar
k

da
ta

se
ts

R
bf

-s
vm

L
in

ea
r-

sv
m

L
in

ea
rm

od
el

D
ec

is
io

n
tr

ee
R

bf
-s

vm
L

in
ea

r-
sv

m
L

in
ea

rm
od

el
D

ec
is

io
n

tr
ee

sh
ut

tle
0.

90
1

0.
99

6
0.

85
9

0.
99

8
0.

99
6

(0
.0

95
)

0.
99

8
(0

.0
02

)
0.

99
6

(0
.1

37
)

0.
99

8
(0

.0
01

)
ph

pZ
L

gL
9q

0.
40

7
0.

43
2

0.
50

3
0.

45
4

0.
40

7
(0

.0
00

)
0.

43
2

(0
.0

00
)

0.
50

3
(0

.0
00

)
0.

45
4

(0
.0

00
)

ph
py

M
5N

D
4

0.
56

3
0.

84
8

0.
77

5
0.

92
0

0.
75

2
(0

.1
89

)
0.

94
3

(0
.0

95
)

0.
89

3
(0

.1
18

)
0.

95
9

(0
.0

39
)

ph
pv

co
G

8S
0.

47
1

0.
42

6
0.

46
8

0.
57

2
0.

56
1

(0
.0

90
)

0.
57

9
(0

.1
53

)
0.

52
9

(0
.0

61
)

0.
57

8
(0

.0
06

)
ph

pQ
O

f0
w

Y
0.

32
0

0.
38

5
0.

45
7

0.
69

8
0.

62
0

(0
.3

00
)

0.
49

3
(0

.1
08

)
0.

68
2

(0
.2

25
)

0.
69

8
(0

.0
00

)
ph

pn
B

qZ
G

Z
0.

01
6

0.
76

8
0.

70
0

0.
74

7
0.

46
7

(0
.4

51
)

0.
76

8
(0

.0
00

)
0.

76
0

(0
.0

60
)

0.
75

0
(0

.0
03

)
ph

pm
PO

D
5A

0.
91

9
0.

74
9

0.
86

9
0.

91
2

0.
91

9
(0

.0
00

)
0.

90
8

(0
.1

59
)

0.
90

8
(0

.0
39

)
0.

91
3

(0
.0

01
)

ph
pm

cG
u2

X
0.

93
0

0.
95

3
0.

94
1

0.
85

4
0.

97
0

(0
.0

40
)

0.
95

3
(0

.0
00

)
0.

94
1

(0
.0

00
)

0.
85

4
(0

.0
01

)
ph

pM
aw

T
ba

0.
65

0
0.

58
9

0.
71

6
0.

79
7

0.
80

2
(0

.1
52

)
0.

78
7

(0
.1

98
)

0.
78

7
(0

.0
71

)
0.

82
0

(0
.0

23
)

ph
pk

Ix
sk

f
0.

83
3

0.
76

7
0.

84
7

0.
87

7
0.

88
3

(0
.0

50
)

0.
88

3
(0

.1
16

)
0.

87
0

(0
.0

23
)

0.
89

2
(0

.0
15

)

49

0
1

2
3

4
5

6
7

8
L
e
n
g
th

 o
f fe

a
tu

re
 e

n
g
in

e
e
rin

g
 p

ip
e
lin

e

0
.4

0
.6

0
.8

1
.0

Performance

A
P

_
O

m
e
n
tu

m
_
O

v
a
ry

d
a
ta

s
e
t_

1
0
_
ly

m
p
h

d
a
ta

s
e
t_

3
7
_
d
ia

b
e
te

s

o
p
e
n
m

l_
5
8
6

o
p
e
n
m

l_
6
1
8

o
p
e
n
m

l_
6
2
0

Table
3.4.:C

om
paring

perform
ance

of
m

C
A

FE
w

ith
differentm

axim
um

pipeline
length

on
3

classification
datasets

(F1-score)
and

3
regression

datasets
(1-relative

absolute
error).

50

performance of the random forest model on the base dataset. The results show

that while some datasets perform well with L = 1, increasing L generally en-

hances performance. Most datasets reach peak performance at L = 4, though

a few exhibit decreased performance, possibly due to randomness in initial se-

lection. Notably, performance on ’Dataset_10_lymph’ deteriorates with higher

L, likely due to overfitting.

From this experiment, we conclude that the optimal L varies by dataset.

However, L = 4 is generally a suitable choice for most cases.

3.4.4 Performance of mCAFE on Different Predictive Models

Different predictive models exhibit varying performance and sensitivity to

mCAFE on the same dataset. To test this hypothesis, we evaluated the per-

formance of mCAFE using the following predictive models on the AutoML

benchmark datasets: Rbf-SVM, Linear-SVM, Linear Model, and Decision

Tree.

Table 3.3 summarizes the experimental results. The data indicate that

mCAFE enhances performance across most datasets, with feature engineering

proving particularly beneficial for linear and SVM models. Notably, despite

significant differences in each model’s performance on the original datasets, the

performance after applying mCAFE tends to converge, suggesting that mCAFE

helps standardize the efficacy of different models.

3.5 Discussion

In automated and highly integrated systems, there is an increasing demand for

explainability and transparency in model decision-making, especially in crit-

ical applications. However, the complexity of data in pervasive computing

limits the performance of interpretable ML models, making them less effective

in such environments. Additionally, traditional expert-driven feature engineer-

ing is prone to information loss and high labor costs. While AFE offers the

potential to reduce human intervention and improve efficiency, it faces signif-

icant challenges in handling complex transformation sequences and dynamic

search strategies. Therefore, developing new methods to enhance the perfor-

51

mance and explainability of AFE, particularly in complex data environments,

is crucial.

In this chapter, we demonstrate that existing automatic feature engineering

methods can be significantly enhanced by leveraging two key insights. Our

findings suggest that effective feature engineering should incorporate sequence

information and composite transformations into the surrogate model, alongside

an appropriate selection policy. The proposed novel MCTS-based framework

employs an LSTM neural network for the expansion policy to efficiently navi-

gate the search space. Additionally, Thompson sampling is utilized to balance

exploration and exploitation in the selection policy. As a result, our approach

achieves superior performance compared to state-of-the-art methods for auto-

matic feature engineering on the majority of commonly used benchmarks. We

believe that further improvements could be made by incorporating transfor-

mations that reduce redundant and irrelevant features during the construction

process.

The operations used by the algorithm are straightforward mathematical op-

erations and the tree structure effectively illustrates their interactions. Exper-

imentally, we have shown that the algorithm achieves optimal performance at

a depth of 4, making the new features generated easy to track and understand.

This indicates that performance improvement does not come at the cost of ex-

plainability. By integrating this automated ML algorithm with an interpretable

model, we can enhance the effectiveness of the interpretable model in handling

complex tasks, allowing accurate decision interpretation.

Beyond the features used, it is understood that the choice of interpretable

model and its parameters also impact the model’s final performance. The per-

vasive computing domain imposes additional requirements on deployed mod-

els, such as specific modeling needs and performance improvements through

means other than feature engineering, which we will explore in the next chap-

ter.

52

4. Improve Model Performance with
Parameter Optimization

In the previous chapter, we explored how Automated Feature Engineering can

mitigate the challenges posed by complex data in pervasive computing (C1),

thereby improving model predictive performance and interperatability. Build-

ing on this foundation, this chapter expands our investigation to encompass

other crucial aspects of the automated ML pipeline, including feature selection,

model selection, and hyperparameter tuning. Furthermore, the deployment of

models in pervasive computing environments, particularly on battery-powered

edge devices, is often hindered by constraints such as limited battery life, the

demand for low-latency processing, and the requirement for compact model

sizes (C2). In this chapter, we examine the use of GA to optimize feature se-

lection, model selection, and hyperparameter tuning, taking into account these

operational constraints.

Corresponding Publication:. Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and

M. Beigl. Optimizing automl for tiny edge systems: A baldwin-effect inspired

genetic algorithm. In 22nd IEEE International Conference on Pervasive

Computing and Communicaitons (PerCom 2024), 2024

53

4.1 Introduction

In the realm of pervasive computing, the integration of AI capabilities within

compact edge systems is catalyzing digital transformation across diverse in-

dustries. These systems, notably Internet of Things (IoT) devices, wearables,

and smart textiles, are progressively advancing and are manifesting substan-

tial trends across various sectors. The potential applications for AI-enhanced

sensors and actuators appear boundless. Nevertheless, edge devices, which

are predominantly battery-operated, face significant challenges. These include

the capability to run multiple applications simultaneously with constrained re-

sources, such as limited battery life. Furthermore, the imperative for real-time

services demands the deployment of low-latency models on these devices.

These operational constraints render interpretable models more advanta-

geous compared to deep learning models due to their lower computational re-

quirements. Despite this advantage, the practical deployment of interpretable

models is hampered by their limited effectiveness. Optimization of these mod-

els generally requires extensive expert knowledge and involves labor-intensive

processes such as manual hyperparameter tuning, which is not only time con-

suming but also frequently suboptimal.

AutoML represents a pivotal advancement in automating the ML pipeline,

particularly by optimizing model performance within specific constraints. This

is especially applicable to diminutive edge systems, where AutoML system-

atically selects features, models, and model parameters tailored to meet the

stringent software and hardware constraints of these systems, which include

computational cost, latency, and memory limitations.

The methodologies employed in AutoML can be broadly categorized into

two distinct types: gradient- and heuristic-based search strategies. Gradient-

based approaches, exemplified by Neural Architecture Search (NAS), integrate

hardware considerations directly into a loss function. These systems refine

the model architecture under constraints using optimization techniques such as

gradient descent. This approach is evident in methodologies like NEAT [158].

Conversely, heuristic search strategies utilize a process of iterative candidate

generation and evaluation. As it is often complicated to formulate the valid

optimization space (such as complex resource constraints on the target hard-

54

ware) and complex objective functions in NAS. Our research focuses on highly

extensible methods based on GA. GAs have the additional advantage that par-

allelism can be easily exploited on any training hardware [115].

Despite the breadth of research conducted on GA, their application to small-

scale embedded systems remains fraught with challenges. This section eluci-

dates several primary obstacles:

• Multimodal Data Streams and Feature Complexity: Multimodal data

streams, characteristic of applications like human activity recognition,

often generate voluminous feature sets. For example, using tools such

as TsFel [15], up to 198 features may be extracted from each channel. In

the context of the PAMAP2 benchmark dataset [132], TsFel can identify

as many as 3564 distinct features from a single data sample. The prolif-

eration of features presents significant challenges for conventional GA

methodologies, primarily:

– The tendency to disproportionately focus on feature selection,

thereby sidelining the optimization of other crucial parameters.

– A notable increase in both the evaluation time and the variability

of this time across different candidates. This becomes particularly

evident when contrasting the evaluation times of simpler models

such as K Nearest Neighbor (KNN) with more complex models

like stochastic gradient descent. The latter requires approximately

25 seconds for a single evaluation on the PAMAP2 dataset, nearly

100 times longer than the former.

• Balancing Multiple Objectives: The optimization of embedded systems

for target hardware requires a careful balance between several often con-

tradictory objectives, such as model performance and latency. This bal-

ancing act tends to generate a multitude of non-dominated solutions,

thereby diminishing the search efficiency typically observed with con-

ventional GAs.

• Complex Feature Sets for Edge Tasks: Edge computing tasks demand

comprehensive and intricate feature sets due to the complexity of the

55

tasks they are designed to perform. Daily life activities such as brushing

teeth or washing dishes involve complex patterns and significant varia-

tions among subjects over prolonged durations. These activities necessi-

tate the integration of features from diverse domains, including temporal,

spatial, and frequency aspects. Traditional time series feature extraction

methods, such as TsFel, struggle to adequately capture these multidi-

mensional features, rendering them insufficient for effectively process-

ing such complex data.

• Parameter Optimization in Embedded ML Architectures: The optimiza-

tion of parameters within embedded ML architectures involves an in-

tricate interplay of diverse parameter types and their interdependencies.

Parameters specific to certain models may vary widely; while many are

numerical, choices related to feature and model selection often fall into

categorical types. Consequently, these differing parameter types neces-

sitate tailored optimization strategies to ensure effective handling and

integration within GA frameworks.

These challenges underscore the need for refined GA methodologies that

can adapt to the constraints and complexities inherent in embedded system

applications.

Building on the identified challenges, this chapter presents a novel adapta-

tion of GA tailored to AutoML challenges within constrained edge environ-

ments. This refined approach acknowledges and leverages the interdependence

of model parameters. It conceptualizes the optimization of individual parame-

ters as analogous to the evolutionary development witnessed in natural popula-

tions, mirroring the Baldwin effect where individual learning can influence ge-

netic evolution. This methodology ensures efficient resource use by promptly

eliminating suboptimal candidates early in the process and employs techniques

such as process pooling and early selection to markedly reduce the duration of

fitness evaluations, thus curtailing prolonged waiting times.

Furthermore, the proposed method resolves conflicts between multiple opti-

mization objectives by integrating them into a coherent set of goals with var-

ied priorities. To overcome the traditional constraints of feature extraction in

ML, we have developed a specialized neural network designed to extract and

56

leverage features across spatial, temporal and frequency domains. This en-

hancement not only broadens the scope of detectable features, but also substan-

tially improves the overall capability of the feature extraction process, making

it more suited for complex edge computing tasks. This integration of innova-

tive GA strategies and advanced neural network designs represents a significant

step forward in optimizing ML applications for tiny embedded systems.

4.2 Related Work

GA are algorithmic frameworks inspired by the principles of natural biolog-

ical evolution, aimed at discovering optimal solutions by emulating natural

selection and genetic variation. A typical GA involves several critical stages:

coding, population initialization, fitness evaluation, selection, crossover, and

mutation. These algorithms utilize a genetic space to represent potential solu-

tions indirectly, since they cannot interact directly with the actual parameters of

the problem space. For instance, in feature selection tasks, individual features

might be represented by Boolean values to denote their presence or absence in

the model training process.

Recent advances have demonstrated the versatility of GAs across various

applications. Magdum et al. [112] developed an enhanced GA to optimize Ar-

tificial Neural Network (ANN) performance for Optimal Power Flow (OPF)

applications, focusing on selecting the most effective weights and biases to re-

duce error rates and operational costs. Similarly, Ali et al. [6] implemented

a hybrid approach combining filter-based feature selection methods such as

information gain with GAs to refine feature selection further, significantly im-

proving cancer classification accuracy in complex microarray datasets. These

applications, however, are highly specialized and might not be readily transfer-

able to other contexts due to their task-specific designs.

At the frontier of algorithmic innovation, Blanchard et al. [21] introduced a

novel approach utilizing masked language models to facilitate mutation gen-

eration in GAs. This technique optimizes the generation of molecular string

representations for applications in drug development, identifying common sub-

sequences within genomes to create a vocabulary that aids in tokenizing and

rearranging genomes. Although this method has shown promise in molecu-

57

Figure 4.1.: The pipeline of the proposed algorithm.

lar applications, its adaptation to time series data remains challenging due to

the absence of consistent patterns and the intensive computational resources

required, suggesting the need for further investigation.

The task-dependent nature of GAs, underscored by the necessity to tailor

the coding of individuals to specific applications, highlights the importance of

developing specialized GA designs, particularly for applications in constrained

environments like tiny edge systems.

4.3 Method

The proposed algorithm represents a specialized adaptation of GA tailored for

tiny edge systems, adhering to the conventional GA process. Figure 4.1 delin-

eates the algorithm workflow. In this section, we will systematically unveil the

method, aligning with the sequential stages of the GA’s workflow.

58

4.3.1 Individual Coding Design

The algorithm proposed here is designed to augment the effectiveness of com-

putational models within small-scale edge devices by optimizing the entire

training process. This optimization involves the meticulous selection and tun-

ing of features, models, and their respective parameters.

Traditionally, in GA, each entity is characterized as a sequence whose ele-

ments correspond to parameter values within a defined problem space. How-

ever, when such algorithms are employed in specific applications like Wearable

Human Activity Recognition (WHAR), they face notable challenges. These

challenges include the variability in sequence length, which depends on the

model chosen, and an expansive search space for feature selection, which arises

from handling multimodal data sources.

In the refined approach, the optimization of model parameters is explicitly

separated from other parameters. In this method, individuals are encoded us-

ing a Boolean array to manage feature selection and an integer that specifies

the model choice. Building on this framework, each individual is equipped

with a mechanism that adjusts the parameters of the selected model and com-

putes a fitness score. This score evaluates the performance of the model in

relation to its designated objective. Importantly, the tuning of model param-

eters is not incorporated into the individual’s genetic makeup, and hence is

excluded from the genetic operations of crossover and mutation. Rather, it is

considered an external reflection of individual development. As the algorithm

progresses, these model parameters are refined incrementally. Moreover, each

individual includes an additional attribute: a ’result’ table. This table consists

of two columns that record the frequency of parameter adjustments within the

individual and the corresponding peak fitness scores obtained.

4.3.2 Populations Generation

The optimization of models for tiny edge devices involves inherent complex-

ities due to their multi-objective nature, which often encompasses conflict-

ing goals. To address this challenge, one viable strategy is the normalization

and integration of these sub-objectives into a unified framework. Drawing an

59

analogy to the categorization of academic disciplines into arts and sciences in

China, we propose the creation of distinct groups within the population. Each

group is directed by a unique combination of sub-objectives, prioritized differ-

ently to focus on particular performance aspects.

This methodology allows specific groups to concentrate on individual sub-

objectives, thereby maintaining an overall balance within the system. Further-

more, by differentiating these groups at the outset and promoting interactions

during the crossover phase of the GA, the approach aims to foster a synergistic

effect. This synergy is anticipated to yield progeny with enhanced traits, si-

multaneously ensuring the retention of genetic diversity across the population.

4.3.3 Individual Growth and Fitness Calculation

In contrast to conventional GA, where an individual’s fitness score is deter-

mined at inception, the proposed methodology facilitates the dynamic opti-

mization (growth) of individuals. This is accomplished through the continuous

refinement of the model parameters, predominantly numerical, using Bayesian

Optimization (BO). BO leverages a prior probability distribution to model the

behavior of the objective function, which is iteratively updated by assessing

candidate points within the search space, thereby gradually aligning the model

with the actual distribution of the objective function.

Furthermore, we have integrated the concept of ’age’ to monitor the num-

ber of evaluations each individual undergoes via BO. All individuals initially

have an age of zero. During each iteration of our method, individuals younger

than a predefined age threshold are subjected to the optimization process. The

evolution of fitness scores alongside the corresponding ages are meticulously

recorded in a designated fitness table termed ’results’.

Given the extensive data samples and the high number of features per sample

characteristic of tasks in edge devices, the BO optimization process for each

individual is notably prolonged. To efficiently manage this, we employ a pro-

cess pool that parallels individual growth, aligning the size of the pool with the

number of CPUs on the device. As shown in Figure 4.1, individuals are se-

quentially enqueued into the process pool, and as computing resources become

available, the next individual is processed. This queue order is predicated on

60

their initial order of entry into the pool.

It is critical to recognize that not all individuals are subjected to the selection

process in each iteration. The substantial variance in growth durations among

individuals suggests that waiting for the completion of all growth processes

before advancing to the selection phase would be impractical. Therefore, we

implement an ’early selection’ strategy within the process pool. Specifically, a

threshold is established: once the number of individuals that have completed

their growth surpasses this threshold, they are immediately advanced to the

selection stage. Those that remain in the pool are deferred to the subsequent

selection cycle, ensuring an efficient progression of the optimization process.

4.3.4 Individual Selection

In this study, each participant is characterized by a unique ’results’ fitness table,

the dimensions of which vary due to the differing experiential backgrounds of

the individuals involved. To facilitate a fair comparison and ranking of these

variably-sized matrices, a methodological preference is instituted. Specifically,

enhanced scores are given priority among younger participants, while a wealth

of experience benefits older participants. This approach aligns with the rank-

ing protocol delineated in Algorithm 1. Subsequent to the ranking process,

individuals positioned lower in the hierarchy are archived. This archiving pro-

cess is thorough, encapsulating all relevant data, such as feature and model se-

lections, optimal parameters, and peak fitness scores, which are meticulously

documented in an external file for subsequent utilization. This comprehensive

repository of data is crucial for the creation of new individuals in the study.

61

Table
4.1.:T

he
processes

executed
in

process
pool.

62

Algorithm 1 Individual Selection

Require: results: A dictionary with DataFrames, ratio: Ratio of Individual to

keep

Ensure: li_keep: list containing individual ids to keep

1: all_ages← sorted unique ages from results

2: Initialize rank_d f as a DataFrame with index as all_ages

3: for each age in all_ages do
4: Initialize lists: scores, ids

5: for each id,d f in results do
6: if age is in d f [′age′] then
7: score← score for the given age in d f

8: Append score to scores and id to ids

9: end if
10: end for
11: ranks← rank scores in descending order

12: for each id,rank in ranks do
13: Assign rank to rank_d f for the corresponding age and id

14: end for
15: end for
16: average_ranks←mean of rank_d f

17: li_keep← top items of average_ranks based on ratio

18: return li_keep

4.3.5 Crossover and Mutation

In this research, we implement a dual-tier crossover strategy, integrating both

intra-population and inter-population exchanges, as specified in Algorithm 2.

Candidate selection within each population is conducted through a randomized

process, and the transfer of characteristic and model values follows a predeter-

mined probability distribution. This stochastic approach is preferred over a

deterministic half-swapping method. The rationale for this preference is based

on observations from the TsFel framework, where there is a tendency to cluster

63

correlated features. Such clustering results in the concentration of high-quality

features within specific regions of the feature array, which could reduce the

efficacy of a straightforward half-swapping strategy.

Algorithm 2 Crossover for Feature

Require: individual1, individual2
Ensure: child1,child2: Two new feature arrays derived from the parents

1: parent1← individual1. f eatures
2: parent2← individual2. f eatures
3: Initialize child1 and child2 as zero arrays of the same shape as parent1

and parent2
4: Generate a mask bool array with random value of the same length as

parent1
5: for each index i in the range of length of parent1 do
6: if mask[i] is 1 then
7: child1[i]← parent2[i]
8: child2[i]← parent1[i]
9: else

10: child1[i]← parent1[i]
11: child2[i]← parent2[i]
12: end if
13: end for
14: return child1,child2

The mutation process in our GA is intricately designed to complement the

crossover strategy, operating under a predefined probability that dictates the

occurrence of feature and model mutations. When activated, this mutation

induces deviations in the selected feature or model values from their original

configurations. Such deviations introduce novel variations into the GA search

process, thereby enhancing the exploratory capabilities of the algorithm and

potentially improving solution diversity and robustness.

4.3.6 New Individual Generation

Given the expansive search space inherent in GA, relying solely on the

crossover and mutation mechanisms often results in suboptimal exploration

efficiency. To address this limitation, we incorporate heuristic methods that

64

leverage data from the selection process, thereby facilitating the generation of

new individuals and significantly enhancing search efficiency.

Moreover, we have developed tailored strategies for the creation of feature

and model candidates, which are based on the unique characteristics of individ-

ual components. Drawing inspiration from [72], we employ two distinct MLP

networks for the generation of feature candidates. The first network acts as a

generator, employing Gaussian noise to produce a one-dimensional float array

of values within the [0,1] interval. A predefined threshold is then applied to this

output to formulate a candidate feature array. The second network serves as an

evaluator, which receives a feature array and a model selection value as input,

subsequently producing a single float value that estimates the fitness score of

the specific feature-model combination. This bifurcated approach allows for a

more nuanced and effective generation and evaluation of potential candidates

within the GA framework.

We refine the functionality of our GA by integrating two specialized net-

works: the generator and the evaluator, the latter being trained using data from

an external file and a Mean Standard Error (MSE) loss function. Upon com-

pleting the training of the evaluator network, its weights are fixed to maintain

consistency in fitness estimation. The generator network, which inputs Gaus-

sian noise to produce candidate features, is then coupled to the fixed evaluator.

In this setup, the output of the generator, combined with a randomly chosen

model value, forms the input for the evaluator. We enhance the generator’s

performance by optimizing it to maximize the output of the evaluator, utilizing

the straight-through estimator to facilitate effective gradient descent between

the two networks. This strategy ensures a diverse array of feature candidates

due to the stochastic nature of the generator’s input.

For model selection, we employ the UCB strategy, detailed in Huang et al.

(2023). This approach utilizes aggregated data from the external file, including

the total number of trials v, the number of times each model i has been assessed

(vi), and their mean fitness scores f . The selection score for each model i is

calculated as follows:

scorei = f + γ

√︄
logv

vi
,

65

where γ represents the exploration weight. This formula facilitates a strate-

gic balance between exploiting known models and exploring those less fre-

quently used, optimizing the search for the most effective models within the

GA framework.

The proposed method iterates the above processes, growth, selection,

crossover, mutation, and individual generation, until a predefined condition

is reached.

4.3.7 Neural Network Feature Extraction

The complexity of multimodal data processed by diminutive edge systems ne-

cessitates robust feature extraction capabilities. To address this challenge, we

devised a streamlined neural network architecture, depicted in Figure 4.2. This

architecture comprises three distinct branches, each equipped with a dual-layer

convolutional setup, where the output channel size is fixed at 16. The network

is engineered to extract features reflecting the temporal, spatial, and frequency

dimensions of the multimodal data. These extracted features are then inte-

grated to facilitate accurate target prediction. As illustrated, the parameters T ,

S, and c represent the time duration for each prediction sample, the number

of sensor channels, and the number of channels output by each convolutional

layer, respectively. Post-training, the features harvested from each branch are

combined with those derived via ML techniques, forming a comprehensive set

of candidate features for subsequent training of the target model.

4.4 Evaluation

In this section, we outline an experimental framework designed to assess the

effectiveness of our proposed algorithm. The primary objectives of the experi-

ment are twofold: first, to benchmark the performance of our algorithm against

contemporary state-of-the-art GA; and second, to dissect the influence of each

discrete component within our algorithm. This systematic decomposition will

facilitate a detailed understanding of how individual elements contribute to the

aggregate efficacy of the algorithm. This approach not only substantiates the

algorithm’s performance, but also elucidates the functional importance of its

66

Ta
bl

e
4.

2.
:T

he
ne

ur
al

ne
tw

or
k

fo
rf

ea
tu

re
ex

tr
ac

tio
n.

67

constituent components.

4.4.1 Benchmark Models

To validate the efficacy of the proposed model and elucidate the functional con-

tributions of its components, we undertake a comparative performance analy-

sis involving several algorithmic configurations: (i) Baseline Algorithm: Uti-

lizes a conventional GA to establish a performance benchmark. (ii) Neural

Network Algorithm (nn): Implements the three-branched neural network pro-

posed in our model. (iii) No Suggestion Algorithm (noSuggestion): Oper-

ates the proposed algorithm devoid of neural network recommendations. (iv)

No Growth Algorithm (noGrowth): Executes the proposed algorithm while

omitting the individual growth component. (v) No Neural Network Algorithm

(noNN): Deploys the proposed algorithm without integrating features gener-

ated by the specifically designed neural network. (vi) No Early Selection Al-

gorithm (noEarlySel): Tests the proposed algorithm by extending the fitness

calculation until all tasks in the job pool are completed. (vii) Proposed Al-

gorithm: Engages the fully integrated version of the proposed algorithm as

intended.

4.4.2 Benchmark Datasets

To evaluate the proposed method across diverse scenarios while ensuring

methodological consistency with existing research, we employ two benchmark

datasets extensively utilized in the field of WHAR. These datasets are: (i)

HAPT Dataset (Human Activity and Posture Transition): A widely recognized

dataset that provides comprehensive data suitable for testing activity recogni-

tion algorithms [133]. (ii) PAMAP2 Dataset (Physical Activity Monitoring for

Aging People): Another pivotal dataset that includes a variety of sensor data

specifically collected to enhance physical activity recognition algorithms [132].

The choice of these datasets allows for a rigorous assessment of the proposed

method under varied conditions, facilitating direct comparison with other stud-

ies in the domain, and promoting the reliability and validity of our experimental

results.

68

4.4.3 Experiment Setup

In this study, we utilized the Raspberry Pi Zero W, equipped with 512 MB of

memory, as the primary computing platform. During the experimental phase,

the maximum number of generations for the proposed algorithm was limited to

30. The selection and crossover probabilities were maintained at 0.1, while the

mutation probability was set at 0.01. Each iteration of the algorithm involved

five evaluations.

The algorithm was designed to optimize three sub-objectives: maximizing

prediction accuracy and F1 score, and minimizing inference time. A strict con-

straint was imposed based on the available memory; if memory consumption

exceeded 100 MB, the fitness value was adjusted to -1. Memory usage was

assessed using the ’getsize’ function from the ’os’ package, following the seri-

alization of the trained model via ’joblib’.

Given the challenge of detecting minute variations in inference time during

practical applications, we introduce a latency fitness calculation, expressed as

(latency%0.02)λ , where λ represents the assigned weights.

The population was divided into two groups, each comprising 50 individuals.

Each group aimed to achieve a composite objective, weighted as [0.7,0.2,0.1]

and [0.2,0.7,0.1] respectively, aligning with the three sub-objectives. To en-

hance the stability of our algorithm, a 5-fold cross-validation approach was

employed to compute the fitness scores.

To establish the model’s generalizability, the dataset was partitioned into

training and test sets using the leave-one-subject-out method. The training set

was used to determine the optimal parameter settings, and the efficacy of the

model was subsequently evaluated on the test set. For comparison, a conven-

tional GA was configured with a maximum of 150 generations, maintaining

the evaluation count consistent with our proposed model. All other parameters

of this conventional algorithm mirrored those of the proposed method.

The training of the generator, evaluator and feature extraction networks em-

ployed the Adam optimizer [94], initialized with a learning rate of 10−3. Batch

training was conducted with a designated batch size of 16. The objective func-

tion of the feature extraction network was the cross-entropy loss [154]. The

training protocol did not incorporate early stopping strategies or learning rate

69

Table 4.3.: Accuracy performance of the proposed algorithm
baseline nn noSuggestion noGrowth noNN noEarlyCal proposed

HAPT 94.2 95.1 95.1 95.4 95.2 95.8 95.7
PAMAP2 85.3 80.1 73.3 85.1 83.5 85.8 85.6

adjustments. The training process was capped at a maximum of 50 epochs.

4.4.4 Result

The experimental results are summarized in Table 4.3. The data clearly indicate

that the proposed model outperforms the baseline in both scenarios, thereby

demonstrating the effectiveness of the proposed algorithm. Furthermore, it

was observed that the synergistic approach, which integrates neural network

features with ML features, enhances performance compared to the ’noNN’ and

’nn’ algorithms.

A significant decline in performance was detected in the ’noSuggestion’ al-

gorithm, primarily due to model overfitting to the training dataset. The perfor-

mance of the ’noEarlySel’ and the ’proposed’ algorithms are closely matched;

however, a substantial difference was noted in their computational efficiency.

The proposed algorithm completed its execution in approximately 21 hours,

whereas the ’noEarlySel’ algorithm required 29 hours to achieve a similar out-

come. This finding underscores the improved computational efficiency of the

proposed algorithm. Additionally, the reference time for all models after opti-

mization is less than 0.02 seconds.

4.5 Discussion

In pervasive computing, the growing demand for efficient and effective inter-

pretable models, particularly within resource-constrained edge environments,

presents significant challenges. The complexity of multimodal data streams

and the requirement for low-latency, real-time processing often render tra-

ditional interpretable models inadequate for these settings. Additionally, the

manual tuning typically required by expert-driven methods is not only labor-

intensive but also frequently suboptimal. Although AutoML holds promise in

70

automating and optimizing the ML pipeline, it encounters substantial difficul-

ties when applied to embedded systems. These challenges stem from limited

computational resources and the necessity of balancing multiple, often con-

flicting, objectives. Consequently, there is a pressing need to develop novel

approaches that enhance the performance and adaptability of AutoML, with a

particular focus on refining GA for improved deployment of interpretable ML

models in pervasive computing environments.

This chapter presents a novel variant of GA specifically designed to opti-

mize AutoML tasks within these constrained contexts, addressing the unique

challenges they pose. The approach acknowledges the interdependence of the

model parameters and draws inspiration from the Baldwin effect in natural evo-

lution, where individual learning influences genetic evolution. By adopting this

conceptual framework, the proposed method facilitates efficient optimization

of individual parameters. To further enhance resource efficiency, the method

incorporates early elimination of suboptimal candidates using techniques such

as process pooling and early selection. These strategies significantly reduce the

time required for fitness evaluations, thereby minimizing waiting times and im-

proving overall efficiency. Furthermore, to address the need to balance multiple

conflicting objectives, the method integrates these objectives into a coherent set

of goals with prioritized weighting. This ensures that all relevant objectives are

adequately considered and harmonized throughout the optimization process.

Through the proposed method, we not only address the technical challenges

of optimizing AutoML in pervasive computing environments, but also ensure

that the resulting models are interpretable and trustworthy. While this method

paves the way for broader acceptance and trust in AI-driven systems, there is

another point worth noting: the decisions of interpretable models are based

on data features, some of which are inherently unfriendly and difficult to un-

derstand for non-experts. For example, changes in kinetic energy. In the next

section, we will discuss the possibility of using interpretable models to obtain

more accessible explanations.

71

5. Explain with Large Language Model

Since the launch of ChatGPT on 30 November 2022, Large Language Models

(LLMs) have garnered substantial attention from both established technology

companies and emerging startups. These organizations have invested heavily

in LLMs, driving the fine-tuning and optimization of these models for spe-

cialized applications across various fields. In particular, LLMs customized for

sectors such as healthcare, law, and finance have been significantly refined to

enhance their specialization and accuracy by utilizing domain-specific datasets.

Given the extensive foundational knowledge embedded in LLMs, their emer-

gent causal reasoning capabilities, and the growing need for specialized knowl-

edge to interpret applications within pervasive computing environments, it is

crucial to explore the potential of LLMs in improving model explainability.

This investigation is the primary focus of the research presented in this chap-

ter.

Corresponding Publication:. Y. Huang, Z. Xue, H. Ma, and M. Beigl.

Generate explanations for time-series classification by chatgpt. Explainable

Artificial Intelligence, Malta, 17th–19th June 2024, 2024

73

5.1 Introduction

Expertise plays a pivotal role in interpreting black-box models within the realm

of pervasive computing, a field characterized by the integration of numerous

devices and sensors. These devices collectively gather multifaceted and het-

erogeneous data from varied environments, embodying rich contextual details

such as user behaviors, environmental conditions, and interactions among de-

vices. The complexity and diversity of these data necessitate profound exper-

tise for effective comprehension and interpretation.

Moreover, the causal dynamics within pervasive computing is inherently

more intricate than those encountered in simpler systems such as image recog-

nition. In the latter case, the relationship between inputs and outputs tends to

be more linear, for instance, correlating an image of a cat directly with the la-

bel "cat". In contrast, in pervasive computing, inputs such as sensor readings

and the resultant system behaviors are often influenced by numerous interact-

ing factors. Expert insight is crucial for elucidating these complex interactions,

thereby enriching our understanding of model behaviors and enhancing the ac-

curacy of interpretations.

Since its launch on 30 November 2022, the advent of ChatGPT has sig-

nificantly propelled the prominence of LLMs. These models have attracted

substantial investments from a broad spectrum of technology corporations and

startups alike. LLMs undergo training on expansive datasets, which range in

size from hundreds of gigabytes to several terabytes. These datasets are de-

rived from a diverse compilation of sources, including books, articles, research

papers, Wikipedia entries, social media updates, and news reports, encompass-

ing a broad spectrum of disciplines such as science, technology, medicine, law,

history, and literature. Through rigorous large-scale pre-training processes,

LLMs assimilate and internalize a wealth of background knowledge and con-

textual nuances, thereby acquiring the capability to comprehend and generate

high-quality content across various subjects.

Furthermore, the architecture of LLMs, characterized by deep neural net-

works, incorporates tens of billions of parameters. This intricate architecture

endows LLMs with enhanced reasoning and expressive capacities essential for

managing complex tasks. The comprehensive knowledge base and advanced

74

computational abilities of LLMs position them as formidable tools for the in-

terpretation of black-box models within the domain of pervasive computing,

promising significant advancements in understanding and application.

To date, research on LLMs has predominantly centered on time series pre-

dictions, with a notable absence of studies addressing time series classification

and its associated explainability. This gap highlights a critical area of poten-

tial development within the field. Consequently, this paper proposes to pioneer

research on this underexplored topic by examining a novel methodology for

generating explanations in time series classification tasks.

Our proposed method leverages ChatGPT to perform classifications on data

samples and subsequently provides explanations for these classifications. It is

essential to acknowledge that, while GPT models exhibit remarkable linguistic

capabilities, their proficiency in processing numerical data is somewhat lim-

ited compared to conventional numerical methods. Therefore, our approach

consciously accepts a minor compromise in accuracy in exchange for the ca-

pacity to elucidate the underlying reasoning of the model’s classifications. The

implementation code for this methodology is publicly accessible and can be

found on GitHub1.

5.2 Related Work

The landscape of time series classification has been enriched by several tradi-

tional methodologies aimed at enhancing explainability. Among these, the pio-

neering work of Senin et al. using Symbolic Aggregate approXimation (SAX)

and vector space models stands out [148]. This technique facilitates the ranking

of time series patterns according to their significance, laying the groundwork

for further innovations in interpretable time series classification such as Fea-

ture Importance Ranking (FIR). While this method advances explainability, it

does not necessarily achieve optimal classification performance.

Building on the principles established by the Local Interpretable Model-

agnostic Explanations (LIME) framework [134], Guillemé et al. introduced

an innovative approach known as the Local Explainer For TIme Series classifi-

1https://github.com/lab992/Generate_explanations_for_classification_by_
ChatGPT

75

https://github.com/lab992/Generate_explanations_for_classification_by_ChatGPT
https://github.com/lab992/Generate_explanations_for_classification_by_ChatGPT

Raw train
dataset Feature table

Feature table
with top-k
features

Decision Tree

If feature_1 > 6.0 &
feature_2 > 0.233,

then: Class 2

Classification
Rules

......

TSFRESH Rank Classify Transform

Figure 5.1.: Extract classification rules from train dataset
caTion (LEFTIST) [59]. As the first model-agnostic tool in this domain, LEFT-

IST is designed to provide explanations for predictions made by any time series

classifier. It demonstrates that these explanations can significantly aid users in

understanding classifications, particularly in straightforward scenarios. This

development marks a significant step forward in making time series classifica-

tion both more accessible and understandable.

In a similar vein to prior advancements, Torty et al. [157] have introduced the

LIMESegment framework, which represents a significant enhancement over

the current state-of-the-art modifications of the Local Interpretable Model-

agnostic Explanations (LIME) specifically tailored for time series classifica-

tion, such as those developed by Neves et al. [122]. LIMESegment is recog-

nized for generating explanations that are not only more faithful, but also more

robust compared to its predecessors [157].

Our research underscores the vital importance of local explanations in the

realm of time series classification. Through detailed analysis of data patterns,

these local explanations prove to be both dependable and insightful. Build-

ing on this foundation, we advocate for an innovative approach that integrates

LLMs with local explanatory mechanisms. This integration aims to enhance

the reliability of the explanations while maintaining their comprehensibility,

thereby facilitating a deeper understanding of time series classification pro-

cesses. This proposed synergy could potentially bridge the gap between ad-

vanced computational models and user-centric explainability.

5.3 Method

5.3.1 Components of Prompt

The methodology proposed here involves a nuanced process of transforming

time series data into a narrative of movements. This narrative serves as a basis

76

for ChatGPT to categorize the data into distinct classes. Subsequently, Chat-

GPT elucidates the reasoning behind its classification, providing insight into

the decision-making process.

To generate a comprehensive response from ChatGPT, the construction of

a well-formulated prompt is crucial. A prompt typically consists of two pri-

mary components: context and query. The context part provides essential

background information and outlines the classification rules. This background

details the data measurement scenario, equipping ChatGPT with a thorough un-

derstanding of the task at hand. This clarity is instrumental in enabling Chat-

GPT to comprehend the context and goals associated with the classification

challenges it faces. The rules of classification included in the context serve as

a directive, derived from the training dataset, which instructs ChatGPT on how

to accurately classify the provided narrative descriptions of test data samples

according to their features.

The query segment of the prompt should then pose a specific question that

addresses both the correct classification and the rationale behind it. It is also

essential to specify the desired format of the response to ensure that it is easily

comprehensible. The instructions should be clear to ChatGPT to avoid deliv-

ering responses in a code format.

In addition, the paper will introduce a detailed methodology for crafting

descriptions of both the classification rules and the test data samples. This

approach ensures that the underlying mechanisms of time series classification

are transparent and understandable, thereby enhancing the explainability and

applicability of the model in real-world scenarios.

5.3.2 Extract Classification Rules

The incorporation of data descriptors in the methodology, rather than direct

input of raw time series data into ChatGPT, provides multiple benefits. Pri-

marily, this approach mitigates the constraints imposed by ChatGPT’s limited

input capacity, as raw data often surpass these limitations. Additionally, Chat-

GPT’s processing of multi-digit numbers may be flawed, potentially leading to

inaccuracies in data analysis and classification [7]. Thus, the development of

an effective method to describe time series data is imperative. Utilizing classi-

77

fication rules derived from the training dataset emerges as an effective strategy

to address these computational challenges.

The procedure for extracting classification rules is delineated in Figure 5.1.

Describing data through the use of features yields a more comprehensive un-

derstanding than employing numerical values. These features provide context

and enhance the interpretative depth of the analysis by elucidating the under-

lying characteristics of the data. Initially, the TSFRESH framework [28] is

employed to generate a feature table containing hundreds of features extracted

from the training dataset. Given the complexity associated with interpreting a

vast array of features, those generated by TSFRESH are subsequently priori-

tized through a decision tree analysis, retaining only the most informative top k

features. The refined feature table is then utilized to train a decision tree model.

The final phase involves the extraction of classification rules from the decision

tree, which are then converted into a textual format to facilitate accurate data

classification by ChatGPT.

5.3.3 Generate Lookup Table

To enhance the precision and consistency of generating descriptions for classi-

fication rules and test data samples, the creation of a lookup table is essential.

This table functions as a pivotal reference, elucidating the meanings of various

features employed in both the classification rules and the test data. The estab-

lishment of such a table significantly improves the accuracy of the descriptions

produced.

The lookup table is structured into four columns: ‘Feature Name’, ‘Mean-

ing’, ‘Type’, and ‘Value’. Each column plays a crucial role in the interpretation

process:

• Feature Name: This column lists the identifiers assigned to specific

features, facilitating easy reference.

• Meaning: It provides a contextual explanation of the feature, enhancing

understanding of its relevance and function within the dataset.

• Type: This column classifies the grammatical nature of the feature’s

78

meaning (e.g., noun or adjective), which is instrumental in crafting co-

herent and grammatically correct descriptions.

• Value: It quantifies the significance or magnitude of the feature, offering

additional insights into its relative importance or measure.

An example of this lookup table, as utilized by the classification rules, is

depicted in Figure 5.2. This structured approach not only supports accurate

translation of data into descriptions, but also ensures uniformity across differ-

ent datasets and analytical processes.

As illustrated in Figure 5.2, a single classification rule can include multi-

ple features whose meanings are not immediately clear, even with documen-

tation such as that provided by TSFRESH. For instance, the feature num-

ber_crossing_0 is described merely as the number of crossings, a definition

that lacks a tangible physical interpretation.

To remedy this deficiency, we have employed ChatGPT to provide more

accessible explanations of these technical features. The interaction, in which

ChatGPT clarifies that a high value of number_crossing_0 indicates frequent

directional changes or variations in acceleration, is documented in Figure 5.3.

This interaction underscores ChatGPT’s capability to render abstract data char-

acteristics into comprehensible explanations.

The elucidations provided by ChatGPT are then meticulously selected to

define the meanings of features, as represented in Figure 5.2. This selection

process ensures that each feature is accompanied by a clear and contextually

relevant description.

Furthermore, the actual values of these features are recorded directly in the

lookup table. This data is crucial as it forms the foundation for accurately

describing the features in terms of their operational significance within the

dataset. This structured approach ensures that each feature is not only de-

fined but also quantitatively assessed, enhancing the overall explainability of

the classification rules.

79

if number_crossing_0 < 6.0, and agg_linear_trend_attr_‘‘intercept’’_ > 0.4, then class: 3

Feature name Meaning Type Value
number_crossing_0 Direction changes Noun 6.0

GPT Manually DirectlyDirectly

Figure 5.2.: the pipeline of generating lookup table

User: number_crossing_0 is a time series feature, what can you infer from this
feature if this value is big during a measurement of accelerometer on x-axis.
Give me only one most important pattern.
ChatGPT: A significant value of “number_crossing_0” in the context of ac-
celerometer measurements on the x-axis typically indicates a pattern of rapid
and frequent changes in direction or acceleration. This could suggest that the
object or system being measured is undergoing dynamic and possibly complex
movements, such as sudden stops and starts, sharp turns, or oscillations. Such
patterns are often associated with activities like vehicular motion, sports activ-
ities, or machinery operations where rapid changes in movement direction or
intensity occur frequently.

Figure 5.3.: The example of ask GPT to explain the given feature

5.3.4 Translate Data to Description

Upon constructing the lookup table, the process of translating the data into

descriptive terms is facilitated. The columns labeled "Type" and "Value" within

this table are instrumental in articulating the significance of each data feature,

guiding the semantic interpretation essential for comprehending the underlying

dataset.

The quantification of a feature is pivotal in determining its grammatical cat-

egorization. For instance, when the frequency of occurrence of a feature is

of particular importance, it is classified grammatically as a noun. Descriptive

terms such as "a lot of" or "few" are then employed based on comparative anal-

ysis; if the data feature’s value surpasses the threshold specified in the "Value"

column of the lookup table, the phrase "a lot of" is utilized. Conversely, if it

falls below, the term "few" is used to describe its prevalence.

Furthermore, the degree to which a feature influences or contributes to the

dataset dictates its classification as an adjective. In such instances, descriptors

80

like "big" or "slight" are used to convey the extent of the feature’s impact or

significance, thereby providing a nuanced understanding of its role within the

broader context of the data analysis.

For classification rules, consider the rule depicted in Figure 5.1 as illustra-

tive: "if number_crossing_0 < 6.0 and agg_linear_trend__attr_"intercept"2 >

0.4, then assign to class 3." The system utilizes the lookup table to automat-

ically translate the values associated with these features into more intuitive

descriptors. Consequently, the original rule is rendered as: "If there are few

direction changes and a significant decreasing trend, then classify as class 3."

In the context of evaluating a test data sample, as shown in Figure 5.1, a num-

ber_crossing_0 value of 9.0 translates to "A lot of direction changes," given

that this value exceeds the established threshold of 6.0. The test sample is thus

described using the translated meanings derived from the lookup table for each

feature.

Subsequently, the comprehensive information,including an explanation of

the classification rules, a description of test data samples, and the overarching

objective, is sent to ChatGPT. Armed with this context, ChatGPT is tasked

with classifying the data and elucidating the rationale behind its classifications,

thereby ensuring a clear and informed decision-making process.

5.4 Evaluation

5.4.1 Experiment Setup

This study utilizes human activity recognition datasets, chosen for their intu-

itive alignment with natural human activities, enhancing the explainability of

model explanations. For instance, a dataset sample exhibiting a periodic pat-

tern can be directly linked to rhythmic activities, such as shaking. We incorpo-

rate three distinct datasets in our analysis. AllGestureWiimoteX3, Basketball

motion4, and HMP5. From each dataset, we randomly selected three represen-

2This attribute signifies a decreasing trend.
3https://www.timeseriesclassification.com/description.php?Dataset=
AllGestureWiimoteX

4https://archive.ics.uci.edu/dataset/587/basketball+dataset
5https://github.com/wchill/HMP_Dataset

81

https://www.timeseriesclassification.com/description.php?Dataset=AllGestureWiimoteX
https://www.timeseriesclassification.com/description.php?Dataset=AllGestureWiimoteX
https://archive.ics.uci.edu/dataset/587/basketball+dataset
https://github.com/wchill/HMP_Dataset

Lookup
table

D
escription of

classification rules

If there are few
 changes in the direction and

a big decreasing trend, then class 3.

C
lassification rules

agg_linear_trend
__attr_"intercept > 0.4

num
ber_crossing < 6.0

C
lass 3

D
escription of test data

sam
ple

There are a lot of changes in the direction
and a slight decreasing trend.

Lookup
table

Test data sam
ple

agg_linear_trend
__attr_"intercept = 0.23

num
ber_crossing = 9.0

Table
5.1.:Translate

data
to

description

82

tative classes to facilitate a complete evaluation.

The efficacy of our classification models is quantified using accuracy as the

primary metric. This metric reflects the proportion of test samples that are cor-

rectly classified, calculated as the ratio of correctly classified instances to the

total number of evaluated instances. This approach provides a clear measure

of model performance across various datasets.

Our empirical assessments are conducted using three advanced models.

GPT-3.5-0301, GPT-3.5-0613, and GPT-4-0613. These models were chosen

to explore the impact of evolving natural language processing capabilities on

classification accuracy in complex activity recognition tasks.

As a comparative baseline, we employ a decision tree classifier. Feature se-

lection is conducted using the TSFRESH package, which identifies the most

significant features from the training samples. The top three features of each

class are then used to construct the feature table, which serves as input for the

decision tree classifier. The classification accuracies achieved are 68.33% for

AllGestureWiimoteX, 66.66% for Basketball motion, and 100% for the HMP

dataset. This baseline serves to benchmark the performance enhancements of-

fered by more advanced models.

5.4.2 Result

The results presented in Table 5.2, indicate that the accuracies of the various

models are closely aligned with the baseline. Consequently, it can be deduced

that our methodology demonstrates universality across selected human activity

recognition datasets.

Moreover, an analysis of the model-specific accuracies reveals a clear trend:

as the sophistication of the model increases, so does the performance of our

method. Specifically, experiments employing GPT-4 consistently yield higher

accuracy than those using GPT-3.5-turbo-0613, which, in turn, outperforms

GPT-3.5-turbo-0301 across all datasets. This observation supports the hypoth-

esis that advances in model architecture contribute positively to the efficacy of

classification in human activity recognition tasks.

A representative example of the explanatory ability of the method is illus-

trated in Figure 5.4, which clearly shows how ChatGPT can identify and artic-

83

ulate the nature of a shaking movement. This example underscores the intuitive

clarity of the explanations generated by our approach, thereby enhancing the

explainability of the classification results.

Table 5.2.: The accuracy of experiments on 3 datasets
Motion Baseline GPT-3.5-0301 GPT-3.5-0613 GPT-4

AllGesture

Shake hand 75% 66% 67% 70%
Move to left 50% 50% 52% 48%

Move to right 80% 79% 78% 80%
Total 68.33% 65% 65.67% 66%

Basketball

Dribble 100% 100% 100% 100%
Hold 100% 100% 100% 100%
Pass 0% 0% 0% 0%
Total 66.66% 66.66% 66.66% 66.66%

HMP

Comb hair 100% 24% 80% 92%
Descend stair 100% 100% 100% 100%
Lie down bed 100% 100% 100% 100%

Total 100% 74.67% 93% 97.33%

5.5 Discussion

5.5.1 Limitation

3-Class Classification The experimental framework initially involved datasets

comprising multiple categories. In order to focus specifically on evaluating

ChatGPT’s explanatory capabilities, we streamlined the complexity of the ex-

periment by selecting only three classes from each dataset. This reduction

was aimed at facilitating a more focused analysis of the generated explanations

within a manageable experimental scope.

Manual Selection of Feature Meanings As outlined in Section 5.3.3, the

selection of meanings for each feature was conducted manually. This approach

was chosen to ensure precision in the interpretation of features within the con-

text of the experiment. Nevertheless, an alternative methodology could incor-

porate the use of a ML model designed to automatically identify and extract

relevant keywords from ChatGPT responses, which would potentially enhance

the efficiency and scalability of feature interpretation.

Discussion While LLMs have shown promise in various applications, their

84

ChatGPT: According to the given descriptions, your data sample seems to fall
into two categories - ‘shake hand’ due to the lots of changes in direction, and
‘move to left’ due to a big decreasing trend and few increasing values.
However, identification of movement is often prioritized by the most distinc-
tive feature that clearly separates one from the others. The ‘shake hand’ gesture
is most prominently characterized by a lot of changes in the direction. This
aspect, along with the decreasing trend and few increasing values, may sug-
gest that the hand movement involved repeatedly turning the hand left and
right, while gradually dropping it down a bit, a very likely movement pattern
for a shaking hand, thus falling into the ‘shake hand’ category.
On the other hand, the ‘move to left’ gesture is characterized by few changes
in the direction and a strong decreasing trend. Even though these aspects are
present in your data sample, the many changes in direction do not match the
key characteristic of ‘move to left’, i.e., ‘few changes in direction’. Hence, it
would be more accurate to categorize this data sample as shaking hand.
So, to summarize: [Class: shake hand].

Figure 5.4.: Explanation of shake hand

potential in time series classification and explainability remains underexplored.

This chapter aims to bridge this gap by developing a novel methodology that

leverages the capabilities of LLMs, particularly ChatGPT, to provide inter-

pretable explanations for time series classification, thereby advancing the un-

derstanding and application of AI in pervasive computing. To this end, we

introduced a novel methodology for generating interpretable explanations in

time series classification tasks, particularly within the realm of human activ-

ity recognition. Our approach leverages the capabilities of LLMs to produce

explanations that are not only accurate, but also align with human cognitive

processes, as confirmed by evaluative studies.

The generality and effectiveness of our method have been validated across

various datasets in the field of human activity recognition, consistently yield-

ing high accuracy. This supports the robustness and adaptability of our ap-

proach. Furthermore, ongoing advancements in LLMs technologies suggest

that future improvements in model performance will enhance the efficacy of

our methodology. Notably, comparative analysis has demonstrated that GPT-4

outperforms its predecessor, GPT-3.5, in generating more coherent and contex-

tually appropriate explanations.

85

5.5.2 Summary

The preceding three chapters have collectively addressed the challenge of en-

hancing the predictive performance of interpretable models in the pervasive

computing domain. This challenge arises from the intricate nature of the

data (C1) and the demanding requirements for transparency and efficiency in

constrained systems (C2). In Chapter 3, we explore the limitations of tradi-

tional feature engineering and propose a novel automated feature engineering

approach that leverages sequence information and composite transformations

within a MCTS-based framework. This method demonstrated that it is possi-

ble to significantly improve the performance of interpretable models without

sacrificing their transparency, particularly in complex data environments.

Chapter 4 built on this foundation by addressing the constraints of perva-

sive computing environments, such as limited computational resources and the

need for real-time processing. We introduced an enhanced GA-based approach

to optimize AutoML processes specifically for these constrained settings. This

method not only achieved efficient optimization, but also ensured that the mod-

els remained interpretable and trustworthy, further extending the utility of in-

terpretable models in practical applications.

In this chapter, we shift our focus to the explainability of time series clas-

sification models, particularly in human activity recognition tasks. Here, we

harnessed the power of LLMs, such as ChatGPT, to generate explanations that

align with human cognitive processes. The success of this approach across

various datasets highlights its potential for broader applications in the field of

interpretable ML, suggesting a promising direction for future research.

As we transition to the next phase of this research, our focus will shift to-

wards the development of post hoc explanation techniques in pervasive com-

puting. These techniques are designed to enhance the explainability of AI mod-

els by providing explanations that are accessible and comprehensible, even for

models that are inherently complex or abstract. To achieve this objective, the

goal is divided into two distinct subtasks corresponding to the second and third

parts of this dissertation. In Part II, the research examines the key decision ele-

ments used by high-quality models in pervasive computing to make decisions.

This analysis serves as a foundation for further advancements. In Part III, the

86

focus will shift to developing novel post hoc explanatory methods that build on

the insights gained from Part II.

87

Part II.

Unveiling Key Decision Elements

89

6. Summarize the Decision-making Elements
of High-quality Models

In Part I, we advanced the application of XAI in pervasive computing by en-

hancing the predictive performance of explainable models. In this part, we

shift our focus to elucidating the decision-making processes of black-box mod-

els. Despite the widespread adoption of deep learning models in pervasive

computing, their opaque nature has significantly hindered user trust in their

decisions. Existing explanation methods can highlight regions that are impor-

tant for decision-making. However, these methods often lack domain-specific

and systematically organized interpretive information. To develop explanation

methods tailored specifically for pervasive computing, it is essential to thor-

oughly understand the decision-making mechanisms of high-quality models

within this domain and identify the critical elements upon which these deci-

sions rely. Such study is crucial, as it provides a foundation for the creation of

novel interpretative techniques. This chapter is organized around this core.

Corresponding Publication:. Y. Huang, H. Zhao, Y. Zhou, T. Riedel, and

M. Beigl. Standardizing your training process for human activity recognition

models: A comprehensive review in the tunable factors. EAI International

Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services, 2024

Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and M. Beigl. A survey on wearable

human activity recognition: Innovative pipeline development for enhanced

research and practice. In 2024 IEEE International Joint Conference on Neural

Networks (IJCNN 2024), Yokohama, 30th June-5th July 2024, 2024

91

6.1 Introduction

The pervasive computing domain presents unique challenges in developing

novel post hoc XAI methods, primarily due to the diversity and complexity of

the data. Data in this domain are typically drawn from a range of sources, in-

cluding sensor readings, user interactions, and environmental conditions, cov-

ering various types such as text, audio, video, and numerical sensor data. This

variety not only introduces complexity, but also highlights the need for tai-

lored explanations that account for the sequential and temporal dependencies

inherent in the data.

Another challenge in pervasive computing data is the presence of noise,

which complicates the task of explaining. Effective XAI methods must be

capable of explaining model decision under the influence of noise. Moreover,

these methods must demonstrate the robustness of decisions under noisy con-

ditions to ensure that users understand how models behave with imperfect data,

a common scenario in real-world applications.

The predominant explanation technique in this domain, especially in com-

puter vision, is the use of saliency maps. These maps highlight the regions

within an input, whether an image, a segment of sensor data, or a set of fea-

tures, that influence a model’s decision. While effective for image data due

to its inherently visual nature, saliency maps face significant limitations when

applied to non-visual data such as time series, which consists of sequential nu-

merical values without spatial structure. For time series data, understanding

and explaining patterns over time requires not only advanced abstraction tech-

niques but also specialized domain knowledge. Consequently, relying solely

on saliency maps for time series data is often inadequate for comprehensive

model interpretation.

Given these limitations, exploring alternative methods to explain model de-

cisions in pervasive computing has become crucial. One potential approach

is to leverage expert knowledge to distill essential decision-making elements.

However, this approach faces several challenges: the scarcity of domain ex-

perts, potential subjective bias, and scalability issues in diverse applications.

In light of these challenges, while expert insights are invaluable, it is not rea-

sonable to rely exclusively on experts. In response to these limitations, we ad-

92

vocate for a model-centric methodology for extracting crucial decision-making

elements in time series data analysis. This approach consolidates existing mod-

els utilized across the domain, capturing intricacies from data preprocessing,

model training, and architectural strategies. By aggregating these data, we aim

to unearth fundamental insights that influence model decisions, thereby form-

ing a robust foundation for further explanation.

To facilitate a thorough extraction of data elements that is pivotal for model

decision-making processes, more than hundred scientific articles have been

systematically categorized based on the relevance of each article to these pro-

cedural steps. This organization enables a detailed analysis of existing articles.

The following subsection will demonstrate the observation we have obtained

after reviewing these articles.

6.2 Observation

6.2.1 Data Processing

In pervasive computing, raw sensor data frequently exhibit multiple types of

noise, including electronic disturbances and external environmental interfer-

ences. Effective data processing techniques, such as data cleaning and filtering,

are indispensable for addressing these disturbances.

Furthermore, data processing is instrumental in improving the quality of data

for subsequent modeling phases. It enhances key features, such as variations in

energy or frequency, while simultaneously suppressing undesirable attributes.

This selective enhancement and suppression process significantly enhances the

performance of the models. Additionally, considering the multimodal nature

of pervasive computing data, processing is crucial for adjusting and aligning

the data to fulfill specific model criteria, ensuring that the input data optimally

supports the intended analytical tasks.

Based on these important roles of data processing, exploring the data pro-

cessing process in depth and finding the elements used in it will help to develop

new XAI methods. The methodology employed in data processing varies sig-

nificantly based on the presentation of the processed data, allowing the catego-

rization into three distinct types.

93

6.2.1.1 1D Transformation. This transformation technique generates fea-

ture vectors, in which each vector encapsulates a distinct sample. Each com-

ponent of the vector is representative of a separate feature, and these features

maintain independence from one another. Thakur et al. [163] demonstrate this

process by extracting features in both the time and frequency domains, subse-

quently refining the selection of features through the application of a guided

regularized random forest algorithm.

Fujimoto et al. [45] adopt a multidimensional approach to feature extraction,

incorporating techniques such as a Butterworth low-pass filter, time differen-

tiation and Fast Fourier Transform (FFT). The relevance of these features is

evaluated using the Gini coefficient and the study further integrates varying de-

grees of Laplace noise to ensure data confidentiality and mitigate the risk of

unintentional data leakage.

In the study conducted by Azmat et al. [13], the data is initially subjected to

denoising, followed by windowing and segmentation processes. Subsequent

to these preprocessing steps, feature extraction techniques are employed to

identify attributes such as Parseval energy, skewness, kurtosis, and Shannon

entropy, along with statistical characteristics from both time and frequency

domains. To optimize the selection of features, the study utilizes the Luca

metric-based fuzzy entropy (LFE) and the Lukasiewicz similarity measure

(LS), achieving a 25% reduction in the feature set. Additionally, a feature

optimization algorithm employing the Yeo-Johnson power transformation is

utilized to enhance the efficacy of the extracted features.

All of the above methods emphasize the importance of denoising and feature

selection. In addition to this, the first two methods emphasize the combination

of time- and frequency-domain features.

6.2.1.2 2D Transformation. This type of transformation generates two-

dimensional arrays wherein the first dimension corresponds to various fea-

tures, and the second dimension represents the values attributed to each fea-

ture. While the features remain independent of each other, the values within

each feature exhibit a sequential relationship, underscoring an inherent order.

Webber et al. [174] employ a Kalman filter to mitigate noise in the initial

94

data sets, enhancing data integrity for further processing. Kumar et al. [95]

deploy Welch’s method to analyze the energy distribution across different sig-

nal frequencies, facilitating a more granular power spectral density analysis.

Additionally, Zhao et al. [182] incorporate wavelet-based learnable filters to

optimize sensor channel selection, thus refining data acquisition strategies.

Khtun et al. [89] highlight that feature vectors derived via FFT are not only

resilient to noise, but also demonstrate advantageous properties such as level-

of-detail representation and rotation invariance. Based on these attributes, their

research advocates for the adoption of frequency domain Fourier sparse fea-

tures, considering them as highly relevant for data feature selection in pervasive

contexts.

Similarly to 1d conversion, 2d conversion focuses on noise reduction, com-

bining time- and frequency-domain features, and feature selection.

6.2.1.3 3D Transformation. In computational applications, a 3D transfor-

mation produces an output in the form of a three-dimensional array. The array’s

first dimension, commonly identified as the ’channel’, represents various fea-

tures. The subsequent dimensions, the second and third, encapsulate the values

corresponding to these features, often visualized as images. Notably, Gholam-

rezaii et al. [50] employ FFT to create spectrograms that serve as distinctive

features. In parallel, Gholamiangonabadi et al. [49] investigate the utility of

combining the stationary wavelet transform with empirical mode decomposi-

tion for the purpose of action recognition.

6.2.1.4 Summary of Key Data Process Trends. In summary, data analysis

within the frequency domain is a prevalent methodology in data processing, fa-

cilitated primarily through FFT or various filtering techniques. Approximately

one-third of the relevant studies incorporate a temporal analysis to enhance the

understanding of data dynamics. Moreover, certain research endeavors focus

on examining local attributes of the data, such as kurtosis and skewness, to gain

deeper insights into the underlying distributions and anomalies.

95

6.2.2 Model Architecture

Model architectures in the domain of pervasive computing are intricately de-

signed to extract meaningful patterns from input data, thereby enhancing pre-

dictive capabilities. The articles in this field primarily follow two significant

trajectories:

• The enhancement of feature extraction capabilities through the integra-

tion of innovative architectural designs.

• The refinement of model selection and training methodologies to aug-

ment the overall accuracy and performance of these systems.

In this section, we summarize the key elements that are critical to decision-

making in pervasive computing by analyzing the structure of various model

architectures.

6.2.2.1 Traditional Machine Learning Approaches. Current advance-

ments in the model architecture in pervasive computing demonstrate a dynamic

evolution, with deep learning emerging as the predominant technique. Never-

theless, traditional ML techniques continue to contribute profoundly, provid-

ing essential insight and methodologies. For instance, Liu et al. [105] analyze

human activity by breaking it down into basic, discriminative states termed

’motor units’, which are analogous to phonemes in speech recognition. They

employ Hidden Markov Models (HMM) for the prediction of activities. Sim-

ilarly, Vu et al. [168] employ Uniform Manifold Approximation and Projec-

tion (UMAP) to transform high-dimensional data into 30-dimensional features,

subsequently enhancing activity prediction by incorporating data from the tar-

get domain. These methodologies underscore the versatility and adaptability

of traditional ML techniques within the evolving landscape of system design.

Additionally, they underscore the critical importance of local features, such as

’motor units’, in the decision-making process, demonstrating that these ele-

ments play an indispensable role in enhancing system performance.

The former emphasizes the importance of identifying local data patterns,

while the latter stresses the fusion between different features.

96

6.2.2.2 Deep Learning Architectures. The predominance of deep learning

is principally attributed to its inherent ability to autonomously extract features,

facilitated by the varied architectures of deep learning models. Ismail et al.

[83] employ innovatively a genetic algorithm to fine-tune the architecture of

a Convolutional Neural Network (CNN). This optimization segments a CNN

into components such as conv1d, batch normalization, and LeakyReLU, en-

coded within a 5-bit system. The encoding specifics include the first three bits

detailing conv1d parameters like the number of filters, padding, and activa-

tion function, with the subsequent bits representing batch normalization and

LeakyReLU activation parameters, respectively.

Hurtado et al. [81] introduce an autoencoder architecture that is trained us-

ing dual loss functions: the reconstruction loss from unlabeled data and the

prediction loss from labeled data. This dual training approach aims to enhance

the model’s efficiency in feature extraction and activity prediction. Further

advancing the model architecture, Hnoohom et al. [65] integrate the residual

model with a Squeeze-and-Excitation block, forming a ResNetSE block. This

block serves as the foundation for constructing a deep CNN model, enhancing

the model’s capability to effectively manage feature recalibration. Haresamu-

dram et al. [63] explore contrastive predictive coding in their research, aiming

to augment human activity recognition models. They experiment with inte-

grating stridden convolutions, causal convolutional aggregators, and replacing

masks with direct future predictions to improve model performance. Sarkar et

al. [140] utilize the Continuous Wavelet Transform (CWT) to transmute time

series data into image formats, subsequently employing a CNN architecture

for robust feature extraction. The selected features are refined using an unsu-

pervised genetic algorithm that evaluates metrics such as mutual information,

Relief-F, and m-RMR. The processed data are finally classified using the KNN

algorithm, illustrating a comprehensive approach to activity prediction.

The application of normalization techniques in neural network architectures

frequently results in a phenomenon termed "channel collapse," whereby nu-

merous channels gravitate towards minimal contribution values. This condition

severely limits the effective diversity of channel outputs within the network. To

address this issue, Huang et al. [69] introduced an innovative approach known

97

as "channel equalization." This technique rejuvenates underutilized channels

by implementing whitening or decorrelation operations, thereby enhancing the

overall network performance.

On a different note, the constraints imposed by the limited computational

capabilities of edge devices necessitate efficient processing methods. In this

context, Tang et al. [162] devised a novel strategy referred to as hierarchical

segmentation convolution. This approach is designed to optimize the perfor-

mance of CNNs without necessitating additional computational or memory re-

sources. Initially, sensor signals are segmented into uniform-length windows

via a sliding window technique. These windows are subsequently analyzed

by a convolutional layer to generate a preliminary feature map. The process

continues with the division of these feature maps into segments, followed by

selective convolution operations. Additionally, identity mappings or cascad-

ing operations are employed. This iterative methodology of segmenting and

merging ultimately leads to the aggregation of refined sub-feature maps. The

enhanced feature maps are then subjected to standard convolutional layers to

further refine the feature representation, culminating in a more efficient feature

extraction process without overburdening computational resources.

The focus on CNN-based architectures in deep learning models for feature

extraction is prominent, yet emerging research showcases the versatility of in-

corporating LSTM components. Ramos et al. [130] utilize a residual bidirec-

tional LSTM block to underscore its efficacy in applications. Furthermore, the

adoption of the Transformer architecture, renowned for its robust performance

in Natural Language Processing (NLP), is now being explored for its applica-

bility in the pervasive computing domain by Dirgova et al. [35].

6.2.2.3 Hybrid and Advanced Architectures. The evolution of model ar-

chitectures is also witnessing a shift towards hybrid designs that amalgamate

different computational strategies to capitalize on the unique advantages of

each architecture, particularly for enhancing performance in specialized tasks.

For instance, the integration of convolutional and recurrent layers facilitates

the effective extraction of spatial and temporal features, as demonstrated in

recent studies [156; 187]. In extension of this approach, Li et al. [102] fur-

98

ther enhance model capabilities by incorporating residual modules alongside

bidirectional LSTMs.

Additionally, the potent attention mechanisms of Transformers are being

adapted into hybrid models. Shavit et al. [153] effectively combine CNNs with

Transformers to augment the processing of long-term dependencies, which

is crucial for complex sequence analysis. Similarly, multibranch techniques,

which involve processing data from different channels independently prior to

integration, are employed by Lu et al. [109] and Park et al. [123].

These methods emphasize the temporal characteristics of the data and the

importance of multichannel feature interactions.

6.2.2.4 Ensemble Methods. Ensemble methods are increasingly recog-

nized for enhancing predictive performance in deep learning, particularly

within the pervasive computing domain. Bhattacharya et al. [19] propose a

novel adaptation of ensemble techniques wherein the training dataset is bifur-

cated into two subsets. The first subset is utilized to train diverse deep learning

models, each capable of capturing unique data representations. The predic-

tions of these models, obtained using the second subset, are then aggregated

and utilized as inputs to a final prediction model. This strategy leverages the

distinct representations derived from various architectures, employing an addi-

tional model to optimally integrate these representations for enhanced predic-

tive accuracy.

6.2.2.5 Summary of Key Architectural Trends. In summary, the preva-

lent architectures in this field typically extract local spatial information through

CNNs. Subsequent integration of local and temporal features is achieved by

either stacking or embedding CNNs within LSTMs. Additionally, some mod-

els transform the input data to the frequency domain, leveraging it as sup-

plementary information to enrich the model’s understanding. There are also

approaches like strip CNNs that aim to capture long-range numerical depen-

dencies. Besides, the application of the transformer structure also introduces

absolute positional coding, thus emphasizing the importance of position. Col-

lectively, these methodologies highlight a balanced emphasis on harnessing

local details, frequency domain insights, and temporal dynamics, illustrating

99

a comprehensive approach to modeling complex data. From this we can con-

clude that the following factors play a decisive role in decision making in high

performance modeling: interdependencies among various channels, long- and

short-term temporal dependencies, local region patterns, frequency patterns,

and positional information.

6.3 Discussion

This study has undertaken an extensive analysis of high-quality models in the

pervasive computing domain, with a particular focus on understanding the key

elements that influence model decision-making. Through a meticulous exam-

ination of the data processing techniques and model architectures employed

in the articles, several critical elements that significantly impact model deci-

sions have been identified: interdependencies among various channels, long-

and short-term temporal dependencies, local region patterns, frequency pat-

terns, and positional information. These elements are consistently emphasized

across various models, indicating their fundamental importance in achieving

high-quality outcomes in pervasive computing.

The findings of this study offer valuable insight into the development of

XAI methods tailored to the pervasive computing domain. The identified key

elements provide a robust foundation for developing explanation techniques

that can enhance the transparency and trustworthiness of AI models.

100

7. Prove Element Importance through
Innovative Model Design

In the preceding section, we conducted a thorough review of the literature

within the domain of pervasive computing, identifying and extracting key data

elements that significantly influence the quality of model decisions. In this

section, we will elucidate the importance of part of these elements by incor-

porating them into the design of novel models. This integration aims to sub-

stantiate the critical role these elements play in enhancing model accuracy and

reliability.

Corresponding Publication:. Y. Zhou, M. Hefenbrock, Y. Huang, T. Riedel,

and M. Beigl. Automatic remaining useful life estimation framework with

embedded convolutional lstm as the backbone. In Machine Learning and

Knowledge Discovery in Databases: Applied Data Science Track: European

Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,

Proceedings, Part IV, pages 461–477. Springer, 2021

Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl. Tinyhar:

A lightweight deep learning model designed for human activity recognition.

In Proceedings of the 2022 ACM International Symposium on Wearable

Computers, pages 89–93, 2022

101

7.1 Introduction

We conducted an in-depth review of the literature within the domain of perva-

sive computing, identifying and extracting key data elements that have a signif-

icant impact on the high-quality model decisions. These elements are critical

in the design and optimization of the domain-specific XAI approach.

In this chapter, we will further elaborate on the importance of these elements

by integrating them into the design of our models. This integration will allow

us to empirically demonstrate how these elements influence model accuracy

and reliability. By systematically incorporating these data elements into the

model-building process, we will not only examine their individual contribu-

tions to the predictive performance of the model but also explore the relation-

ships and interactions among them. Our aim is to provide empirical evidence

that the careful selection and utilization of these key data elements signifi-

cantly enhance predictive power and demonstrate consistently strong perfor-

mance across different application scenarios.

We explored accordingly and published two papers on the subject. One fo-

cused on Remaining Useful Life (RUL) prediction, and the other on human

activity recognition. Estimation of RUL is a critical component in the field of

predictive maintenance. To achieve accurate predictions, models with strong

learning capabilities that can capture short- and long-term dependencies with

high precision are essential. This does not refer to feature extraction over a long

horizon through stacking CNNs, but rather to the interdependencies between

local data features. To this end, we introduced a novel self-attention-based hy-

brid model for RUL estimation, called "Inception-Attention." This model em-

ploys an innovative feature extraction mechanism composed of a combination

of three different efficient self-attention patterns. This design aims to capture

temporal dependencies across varying ranges. Additionally, we incorporated

a smooth regularization component into the training objective to enhance the

model’s ability to generate more stable and reliable RUL estimates. One pur-

pose of this model is to demonstrate that, in time series data, local information

and their interdependencies are critical to the model’s decision-making process.

On the other hand, human action recognition typically requires processing

long-window data from multiple sensors worn on different parts of the hu-

102

man body. By developing a new model called Tinyhar, which employs multi-

modal saliency, multimodal cooperation, and temporal information extraction,

we demonstrate the importance of multimodal data interactions and long-term

dependencies for model decision.

The following section demonstrates the structure of the proposed models. It

is important to note that, in both of these work, I was only involved in model

design and manuscript revision. The first author of the papers is Yexu Zhou.

Most of the content in the following sections is copied from the corresponding

paper.

7.2 Observation

7.2.1 Automatic Remaining Useful Life Estimation Framework
with Embedded Convolutional LSTM as the Backbone

Formally, RUL estimation can be described as a sequence to the target problem.

Given a T length sequence time series X = (xt | t = 1, · · · ,T) with xt ∈ Rn×m,

where n is the number of sensors and m the number of samples per cycle. Now,

the aim is to predict the corresponding output

yT ,yT = f (xt | t = 1, · · · ,T),

where xt denotes all samples in cycle t. When the sliding window method is

applied, the previous formula should be modified to yT = f (xw
t |t = w, · · · ,T),

where w is the window size. The vector xw
t thereby contains all the samples in

the time window which is denoted as xw
t = (xt−w+1, · · · ,xt). In our settings,

the sliding step size is always set to 1. For any model, the sequence length

determines how past information is used, while the window size describes the

complexity of dynamic features over time. As both parameters can greatly

affect the model performance, both should be considered when optimizing the

model.

Inspired by the work ConvLSTM [176], we propose an extension of

FCLSTM, in which a group of different 1D convolutions is embedded into the

LSTM structure, which we call Embedded Convolutional LSTM (ECLSTM) .

103

We assume that such ECLSTM architecture is more powerful than FCLSTM

in handling multivariate time series tasks.

In order to preserve the temporal information within the window, the input

should be kept as a 2-dimensional tensor. This can be achieved by replacing the

full connection in the FCLSTM with convolutional operation. The equations

of ECLSTM are then given by

it = σ(Wi ∗ [xt ,ht−1]+bi)

ft = σ(W f ∗ [xt ,ht−1]+b f)

ot = σ(Wo ∗ [xt ,ht−1]+bo)

Ct = ft ◦Ct−1 + it ◦ tanh(WC ∗ [xt ,ht−1]+bC)

ht = ot ◦ tanh(Ct),

(7.1)

where ∗ indicates the convolution operator and ◦ the element-wise product.

There are three benefits to using the convolution operator in LSTM. Firstly,

the convolution parameters are only related to the defined kernel size and the

number of filters, not to the size of the window. When the window size is large,

the complexity of the model does not increase with it. Secondly, the hidden

state H and the memory C also become 2D tensors. This means that they

implicitly inherit and preserve the temporal relationship. Thirdly, the input,

hidden state, and memory can even maintain a 3-dimensional shape, as this

will not affect the operation of the convolution. Keeping the three-dimensional

shape allows for more different convolutions.

The stacking of convolutional layers allows for hierarchical decomposition

of the raw data and combinations of lower-level features. In order to get more

complex features, the convolutions in (7.1) can be stacked as convolutional

cells in a chain structure. If three convolutional layers are stacked in the cell,

we call the ECLSTM as 3-depth-ECLSTM. Taking the input gate in ECLSTM

as an example, the activation can be calculated as

it = σ(W 3
i ∗σ(W 2

i ∗σ(W 1
i ∗ [xt ,ht−1]+b1

i)+b2
i)+b3

i). (7.2)

Other gates have the same structure but do not share the weights.

Moreover, the results of many multivariate time series analysis works like

[119] indicate that different fusion strategies affect performance. Inspired by

104

that, the convolution cell can be composed of the following three different 1-

dimensional convolutions, which are shown in Figure 7.1. The first is the early

fusion convolution, which is the same as conventional 1D convolution. Here,

the features are extracted from all sensory information jointly. The second is

the late-fusion convolution. In late fusion, the features are extracted separately

from each sensor. The third is hybrid fusion convolution, where features are

extracted separately from each sensor but weights are shared.

7.2.2 TinyHAR: A Lightweight Deep Learning Model Designed
for HAR

TinyHAR consists of five parts. The input data of the model X ∈ RT×C×F ,

where T denotes the temporal sliding window size, C is the number of sensor

channels, and F indicates the number of filters (F = 1 for the raw data input,

which has not been processed).

To enhance the local context, we applied a convolutional subnet to extract

and fuse local initial features from the raw data. Considering the varying con-

tribution of different modalities, each channel is processed separately through

four individual convolutional layers. For each convolutional layer, ReLU non-

linearities and batch normalization [82] are used. Individual convolution means

that the kernels have only a 1D structure along the temporal axis (the kernel

size is 5×1). To reduce the temporal dimension, the stride in each layer is

set to 2. All four convolutional layers have the same number of filters F . The

output shape of this convolutional subnet is thus RT ∗×C×F , where T ∗ denotes

the reduced temporal length.

Work [2] successfully adopted the self-attention mechanism to learn the col-

laboration between sensor channels. Inspired by this, we utilized one trans-

former encoder block [166] to learn the interaction, which is performed across

the sensor channel dimension at each time step. The transformer encoder block

consists of a scaled dot-product self-attention layer and a two-layers Fully Con-

nected (FC) feed-forward network. The scaled dot-product self-attention is

used to determine relative importance for each sensor channel by consider-

ing its similarity to all the other sensor channels. Subsequently, each sensor

channel utilized these relative weights to aggregate the features of all other

105

T
im

e
 S

e
q
u
e

n
c
e

s
lid

in
g
 d

ire
c
tio

n

Feature Dimension

T
im

e
 S

e
q
u
e

n
c
e

s
lid

in
g
 d

ire
c
tio

n

Feature Dimension

T
im

e
 S

e
q
u
e

n
c
e

s
lid

in
g
 d

ire
c
tio

n

sliding direction

(a
) E

a
rly

 F
u

s
io

n
 1

D
 c

o
n

v
o

lu
tio

n
(b

) la
te

 F
u

s
io

n
 1

D
 c

o
n

v
o

lu
tio

n
(c

) H
y
b

rid
 F

u
s
io

n
 1

D
 c

o
n

v
o

lu
tio

n

Table
7.1.:In

the
early

fusion
convolution,the

kernelheightis
fixed,thatis,the

sam
e

as
the

num
ber

of
features.

T
he

sliding
direction

ofthe
convolution

kernelis
along

the
tim

e
axis.In

the
late

fusion
convolution,the

kernelheightis
1.E

ach
feature

has
its

ow
n

convolution
kernel.

T
he

convolution
kernelalso

has
only

one
sliding

direction,nam
ely

the
tim

e
axis.

In
hybrid

fusion
convolution,the

kernelheightis
also

1.
B

utithas
tw

o
sliding

directions,one
is

the
tim

e
axis

and
the

other
is

the
feature

axis.
B

ecause
of

w
eightsharing,itcan

save
m

any
param

eters.
Itshould

be
noted

that
w

hen
the

num
beroffilters

is
greaterthan

1,the
outputofthe

early
fusion

convolution
is

2-dim
ensional.T

he
outputs

ofthe
tw

o
rem

aining
convolutions

are
3-dim

ensional.

106

In
di
vi
du
al

C
on
vo
lu
tio
na
l

Su
bn
et

Convolution
Convolution
Convolution
Convolution

𝑇
𝐶

𝑓
=
1R
aw

In
pu
tD
at
a

Tr
an
sf
or
m
er

En
co
de
r

Bl
oc
k

Fl
at
te
n

LS
TM

FC

Te
m
po
ra
l

At
te
nt
io
n

𝑓
𝐶

𝑇∗
𝐶

𝑓

𝑇∗
𝑇∗

𝑓∗
𝑇∗

𝑓∗

𝐗
∈
ℝ
"×

$×
%

𝐗
∈
ℝ
"∗
×
$×

&
𝐗
∈
ℝ
"∗
×
$×

&
𝐗
∈
ℝ
"∗
×
$&

𝐗
∈
ℝ
"∗
×
&∗

𝐗
∈
ℝ
"∗
×
&∗

𝒙 𝑻
∗
∈
ℝ
&∗

𝒄
∈
ℝ
&∗

𝑇∗

𝐶𝑓

C
ro
ss
-C
ha
nn
el

In
te
ra
ct
io
n

C
ro
ss
-C
ha
nn
el

Fu
si
on

Te
m
po
ra
l

In
fo
rm
at
io
n

Ex
tr
ac
tio
n

Te
m
po
ra
l

In
fo
rm
at
io
n

En
ha
nc
em
en
t

Pr
ed
ic
tio
n

Ta
bl

e
7.

2.
:O

ve
rv

ie
w

of
th

e
pr

op
os

ed
A

lg
or

ith
m

.

107

sensor channels. Then, the feedforward layer was applied to each sensor chan-

nel, which further fused the aggregated feature of each sensor channel. Until

now, the features of each channel have been contextualized with the underlying

cross-channel interactions.

In order to fuse the learned features from all the sensor channels, we first vec-

torize these representations at each time step, X ∈ RT ∗×C×F to X ∈ RT ∗×CF .

Then a FC layer is applied to weighted summation of all the features. Com-

pared to the attention mechanism used in [111], in which the features of same

sensor channel share the same weights, FC layer allows different features of

same sensor channel to have different weights. Such flexibility of the FC layer

leads to more sufficient feature fusion. This FC layer also works as a bottle-

neck layer in the proposed TinyHAR, which reduces the feature dimension to

F∗. In our work, we set F∗ = 2F .

After the features are fused across the sensor and filter dimensions, we obtain

a sequence of refined feature vectors ∈ RT ∗×F∗ ready for sequence modeling.

We then apply one LSTM layer to learn the global temporal dependencies.

Given that not all time steps equally contribute to recognition of the under-

going activities, it is crucial to learn the relevance of features at each time step

in the sequence. Following the work in [111], we generate a global contextual

representation c ∈ RF∗ by taking a weighted average sum of the hidden states

(features) at each time step. The weights are calculated through a temporal

self-attention layer. Because the feature in the last time step xT ∗ ∈ RF∗ has the

representation for the whole sequence, the generated global representation c is

then added to xT ∗ . Here, we introduce a trainable multiplier parameter γ to

c, which allows the model has the ability to flexibly decide, whether to use or

discard the generated global representation c.

7.3 Discussion

In this work, through the development of two novel models, Inception-

Attention for RUL estimation and TinyHAR for HAR, we demonstrate the

importance of capturing both local and long-term dependencies within time

series and interdependencies among multimodal data.

For RUL estimation, our Inception-Attention model leveraged a self-

108

attention mechanism to extract temporal dependencies across different time

ranges, focusing on the critical interplay between the features of local data.

This approach allowed the model to make more reliable and accurate predic-

tions of equipment lifespan. The inclusion of smooth regularization further

contributed to the model’s stability, underscoring the necessity of balancing

precision and consistency in predictive maintenance applications.

On the other hand, the TinyHAR model highlighted the significance of mul-

timodal cooperation and temporal information extraction in human activity

recognition tasks. By incorporating multimodal saliency detection and a com-

bination of convolutional and transformer-based components, the model effec-

tively utilized data from various sensors, demonstrating the importance of both

individual and cross-sensor information interactions. The results of this model

reaffirmed that long-term temporal dependencies are crucial to accurately rec-

ognizing complex human activities.

In both cases, the models showed how strategic design choices, such as em-

bedding convolutional operations within LSTM and utilizing attention mecha-

nisms, can lead to substantial improvements in accuracy and robustness. The

key data elements discovered in the last section are central to high-quality mod-

eling.

109

Part III.

Innovating Post hoc Explanation
Techniques

111

8. Explain with Spatial Information

Part II analyzed the data elements typically utilized by high-quality models

during the decision-making process. The key elements identified include inter-

dependencies among various channels, long- and short-term temporal depen-

dencies, local region patterns, frequency patterns, and positional information.

Part III builds upon these elements to propose novel XAI methods aimed at

addressing the challenges inherent in pervasive computing.

In pervasive computing, data are frequently collected and integrated from

multiple sensors, which can exhibit complex interrelationships such as com-

plementarity or redundancy. While traditional XAI methods can identify sig-

nificant data segments that contribute to modeling decisions, they often fall

short in exploring the intricate relationships between these cognitive segments.

This limitation is particularly evident in time series data tasks, where critical

information is dispersed across the sequence. For instance, in tasks such as

recognizing the Wii action of drawing a circle, crucial data points are spread

throughout the sequence. This observation raises several pertinent questions:

Are specific data segments crucial for decision-making? Can alternative cog-

nitive segments yield the same decision? Is the importance of a particular cog-

nitive segment for decision-making consistent across different contexts? This

chapter is organized around addressing these critical questions.

Corresponding publication:. Y. Huang, N. Schaal, M. Hefenbrock, Y. Zhou,

T. Riedel, and M. Beigl. Mcxai: local model-agnostic explanation as two

games. In 2023 International Joint Conference on Neural Networks (IJCNN),

pages 01–08. IEEE, 2023

113

8.1 Introduction

Pervasive computing data is typically multimodal and collected from multiple

sensors distributed across various locations. Data from different sensors or data

from different locations of the same sensor within a single time window may

exhibit diverse interrelationships. For example, in the context of human action

recognition using sensors placed on both hands and feet, these relationships

can be categorized as follows:

• Selectivity: In actions like brushing teeth, the data from the dominant

hand is essential, while information from other sensors may be irrelevant

or even introduce noise into the analysis.

• Complementarity: In tasks such as washing, the coordinated move-

ment of both hands is required, indicating that data from both sensors is

necessary to accurately capture the action.

• Redundancy: During actions like jumping, both feet provide equiva-

lent information, making the data from either foot alone sufficient for

accurate recognition.

To this end, the complex models utilized must integrate information from

various channels. Consequently, the XAI methods applied to explain these

models should be capable of capturing and reflecting this integration capabil-

ity. However, traditional XAI methods often involve segmenting data from

multiple pipelines into distinct cognitive blocks, selecting a subset of these

blocks, and then assigning different levels of importance to them to represent

the significance of the interpretation for a given input. While this approach can

identify the factors influencing the model’s decision, it tends to conflate selec-

tivity, complementarity, and redundancy. This conflation raises several critical

questions:

• If two cognitive blocks provide the same information (e.g., both feet),

why is one considered important and the other unimportant?

• Is there only one valid interpretation?

114

• Do the same local data segment blocks hold the same importance in

different explanation?

• Is one of the selected data segments (e.g., left-hand information for face-

washing) essential or interchangeable?

We believe that the key to answering the aforementioned questions lies in

considering the relationships between different cognitive blocks during the ex-

planation process. To address these challenges, we present a novel post hoc ex-

planation approach based on reinforcement learning, called Monte Carlo Tree

Search for Explainable Artificial Intelligence (McXAI).

By leveraging the strengths of Monte Carlo Tree Search, McXAI can dy-

namically explore various combinations of cognitive blocks and their inter-

dependencies. This enables a more nuanced understanding of how different

data channels contribute to the model’s decisions, ultimately leading to more

accurate and interpretable AI systems. This approach involves modeling the

explanation process as two games, namely the classification game and the mis-

classification game.

In a "classification game", the agent is assigned with finding local data seg-

ment pattern (termed local pattern) essential to support the correct decision of

the model, while in a "misclassification game", the agent seeks local patterns to

which the model is sensitive, i.e., local data segment whose perturbations may

lead to misclassification. Agents develop their policies based on a search tree

representation, which is constructed using MCTS [23]. Each game ultimately

outputs a humanized representation in the form of an mct, where each node

represents a set of local patterns to be examined. The input is interpreted by

extracting information from the tree species: Each node in the tree describes

a cognitive block. Each complete path in the tree describes an interpretation.

An edge connecting two nodes describes the relationship between the inter-

connected nodes. Sometimes, there will be more than one node describing the

same cognitive block, but the cognitive blocks represented by nodes at the same

level of the tree will not duplicate each other. The descendants of a point will

not contain the cognitive block represented by its ancestor. Due to the brushing

of cognitive blocks, each cognitive block in the tree is important for decision

making in the model. However, the same cognitive block has different impor-

115

tance at different locations in the tree. The importance of cognitive blocks is

greater in nodes close to the root of the tree.

8.2 Related Work

In this section, we provide an overview of previous work on technologies for

interpreting complex models and briefly introduce the basic Monte Carlo tree

search algorithm as a preliminary.

8.2.1 Explainable Artificial Intelligence

Numerous approaches have been proposed to explain models in ways that hu-

mans can easily perceive.

Permutation Feature Importance (PFI) [137] analyzes prediction changes

by randomly permuting local patterns in the instance. Class Activation Map

(CAM) [184] decomposes signals propagated within its algorithm and pro-

cesses them using a global average pool to provide an analysis of the prediction.

Similarly, Layer-wise Relevance Propagation (LRP) [14] identifies important

pixels by running a backward propagation through the neural network. All of

these methods display the contribution of pixels to the prediction through heat

maps.

Conversely, CLUE [8] generates explanations with the help of a variational

autoencoder. EXemplar [16] explains instances using a generator. MUSE [97]

produces explanations in the form of decision trees, approximating the com-

plex model with an interpretable model and optimizing against various met-

rics. The Bayesian Rule Lists [177] method discretizes the feature space into

partitions and defines the decision logic within each partition using IF-THEN

rules. SHAP [110] uses subset examination to score feature importance.

All of these methods focus on finding evidence to support the prediction of

the complex model but often overlook potential causes of erroneous predic-

tions. Additionally, CAM requires the complex model have a global average

pooling layer, and the resulting explanations can be difficult to understand.

116

8.2.2 Monte Carlo Tree Search

MCTS [23] is a widely-used heuristic-based reinforcement learning algorithm,

particularly effective for predicting moves in board games such as chess and

Go. MCTS constructs a search tree to estimate the favorability of actions in

a given state, with each edge representing a move/action and each node rep-

resenting a game state. To win a game, the agent performs multiple episodes,

each consisting of four phases: selection, expansion, roll-out, and backpropa-

gation.

During the selection phase, the agent selects child nodes according to a se-

lection policy until a leaf node is reached. In the expansion phase, the agent

adds one or more child nodes to this leaf node and selects one according to an

expansion policy. The roll-out phase follows, where the game is played out to a

terminal state (win, lose, or draw) using random moves from the selected node.

Based on the terminal state, a reward r is returned. In the backpropaga-

tion phase, every node from the new selected child up to the root node is up-

dated with this reward. The algorithm continues until the predefined number

of episodes is reached.

8.3 Method

Given a classification data set D with n different local patterns and c different

classes, a complex model g trained with D is a system without any internal

working knowledge. It takes an instance x ∈ Rn from D as input and outputs

the distribution of the classes as a vector g(x) ∈ [0,1]c, where g(x)[i] is the

probability that the input instance predicted as class i and ∑
c
i=0 g(x)[i] = 1.

The prediction of the complex model is correct if the output with the maximum

value (probability), i.e. argmax
i∈{0,··· ,c}

g(x)[i], equals the ground-truth class y ∈ N.

The importance of local pattern is the most common explanation for clas-

sification1 [18]. Without loss of generality, we assume that the relationship

between local patterns within a certain region, e.g., the face of a dog, is key to

influencing the decision. McXai determines the importance of local patterns by

observing the change in prediction probability after removing the relationship
1It is different from adversarial attack, which would not change the distribution of the input instance.

117

among the target local patterns from the input instance x. To keep the shape

of the input dimension2, McXai masks the value of the target local patterns as

a given constant τ , where τ should not give away any information about the

input instance x. In the case of image data, it is set to zero or the average value

of all the local patterns (pixels) in the images.

8.3.1 Tree Representation and Algorithm Framework

The explanation of a given instance x ∈ D in McXai is presented as a MCT.

Each edge in the tree represents an action a ∈ {0,1}n, corresponding to some

of the local patterns. This action is a n-bit array (mask) where all values are

zero, except for the bits corresponding to the selected local patterns, which are

set to one. Each edge contains three attributes: the number of times the edge

has been explored (number of visits), the expected reward for taking the action

at the parent node (value) and the change in prediction probability of the target

class after taking the corresponding action (performance).

The nodes in the tree represent the states of the game and are divided into

three categories:

• Start (root) node x0 = x: Represents the initial state of the game.

• Derived nodes xi with i > 0: These are masked instances with only

one parent node x j where i > j ≥ 0. The edge connecting these nodes

corresponds to the action a applied to the parent node, i.e., xi = a(x j) =

x j⊙ ā+ τ ·a, where ā is the logical NOT of action a.

• Terminal node xt : Represents the terminal state of the game.

Each path in the tree corresponds to a local pattern set, and its importance

is represented by the expected value of the last edge in the path. A complete

path connects the root node to a terminal node, showing the progression and

influence of local pattern sets on the model prediction.

As shown in Figure 10.1, given an instance x, McXai explains the black

box decision through the classification game and the misclassification game.

2Most complex models have a fix input dimension (number of local patterns).

118

Ta
bl

e
8.

1.
:A

fr
am

ew
or

k
of

th
e

M
cX

ai
al

go
ri

th
m

.

119

Depending on whether the black box correctly predicts the instance, the clas-

sification game may be skipped. Both the classification game and the misclas-

sification game consist of the same three processes:

• MCT Generation: Generates the MCT according to the given action

space and root node.

• Action Set Selection: Selects a suitable action set from the generated

MCT and sends it for refinement.

• Action Space Refinement: Splits the actions in the given action set and

sets the split actions as the new action space for the MCT generation

process.

McXai enables different games to perform distinct functions by defining dif-

ferent root nodes and reward functions for MCT generation.

8.3.2 Monte Carlo Tree Generation

McXai applies MCTS to construct a tree representation. Here, we first intro-

duce the pipeline for building an MCT and then detail each step of the pipeline.

McXai constructs the tree iteratively, with each iteration involving the fol-

lowing four phases:

• Selection: McXai traverses the tree from the root node according to the

selection policy πs(·), until reaching a leaf node.

• Expansion: A new child node is selected according to an expansion

policy πe(·) and added to the tree.

• Roll-out: A new action is selected randomly and applied to the current

node until reaching a terminal node or the maximal depth of the tree.

• Backpropagation: The associated reward of the terminal node is com-

puted according to the reward function r(·) and backpropagated along

the current path, incrementing the ’number of visits’ and recalculating

the expected reward ’value’ of all visited edges.

120

Given a complex model g, a root node x0 with target y, and a terminal node

xt , similar to the general MCTS algorithm, McXai applies the Upper Confi-

dence Bound for Trees (UCT) as a selection policy3.

πs(x) = argmax
a∈A

{︄
µx,a +λ ·

√︄
logn(x)
n(x,a)

}︄
(8.1)

where x is a node with descendants in the MCT, A is the action space, µx,a

is the ’value’ of the edge representing the action a at the node x. Additionally,

n(x) = ∑a∈A n(x,a) denotes the number of visits to node x, and n(x,a) signi-

fies the ’number of visits’ to the edge. The parameter λ adjusts the trade-off

between the number of visits (exploration) and the expected value (exploita-

tion).

Unlike the selection policy πs(x), which directly uses the information ex-

plored to guide decisions, the expansion policy selects the action to expand

with the assistance of the complex model.

πe(x) =

⎧⎪⎨⎪⎩
argmax

a∈A
(g(x)[y]−g(a(x))[y]) , if argmax

i∈{0,··· ,c}
g(x0)[i] = y

argmax
a∈A

(g(a(x))[y]−g(x)[y]) , otherwise
(8.2)

where x is a leaf node to which the new node is expanded. The expansion

policy πe(x) selects the action that brings the largest prediction probability dif-

ference after applying the action. If the complex model correctly predicts the

root node x0, it is the classification game, and πe(x) selects the action that

causes the largest prediction probability decrease. Conversely, if the predic-

tion of the complex model for the root node x0 differs from the target y, it is

the misclassification game and πe(x) selects the action that causes the largest

prediction probability increase.

To conclude the roll-out process in each iteration, McXai determines

whether a node x is a terminal node according to the following function:

3The feasibility of this approach is theoretically demonstrated in [29].

121

⎧⎨⎩ g(x)[y]< 0.5, if argmax
i∈{0,··· ,c}

g(x0)[i] = y

g(x)[y]−g(x0)[y]> t, otherwise
(8.3)

where t is the predefined constant used in the misclassification game. In

the classification game, the game ends when the prediction probability of the

complex model is less than 0.5. In the misclassification game, the game ends

when the difference in the prediction probability between the root node x0 and

the current node x is greater than a predefined threshold t.

The reward function r(xt) of a terminal node xt is defined as

r(xt) =

[︃
(1−η) ·

(︃
1− l(xt)

L

)︃
+η ·q

]︃
·1{l(xt)≤L} (8.4)

with

q =

(︄
2 ·1{argmax

i∈{0,··· ,c}
g(x0)[i]=y}−1

)︄
· (g(x0)[y]−g(xt)[y])

where 1 is the indicator function, l(xt) is the length of the path to the termi-

nal node, L is the maximum allowed path length and η is a balance parameter

between the path length and the prediction change. This reward function bal-

ances the contribution of the path length and the change in prediction probabil-

ity to the overall reward.

The function l(·) returns the depth of a given node, defined as the number

of actions required to reach the given state. The parameter L represents the

maximal depth of the tree, serving as a limit on the tree size. Notably, an

increase in the maximum depth L correlates with a higher value indicated by the

number of actions. Conversely, a smaller L results in a greater reward for the

same depth l, making minor step differences more significant. The variable q

represents the difference in the prediction probability of the target class before

and after removing the selected local patterns. The parameter η ∈ [0,1] weights

the path length and the probability change. If the depth of the terminal node

is less than L, the reward is a weighted sum of the depth and the probability

change. However, if the depth exceeds L, indicating that the number of actions

exceeds a threshold, the reward is set to zero to discourage the selection of such

122

Figure 8.1.: Illustration of action selection (a) and refinement (b).

actions again.

8.3.3 Action Set Selection and Refinement

The ’Action Set Selection’ process in McXai differs from the action selection

in ’MCT Generation’, which balances exploration and exploitation. Instead,

it focuses on selecting a set of local patterns sensitive to prediction. Given

an MCT, McXai starts at the root node and selects the edge with the largest

expected value until it reaches a leaf node. If the leaf node is terminal, it

returns the complete path from the root to the terminal node. If the leaf node is

not terminal, it returns the entire action space. For example, in Figure 8.1, the

action set [a1,a6] is selected after this process.

The goal of the ’Action Space Refinement’ process is to refine the action set

created during the ’Action Set Selection’ process. If no action set is provided,

it is initialized with a single action: an n-dimensional array with each value

set to one, where n is the dimension of the given instance. During refinement,

McXai first identifies the region with a value of one in an action and then

divides this region into four equal parts to create four new actions. This process

is applied to all actions in the given action set. As illustrated in Figure 8.1, the

yellow region represents the area with a value of one. For action a7, four

new actions {a8,a9,a10,a11} are created during the refinement. If the size

of the region with a value of one in any newly created action is smaller than a

123

predefined constant k, the game ends, and the new action space will not be used

to generate a new MCT. All MCTs generated throughout the algorithm serve

as explanations for the given input instance at different levels of granularity.

The whole McXai algorithm is summarized in Algorithm 3.

8.4 Evaluation

In this section, we experimentally demonstrate the capabilities of our proposed

approach in interpreting a complex model in three ways:

• Comparison of local pattern Importance: We compare the importance

of positive local patterns identified by the classification game with those

found using classical post hoc explainability methods.

• Improvement After Retraining: We measure the improvement of the

complex model’s performance after retraining it with the local patterns

identified during the misclassification game.

• Information from Constructed MCTs: We assess the additional infor-

mation provided by the constructed MCTs compared to other post-hoc

explainability methods.

Unless otherwise specified, McXai’s hyperparameters are set as follows: τ =

0, η = 0.5, L = |A |, λ = 0.5, and k = 40.

8.4.1 Classification Game: Comparing Local Patterns with Posi-
tive Impact

We hypothesize that considering individual dependencies between local pat-

terns in an explanation enhances its quality. In our first experiment, our aim

was to validate this hypothesis. We designed a task using the open source

MNIST dataset and several real-world classification datasets from sklearn, in-

cluding covertype, kddcup, newsgroup, and face4. We compared the perfor-

mance of LIME [134], SHAP5 [110], and our proposed McXai model on this

4The RCV1 dataset is excluded because it is a multi-label classification task.
5We selected these two well-known general post-hoc methods because the datasets used are not

limited to images and some complex models do not provide gradient information.

124

task. To demonstrate the generality of the method, we trained different kinds

of model for these datasets.

For McXai, the hyperparameter k is set to 10, and the maximal depth L of

the constructed tree is set to 10 to limit the tree size, except for the newsgroup

dataset, where L is set to 30 due to its significantly larger number of local

patterns. A total of 50 instances were randomly selected from each dataset and

used as input for the task.

The task design is inspired by the experiment in [110]. Taking the MNIST

dataset as an example, the task can be described as follows: Given an instance

from the MNIST dataset with the target class y = 7, local patterns of the in-

stance are continuously removed according to the proposal of the XAI model

until the prediction of the instance (by the complex model) changes to any other

class. The post hoc explanation approach aids the task by analyzing the input

instance and extracting a list of local patterns ranked by their importance.

To compare the importance of the local patterns identified by each algorithm,

we measure the number of steps (NoS) required to change the predicted class

according to the local pattern list of each method. Fewer steps indicate that

the local patterns found by the corresponding explainability approach are more

important.

The results of the experiment are summarized in Table 8.3. The proposed

McXai algorithm achieves optimal results on all datasets except the newsgroup

dataset, where SHAP has the best results. However, SHAP takes an average

of five minutes to analyze each instance, while McXai takes an average of one

minute. LIME is the fastest, but yields the worst results.

The runtime of the McXai algorithm is influenced by three factors related to

the dataset:

• Number of local patterns: The more local patterns the dataset con-

tains, the longer the run-time. For instance, analyzing an instance of

the ’covertype’ dataset takes an average of 30 seconds, while analyzing

an instance in the newsgroup dataset takes about one minute.

• Complexity of the Relationship Between Local Patterns and Prediction:

This is measured by the number of modified local patterns needed to

change the model’s prediction. The fewer the local patterns, the lower

125

the complexity, and the shorter the runtime. For example, McXai takes

an average of two minutes to analyze an instance in the dog-cat dataset,

which contains 16,384 local patterns, due to its higher complexity.

• Complexity of the complex model: The more complex the model, the

longer McXai takes.

Table 8.2.: Comparing average number of steps (NoS) needed to take to change
the prediction of complex model according to the suggestion of the
LIME, SHAP and McXai methods.

Dataset Type No. local patterns NoS-LIME NoS-SHAP NoS-McXai
MNIST image 784 7.23 ± 5.65 6.23 ± 5.34 4.82 ± 2.65

covertype relational 54 10.32 ± 3.36 1.72 ± 0.82 1.59 ± 0.88
kddcup relational 41 1.0 ± 0 2.2 ± 2.0 1.0 ± 0

newsgroup text 15698 46.26 ± 36.8 6.69 ± 7.78 8.2 ± 3.72
face image 4096 24.94 ± 7.76 17.62 ± 6.67 5.62 ± 0.82

Figure 8.2a illustrates an MNIST example highlighting the local patterns

identified by different XAI models. In this instance, LIME’s identified local

patterns are scattered across the number. However, this does not imply that

the complex model bases its predictions on the overall skeleton of the number,

as demonstrated by the properties found by SHAP and McXai. This observa-

tion suggests that LIME overlooks the competing relationships (e.g., one local

pattern being less important when another is present) and conditional relation-

ships (e.g., one local pattern being important only when another local pattern

is present) between local patterns, leading to a misjudgment of some local pat-

terns’ importance.

Interestingly, SHAP and McXai identified almost the same local patterns,

with differences only in their ranking. This difference highlights a unique at-

tribute of McXai: it ranks the importance of already explored local patterns

during its operation (as reflected by the selection policy) and prioritizes the ex-

ploration of higher-importance local patterns. The corresponding tree structure

for McXai is partly shown in Figure 8.2b.

From this experiment, we conclude that the positive impact of the local pat-

terns identified by McXai is more significant than those identified by the other

two methods. This superiority is attributed to McXai’s ability to consider and

126

LIME

SHAP

McXai

(A) (B) (C)

(a)
(b)

Figure 8.2.: (a) Ranks of local pattern importance and masked image for each
method. (A) Shows the input instance. (B) Shows the explanation
created by each algorithm. The local patterns colored in blue have
a positive local pattern importance according to each method. (C)
Shows the masked image which is no longer predicted as 7. (b)
Shows the MCT created by McXai from the example of (a). The
state x is the input instance. The value of each edge is written
beside the corresponding edge. The path [a1,a4,a7] is the best
path containing the actions with the highest expected value of the
considered states.

rank the dependencies between local patterns effectively.

8.4.2 Misclassification Game: Testing the Improvement of Com-
plex Model through Retraining

The misclassification game identifies local patterns that are insignificant to the

target class but sensitive to other classes. In practice, this manifests as a re-

duction in the probability of an instance being correctly predicted by adding

these local patterns to it. We hypothesize that if the misclassification game

can identify such negatively impactful local patterns, then counteracting their

effects should improve the performance of the complex model. To test this hy-

pothesis, we designed the following experiment using the open-source dog-cats

127

dataset from Kaggle:

1. Dataset Preparation: We split the dog-cats dataset into a training set

Dtrain and a testing set Dtest . We train a complex model using Dtrain and

record its accuracy.

2. Local Pattern Analysis: Each instance in the training set is analyzed

using our proposed approach to identify local patterns.

3. Dataset Modification: We first remove the local patterns identified by

the misclassification game from each instance in the training set to form

a new dataset Dmis. Then we remove the local patterns identified by the

classification game and the misclassification game from each instance in

the training set to form a new dataset Dboth.

4. Retraining and Evaluation: We first retrain the complex model using

Dtrain and Dmis, then record its accuracy. Then we retrain the complex

model using Dtrain and Dboth, then record its accuracy.

5. Performance Comparison: We compare the performance of the three

trained models (original, Dmis, and Dboth) on Dtest .

We conducted this experiment using the following five torchvision pre-

trained models: (i) MnasNet [160] with a depth multiplier of 0.5 (mnas-

net0_5); (ii) MnasNet with a depth multiplier of 1.0 (mnasnet1_0); (iii)

DenseNet121 [68]; (iv) WideResNet [179]; (v) GoogleNet [64]. These models,

pretrained on the ImageNet dataset, converge quickly in our experiments6.

For each model, we trained for 20 epochs and repeated the process five times

to record the mean and standard deviation of the performance. The dog-cats

dataset consists of 2500 training images and 500 test images, with an equal

representation of cats and dogs in both sets. We used accuracy as a performance

metric.

The results are summarized in Table 8.3. In general, removing local patterns

identified by the misclassification game led to improvements in accuracy or

stability of the models. This demonstrates that the misclassification game can
6All models converged after two to three episodes, except for mnasnet1_0, which took an average

of seven episodes. Thus, the size of the data set has minimal impact on the results

128

identify factors leading to incorrect predictions, and counteracting these factors

improves the model’s performance.

Additional insights from the experiment include: (i) The accuracy improve-

ment varies by model. Models with lower original accuracy showed a more

pronounced improvement. For instance, in GoogleNet, where the original ac-

curacy was high, the improvement in accuracy was minimal (less than 1%),

but the improvement in stability was significant. (ii) Removing local patterns

identified by both the classification and misclassification games improved per-

formance in two cases.

The classification game identifies local patterns that are crucial for correct

predictions by the complex model. Removing these local patterns from the

training set highlights the influence of other local input patterns, thereby in-

creasing the generality and robustness of the complex model.

Table 8.3.: Comparing performance of complex model: mnasnet0_5, mnas-
net1_0, DenseNet121, WideResNet and GoogleNet in these three
different situations: (1) trained with training set Dtrain (base_score)
(2) trained with training set Dtrain and Dboth (score_both) (3)
trained with training set Dtrain and Dmis (score_mis)

base_score (%) score_both (%) score_mis (%)
mnasnet0_5 87.78 ± 3.31 87.98 ± 1.71 89.16 ± 3.25
mnasnet1_0 88.65 ± 3.17 92.83 ± 1.15 91.03 ± 3.06
DenseNet121 91.23 ± 1.46 93.7 ± 2.63 92.98 ± 2.51
WideResNet 83.35 ± 2.25 79.49 ± 4.42 87.58 ± 4.66
GoogleNet 93.97 ± 3.96 94.52 ± 1.33 94.58 ± 1.33

8.4.3 Extracting Explanation from MCT

In the first two experiments, we demonstrated McXai’s ability to identify both

positive and negative factors influencing the black box’s decision-making pro-

cess. In this experiment, we specifically describe the additional insight McXai

provides beyond identifying local pattern impact. Figure 8.4 illustrates the

explanations for a given instance from three different methods: McXai, Grad-

CAM, and LIME. Notably, the complex model predicts the original image as a

dog, yet each method offers a different explanation.

129

Table
8.4.:A

n
exam

ple
of

the
explanation

of
the

three
differentm

ethods:
M

cX
ai,G

rad-cam
,L

IM
E

.T
he

firstrow
show

s
the

originalim
age,M

cX
ai’s

explanation,G
rad-cam

’s
explanation,L

IM
E

’s
explanation

in
order.

T
he

low
er

rightpartis
the

M
C

T
generated

by
the

M
cX

aiand
the

low
erleftpartis

the
corresponding

’perform
ance’and

’value’attributes
of

each
edge

in
the

M
C

T.

130

None of the methods identifies the dog as the key factor in the decision:

McXai identifies the man’s face as crucial. Grad-CAM emphasizes the man’s

clothing. LIME highlights numerous areas, including the man, woman, and

plants in the environment.

The explanations from Grad-CAM and LIME are inherently complex or dif-

ficult to interpret, especially when numerous local patterns are involved, mak-

ing it hard to assess their correctness. In contrast, McXai’s explanations are

supported by the generated MCT.

The lower right part of Figure 8.4 displays one of the MCTs generated by

McXai. Nodes of the same color, except blue, correspond to identical actions.

The nodes in each layer are sorted according to the ’performance’ attribute of

their input edges. The lower left part of Figure 8.4 shows the ’performance’

(first row) and ’value’ (second row) attributes of each layer’s edges in the MCT.

Using the MCT, we can determine the effect of removing each local pattern

from the original image on the prediction probability.

For instance, the red-marked edge in the MCT, chosen by McXai, has the

greatest and shortest impact on prediction. This path is illustrated in the upper

part of Figure 8.4. By adding the performance along this path, we find that

removing the selected local patterns reduces the probability of predicting the

image as a dog to 46%, thus confirming McXai’s explanation.

Additionally, the MCT provides further valuable information: (i) Local pat-

tern Combination Impact: From the first layer’s performance data, we ob-

serve that individual local patterns alone have little impact on prediction; their

combined effect is significant. (ii) High-Performance local patterns: High-

performance local patterns are not always optimal. For example, the last node

in the third layer has a negative performance, meaning that removing it in-

creases the dog’s prediction probability. However, its value, or expected re-

ward, is the highest. (iii) Local pattern Interdependencies: The MCT reveals

dependencies between local patterns. For instance, removing the green local

pattern when the purple local pattern is already removed results in a perfor-

mance of 0.0098.

Furthermore, we tested the effect of removing the man’s clothing and the dog

from the image on the model’s predictions. As shown in Figure 8.3, both mod-

131

Figure 8.3.: Two examples of complex model prediction probabilities

ifications have almost no effect on the predictions of the complex model. This

reinforces that McXai effectively identifies the most impactful local patterns,

providing deeper insight into the decision-making process. It can be concluded

that although the explanations of all three methods differ from human percep-

tion, McXai’s explanation is the most consistent with the black box.

8.5 Discussion

In this paper, we propose a novel approach called McXai to enhance the relia-

bility of complex models by elucidating the principles behind their decisions.

This method analyzes the classification decisions of a complex model by exam-

ining single local patterns or local pattern sets of an input instance in a manner

that is easily comprehensible to humans, identifying factors that positively or

negatively affect model predictions.

The cornerstone of this approach is the formalization of the XAI problem as

two distinct games, each focusing on discovering specific properties. This sim-

ulation enables us to address the XAI problem in a manner similar to a classic

game, training an agent to handle the problem. Inspired by AlphaGo [107], we

adapted and applied the MCTS algorithm to our task, presenting the analysis

of the prediction of an input instance in a tree structure while simultaneously

training the agent. This significantly enhances explainability.

In our experiments, we compare the positive local patterns identified by var-

ious XAI approaches and test the negative local patterns identified by our pro-

posed method across different complex models. These experiments demon-

132

strate the capability of McXai in explaining complex model predictions. Fur-

thermore, we found that using the identified local patterns, we can further im-

prove the performance of complex models.

In McXAI, the model decision is elucidated using a tree structure, where the

dependencies between different nodes are represented by the edges connecting

them. Each distinct path within the tree corresponds to a candidate explana-

tion of the decision. This approach enables the efficient extraction of relation-

ships between local patterns dispersed across multidimensional data, thereby

offering a more comprehensive explanation for the model’s decision-making

process.

133

Algorithm 3 McXai
Input: black box g, input x0, target y
Parameter: τ , fine-grad k, max-depth L, selection trade-off λ , reward trade-
off η

Output: o
1: Let o← []
2: Initialize action space A as a list that contains a single n dimensional array

with value one {a0}.
3: if argmax

i∈{0,··· ,c}
g(x0)[i] = y then

4: execute process ’Action Space Refinement’ to update action space A
5: while (∀a ∈A) sum(a)> k do
6: o = o ∪ execute process ’MCT Generation’ to generate MCT with the

given action space A and root node x0
7: execute process ’Action Set Selection’ to select action set and set it

as new action space A
8: execute process ’Action Space Refinement’ to update action space A
9: end while

10: end if
11: apply all actions in the action space to x0 to generate root node for mis-

classification game and set it back to x0
12: Initialize action space A as a set that contains a single n dimensional bit

array with value one {a0}.
13: execute process ’Action Space Refinement’ to update action space A
14: while (∀a ∈A) sum(a)> k do
15: o = o ∪ execute process ’MCT Generation’ to generate MCT with the

given action space A and root node x0
16: execute process ’Action Set Selection’ to select action set and set it as

new action space A
17: execute process ’Action Space Refinement’ to update action space A
18: end while
19: return o

134

9. Explain with Temporal Information

In the previous section, we explored the interactions between local data seg-

ment patterns and their influence on the model’s decisions. This section builds

on that analysis by incorporating additional insights from Part II, with a partic-

ular focus on the noisy and time-dependent nature of the data.

In pervasive computing, data are often noisy due to factors such as sensor

limitations and data transmission issues. Although specific values may vary

across different time segments, they can still describe similar patterns, such as

trends in acceleration or deceleration. Moreover, the temporal dependence of

these local patterns can significantly affect the model’s decisions. For example,

if the variable x represents the acceleration of a car, during the acceleration pro-

cess, x should initially increase and then decrease. A single time-slice feature,

indicating either an increase or a decrease, is insufficient to accurately guide

the model’s judgement. These observations give rise to several important ques-

tions: (i) How can noise be effectively eliminated from a time series to identify

consistent local features? (ii) How can dependencies between different local

features be identified and leveraged to explain the model’s decisions? In this

chapter, we will delve into these questions.

Corresponding Publication:. Y. Huang, C. Li, H. Lu, T. Riedel, and M. Beigl.

State graph based explanation approach for black-box time series model. In

World Conference on Explainable Artificial Intelligence, pages 153–164.

Springer, 2023

135

9.1 Introduction

With the rapid advancement of always-on network technology and micro-

/nano-electromechanical systems, live sensor information has become increas-

ingly crucial in pervasive computing. Schilit et al. [143] identified various

types of implicit interactions with computer systems based on contextual infor-

mation as early as 1994. Subsequently, this seminal work has fueled the devel-

opment of diverse context-aware recommender systems, ranging from context-

aware advertising to adaptive music playlists based on user behaviors [108].

Devices such as smartwatches and mobile phones, equipped with numerous

sensors, are typical examples that enable these implicit interactions. They col-

lect time series data on daily human activities and provide recommendations

derived from these data. However, as the models driving these recommenda-

tions become increasingly complex, explaining their underlying logic becomes

more challenging. Thus, there is a growing demand for explanatory methods

tailored to sensor based time series AI models, which clarify how these models

process sequential data relationships to generate context-based recommenda-

tions.

While explainability research has made substantial progress in the computer

vision domain [164], the unique characteristics of sensor based time series

data, such as its noisy nature and sequential structure, which are fundamen-

tal to many context-aware information retrieval models, present challenges for

directly applying these advancements to time series explanations.

In recent years, several methodologies have emerged for interpreting time

series models. Parvatharaju et al. [124] and Crabbe et al. [31] developed ap-

proaches that assess the significance of input data by introducing perturbations.

Schlegel et al. [146] adapted the LIME approach to the time series domain

by using six distinct segmentation methods and elucidating the target model

through the training of local models with generated segments. Doddaiah et

al. [36] extended this method to include multi-class forecasting issues. Addi-

tionally, Guidotti et al. [58] utilized rules created within the latent space and

employed mean squared error (MSE)-based Shapelets to identify the segments

that influence the model predictions.

While these methodologies provide insight into model behavior, they focus

136

primarily on the importance of individual input segments. This approach is

limited given the sequential nature of time series data, which is integral to

most predictive models. For example, in predicting a head nod using data from

a gravitational acceleration sensor on the head, a comprehensive assessment

should include the entire sequence of movements: the initial acceleration in

the direction of gravity, returning to zero, accelerating in the opposite direction,

and returning to zero again. Although the value at any specific moment might

show a linear correlation with the predicted outcome, it does not fully explain

the prediction process.

To address the limitations of existing time series explanation methods, we

propose a novel approach called State-graph Based eXplanation Artificial In-

telligence (SBXAI). This method leverages Bayesian optimization to aggregate

adjacent data points in a given example, thereby creating multiple, more com-

prehensible data units or states and reducing the effect of data noise. Addition-

ally, it employs Directed Circular Graphs (DCG) to visualize the sequential

relationships between these states, thereby elucidating the model’s decision-

making process.

9.2 Related Work

Theissler et al. [164] categorized existing time series explanation methods into

three main categories: Time-point-based explanations, subsequences-based ex-

planations, and instance-based explanations.

• Time Points-Based Explanations: These methods assign a weight to

each time point in the input time series data, indicating the contribution

of each value to the model’s final decisions [70; 117; 144; 185].

• Subsequences-Based Explanations: These methods identify the input

sub-segments most representative of the model’s decisions. These sub-

segments can be real-valued subsequences directly extracted from the

raw time series [27; 114; 148] or discretized representations obtained

through aggregate algorithms [125; 129; 178].

• Instance-Based Explanations: These rely on the entire time series in-

stance to explain the model’s judgments. Examples include features

137

extracted from the entire time series instance [47; 151], the most rep-

resentative examples of a particular classification made by the model

[48; 161], and counter-examples that lead to changes in classification

through minimal modifications [33; 87].

However, Time Points-Based Explanations and Subsequences-Based Expla-

nations often struggle to illustrate the effect of chronological order in their

explanations. Instance-Based Explanations, while useful, are based on implicit

assumptions that the features or examples they identify are inherently explain-

able. This assumption is not always valid, as time series data, especially those

with longer or more complex trends, can be difficult to understand, even for

experts with domain knowledge.

9.3 Method

The preceding discussion inspired the development of an effective explanation

method for time series models, emphasizing two key elements: (i) the ability

to analyze and visually demonstrate the impact of the chronological order of

input values on model predictions, and (ii) the avoidance of presenting exces-

sively long time series segments that are difficult for humans to comprehend,

as well as single values that provide little information. The proposed expla-

nation method is built on these principles, as illustrated in Figure 9.1(a). The

framework comprises three modules: the Segment & Clustering Module, the

Perturbation Module, and the Explanation Module.

9.3.1 Segment & Clustering Module

The Segment & Clustering Module is responsible for dividing the time series

data into smaller segments and categorizing them based on their similarity. The

objective of this module is to summarize the time series input to be explained,

referred to as Interested Data Entry xI , into a series of clustered segments (here-

inafter referred to as states) sI that are easily interpretable by humans.

Specifically, xI is a time series input of length m, as shown in Equation 9.1:

xI = {t1, t2, . . . , tm} (9.1)

138

Ta
bl

e
9.

1.
:(

a)
.

D
es

cr
ip

tio
n

of
th

e
W

ho
le

M
od

el
Pi

pe
lin

e.
(b

).
D

et
ai

ls
of

th
e

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n
Pr

oc
ed

ur
e

fo
r

th
e

Se
gm

en
t&

C
lu

st
er

in
g

M
od

ul
e.

139

After processing by the Segment & Clustering Module, xI is transformed

into a sequence of states sI with length n, where each state has the same length

J, as shown in Equation 9.2:

sI = {g1,g2, . . . ,gn}, n = ⌈m/J⌉ (9.2)

The value of each state gi is determined by a clustering algorithm G(e |K,T),

where e is the segment to be clustered, K is the number of clusters and T

represents all available segments, as described in Equation 9.3:

gi = G([ti∗J+1, . . . , t(i+1)∗J] | K,T) (9.3)

The module includes two essential hyperparameters: the length of the seg-

ment J and the number of clusters K. These hyperparameters can be optimally

set using Bayesian optimization. The underlying principle is that proper seg-

mentation and clustering of the data should preserve the information within the

time series. To achieve this, we train a Fitting Model F(s), which uses the se-

quences of states as input and predicts the output of the black-box model to be

explained. The performance of the Fitting Model serves as an indicator of the

effectiveness of the Segment & Clustering Module (Equation 9.4).

K̂, Ĵ = argmax
K,J

∑
s

ACC(F(s)) (9.4)

Here, K̂ and Ĵ represent the optimal number of clusters and segment length,

respectively, and ACC(F(s)) denotes the accuracy of the Fitting Model. The

better the Fitting Model performs, the more effective the Segment & Clustering

Module is.

The Fitting Model requires sufficient data for training, which may not al-

ways be available in certain scenarios that require time series black-box expla-

nations. To address this issue, two processes are outlined in Figure 9.1(b).

The process on the left side of the Fitting Model addresses scenarios where

the original dataset used to train the black-box model is available during the

explanation stage. For instance, if the model’s trainer seeks to explain mis-

classified samples to improve model accuracy or enhance robustness against

adversarial attacks, the original training data can be utilized. In this scenario,

140

data availability is not a concern. All data entries from the given dataset are

used to obtain T and to train the Fitting Model.

The process on the right side of the Fitting Model addresses scenarios where

the original dataset used to train the black-box model is unavailable during

the explanation stage. This is relevant when users of a black-box model have

concerns about its output. In this case, xI is processed through the Segment &

Clustering Module to obtain its state sequence representation sI .

Next, sI is randomly shuffled and, for each shuffle, the corresponding orig-

inal sample point representation is noted. This generates two perturbation

datasets: the state sequence perturbation dataset and the sample point pertur-

bation dataset. The state sequence perturbation dataset is used as the input for

the Fitting Model, while the sample point perturbation dataset is fed into the

black-box model to obtain the labels needed to train the Fitting Model.

9.3.2 Perturbation Module

The task of the Perturbation Module is to shuffle the sI obtained from the Seg-

ment & Clustering Module to create a perturbation dataset. Utilizing the one-

to-one correspondence between the states and the original data, the representa-

tion of the sample points of the shuffled sI is also generated. This enables us

to obtain the black-box model’s predictions for the perturbation dataset. These

two elements, the shuffled state sequences and their corresponding black-box

model predictions, serve as inputs for the next module.

9.3.3 Explanation Module

As an output of the previous module, we conducted various chronological per-

turbations on the interested data entry and obtained the prediction results of the

black-box model for these perturbations. By analyzing the model’s responses

to these perturbations, we can elucidate the behavior of the black-box model.

In this module, we fit an explainable model to capture the behavior of the black-

box model, enabling us to use the fitted model’s explanations to interpret the

black-box model.

In our study, we selected the HMM as the explainable model due to its clear

141

and straightforward visualization. Using an instance from the ’Allgesturewi-

imoteY’ dataset, specifically the ’Pick-up’ class 1, and employing a LSTM

black-box model, the final explanation comprises three parts.

First, the representation state generated by the Segment & Clustering Mod-

ule (see Figure 9.2(c)) is discussed. Each state, representing the center of a

cluster, simplifies the understanding of data trends. For instance, state 0 signi-

fies stabilization, while states 1 and 3 indicate sinking and rising, respectively.

Each state is composed of multiple single values, with its complexity defined

by its length.

The second part of the explanation focuses on the importance of different

features. This feature importance is determined at the state level using the ex-

isting counterfactual-based explanation method TS-MULE [146]. This impor-

tance is visually represented by the length superimposed on the state transition

curve of the interested data entry, as shown in Figure 9.2(b). The explanation

highlights the initial segment of the instance (state 1) as critical and assigns

various importance values to it.

The final part of the explanation focuses on the significance of various state

transitions, illustrated by the transitions graph of HMM shown in Figure 9.2(a).

In this graph, each node represents a state, and each edge represents a transi-

tion. The edge values describe the importance of the corresponding transitions.

For instance, in this example, the transition from state 3 to state 1 is assigned

a value of 1, while the transition from state 1 to itself has a value of 0.8. No-

tably, the absence of an edge from state 3 to itself indicates a value of 0. This

suggests that the classification of this example hinges on the sensor value re-

maining stable for an extended period following a downward trend.

Figure 9.1 visually depicts TS-MULE [146]’s explanation of the selected in-

stance. TS-MULE clarifies the instance through the significance of the original

signal segment, represented by the color overlay on the value transition curve of

the interested data entry. As shown in Figure 9.1, TS-MULE attributes the clas-

sification of the given instance as a "pickup" primarily to the segment where

the sensor value exhibits a decreasing trend, with the degree of importance

corresponding to the degree of decrease.

1This class is characterized by the user picking up the control device from its neutral motionless
position without any specific predefined manner [60].

142

Compared to the SBXAI method, we found the following: (i) Although TS-

MULE assigns significance to each individual segment, the segments consid-

ered important vary widely and the manner in which these segments contribute

to the prediction remains unclear. In contrast, SBXAI uses states derived from

clustering techniques to characterize each segment, represented by a cluster

kernel that outlines a prevalent trend among the respective clusters. For in-

stance, the segments TS-MULE deems essential align with the state that de-

lineates a descending trend, providing greater comprehensibility than the ini-

tial segments. (ii) Decisions in time series are generally based on trend val-

ues rather than the magnitude of discrete values. This is exemplified by the

"pickup" process, which involves the progression from increasing to maintain-

ing stabilization. TS-MULE emphasizes the significance of individual seg-

ments (e.g., sinking) while disregarding the sequential relationship between

distinct segments (e.g., transition from sinking to maintaining stabilization).

This alteration in the trend is distinctly observable within the state transition

diagram in the SBXAI approach. (iii) TS-MULE argues that only the decreas-

ing part of the values is relevant to the decision-making, without considering

the stable part. This contradicts the class description, which indicates that the

stable state is also a critical component of the classification.

9.4 Evaluation

In the previous section, we demonstrated how SBXAI explains a given in-

stance. In this section, we empirically validate the reliability of the generated

explanation, specifically how accurately the explanation provided by the pro-

posed method aligns with the black-box model’s behavior toward the predic-

tion.

To validate, we randomly sample items from a dataset and explain them

using the selected methods. We then modify each item according to its ex-

planation. If the black-box model prediction changes after the modification,

we record the modification as a success. For each dataset, we repeat this pro-

cess 100 times to calculate the average attack success rate (ASR), which in-

dicates the importance of the rules broken by the modification. We compare

the performance of the following modification methods: (i) Replace the value

143

Table
9.2.:(a).

Transitions
graph

of
H

M
M

,show
ing

the
im

portance
of

different
state

transitions.
(b).

T
he

state
sequence

of
the

interested
data

entry
(ID

E
)

and
the

background
color

show
ing

the
feature

im
portance.

(c).
T

he
C

orrespondence
betw

een
the

state
and

the
clustercore.T

he
x-coordinates

in
Figures

(b),(c)both
representtim

estam
p.

144

Importance [0,1]

Va
lu
e

Figure 9.1.: Explanation for the example data entry given the TS-MULE,
which 1). only contains the feature importance, 2). only shows
the original data instead of summarizing the characteristic of the
trend.

of a random position in the item with the least important state identified by

the proposed method in the given item (Random-Fe). (ii) Exchange the posi-

tions of two random states in the given sequence (Random-Seq). (iii) Remove

an important feature identified by TS-MULE [146] using the proposed Seg-

ment Module (TS-MULE-Fe). (iv) Exchange the positions of the state pair

considered the most important by the proposed method (SBXAI-Seq). For ex-

ample, given the state sequence [abcba], if the proposed method identifies the

sequence relationship ’ab’ as crucial for class identification, we transform the

original sequence to [bacba] by exchanging the states.

We aim to highlight the significance of a successful attack by limiting the

strength of the applied modification. During the experiment, we utilized the

Hyperopt [17] package for optimization, setting its hyperparameter max_iter

to 100 and using the ’tpe.suggest’ optimization algorithm.

To ensure the reliability of the results, we conducted experiments on var-

ious UCR datasets [32], which feature different numbers of classes and se-

quence lengths. The black-box model used in these experiments is constructed

145

Table 9.3.: Attack Success Rate (ASR) of different modification methods.
Dataset Number

Class
Sequence
Length

Random-
Fe

Random-
Seq

Fe SBXAI-
Seq

AllGestureWiimote 10 vary 10 7 86 89
Car 4 577 16 10 63 68
YoGA 2 426 19 12 76 81
ShapesAll 60 512 13 17 50 72
PigAirwayPressure 50 2000 3 9 18 95
Mallat 8 1024 10 5 98 88
InlineSkate 7 1882 20 17 42 85
CricketY 12 300 11 16 69 83
RefrigerationDevices 3 720 11 10 46 64
MixedShapesRegularTrain 5 1024 3 2 37 65
BirdChicken 2 512 13 28 79 89
WordSynonyms 25 270 12 12 57 64
DodgerLoopGame 2 288 0 20 42 72
FreezerRegularTrain 2 301 16 15 45 96
EthanolLevel 4 1751 11 8 96 100
LargeKitchenAppliances 3 720 6 8 56 72
FiftyWords 50 270 8 17 74 75
ArrowHead 3 251 16 20 74 84
EOGHorizontalSignal 12 1250 18 14 70 80
ACSF1 10 1460 0 1 17 90

with LSTM layers. To the best of our knowledge, no heuristic method em-

ploying sequential relations has been used to explain black-box models, so we

did not compare the proposed method with other sequential-based explana-

tory methods. The search space and the black-box models are available in

https://github.com/HuangYiran/sbxai.

As summarized in Table 9.3, the elements identified by the two different

modification methods, TS-MULE-Fe and SBXAI-Seq, have a substantial im-

pact on the black-box prediction. The average attack success rate for modifying

the state order is 79.9%, while that for eliminating important states is 60.4%.

These results suggest that the explanation generated by the proposed method

is reasonable. We can conclude that the prediction of a time series depends

not only on its states but also on the sequential relationship between them. For

time series data, sequential changes between states have a more pronounced

effect on decisions than the removal of individual states. Additionally, we find

that some models are strongly influenced by the sequential relationship and

are almost unaffected by the individual states, such as in the case of ’PigAir-

wayPressure’. This is likely because the states considered important appear

multiple times within the same item. Moreover, no significant correlation was

found between the attack success rate, number of classes, and sequence length.

146

https://github.com/HuangYiran/sbxai

9.5 Discussion

Most pervasive computing data are collected through sensors, which often

leads to noisy data, and the temporal relationships within these data can sig-

nificantly impact model decisions, which poses a huge challenge to the current

XAI methods. To address these challenges, we propose SBXAI, an explana-

tion method specifically designed to interpret complex time series models in

the presence of high noise. SBXAI mitigates the effects of noise through clus-

tering and Bayesian optimization, and visualizes the temporal relationships in

the data using DCG. Empirical experiments conducted on 20 different data

types demonstrate the effectiveness of this method.

Despite this achievement, there is still room for improvement in terms of

experimentation and further development of algorithms. For example, all the

black-box models in the experiment have the same structure. It is necessary

to verify the impact of the proposed method on models with different archi-

tectures. Additionally, further improvements could be made to the algorithms

by enlarging the search space, such as incorporating more segmentation and

clustering methods. This could enhance the robustness and applicability of the

proposed method across a wider range of scenarios.

147

10. Explain with other Information

In the previous two chapters, we developed novel explanation methods that fo-

cused separately on the spatial and temporal features of pervasive computing

data. However, each method addressed only a single aspect of the characteris-

tics of the data. In this chapter, we will take a more comprehensive approach

by exploring the feasibility of integrating multiple factors that are critical to

model decisions into a single interpretation method. This includes examin-

ing the interdependencies between various channels, both long-term and short-

term temporal dependencies, local area patterns, frequency patterns, and loca-

tion information.

Corresponding Publication:. Y. Huang, Y. Zhou, H. Zhao, L. Fang, T. Riedel,

and M. Beigl. Extea: An evolutionary algorithm-based approach for enhancing

explainability in time-series models. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pages 429–446.

Springer, 2024

149

10.1 Introduction

The increasing prevalence of sensor-based applications in pervasive comput-

ing domain, such as motion capture games and medical assistance systems,

has heightened the reliance on time series data. However, the multimodal na-

ture of time series data often leads to the development of complex and opaque

models, creating trust issues in practical applications. Recently, several XAI

methods for time series black-box models have been proposed. For exam-

ple, SBXAI [73] elucidates how sequential structures in different cognitive

blocks influence decision-making processes using a DCG. Here, the cognitive

block refers to crucial data segments essential for model decisions. Similarly,

MCXAI [74] examines the relationships among various cognitive blocks us-

ing a Monte Carlo tree structure. Another approach, TS-MULE [145], adapts

LIME [134] to time series data, employing multiple distinct segmentation

strategies. Although these methods advance the understanding of black-box

time series models, they have limitations.

One major challenge is generating multiple explanations for a single input.

State-of-the-art models often involve an ensemble decision mechanism [75],

indicating that identical inputs can be governed by multiple underlying rules.

These rules typically manifest through internal model mechanisms, such as the

ensemble approach in a random forest model and the dropout mechanism in a

neural network. Prevailing XAI methods, which focus on feature importance

and Pertinent Negative counterfactuals [167], tend to combine all rules into a

single explanation, leading to potential confusion and inaccuracy. Moreover,

most Pertinent Positive counterfactual-based methods [167], which have not

yet been tested on time series data, offer only one optimal explanation, disre-

garding the range of possible decision rules.

Additionally, certain time series characteristics, such as frequency informa-

tion and sequential interference, are not adequately explored. The optimization

of cognitive blocks in MCXAI and SBXAI is constrained, potentially hindering

the discovery of high-quality cognitive blocks. Furthermore, setting hyperpa-

rameters in current methodologies, such as the number of segments in SBXAI,

remains a formidable challenge.

In summary, we face a counterfactual-based XAI task that seeks multi-

150

ple, distinct, and optimized explanations under multi-objective constraints re-

lated to different time series characteristics. We posit that evolutionary algo-

rithms [39] are well-suited to tackle these challenges. Consequently, we pro-

pose ExTea, an EXplainable Artificial Intelligence method for time series mod-

els based on an Evolutionary Algorithm. In ExTea, each individual represents

a potential explanation and is endowed with a self-optimization function. Our

method differs from traditional evolutionary algorithms by employing a pyra-

midal structure for the individual pool, segmented into layers for newborns,

tested, and elite individuals. This structure facilitates differentiated optimiza-

tion across layers and is tailored to multi-objective tasks with clear rejection

criteria. Additionally, we integrate explanatory factors into the fitness func-

tion, enhancing the explanatory power of the selected individuals.

10.2 Related Work

In the realm of time series analysis, model-agnostic explanation methods can

be broadly classified into three types based on their foundational units of expla-

nation: time-point-based, subsequence-based, and instance-based (or feature-

based) explanations. Each type has distinct approaches and limitations: The

first is the time-point-based explanations. SoundLime [116]: This method

generates new samples by introducing minor perturbations to the original au-

dio data and assesses the importance of each time point based on the model’s

predictions for these altered samples. Tsinsight [155]: Tsinsight employs an

auto-encoder trained on the dataset to explain the input through reconstructed

data. Salience Cam [185]: It generates a salience map based on the gradients of

the model’s output concerning the input data, using it to explain the decision.

Although these approaches effectively determine the significance of individ-

ual time points, they fall short of exploring broader time-related features, such

as frequency and trend, which require an analysis that integrates data across

multiple time points.

The second type is subsequence-based explanations. TS-MULE [145]: This

method assesses the importance of each cognitive block by constructing lo-

cal linear models and generating cognitive blocks from sequences using meth-

ods like Symbolic Aggregate approXimation (SAX). SAX-VSM [148]: It seg-

151

ments time series data using SAX with overlapping windows and trains a bag-

of-words model based on these segments to explain the input with generated

’words’. MCXAI [74] and SBXAI [73]: These methods provide insights into

relationships between cognitive blocks, with MCXAI focusing on spatial re-

lationships through a tree structure, and SBXAI on temporal relationships via

a DCG. However, these methods do not sufficiently explore the temporal fea-

tures of the data, and their explanations may merge multiple rules, complicat-

ing understanding.

The third type is the instance-based explanations. Instance-based methods

extract features using statistical techniques, with explanations largely depend-

ing on the explainability of these features. This approach requires the model

to rely exclusively on interpretable features for decision-making. However,

the feature extraction process can lead to a loss of information, significantly

limiting the model’s performance.

In summary, while each of these model-agnostic explanation methods offers

valuable insights in the context of time series analysis, they also have inherent

limitations. Time-point-based methods may neglect broader temporal patterns,

subsequence-based methods might not fully capture temporal dynamics, and

instance-based methods could suffer from information loss due to feature ex-

traction.

10.3 Method

10.3.1 Problem Definition and Individual Coding

Given a black-box model B and an input o= [o1, · · · ,ol], where l is the length of

the input signal, the objective of a local model-agnostic time series explanation

method is to identify a set of masks M o = [m1, · · · ,mi, · · ·] with mi ∈M and

M = ⟨0,1⟩l . These masks should highlight the most critical data points that

influence the model prediction. The identified mask set M o must satisfy the

following conditions:

• Prediction Consistency:

∀m∈M o B(m(o)) = B(o), (10.1)

152

Population
generation

Selection
Grow

th

Competition

Cr
os
so
ve
r

M
ut
at
io
n

1
2

3
4

5

6

Generation + 1

Figure 10.1.: The pipeline of the proposed ExTea algorithm.

where the function m(o) involves assigning 0 to all data in the input o,

except at positions marked with 1 by the mask m. The function B(·)
yields the prediction of the black-box model.

• Non-Subset Relation:

∀mi,m j∈M o, i ̸= j mi ⊈ m j,

where mi ⊆m j if and only if mi∧m j = mi. This criterion ensures that no

mask in M o is completely encompassed by another, thus guaranteeing

unique contributions from each individual mask.

• Minimalism:

∄m∈M /M o
[︁
B(m(o)) = B(o) and ∃mi∈M o m⊆ mi

]︁
. (10.2)

This condition ensures that the identified masks are the simplest possi-

ble.

153

By satisfying these conditions, the set of masks M o provides a compre-

hensive, non-redundant, and minimal explanation of the critical data points

influencing the black-box model’s predictions.

As discussed in Sec. 10.2, time point-based explanation methods are inade-

quate to capture the complexity of time series data. To address this limitation,

ExTea represents the mask as a list of 2n numerical values, where n is the num-

ber of contiguous blocks in the mask set to 1. This list must satisfy two criteria:

(i) Each number must be a unique integer less than the length l of the input se-

quence, and (ii) the numbers must be in ascending order. Each adjacent pair

{2i,2i+1} represents the i-th block in the mask.

Given that a numerical list and a mask can be interconverted, we denote the

list as m. In ExTea, each individual is characterized by m, and m(o) identifies

the cognitive blocks that explain the model’s decision for input o. This method

compels the explanation to be composed of subsequences, thereby enhancing

the optimization and exploration of individuals.

For multi-channel data, signals from different channels are concatenated

into a single-dimensional signal. In this context, the length l refers to this

concatenated signal, which simplifies the representation and analysis of multi-

dimensional data.

10.3.2 Population Generation

The proposed algorithm employs a hierarchical structure with three distinct

layers, L1, L2 and L3, to manage the population pool. Each layer plays a

specific role in the selection and evolution of individuals, ensuring an efficient

and organized progression of candidates through the system.

Layer L3 serves as the entry point for all newly created individuals, func-

tioning as the initial staging ground for new candidates. Individuals in L3

are promoted to L2 after satisfying the explicit rejection condition outlined in

Equation 10.1 (Prediction Consistency). This layer acts as a filter, advancing

only those candidates that meet basic criteria. The transition from L2 to the

elite layer L1 is based on competition, with L1 reserved for the most promis-

ing solutions, fostering the focused development of superior candidates.

New individuals are generated through a random sampling process. This be-

154

gins with generating a random number to determine the number of blocks in

the individual. Subsequently, a set of unique random integers, twice the num-

ber of blocks, is selected from the range [0, l]. These values are then organized

in ascending order to form a numerical list representing the individual.

To maintain the diversity and dynamism of the population pool, the individ-

uals of layer L3 are replenished according to its capacity s3. This ensures a

consistent influx of new candidates into the system.

10.3.3 Fitness Function Design

ExTea, adapted to the hierarchical structure of the individual pool, divides the

selection process of the general evolutionary algorithm into two distinct pro-

cesses: selection and competition. Each process targets different layers within

the system and employs specific criteria for evaluating individuals.

Selection Process. This process focuses on the individuals in layer L3. The

fitness function for selection is defined as follows:

fsel = 1{B(m(o))=B(o)}×2−1,

where 1 denotes the indicator function, B the black-box model, o the target

of analysis, and m the mask of the individual. Only those individuals whose

masked information (cognitive blocks) yields the same prediction as the orig-

inal data are selected to Layer L2 for further optimization. Individuals failing

this process are eliminated due to the ambiguity in evaluating their relative

performance.

Competition Process. The competition process in ExTea is designed for indi-

viduals in L2 and L1. It aims to select superior individuals for promotion to L1

and demote those in L1 that fail to meet the competition standards. Evaluation

in this process is based on two main criteria:

• Cognitive Block Length: The algorithm posits an inverse correlation be-

tween an individual’s importance and the length of its cognitive blocks.

155

Shorter blocks imply higher significance and facilitate easier compre-

hension.

• Purity of Influencing Factors: The ideal individual should be influenced

by as few factors as possible, enhancing the purity of its explanation.

The impact of various elements such as time dependence, location, and

frequency information on the model’s decision-making process is inves-

tigated. A purer, less influenced explanation is considered superior for

clarity and understanding.

In ExTea, several explorations based on basic time series characteristics are

conducted, each evaluated separately to ensure a thorough understanding of the

factors influencing model decisions:

• Sequential Relationship: This exploration assesses the impact of

the sequential relationship between cognitive blocks on the model’s

decision-making by altering block positions and observing changes in

model predictions. The scoring function f1 is defined as the proportion

of block pairs influencing the decision:

f1 =
2

n(n−1) ∑
i, j∈[0,··· ,n],i̸= j

1{B(c j
i (m(o)))̸=B(o)},

where n is the number of cognitive blocks and c j
i (o) denotes the swap-

ping operation of the i-th and j-th blocks.

• Low-Frequency Information: The importance of low-frequency in-

formation in cognitive blocks is evaluated by applying a Butterworth

high-pass filter. The scoring function f2 of this exploration is defined as

whether the cognitive blocks after the filtering retain the original predic-

tion:

f2 = 1{B(bh(m(o)))̸=B(o)},

where bh(·) represents the Butterworth high-pass filtering operation.

• High-Frequency Information: Similarly, a Butterworth low-pass filter

is used to assess the role of high-frequency information, with the scoring

156

function f3 formulated as:

f3 = 1{B(bl(m(o)))̸=B(o)},

where bl(·) signifies the Butterworth low-pass filtering operation.

• Numerical Trends: By mirroring values within cognitive blocks, we

evaluate the influence of numerical trends on model decisions. The scor-

ing function f4 of this exploration is defined as:

f4 =
1
n ∑

i∈[0,··· ,n]
1{B(vi(m(o)))̸=B(o)},

where function vi(·) indicates mirroring the data in the i-th cognitive

block and n signifies the total number of cognitive blocks.

• Blocks Relative Position: We explore the effect of changing the posi-

tions of the blocks on the prediction of the model by shifting each block

forward and backward separately. The scoring function f5 of this explo-

ration is defined as:

f5 =
1
2n ∑

j∈{−d,d} and i∈[0,··· ,n]
1{B(s j

i (o,m))̸=B(o)},

where n is the number of segments in the individual, d is a variable that

signifies the distance to the neighboring blocks or the border of the time

series, and the function s j
i (·) means shifting the i-th block by j distance.

• Block Position: We explore the effect of synchronously changing all the

positions of cognitive blocks both forward and backward until any block

reaches the series boundary. If the prediction holds, we set the score f6
to zero; otherwise, it is set to one.

• Decision Intervals: We examine the extent of numerical adjustment per-

missible at each point in the cognitive block without altering the model’s

prediction using the Reinforce method described in [72]. Due to the high

time consumption, this exploration is only executed before the algorithm

returns the final results.

157

To achieve the desired level of explanation purity, ExTea calculates the mean

of the first six exploration scores. The smaller the mean, the fewer the factors

affecting the explanation, resulting in a clearer and more concise explanation.

Additionally, ExTea prioritizes explanations with smaller block sizes, aligning

with the assumption that simpler explanations are often more effective. The

competition score fcomp is formulated to reflect these priorities:

fcomp =−
[︃

sum(m)

len(m)
+λ × f1 + f2 + f3 + f4 + f5 + f6

6

]︃
, (10.3)

where λ denotes the balance weight, the function sum(m) calculates the sum

of the mask m, and the function len(m) returns the length of the mask.

During each generation, individuals in Layers L1 and L2 are evaluated using

Equation 10.3. The top-scoring individuals, up to the capacity s1 of Layer L1,

are then promoted to this layer. This strategy ensures that only the most refined

and suitable candidates ascend to the elite layer, thereby maintaining a high

standard of quality within the population pool.

After the competition process, it is crucial to perform a thorough validation

of minimalism in the L1 layer, as outlined in equation 10.2, to eliminate dupli-

cated individuals. This procedure ensures the diversity of individuals in the L1

layer, thereby guaranteeing a distinct representation at that level.

10.3.4 Growth

The growth stage, targeting individuals at layers L1 and L2, follows the Selec-

tion process and precedes the Competition process in each generational cycle.

This stage addresses the challenge of superfluous information within randomly

generated individuals’ cognitive blocks. The primary objective is to refine

these individuals, ensuring maximal succinctness by systematically eliminat-

ing non-essential information within each cognitive block.

It is important to note that identifying the minimal requisite set of expla-

nations within the original dataset is an NP-hard problem. Even when opti-

mization is restricted to cognitive blocks, the search space remains vast. For

an individual with n blocks, each of length h, the total number of potential re-

ductions can be approximately quantified as 2nh2. Due to the time-intensive

158

nature of exhaustively exploring these possibilities, we introduced the growth

function to streamline this process.

The growth function traverses the mask sequentially. When the boundary of

a block is recognized, the growth kernel size u values on the boundary are set to

0 according to a given growth probability α , thus shrinking the corresponding

block. The growth kernel size u signifies the unit used to narrow the blocks,

while the growth rate α signifies the probability of this narrowing occurring.

After the growth process, the reduced mask is validated using the black-box

B. If the prediction remains consistent, the alteration is retained; otherwise,

it is revoked. This process is repeated a predefined number of times in each

generation.

10.3.5 Crossover and Mutation

ExTea implements a two-layer crossover mechanism, consisting of inner-layer

and inter-layer crossovers. Initially, all individuals in the L1 layer undergo

pairing among themselves for inner-layer crossover. Subsequently, these L1

individuals are paired with those in the L2 layer for the inter-layer crossover.

Not every pair undergoes the crossover process; it occurs with a probability

determined by the crossover ratio β . This crossover process employs the half-

swap strategy, a common technique in evolutionary algorithms, which involves

the exchange of half of the genetic material between two individuals, thereby

inducing diversity within the population.

In addition to crossover, individuals in the L1 layer undergo a mutation pro-

cess characterized by a mutation ratio γ . This process features a distinctive

approach: the splitting of original cognitive blocks. This is crucial because the

growth stage inherently only removes irrelevant information at the boundaries

of each block. Consequently, when superfluous information is embedded cen-

trally within a block, the growth process alone is insufficient for its extraction.

To address this limitation, we introduce the concept of block splitting as a new

form of mutation. This method enables the removal of superfluous informa-

tion from any section of the block, thereby enhancing the algorithm’s ability to

optimize individuals effectively.

159

10.3.6 Explanation

In this subsection, we provide a demonstrative example of the ExTea algorithm

to address two primary questions: (i) What insights can be gleaned from the

proposed method? and (ii) How can these insights be applied?

Figure 10.1 presents an exemplary explanation generated by the ExTea algo-

rithm applied to the UWaveGestureLibraryX dataset [106]. The target model

is a random forest with default parameters from the scikit-learn package [127].

The explanation comprises two images and two textual descriptions.

From Figure 10.1[a], the following insights are derived: (i) Cognitive Blocks

Influencing Decision-Making: The areas highlighted in red denote cognitive

blocks that significantly influence the model’s decisions. (ii) Impact of the

Relative Position of Cognitive Blocks: The cyan regions around the cognitive

blocks represent their permissible movement range. Movement within these

zones does not affect the model’s decisions. Each cognitive block is inde-

pendently evaluated, resulting in a unique cyan area for each element. (iii)

Permissible Variability within Cognitive Blocks: Within each cognitive block,

the blue line depicts the original data value, while the surrounding orange zone

indicates the allowable fluctuation range.

Figure 10.1[b] examines the impact of rearranging cognitive blocks on the

decision-making process. In this figure, each node denotes a cognitive block,

with the number inside the node indicating its left-to-right position as shown

in Figure 10.1[a]. An edge between two nodes signifies that swapping these

cognitive blocks does not change the model’s predictions. Conversely, a cross

symbol above an edge indicates that reordering the blocks affects the decision

outcome.

When visual representation of exploratory findings is impractical, we em-

ploy a rule-based methodology to generate descriptive text, as illustrated in

Figure 10.1[c]. This approach combines static text (in black) with dynamic

text (in red), where dynamic text varies according to the exploration results.

This method also reinforces the findings initially presented visually, enhanc-

ing user comprehension. ExTea includes seven distinct exploratory analyses,

each governed by a specific rule. Additionally, based on these exploratory

results, we provide recommendations for improving model performance, as

160

1
2

Ex
pl
or
at
io
n:

-T
w
o

co
gn

iti
ve

bl
oc

ks
 re

co
gn

ize
d

as
es

se
nt

ia
lf

or
th

e
pr

ed
ic

tio
n.

-T
he

re
la

te
d

po
sit

io
n

am
on

g
th

e
bl

oc
ks

is
im

po
rt

an
t.

-T
he

po
sit

io
n

of
th

e
bl

oc
ks

in
th

e
se

qu
en

ce
is

im
po

rt
an

t.
-T

he
nu

m
er

ic
al

Tr
en

ds
in

th
e
fir
st

bl
oc

k
is

im
po

rt
an

t,
in

th
e
se
co
nd

bl
oc

k
is
no

ti
m

po
rt

an
t.

-T
he

hi
gh

fr
eq

ue
nt

in
fo

rm
at

io
n

in
th

e
bl

oc
k
do

es
no

tp
la

y
an

im
po

rt
an

tr
ol

e.
-T

he
lo

w
fr

eq
ue

nt
in

fo
rm

at
io

n
in

th
e

bl
oc

k
do

es
pl

ay
an

im
po

rt
an

tr
ol

e.

Ad
vi
ce
s:

-D
at

a
Au

gm
en

tt
hr

ou
gh

sh
ift

in
g

co
gn

iti
ve

bl
oc

ks
in

ea
ch

sa
m

pl
e

to
al

le
vi

at
e

th
e

ef
fe

ct
of

se
qu

en
ce

po
sit

io
n.

-D
at

a
Au

gm
en

tt
hr

ou
gh

sh
ift

in
g

ea
ch

co
gn

iti
ve

bl
oc

k
se

pa
ra

te
ly

in
ea

ch
sa

m
pl

e
to

al
le

vi
at

e
th

e
ef

fe
ct

of
re

la
tiv

e
po

sit
io

n.
-D

at
a

Au
gm

en
tw

ith
ad

di
ng

hi
gh

fr
eq

ue
nt

no
ise

to
ro

bu
st

th
e

ta
rg

et
m

od
el

.
-

a b

c d

Ta
bl

e
10

.1
.:

A
n

ex
am

pl
e

of
th

e
E

xT
ea

ex
pl

an
at

io
n.

161

shown in Figure 10.1[d]. These suggestions are activated when the exploration

results meet specific criteria. Detailed rules and algorithm code are available

on https://github.com/HuangYiran/extea.

The original signal data shown in Figure 10.1[a] were captured by the ac-

celerometer during a clockwise circle drawing. Based on the identified cog-

nitive blocks, ExTea interprets this action as an increase in acceleration in the

positive direction, followed by a decrease in the negative direction, closely

aligned with human cognition. Notably, reversing the sequence order of the ac-

celeration data changes the categorization from clockwise to counterclockwise

circle drawing, highlighting the importance of sequential order in cognitive

processing, as corroborated by the visualized results.

Contrary to our intuitive understanding, the model decision-making is influ-

enced by variations in the acceleration trend. This discrepancy may arise from

the uniformity of acceleration changes in the collected data. Ideally, frequent

variations in acceleration during circle drawing should not impact the model’s

inference. To address this issue, Data Augmentation (DA) can be employed

to generate samples with diverse acceleration patterns, thereby enhancing the

model’s robustness to such variations.

Furthermore, the analysis indicates that minor positional shifts between cog-

nitive blocks can unexpectedly influence model predictions, contradicting con-

ventional knowledge. This challenge can be mitigated through the strategic use

of Data Augmentation (DA), which can further refine the model’s accuracy and

robustness.

10.4 Evaluation

To thoroughly evaluate our proposed methodology, we conducted two com-

prehensive experiments addressing two key questions: (i) Fidelity of the Ex-

planation to the Original Model: This question assesses how accurately the

explanations generated by our approach reflect the intrinsic mechanisms of the

original model. (ii) Role of Algorithm Components: This question examines

the specific contributions of various components within the proposed algorithm

to its overall effectiveness. (iii) Impact of Algorithm Parameters on Perfor-

mance. These experiments are designed to provide a robust analysis of both

162

https://github.com/HuangYiran/extea

Table 10.2.: Summary of the datasets used in the experiments.
Dataset Type Train size Test size Sequence length Number classes

EthanolLevel Spectro 504 500 1751 4
ECG5000 ECG 500 4500 140 5

ElectricDevices Device 8926 7711 96 7
InsectWingBeatSound Audio 25000 25000 256 10

EOGVerticalSignal EOG 362 362 1250 12
UWaveGestureLibraryX HAR 896 3582 315 8

the fidelity and functionality of our methodology.

10.4.1 Benchmark Dataset

In our experiments, we meticulously selected six datasets from diverse do-

mains to demonstrate the adaptability and broad applicability of our proposed

method:

• Ethanol Level Dataset [103]: Sourced from the Scotch Whisky Re-

search Institute, this dataset is pivotal for the non-invasive detection of

counterfeit spirits. It consists of spectrometer data from 1,000 spirit bot-

tles, categorized into four alcohol levels, totaling 1,751 observations per

bottle.

• ECG5000 Dataset [25]: Part of the BIDMC Congestive Heart Failure

Database, this dataset features electrocardiography (ECG) recordings

from a 48-year-old patient with severe congestive heart failure. It classi-

fies the data into five categories, including normal rhythms and various

forms of premature ventricular and ectopic beats.

• ElectricDevices Dataset: This dataset captures the electricity consump-

tion patterns of 251 households. Data were recorded bi-minutely over a

one-month period, with each sequence representing a full day’s electric-

ity usage.

• InsectWingBeatSound Dataset [24]: This dataset includes sound

recordings from 5,000 individual insects, identified by species through

acoustic data collected via specialized sensors.

163

• EOGVerticalSignal Dataset [42]: Utilizing the BlueGain biomedical

amplifier, this dataset records electrooculography (EOG) signals, which

measure the potential difference between electrodes near the eye. It

includes signals from 12 participants, each representing 12 different

Japanese katakana characters through eye movements.

• UWaveGestureLibraryX Dataset [106]: Designed for HAR tasks, this

dataset compiles eight distinct gesture patterns from eight users over a

month.

A comprehensive summary of these datasets is provided in Table 10.2.

10.4.2 Target Models

To rigorously evaluate our proposed methodology, we conducted experiments

using four distinct models, incorporating both transparent (’white-box’) and

opaque (’black-box’) approaches. This diverse selection was essential to as-

sess the robustness and adaptability of our method across various computa-

tional frameworks. The models employed include: (i) Interpretable ’white-

box’ models, such as Decision Tree (DT) and Support Vector Machine (SVM),

and (ii) ’Black-box’ models, namely Random Forest (RF) and Neural Network

(NN).

This combination of models allowed for a comprehensive evaluation of our

approach in different contexts, ensuring a thorough analysis of its effectiveness.

10.4.3 Benchmark Algorithms

To assess the effectiveness of our proposed method, we performed a compar-

ative analysis with three other XAI techniques: two state-of-the-art methods,

MCXAI [74] and SBXAI [73], as well as the widely-used method LIME [134].

10.4.4 Experiments Design

Three distinct experiments were conducted to evaluate our proposed method.

The first experiment aims to establish the fidelity of our method to the target

model by measuring the precision and efficiency of various XAI methods in

164

identifying critical features used by the target model for predictions. This ex-

periment comprises three stages: (i) Model Training: The target models are

trained on the training set for each dataset. (ii) Sampling and Interpretation:

100 samples are randomly selected from the test set, and each sample is ex-

plained using the XAI method to determine the importance of each data point.

(iii) Reconstruction and Validation: A blank sample is incrementally popu-

lated with data points from the original sample, prioritized by their determined

importance. The goal is to replicate the prediction of the target model with

minimal data points, with the efficacy of an XAI method judged by the fewest

data points required for accurate decision replication, indicating higher inter-

pretative fidelity.

The second experiment, an ablation study, investigates the impact and ef-

fectiveness of the growth function in our proposed method. This study com-

pares the performance of the method with and without the growth function,

monitoring the proficiency of the most effective individual identified in each

generation.

The final experiment examines the effect of the algorithm’s parameters by

comparing its performance under different parameter settings. This experiment

also provides guidelines for the usage of the algorithm.

10.4.5 Experiment Setup

In the first two experiments and the base group in the third experiment, the

number of blocks n is set to 5, and the growth kernel size u is set to 2. The

growth rate is set to 0.5. In each generation, the growth process is repeated five

times. All ratios α,β ,γ are set to 0.1. The balance parameter λ is set to 0.1.

The layer sizes are configured as follows: s1 is set to 3, s2 is set to 10, and s3

is set to 50. The maximum number of generations is set to 20.

10.4.6 Evaluation

The results of the first experiment are summarized in Table 10.3, where the

values represent the ratio of the number of data points required for accurate

model prediction to the total sequence length. A lower ratio indicates a more

165

Table 10.3.: Ratio of information needed to support the model decision, the
smaller the better. The bold numbers denote the smallest ratio in
the corresponding groups.

Dataset XAI Method LIME MCXAI SBXAI Proposed

EthanoLevel

DT 0.26 0.02 0.27 0.02
SVC 0.49 0.02 0.49 0.02
RF 0.21 0.04 0.40 0.03
NN 0.44 0.04 0.22 0.04

ECG5000

DT 0.23 0.06 0.23 0.01
SVC 0.25 0.03 0.21 0.01
RF 0.26 0.05 0.27 0.03
NN 0.41 0.06 0.39 0.05

ElectricDevices

DT 0.54 0.11 0.24 0.10
SVC 0.39 0.10 0.39 0.08
RF 0.50 0.27 0.29 0.14
NN 0.51 0.13 0.45 0.13

InsectWingBeatSound

DT 0.50 0.06 0.51 0.02
SVC 0.40 0.05 0.44 0.02
RF 0.49 0.23 0.58 0.03
NN 0.38 0.13 0.34 0.02

EOGVerticalSignal

DT 0.54 0.05 0.44 0.02
SVC 0.39 0.05 0.65 0.01
RF 0.50 0.06 0.45 0.05
NN 0.51 0.04 0.57 0.06

UWaveGestureLibraryX

DT 0.43 0.06 0.46 0.05
SVC 0.51 0.15 0.54 0.18
RF 0.49 0.19 0.54 0.12
NN 0.55 0.13 0.45 0.10

166

efficient identification of crucial data points. Our findings demonstrate that

the proposed method significantly outperforms other methods across various

datasets and models. This superiority highlights the efficacy of our method and

suggests that it provides interpretations closely aligned with the model’s inner

workings, effectively serving as a localized surrogate for the original model’s

explanations.

The results of the first experiment are predictable, given the method’s more

flexible approach to identifying cognitive blocks. MCXAI is restricted by its

use of a splitting method to optimize cognitive blocks, whereas SBXAI’s op-

timization is indirect, relying on simulations of the original model. LIME has

the potential for optimal results due to its focus on data points. However, its

relatively simplistic local modeling approach may struggle with complex time

series data, which likely accounts for its underperformance.

Figure 10.4 illustrates the impact of the growth process on the experimen-

tal results across various datasets, using the RandomForest model as the target

black-box model. Inclusion of the growth process distinctly enhances both

convergence speed and quality. The ExTea algorithm, which incorporates the

growth process, converges more rapidly and effectively than its counterpart

without it. Specifically, ExTea achieves convergence by the third generation in

three datasets, the seventh generation in two datasets, and the eleventh genera-

tion in one dataset, highlighting the dataset-specific generational requirements,

with most converging within ten generations. Notably, the performance of Ex-

Tea in the first generation is comparable to that of SBXAI and LIME.

Figure 10.2 illustrates the impact of various parameter settings on the per-

formance of the algorithm. The numerical values adjacent to the straight lines

represent the range of parameter values explored during the experiments, while

the violin plots depict the frequency of each parameter value achieving the best

performance. Our findings indicate that increasing the number of generations

and L1 size generally leads to better outcomes. Specifically, a larger number of

generations provides more opportunities for optimization, whereas a larger L1

size maintains a greater number of high-quality individuals within each gener-

ation. In contrast, smaller kernel sizes are advantageous, as they offer higher

optimization granularity. However, increasing the number of generations and

167

Table
10.4.:C

om
parison

of
E

xTea
perform

ance
w

ith
and

w
ithoutgrow

th
processes.

T
he

x-axis
represents

the
num

ber
of

gen-
eration

(epoch)
and

the
y-axis

indicates
the

ratio
betw

een
the

finalcognitive
block

length
and

the
inputsequence

length.

168

Figure 10.2.: Comparison of ExTea performance with different parameter set-
ting. The line next to the violin describes the value range of the
corresponding parameter. The violin describes the kernel density
estimate of achieving the best result.

the L1 size, along with reducing the kernel size, results in a longer runtime

for the algorithm. Therefore, the parameter settings should be adjusted accord-

ing to the specific application context. Additionally, a higher optimization per

round is not always beneficial as it may lead to the elimination of individuals

that perform well initially but deteriorate in later stages, necessitating further

investigation. The optimal ratio largely depends on the specific dataset, but the

best performance is generally achieved within the range of 0.2 to 0.3.

The execution time of the ExTea algorithm is influenced by several factors,

including algorithmic parameters, data sample shape, the complexity of the

target black-box model, and hardware specifications. For instance, using the

ECG5000 dataset and the RandomForest model, the average duration for one

generation, without parallelization, is approximately five seconds. In contrast,

MCXAI’s execution time is significantly affected by its exploration of struc-

tural relationships among cognitive blocks after identification. When this step

is omitted, MCXAI also averages about five seconds. Meanwhile, SBXAI re-

quires about 0.5 seconds to evaluate a single candidate subgroup and approx-

imately 26 seconds for 50 evaluations. This longer duration is due to the in-

tensive parameter settings of the Bayesian optimization’s objective function,

particularly its default high number of cross-validations.

169

10.5 Discussion

This paper introduces ExTea, a novel model-agnostic algorithm designed to

elucidate black-box model of time series. ExTea employs an evolutionary al-

gorithm, treating explanations as evolving entities within an optimization pro-

cess geared towards growth. The core of this method is a customized fitness

function specifically designed for the intricacies of time series data, guiding the

algorithm’s navigation through the search space. A unique aspect of ExTea is

its hierarchical pool of individuals, which stratifies them across different layers

to enhance model exploration efficiency.

ExTea addresses several challenges in the domain of time series model ex-

planation. These challenges include decomposing complex hybrid interpreta-

tions, adapting to diverse time series characteristics, navigating temporal do-

main features, and managing intricate parameter configurations. By tackling

these issues, ExTea significantly advances the field of time series model expla-

nation.

Empirical experiments conducted on six datasets from various domains

demonstrate that ExTea offers a more effective and efficient framework for

understanding the predictions of time series black-box models. This is partic-

ularly valuable in domains where explainability and transparency are crucial.

Despite its achievements, ExTea has potential for further development. Cur-

rently, its feature exploration processes operate in isolation; integrating multi-

ple feature explorations concurrently could enhance its efficacy. Additionally,

although ExTea is based on an evolutionary algorithm, its parallelism capabil-

ities remain untapped. Optimizing parallelism alongside ExTea’s parameters

could provide real-time feedback. Finally, a key challenge in augmenting time

series data is preserving critical decision-making information amidst random

data augmentation. ExTea theoretically offers a solution, potentially allowing

for targeted augmentation that preserves data integrity, an aspect that warrants

further investigation for practical application.

170

11. Final Discussion and Future Work

In this dissertation, through research targeting three sub-goals (Q1, Q2, Q3),

we have addressed several key challenges for advancing XAI identified in the

pervasive computing domain. The methods developed and discussed across

various chapters directly respond to the complexity (C1), deployment con-

straints (C2), data characteristics (C3), insufficiency of generic explanations

(C4), and reliability issues of surrogate-based post hoc XAI methods (C5) as

outlined in the introduction.

11.1 Discussion on Improving Interpretable Model Perfor-
mance

Chatper 3, Chatper 4 and Chapter 5 target Q1: How can the predictive per-
formance of interpretable models within the pervasive computing domain
be enhanced? and make the following contributions: Enhancement of in-
terpretable model predictive performance through a feature engineering,
constrained AutoML methodology and novel interpretable model design.

In response to C1, Chapter 3 conducted on enhancing interpretable mod-

els within the pervasive computing domain. The novel automatic feature en-

gineering framework, mCafe, demonstrates superior predictive performance

compared to existing state-of-the-art methods, particularly in handling feature

fusion, which is often overlooked in traditional approaches. This advancement

underscores the importance of robust feature engineering in boosting the effi-

cacy of interpretable models, particularly in complex domains like pervasive

computing.

However, while mCafe represents a substantial leap forward, it is not without

limitations. One potential drawback is its reliance on predefined exploratory

techniques, which may not fully capture the diversity of features necessary for

171

all pervasive computing applications. Additionally, mCafe’s predictive perfor-

mance may vary depending on the specific nature of the data and the problem

context, potentially requiring further customization or refinement for optimal

results. The dependency of the framework on the quality of the existing data

also raises concerns; If the input data are noisy or incomplete, the effectiveness

of the engineered features may be compromised.

To address C1 and mitigate the effect of C2, Chapter 4 develops an Au-

toML methodology tailored for uneven search spaces and intricate parameter

interdependencies. This approach not only improves the overall predictive per-

formance and ensures that the models remain interpretable, but also limits the

model to the deployment constraints, a crucial requirement in this field. De-

spite these strengths, this methodology may encounter challenges in highly dy-

namic or nonstationary environments where the trade-offs between optimiza-

tion complexity and computational efficiency must be carefully managed to

avoid excessive resource consumption, especially in resource-constrained per-

vasive computing settings.

In Chapter 5, the introduction of the LLMs proxy scheme further addresses

the challenge of explaining model decisions in scenarios where expert knowl-

edge is required for pattern explanation. By effectively combining traditional

feature extraction methods with LLMs, this scheme not only achieves accu-

rate classification but also provides explainable reasons for these decisions,

bridging the gap between complex model outputs and human-understandable

explanations. Nonetheless, the effectiveness of this scheme hinges on the qual-

ity and relevance of the features extracted before feeding them into the LLMs.

There is also the risk that the LLMs, despite their advanced capabilities, may

introduce biases or generate explanations that are too general or not sufficiently

domain specific. Additionally, the dependence of the scheme on LLMs raises

questions about scalability and computational cost, particularly in scenarios

requiring real-time processing.

In summary, contributions in this area not only enhance the predictive perfor-

mance of interpretable models but also broaden the scope of their applicability

in pervasive computing, making them more reliable and effective in real-world

scenarios. However, future research should focus on addressing the identified

172

limitations, such as enhancing the adaptability of feature engineering methods,

improving AutoML efficiency in dynamic environments, and refining the inte-

gration of LLMs to reduce biases and ensure domain-specific explainability.

11.2 Discussion on Extracting Model Decision Elements

Chatper 6 and Chapter 7 target the Q2: Enhancement of interpretable model
predictive performance through feature engineering, constrained AutoML
methodology, and novel interpretable model design? and make the follow-

ing contribution: Summarization of training processes and model architec-
tures, identifying the key data elements utilized by high-quality models in
the pervasive computing domain.

To dig into the cause of C3 and uncover the basis of high-quality models,

Chapter 6 undergoes a systematic review of existing high-quality models and

their decision-making processes within the pervasive computing domain. This

has revealed essential insights into the elements that drive model success. By

exploring their data processing process and analyzing the patterns emphasized

by different architectures, Chapter 6 has identified the critical data elements

that high-performing models leverage for decision-making.

These findings have profound implications for the advancement of post hoc

XAI methods. Rather than merely refining model architectures, the empha-

sis of our ongoing study is on developing innovative XAI techniques that can

better elucidate the decision-making processes of models. By understanding

which data elements are the most influential, we can design explanation meth-

ods that provide clearer insights into model behavior, thereby enhancing trans-

parency and trustworthiness.

However, despite these valuable insights, there are limitations to the current

work. One significant limitation is the reliance on retrospective analysis of

existing models, which may not fully capture the dynamic and evolving nature

of data in pervasive computing environments.

Another limitation is the generalizability of the findings across different con-

texts within pervasive computing. The models reviewed may perform well un-

der specific conditions but may not necessarily translate to other applications or

datasets within the domain. In other words, post hoc XAI methods developed

173

according to a single element mentioned may also face application adaptation

problems.

In summary, while this research has significantly contributed to understand-

ing the critical elements of model decision-making in pervasive computing, it

also highlights areas where further work is needed.

11.3 Discussion on Post-hoc Explanation Methods

Chatper 8, Chapter 9 and Chapter 10 target the Q3: How can the data ele-
ments uncovered be utilized in post hoc XAI method design? and make the

following contribution: Integration of local data pattern, temporal depen-
dence, noise, and other data elements discovered in Part II into explana-
tions using novel proposed post hoc techniques. Each chapter devises a new

post hoc XAI approach based on the three challenges (C3, C4, C5) described

above.

The exploration of post hoc explainability techniques in Part III has led to

several innovative approaches that address the unique challenges posed by per-

vasive computing. The tree-based exploration method in Chapter 8 (MCXAI),

which models the explanation process as a tree search problem, provides a

novel way to interpret model decisions by highlighting spatial relationships

and assigning significance to cognitive segments. This method offers a struc-

tured and comprehensive approach to understanding how models arrive at their

decisions. However, the complexity of the tree search approach might lead

to computational challenges, particularly with high-dimensional data, which

could limit its scalability and applicability in real-time systems. Moreover,

while it effectively highlights relationships between different data segments,

the method may oversimplify the interactions between these segments, poten-

tially missing more intricate patterns.

In Chapter 9 (SBXAI), the use of Markov chains to elucidate temporal rela-

tionships introduces a dynamic aspect to model explanation, allowing a deeper

understanding of how sequential data influence decision-making. This ap-

proach not only improves explainability, but also aligns the explanation process

more closely with the temporal nature of data in pervasive computing. Never-

theless, Markov models assume that future states depend only on the current

174

state, which might not fully capture the complexities of long-term dependen-

cies in some datasets. Alternative approaches, such as incorporating recurrent

neural networks or attention mechanisms, could offer more nuanced explana-

tions of temporal relationships.

In Chapter 10 (ExTea), the integration of a genetic algorithm-based tech-

nique to unify the exploration of decision-making elements across multiple

dimensions, including frequency, represents a significant advancement in post-

hoc explainability. This technique simplifies the explanation process while

ensuring that the resulting explanations are both comprehensive and under-

standable. However, genetic algorithms can be computationally expensive and

may require careful tuning of parameters to avoid issues like premature conver-

gence. Furthermore, the explainability of the results might be affected by the

stochastic nature of the genetic process, potentially leading to inconsistencies

in the explanations in different runs.

In summary, while the proposed approaches offer significant advancements

in the field of explainable AI, they also present challenges and limitations that

need to be addressed. Future work should explore alternative methods and

further refine these techniques to enhance their scalability, accuracy, and ap-

plicability across different domains. Additionally, a comparative analysis with

existing post hoc explainability methods would provide a clearer understand-

ing of the strengths and weaknesses of the proposed solutions, guiding future

improvements.

11.4 Conclusion

This dissertation presents a comprehensive framework for enhancing the pre-

dictive performance and explainability of AI models in the pervasive comput-

ing domain. By dividing the overarching goal into three distinct sub-goals,

the research systematically addresses the critical challenges associated with

interpretable models, decision element elucidation, and post hoc explainability

techniques.

Part I enhances the predictive capabilities of interpretable models through

innovative approaches to feature engineering and model optimization. These

advances ensure that interpretable models remain both effective and under-

175

standable, even when faced with complex data. Part II delves into the decision-

making processes of high-quality models, uncovering the key data elements

that drive success. This knowledge will aid in not only the development of

future models but also in the development of targeted interpretive methods to

make their modeling decisions more robust and transparent. Part III devel-

ops new methodologies for post hoc explainability, introducing techniques that

provide a structured, dynamic, and comprehensive explanation of model deci-

sions. These contributions are particularly valuable in the context of pervasive

computing, where the complexity of data and the need for timely explanations

are paramount.

11.5 Future Work

While this dissertation presents significant advancements in enhancing the pre-

dictive performance and explainability of AI systems within the pervasive com-

puting domain, there remain several avenues for future research that could ad-

dress the limitations identified and expand upon the findings.

• Refinement of LLMs Integration for Domain-Specific explainability:

The integration of LLMs in explaining model decisions presents both

opportunities and challenges. Future work should aim to refine these

integrations by developing domain-specific LLMs that reduce the risk

of generating overly general or biased explanations. This could involve

fine-tuning LLMs on domain-specific datasets or exploring alternative

architectures that are better suited to the nuances of pervasive comput-

ing data. Additionally, the scalability and computational cost of LLMs-

based explanations need further investigation, particularly in real-time

processing scenarios.

• Exploration of Hybrid Explainability Models: As this research has pri-

marily focused on post-hoc explainability techniques, future work could

explore the development of hybrid models that combine the strengths

of interpretable models with more complex, high-performing black-box

models. Such hybrid approaches could leverage the predictive power

of black-box models while maintaining the explainability required for

176

deployment in critical applications. Research in this area could also in-

vestigate the trade-offs between model complexity and explainability,

aiming to find a balance that maximizes both predictive performance

and transparency.

• Real-Time Monitoring and Feature Interaction Analysis: To address the

limitations related to static analysis of model decision-making, future

research should develop tools and methodologies for real-time moni-

toring of feature relevance and interaction. This could involve the use

of streaming data analytics to continuously assess and adjust the im-

portance of features as the model operates, ensuring that the decision-

making process remains accurate and context-aware. Advanced inter-

action analysis techniques, such as the use of Shapley values or deep

learning-based interaction detectors, could provide deeper insights into

how features combine to influence model outcomes.

• Scalability and Computational Efficiency in Post-Hoc Explainability:

The novel post-hoc explainability methods proposed in this dissertation,

while innovative, may face challenges in scaling to larger datasets or

more complex environments. Future work should focus on optimizing

these methods for scalability, potentially by developing more efficient

algorithms or by leveraging parallel processing and distributed comput-

ing techniques. Additionally, comparative studies with existing methods

could help identify areas where the proposed techniques excel or where

further refinement is needed.

• Integration of Explainability into AI Lifecycle: Finally, future research

could explore the integration of explainability into the entire AI life-

cycle, from model development to deployment. This holistic approach

would ensure that explainability is not an afterthought but a core com-

ponent of AI system design. Such an approach could involve developing

new methodologies for embedding explainability into the model training

process, as well as creating standardized metrics and evaluation frame-

works to assess the quality of explanations throughout the AI lifecycle.

177

In summary, while this dissertation has made substantial contributions to

improving the predictive performance and explainability of AI models in per-

vasive computing, the field remains rich with opportunities for further explo-

ration. By addressing the limitations identified and pursuing these future re-

search directions, it will be possible to develop even more robust, adaptive,

and transparent AI systems capable of meeting the demands of increasingly

complex and dynamic environments.

178

Bibliography

[1] Ubiquitous computing: Innovations, challenges, and future trends. Blog

on EMb Global, 2023. Available online: [access link to the full article].

[2] A. Abedin, M. Ehsanpour, Q. Shi, H. Rezatofighi, and D. C. Ranasinghe.

Attend and Discriminate: Beyond the State-of-the-art for Human Activ-

ity Recognition Using Wearable Sensors. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1):1–22,

2021.

[3] A. Adadi and M. Berrada. Peeking inside the black-box: a survey on

explainable artificial intelligence (xai). IEEE access, 6:52138–52160,

2018.

[4] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim.

Sanity checks for saliency maps. Advances in neural information pro-

cessing systems, 31, 2018.

[5] B. AI. Explainability i: Local post-hoc explana-

tions. https://www.borealisai.com/research-blogs/

explainability-i-local-post-hoc-explanations/, 2023.

Accessed: 2024-08-07.

[6] W. Ali and F. Saeed. Hybrid filter and genetic algorithm-based fea-

ture selection for improving cancer classification in high-dimensional

microarray data. Processes, 11(2):562, 2023.

[7] J. An, J. Lee, and G. Gweon. Does chatgpt comprehend the place value

in numbers when solving math word problems. In Proceedings of the

Workshop” Towards the Future of AI-augmented Human Tutoring in

179

https://www.borealisai.com/research-blogs/explainability-i-local-post-hoc-explanations/
https://www.borealisai.com/research-blogs/explainability-i-local-post-hoc-explanations/

Math Learning” co-located with The 24th International Conference on

Artificial Intelligence in Education (AIED 2023), Tokyo, Japan, volume

3491, pages 49–58, 2023.

[8] J. Antorán, U. Bhatt, T. Adel, A. Weller, and J. M. Hernández-Lobato.

Getting a clue: A method for explaining uncertainty estimates. arXiv

preprint arXiv:2006.06848, 2020.

[9] D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in

black box supervised learning models. Journal of the Royal Statistical

Society Series B: Statistical Methodology, 82(4):1059–1086, 2020.

[10] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,

A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al.

Explainable artificial intelligence (xai): Concepts, taxonomies, oppor-

tunities and challenges toward responsible ai. Information fusion, 58:

82–115, 2020.

[11] R. Assaf and A. Schumann. Explainable deep neural networks for mul-

tivariate time series predictions. In IJCAI, pages 6488–6490. Macao,

2019.

[12] P. Auer. Finite-time analysis of the multiarmed bandit problem, 2002.

[13] U. Azmat, Y. Y. Ghadi, T. a. Shloul, S. A. Alsuhibany, A. Jalal, and

J. Park. Smartphone sensor-based human locomotion surveillance sys-

tem using multilayer perceptron. Applied Sciences, 12(5):2550, 2022.

[14] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek. On pixel-wise explanations for non-linear classifier deci-

sions by layer-wise relevance propagation. PloS one, 10(7):e0130140,

2015.

[15] M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota,

H. Liu, T. Schultz, and H. Gamboa. Tsfel: Time series feature extraction

library. SoftwareX, 11:100456, 2020.

180

[16] A. Barbalau, A. Cosma, R. T. Ionescu, and M. Popescu. A generic

and model-agnostic exemplar synthetization framework for explainable

ai. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 190–205. Springer, 2020.

[17] J. Bergstra, D. Yamins, D. D. Cox, et al. Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms. 2013.

[18] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh,

R. Puri, J. M. Moura, and P. Eckersley. Explainable machine learning

in deployment. In Proceedings of the 2020 Conference on Fairness,

Accountability, and Transparency, pages 648–657, 2020.

[19] D. Bhattacharya, D. Sharma, W. Kim, M. F. Ijaz, and P. K. Singh.

Ensem-HAR: An Ensemble Deep Learning Model for Smartphone

Sensor-Based Human Activity Recognition for Measurement of Elderly

Health Monitoring. Biosensors, 12(6):393, 2022.

[20] L. Bibbò, R. Carotenuto, and F. Della Corte. An overview of indoor

localization system for human activity recognition (har) in healthcare.

Sensors, 22(21):8119, 2022.

[21] A. E. Blanchard, M. C. Shekar, S. Gao, J. Gounley, I. Lyngaas,

J. Glaser, and D. Bhowmik. Automating genetic algorithm mutations

for molecules using a masked language model. IEEE Transactions on

Evolutionary Computation, 26(4):793–799, 2022.

[22] P. Bouchard, S. Voß, L. Heilig, and X. Shi. A case study on smart

grid technologies with renewable energy for central parts of hamburg.

Sustainability, 15(22):15834, 2023.

[23] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search:

A new framework for game ai. AIIDE, 8:216–217, 2008.

[24] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh. Flying in-

sect classification with inexpensive sensors. Journal of insect behavior,

27:657–677, 2014.

181

[25] Y. Chen, Y. Hao, T. Rakthanmanon, J. Zakaria, B. Hu, and E. Keogh. A

general framework for never-ending learning from time series streams.

Data mining and knowledge discovery, 29:1622–1664, 2015.

[26] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. arxiv 2014. arXiv

preprint arXiv:1406.1078, 2020.

[27] S. Cho, W. Chang, G. Lee, and J. Choi. Interpreting internal activa-

tion patterns in deep temporal neural networks by finding prototypes.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, pages 158–166, 2021.

[28] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr. Time series

feature extraction on basis of scalable hypothesis tests (tsfresh–a python

package). Neurocomputing, 307:72–77, 2018.

[29] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. arXiv

preprint cs/0703062, 2007.

[30] R. Coulom. Efficient selectivity and backup operators in monte-carlo

tree search. In International conference on computers and games, pages

72–83. Springer, 2006.

[31] J. Crabbé and M. Van Der Schaar. Explaining time series predictions

with dynamic masks. In International Conference on Machine Learning,

pages 2166–2177. PMLR, 2021.

[32] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,

C. A. Ratanamahatana, and E. Keogh. The ucr time series archive.

IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

[33] E. Delaney, D. Greene, and M. T. Keane. Instance-based counterfactual

explanations for time series classification. In International Conference

on Case-Based Reasoning, pages 32–47. Springer, 2021.

182

[34] G. Demiris and B. K. Hensel. Technologies for an aging society: a

systematic review of “smart home” applications. Yearbook of medical

informatics, 17(01):33–40, 2008.

[35] I. Dirgová Luptáková, M. Kubovčík, and J. Pospíchal. Wearable sensor-

based human activity recognition with transformer model. Sensors, 22

(5):1911, 2022.

[36] R. Doddaiah, P. Parvatharaju, E. Rundensteiner, and T. Hartvigsen. Ex-

plaining deep multi-class time series classifiers. 2023.

[37] O. Dor and Y. Reich. Strengthening learning algorithms by feature dis-

covery. Information Sciences, 189:176–190, 2012.

[38] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable

machine learning. arXiv preprint arXiv:1702.08608, 2017.

[39] A. E. Eiben, J. E. Smith, A. Eiben, and J. Smith. What is an evolutionary

algorithm? Introduction to evolutionary computing, pages 25–48, 2015.

[40] European Parliament. Artificial intelligence act, 2024. URL https:

//en.wikipedia.org/wiki/Artificial_Intelligence_Act.

Adopted by the European Parliament in March 2024.

[41] W. Fan, E. Zhong, J. Peng, O. Verscheure, K. Zhang, J. Ren, R. Yan,

and Q. Yang. Generalized and heuristic-free feature construction for im-

proved accuracy. In Proceedings of the 2010 SIAM International Con-

ference on Data Mining, pages 629–640. SIAM, 2010.

[42] F. Fang and T. Shinozaki. Electrooculography-based continuous eye-

writing recognition system for efficient assistive communication sys-

tems. PloS one, 13(2):e0192684, 2018.

[43] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote ex-

ecution for pervasive computing. In Proceedings Eighth Workshop on

Hot Topics in Operating Systems, pages 61–66. IEEE, 2001.

183

https://en.wikipedia.org/wiki/Artificial_Intelligence_Act
https://en.wikipedia.org/wiki/Artificial_Intelligence_Act

[44] J. H. Friedman. Greedy function approximation: a gradient boosting

machine. Annals of statistics, pages 1189–1232, 2001.

[45] R. Fujimoto, Y. Nakamura, and Y. Arakawa. Differential privacy with

weighted ε for privacy-preservation in human activity recognition. In

2023 IEEE International Conference on Pervasive Computing and Com-

munications Workshops and other Affiliated Events (PerCom Work-

shops), pages 634–639. IEEE, 2023.

[46] R. Gaudel and M. Sebag. Feature selection as a one-player game. In

International Conference on Machine Learning, pages 359–366, 2010.

[47] D. Gay, R. Guigourès, M. Boullé, and F. Clérot. Feature extraction over

multiple representations for time series classification. In International

Workshop on New Frontiers in Mining Complex Patterns, pages 18–34.

Springer, 2013.

[48] A. H. Gee, D. Garcia-Olano, J. Ghosh, and D. Paydarfar. Explain-

ing deep classification of time-series data with learned prototypes. In

CEUR workshop proceedings, volume 2429, page 15. NIH Public Ac-

cess, 2019.

[49] D. Gholamiangonabadi and K. Grolinger. Personalized models for hu-

man activity recognition with wearable sensors: deep neural networks

and signal processing. Applied Intelligence, 53(5):6041–6061, 2023.

[50] M. Gholamrezaii and S. M. T. AlModarresi. A time-efficient convolu-

tional neural network model in human activity recognition. Multimedia

Tools and Applications, 80:19361–19376, 2021.

[51] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Van-

schoren. An open source automl benchmark. arXiv preprint

arXiv:1907.00909, 2019.

[52] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the

black box: Visualizing statistical learning with plots of individual con-

ditional expectation. journal of Computational and Graphical Statistics,

24(1):44–65, 2015.

184

[53] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,

2016.

[54] B. Goodman and S. Flaxman. European union regulations on algorith-

mic decision-making and a “right to explanation”. AI magazine, 38(3):

50–57, 2017.

[55] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counter-

factual visual explanations. In International Conference on Machine

Learning, pages 2376–2384. PMLR, 2019.

[56] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things

(iot): A vision, architectural elements, and future directions. Future

generation computer systems, 29(7):1645–1660, 2013.

[57] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pe-

dreschi. A survey of methods for explaining black box models. ACM

computing surveys (CSUR), 51(5):1–42, 2018.

[58] R. Guidotti, A. Monreale, F. Spinnato, D. Pedreschi, and F. Giannotti.

Explaining any time series classifier. In 2020 IEEE Second Interna-

tional Conference on Cognitive Machine Intelligence (CogMI), pages

167–176. IEEE, 2020.

[59] M. Guillemé, V. Masson, L. Rozé, and A. Termier. Agnostic local ex-

planation for time series classification. In 2019 IEEE 31st international

conference on tools with artificial intelligence (ICTAI), pages 432–439.

IEEE, 2019.

[60] J. Guna, I. Humar, and M. Pogačnik. Intuitive gesture based user identi-

fication system. In 2012 35th International Conference on Telecommu-

nications and Signal Processing (TSP), pages 629–633. IEEE, 2012.

[61] P. Guo, C. Deng, L. Xu, X. Huang, and Y. Zhang. Deep multi-

task augmented feature learning via hierarchical graph neural net-

work. In Machine Learning and Knowledge Discovery in Databases.

Research Track: European Conference, ECML PKDD 2021, Bilbao,

185

Spain, September 13–17, 2021, Proceedings, Part I 21, pages 538–553.

Springer, 2021.

[62] A. Hannan, M. Z. Shafiq, F. Hussain, and I. M. Pires. A portable smart

fitness suite for real-time exercise monitoring and posture correction.

Sensors, 21(19):6692, 2021.

[63] H. Haresamudram, I. Essa, and T. Plötz. Investigating enhancements to

contrastive predictive coding for human activity recognition. In 2023

IEEE International Conference on Pervasive Computing and Communi-

cations (PerCom), pages 232–241. IEEE, 2023.

[64] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[65] N. Hnoohom, S. Mekruksavanich, and A. Jitpattanakul. An efficient

resnetse architecture for smoking activity recognition from smartwatch.

Intelligent Automation & Soft Computing, 35(1), 2023.

[66] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural

computation, 9(8):1735–1780, 1997.

[67] J. H. Holland. Genetic algorithms. Scientific american, 267(1):66–73,

1992.

[68] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4700–4708,

2017.

[69] W. Huang, L. Zhang, H. Wu, F. Min, and A. Song. Channel-

equalization-har: a light-weight convolutional neural network for wear-

able sensor based human activity recognition. IEEE Transactions on

Mobile Computing, 2022.

186

[70] Y. Huang, N. Schaal, M. Hefenbrock, Y. Zhou, T. Riedel, L. Fang, and

M. Beigl. Mcxai: Local model-agnostic explanation as two games.

arXiv preprint arXiv:2201.01044, 2022.

[71] Y. Huang, Y. Zhou, M. Hefenbrock, T. Riedel, L. Fang, and M. Beigl.

Automatic feature engineering through monte carlo tree search. In Joint

European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 581–598. Springer, 2022.

[72] Y. Huang, Y. Zhou, M. Hefenbrock, T. Riedel, L. Fang, and M. Beigl.

Universal distributional decision-based black-box adversarial attack

with reinforcement learning. In International Conference on Neural In-

formation Processing, pages 206–215. Springer, 2022.

[73] Y. Huang, C. Li, H. Lu, T. Riedel, and M. Beigl. State graph based

explanation approach for black-box time series model. In World Con-

ference on Explainable Artificial Intelligence, pages 153–164. Springer,

2023.

[74] Y. Huang, N. Schaal, M. Hefenbrock, Y. Zhou, T. Riedel, and M. Beigl.

Mcxai: local model-agnostic explanation as two games. In 2023 Inter-

national Joint Conference on Neural Networks (IJCNN), pages 01–08.

IEEE, 2023.

[75] Y. Huang, Y. Zhou, T. Riedel, L. Fang, and M. Beigl. randomhar:

Improving ensemble deep learners for human activity recognition

with sensor selection and reinforcement learning. arXiv preprint

arXiv:2307.07770, 2023.

[76] Y. Huang, Z. Xue, H. Ma, and M. Beigl. Generate explanations for

time-series classification by chatgpt. Explainable Artificial Intelligence,

Malta, 17th–19th June 2024, 2024.

[77] Y. Huang, H. Zhao, Y. Zhou, T. Riedel, and M. Beigl. Standardizing

your training process for human activity recognition models: A com-

prehensive review in the tunable factors. EAI International Conference

187

on Mobile and Ubiquitous Systems: Computing, Networking and Ser-

vices, 2024.

[78] Y. Huang, Y. Zhou, H. Zhao, L. Fang, T. Riedel, and M. Beigl. Extea:

An evolutionary algorithm-based approach for enhancing explainability

in time-series models. In Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, pages 429–446. Springer,

2024.

[79] Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and M. Beigl. Optimizing au-

toml for tiny edge systems: A baldwin-effect inspired genetic algorithm.

In 22nd IEEE International Conference on Pervasive Computing and

Communicaitons (PerCom 2024), 2024.

[80] Y. Huang, Y. Zhou, H. Zhao, T. Riedel, and M. Beigl. A survey on

wearable human activity recognition: Innovative pipeline development

for enhanced research and practice. In 2024 IEEE International Joint

Conference on Neural Networks (IJCNN 2024), Yokohama, 30th June-

5th July 2024, 2024.

[81] S. Hurtado, J. García-Nieto, A. Popov, and I. Navas-Delgado. Hu-

man activity recognition from sensorised patient’s data in healthcare:

A streaming deep learning-based approach. 2023.

[82] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift. In International

conference on machine learning, pages 448–456. PMLR, 2015.

[83] W. N. Ismail, H. A. Alsalamah, M. M. Hassan, and E. Mohamed. Auto-

har: An adaptive human activity recognition framework using an auto-

mated cnn architecture design. Heliyon, 2023.

[84] A. Kamilaris and F. Prenafeta-Boldu. Deep learning in agriculture: A

survey, computers and electronics in agriculture. 147: 70-90, 2018.

[85] J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards

automating data science endeavors. In 2015 IEEE international con-

188

ference on data science and advanced analytics (DSAA), pages 1–10.

IEEE, 2015.

[86] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,

S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural

language models. arXiv preprint arXiv:2001.08361, 2020.

[87] I. Karlsson, J. Rebane, P. Papapetrou, and A. Gionis. Locally and glob-

ally explainable time series tweaking. Knowledge and Information Sys-

tems, 62(5):1671–1700, 2020.

[88] G. Katz, E. C. R. Shin, and D. Song. Explorekit: Automatic feature

generation and selection. In 2016 IEEE 16th International Conference

on Data Mining (ICDM), pages 979–984. IEEE, 2016.

[89] A. Khtun and S. G. S. Hossain. A fourier domain feature approach

for human activity recognition & fall detection. In 2023 10th In-

ternational Conference on Signal Processing and Integrated Networks

(SPIN), pages 40–45. IEEE, 2023.

[90] U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy. Cognito:

Automated feature engineering for supervised learning. In 2016 IEEE

16th international conference on data mining workshops (ICDMW),

pages 1304–1307. IEEE, 2016.

[91] U. Khurana, H. Samulowitz, and D. Turaga. Feature engineering for

predictive modeling using reinforcement learning. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[92] B. Kim, K. Patel, A. Rostamizadeh, and J. Shah. Scalable and inter-

pretable data representation for high-dimensional, complex data. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 29,

2015.

[93] B. Kim, R. Khanna, and O. O. Koyejo. Examples are not enough, learn

to criticize! criticism for interpretability. Advances in neural informa-

tion processing systems, 29, 2016.

189

[94] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.

arXiv preprint arXiv:1412.6980, 2014.

[95] D. Kumar. Human activity recognition using, colour, rms, time-domain,

autocorrelation deep learning with better feature extraction.

[96] B. Kwolek and M. Kepski. Human fall detection on embedded platform

using depth maps and wireless accelerometer. Computer methods and

programs in biomedicine, 117(3):489–501, 2014.

[97] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec. Faithful and

customizable explanations of black box models. In Proceedings of the

2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 131–138,

2019.

[98] H. T. Lam, J.-M. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan.

One button machine for automating feature engineering in relational

databases. arXiv preprint arXiv:1706.00327, 2017.

[99] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4):541–551, 1989.

[100] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):

436–444, 2015.

[101] X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian, and D. Dou.

Interpretable deep learning: Interpretation, interpretability, trustworthi-

ness, and beyond. Knowledge and Information Systems, 64(12):3197–

3234, 2022.

[102] Y. Li and L. Wang. Human activity recognition based on residual net-

work and bilstm. Sensors, 22(2):635, 2022.

[103] J. Lines, S. Taylor, and A. Bagnall. Hive-cote: The hierarchical vote col-

lective of transformation-based ensembles for time series classification.

In 2016 IEEE 16th international conference on data mining (ICDM),

pages 1041–1046. IEEE, 2016.

190

[104] Z. C. Lipton. The mythos of model interpretability: In machine learning,

the concept of interpretability is both important and slippery. Queue, 16

(3):31–57, 2018.

[105] H. Liu, Y. Hartmann, and T. Schultz. Motion units: Generalized se-

quence modeling of human activities for sensor-based activity recogni-

tion. In 2021 29th European signal processing conference (EUSIPCO),

pages 1506–1510. IEEE, 2021.

[106] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uwave:

Accelerometer-based personalized gesture recognition and its applica-

tions. Pervasive and Mobile Computing, 5(6):657–675, 2009.

[107] L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger. Explain-

able artificial intelligence: Concepts, applications, research challenges

and visions. In International Cross-Domain Conference for Machine

Learning and Knowledge Extraction, pages 1–16. Springer, 2020.

[108] Á. Lozano Murciego, D. M. Jiménez-Bravo, A. Valera Román, J. F.

De Paz Santana, and M. N. Moreno-García. Context-aware recom-

mender systems in the music domain: A systematic literature review.

Electronics, 10(13):1555, 2021.

[109] L. Lu, C. Zhang, K. Cao, T. Deng, and Q. Yang. A multichannel cnn-gru

model for human activity recognition. IEEE Access, 10:66797–66810,

2022.

[110] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model

predictions. In Proceedings of the 31st international conference on neu-

ral information processing systems, pages 4768–4777, 2017.

[111] H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu. Attnsense: Multi-level

Attention Mechanism for Multimodal Human Activity Recognition. In

IJCAI, pages 3109–3115, 2019.

[112] V. B. Magdum, S. Kumar, and M. Tarambale. Opf-aga: Optimal power

flow using advance genetic algorithm. In 2022 2nd International Con-

ference on Intelligent Technologies (CONIT), pages 1–7. IEEE, 2022.

191

[113] C. Manresa-Yee, M. F. Roig-Maimó, S. Ramis, and R. Mas-Sansó. Ad-

vances in xai: explanation interfaces in healthcare. In Handbook of Ar-

tificial Intelligence in Healthcare: Vol 2: Practicalities and Prospects,

pages 357–369. Springer, 2021.

[114] D. Mercier, A. Dengel, and S. Ahmed. Patchx: Explaining deep models

by intelligible pattern patches for time-series classification. In 2021 In-

ternational Joint Conference on Neural Networks (IJCNN), pages 1–8.

IEEE, 2021.

[115] S. Mirjalili and S. Mirjalili. Genetic algorithm. Evolutionary Algorithms

and Neural Networks: Theory and Applications, pages 43–55, 2019.

[116] S. Mishra, E. Benetos, B. L. Sturm, and S. Dixon. Reliable local expla-

nations for machine listening. In 2020 International Joint Conference

on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[117] M. Munir, S. A. Siddiqui, F. Küsters, D. Mercier, A. Dengel, and

S. Ahmed. Tsxplain: Demystification of dnn decisions for time-series

using natural language and statistical features. In International confer-

ence on artificial neural networks, pages 426–439. Springer, 2019.

[118] A. Muntaner-Mas, A. Martinez-Nicolas, C. J. Lavie, S. N. Blair,

R. Ross, R. Arena, and F. B. Ortega. A systematic review of fitness apps

and their potential clinical and sports utility for objective and remote

assessment of cardiorespiratory fitness. Sports Medicine, 49:587–600,

2019.

[119] S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, and

R. Dürichen. Cnn-based sensor fusion techniques for multimodal hu-

man activity recognition. In Proceedings of the 2017 ACM International

Symposium on Wearable Computers, pages 158–165, 2017.

[120] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S.

Turaga. Learning feature engineering for classification. In Ijcai, vol-

ume 17, pages 2529–2535, 2017.

192

[121] M. Nauta. Explainable ai and interpretable computer vision: From over-

sight to insight. 2023.

[122] I. Neves, D. Folgado, S. Santos, M. Barandas, A. Campagner, L. Ronzio,

F. Cabitza, and H. Gamboa. Interpretable heartbeat classification using

local model-agnostic explanations on ecgs. Computers in Biology and

Medicine, 133:104393, 2021.

[123] H. Park, N. Kim, G. H. Lee, and J. K. Choi. Multicnn-filterlstm:

Resource-efficient sensor-based human activity recognition in iot appli-

cations. Future Generation Computer Systems, 139:196–209, 2023.

[124] P. S. Parvatharaju, R. Doddaiah, T. Hartvigsen, and E. A. Rundensteiner.

Learning saliency maps to explain deep time series classifiers. In Pro-

ceedings of the 30th ACM International Conference on Information &

Knowledge Management, pages 1406–1415, 2021.

[125] O. P. Patri, A. V. Panangadan, C. Chelmis, and V. K. Prasanna. Extract-

ing discriminative features for event-based electricity disaggregation. In

2014 IEEE Conference on Technologies for Sustainability (SusTech),

pages 232–238. IEEE, 2014.

[126] M. Pawelczyk, C. Agarwal, S. Joshi, S. Upadhyay, and H. Lakkaraju.

Exploring counterfactual explanations through the lens of adversarial

examples: A theoretical and empirical analysis. In International Confer-

ence on Artificial Intelligence and Statistics, pages 4574–4594. PMLR,

2022.

[127] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[128] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context

aware computing for the internet of things: A survey. IEEE communi-

cations surveys & tutorials, 16(1):414–454, 2013.

193

[129] T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm

for discovering time series shapelets. In proceedings of the 2013 SIAM

International Conference on Data Mining, pages 668–676. SIAM, 2013.

[130] R. G. Ramos, J. D. Domingo, E. Zalama, and J. Gómez-García-Bermejo.

Daily human activity recognition using non-intrusive sensors. Sensors,

21(16):5270, 2021.

[131] K. Reinhardt. Trust and trustworthiness in ai ethics. AI and Ethics, 3(3):

735–744, 2023.

[132] A. Reiss and D. Stricker. Introducing A New Benchmarked Dataset for

Activity Monitoring. In 2012 16th international symposium on wearable

computers, pages 108–109. IEEE, 2012.

[133] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita.

Transition-Aware Human Activity Recognition Using Smartphones.

Neurocomputing, 171:754–767, 2016.

[134] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?"

explaining the predictions of any classifier. In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and

data mining, pages 1135–1144, 2016.

[135] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision

model-agnostic explanations. In Proceedings of the AAAI conference

on artificial intelligence, volume 32, 2018.

[136] F. Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386,

1958.

[137] S. Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[138] C. Rudin. Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead. nat mach intell 1

(5): 206–215, 2019.

194

[139] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Represen-

tations by Back-Propagating Errors. nature, 323(6088):533–536, 1986.

[140] A. Sarkar, S. S. Hossain, and R. Sarkar. Human activity recognition

from sensor data using spatial attention-aided cnn with genetic algo-

rithm. Neural Computing and Applications, 35(7):5165–5191, 2023.

[141] I. Sarker, A. Colman, J. Han, P. Watters, I. H. Sarker, A. Colman, J. Han,

and P. Watters. Introduction to context-aware machine learning and mo-

bile data analytics. Context-Aware Machine Learning and Mobile Data

Analytics: Automated Rule-based Services with Intelligent Decision-

Making, pages 3–13, 2021.

[142] B. Schelling, L. G. M. Bauer, S. Behzadi, and C. Plant. Utilizing

structure-rich features to improve clustering. In Machine Learning

and Knowledge Discovery in Databases: European Conference, ECML

PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings,

Part I, pages 91–107. Springer, 2021.

[143] B. Schilit, N. Adams, and R. Want. Context-aware computing applica-

tions. In 1994 first workshop on mobile computing systems and appli-

cations, pages 85–90. IEEE, 1994.

[144] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim. To-

wards a rigorous evaluation of xai methods on time series. In 2019

IEEE/CVF International Conference on Computer Vision Workshop

(ICCVW), pages 4197–4201. IEEE, 2019.

[145] U. Schlegel, D. L. Vo, D. A. Keim, and D. Seebacher. Ts-mule: Local

interpretable model-agnostic explanations for time series forecast mod-

els. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 5–14. Springer, 2021.

[146] U. Schlegel, D. L. Vo, D. A. Keim, and D. Seebacher. Ts-mule: Local in-

terpretable model-agnostic explanations for time series forecast models.

In Machine Learning and Principles and Practice of Knowledge Dis-

covery in Databases: International Workshops of ECML PKDD 2021,

195

Virtual Event, September 13-17, 2021, Proceedings, Part I, pages 5–14.

Springer, 2022.

[147] J. Schmidhuber. Deep learning. Scholarpedia, 10(11):32832, 2015.

[148] P. Senin and S. Malinchik. Sax-vsm: Interpretable time series classifica-

tion using sax and vector space model. In 2013 IEEE 13th international

conference on data mining, pages 1175–1180. IEEE, 2013.

[149] F. Serpush, M. B. Menhaj, B. Masoumi, and B. Karasfi. Wearable

sensor-based human activity recognition in the smart healthcare system.

Computational intelligence and neuroscience, 2022(1):1391906, 2022.

[150] M. Sesana, S. Cavallaro, M. Calabresi, A. Capaccioli, L. Napoletano,

V. Antonello, and F. Grandi. Process and product quality optimization

with explainable artificial intelligence. In Artificial Intelligence in Man-

ufacturing: Enabling Intelligent, Flexible and Cost-Effective Produc-

tion Through AI, pages 459–477. Springer Nature Switzerland Cham,

2024.

[151] V. Shalaeva, S. Alkhoury, J. Marinescu, C. Amblard, and G. Bis-

son. Multi-operator decision trees for explainable time-series classi-

fication. In International Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems, pages 86–

99. Springer, 2018.

[152] J. Sharma, M. Lal Mittal, G. Soni, and A. Keprate. Explainable artifi-

cial intelligence (xai) approaches in predictive maintenance: A review.

Recent Patents on Engineering, 18(5):18–26, 2024.

[153] Y. Shavit and I. Klein. Boosting inertial-based human activity recogni-

tion with transformers. IEEE Access, 9:53540–53547, 2021.

[154] J. Shore and R. Johnson. Axiomatic Derivation of the Principle of Max-

imum Entropy and the Principle of Minimum Cross-Entropy. IEEE

Transactions on information theory, 26(1):26–37, 1980.

196

[155] S. A. Siddiqui, D. Mercier, A. Dengel, and S. Ahmed. Tsinsight:

A local-global attribution framework for interpretability in time series

data. Sensors, 21(21):7373, 2021.

[156] R. Singla, S. Mittal, A. Jain, and D. Gupta. Convlstm for human activity

recognition. In International Conference on Innovative Computing and

Communications: Proceedings of ICICC 2021, Volume 2, pages 335–

344. Springer, 2022.

[157] T. Sivill and P. Flach. Limesegment: Meaningful, realistic time series

explanations. In International Conference on Artificial Intelligence and

Statistics, pages 3418–3433. PMLR, 2022.

[158] K. O. Stanley and R. Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[159] N. A. Streitz. The disappearing computer. 2007.

[160] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and

Q. V. Le. Mnasnet: Platform-aware neural architecture search for mo-

bile. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019.

[161] W. Tang, L. Liu, and G. Long. Interpretable time-series classification

on few-shot samples. In 2020 International Joint Conference on Neural

Networks (IJCNN), pages 1–8. IEEE, 2020.

[162] Y. Tang, L. Zhang, F. Min, and J. He. Multiscale deep feature learning

for human activity recognition using wearable sensors. IEEE Transac-

tions on Industrial Electronics, 70(2):2106–2116, 2022.

[163] D. Thakur and S. Biswas. Guided regularized random forest feature se-

lection for smartphone based human activity recognition. Journal of Am-

bient Intelligence and Humanized Computing, 14(7):9767–9779, 2023.

[164] A. Theissler, F. Spinnato, U. Schlegel, and R. Guidotti. Explainable ai

for time series classification: A review, taxonomy and research direc-

tions. IEEE Access, 2022.

197

[165] S. Tonekaboni, S. Joshi, M. D. McCradden, and A. Goldenberg. What

clinicians want: contextualizing explainable machine learning for clini-

cal end use. In Machine learning for healthcare conference, pages 359–

380. PMLR, 2019.

[166] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[167] S. Verma, V. Boonsanong, M. Hoang, K. E. Hines, J. P. Dickerson, and

C. Shah. Counterfactual explanations and algorithmic recourses for ma-

chine learning: A review. arXiv preprint arXiv:2010.10596, 2020.

[168] Q. N. P. VU, P. Lago, and S. Inoue. Improving noise robustness of single

sensor data in human activity recognition with umap and additional data.

In Proceedings of the 2022 ACM International Symposium on Wearable

Computers, pages 109–111, 2022.

[169] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations

without opening the black box: Automated decisions and the gdpr. Harv.

JL & Tech., 31:841, 2017.

[170] M. Wadhwa and U. Shrivastava. Ubiquitous computing: A comprehen-

sive review. In International Conference on Electrical and Electronics

Engineering, pages 591–600. Springer, 2023.

[171] J. Wang, Y. Gao, and R. Li. Reinforcement learning based bilevel real-

time pricing strategy for a smart grid with distributed energy resources.

Applied Soft Computing, 155:111474, 2024.

[172] Z. Wang, Z. Yang, and T. Dong. A review of wearable technologies for

elderly care that can accurately track indoor position, recognize physical

activities and monitor vital signs in real time. Sensors, 17(2):341, 2017.

[173] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge loca-

tion system. ACM Transactions on Information Systems (TOIS), 10(1):

91–102, 1992.

198

[174] M. Webber and R. F. Rojas. Human activity recognition with accelerom-

eter and gyroscope: A data fusion approach. IEEE Sensors Journal, 21

(15):16979–16989, 2021.

[175] M. Weiser. The computer for the 21 st century. Scientific american, 265

(3):94–105, 1991.

[176] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.

Woo. Convolutional lstm network: A machine learning approach for

precipitation nowcasting. In Advances in neural information processing

systems, pages 802–810, 2015.

[177] H. Yang, C. Rudin, and M. Seltzer. Scalable bayesian rule lists. In Inter-

national Conference on Machine Learning, pages 3921–3930. PMLR,

2017.

[178] L. Ye and E. Keogh. Time series shapelets: a new primitive for data min-

ing. In Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 947–956, 2009.

[179] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv

preprint arXiv:1605.07146, 2016.

[180] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wire-

less networking: A survey. IEEE Communications surveys & tutorials,

21(3):2224–2287, 2019.

[181] J. Zhang, J. Hao, F. Fogelman-Soulié, and Z. Wang. Automatic fea-

ture engineering by deep reinforcement learning. In Proceedings of the

18th International Conference on Autonomous Agents and MultiAgent

Systems, pages 2312–2314, 2019.

[182] H. Zhao, Y. Zhou, T. Riedel, M. Hefenbrock, and M. Beigl. Improving

human activity recognition models by learnable sparse wavelet layer. In

Proceedings of the 2022 ACM International Symposium on Wearable

Computers, pages 84–88, 2022.

199

[183] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: con-

cepts, methodologies, and applications. ACM Transactions on Intelli-

gent Systems and Technology (TIST), 5(3):1–55, 2014.

[184] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning

deep features for discriminative localization. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2921–

2929, 2016.

[185] L. Zhou, C. Ma, X. Shi, D. Zhang, W. Li, and L. Wu. Salience-cam: Vi-

sual explanations from convolutional neural networks via salience score.

In 2021 International Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2021.

[186] Y. Zhou, M. Hefenbrock, Y. Huang, T. Riedel, and M. Beigl. Auto-

matic remaining useful life estimation framework with embedded con-

volutional lstm as the backbone. In Machine Learning and Knowledge

Discovery in Databases: Applied Data Science Track: European Con-

ference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,

Proceedings, Part IV, pages 461–477. Springer, 2021.

[187] Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl.

Tinyhar: A lightweight deep learning model designed for human activity

recognition. In Proceedings of the 2022 ACM International Symposium

on Wearable Computers, pages 89–93, 2022.

200

	List of Figures
	List of Tables
	Introduction
	Pervasive Computing and Explainable Artificial Intelligence
	Significance of Pervasive Computing
	The Shift Towards Complex Models
	The Role of Explainable Artificial Intelligence

	Importance of Interpretable Models
	Challenges and Goal
	Dissertation Outline and Contribution
	Part I: Advancing Interpretable Models
	Part II: Unveiling Key Decision Elements
	Part III: Innovating Post hoc Explanation Techniques

	Publication List

	Background
	Overview of xai methods
	Genetic Algorithm
	Monte Carlo Tree Search
	Deep Learning Model
	Overview of Deep Learning Models
	The Black-Box Nature of Deep Learning Models

	Advancing Interpretable Models
	Improve Model Performance with Feature Engineering
	Introduction
	Related Work
	Method
	The Transformation Tree
	The Selection Policy
	The Expansion Policy
	The mCAFE Algorithm

	Evaluation
	Performance of mCAFE
	Ablation Study
	Selection Policy
	Expansion Policy

	Length of Feature Engineering Pipeline
	Performance of mCAFE on Different Predictive Models

	Discussion

	Improve Model Performance with Parameter Optimization
	Introduction
	Related Work
	Method
	Individual Coding Design
	Populations Generation
	Individual Growth and Fitness Calculation
	Individual Selection
	Crossover and Mutation
	New Individual Generation
	Neural Network Feature Extraction

	Evaluation
	Benchmark Models
	Benchmark Datasets
	Experiment Setup
	Result

	Discussion

	Explain with Large Language Model
	Introduction
	Related Work
	Method
	Components of Prompt
	Extract Classification Rules
	Generate Lookup Table
	Translate Data to Description

	Evaluation
	Experiment Setup
	Result

	Discussion
	Limitation
	Summary

	Unveiling Key Decision Elements
	Summarize the Decision-making Elements of High-quality Models
	Introduction
	Observation
	Data Processing
	1D Transformation
	2D Transformation
	3D Transformation
	Summary of Key Data Process Trends

	Model Architecture
	Traditional Machine Learning Approaches
	Deep Learning Architectures
	Hybrid and Advanced Architectures
	Ensemble Methods
	Summary of Key Architectural Trends

	Discussion

	Prove Element Importance through Innovative Model Design
	Introduction
	Observation
	Automatic Remaining Useful Life Estimation Framework with Embedded Convolutional LSTM as the Backbone
	TinyHAR: A Lightweight Deep Learning Model Designed for HAR

	Discussion

	Innovating Post hoc Explanation Techniques
	Explain with Spatial Information
	Introduction
	Related Work
	Explainable Artificial Intelligence
	Monte Carlo Tree Search

	Method
	Tree Representation and Algorithm Framework
	Monte Carlo Tree Generation
	Action Set Selection and Refinement

	Evaluation
	Classification Game: Comparing Local Patterns with Positive Impact
	Misclassification Game: Testing the Improvement of Complex Model through Retraining
	Extracting Explanation from MCT

	Discussion

	Explain with Temporal Information
	Introduction
	Related Work
	Method
	Segment & Clustering Module
	Perturbation Module
	Explanation Module

	Evaluation
	Discussion

	Explain with other Information
	Introduction
	Related Work
	Method
	Problem Definition and Individual Coding
	Population Generation
	Fitness Function Design
	Growth
	Crossover and Mutation
	Explanation

	Evaluation
	Benchmark Dataset
	Target Models
	Benchmark Algorithms
	Experiments Design
	Experiment Setup
	Evaluation

	Discussion

	Final Discussion and Future Work
	Discussion on Improving Interpretable Model Performance
	Discussion on Extracting Model Decision Elements
	Discussion on Post-hoc Explanation Methods
	Conclusion
	Future Work

	Bibliography

