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Abstract 

A first interpretation of the influence of stress on the IR- and the Raman-
peak frequencies was made possible via its influence on the binding angles. 
The stress effect was assumed as a consequence of a change of the bond 
angles due to the stresses. 

In addition we could show that the angle stretching is not necessarily the 
only effect that influences the position of the frequency of IR lines. We 
addressed the change in the peak position under uniaxial tension and com-
pression in computations using the Lennard-Jones potential. 

From our computations, we have to expect decreasing frequency under ten-
sion and increasing frequency under compression loading. In our opinion, 
this contribution of frequency shift has to be added to the contribution by 
the angle stretching. 
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1. On the position of Raman-maxima under stresses 

1.1 Experimental results from literature 

The interpretation of stress influences on the position of IR- and Raman-lines that has 
been dominant to date is based on Galeener's [1] suggestion. In our opinion, other 
effects are also possible that can also influence the position of the lines in the IR 
spectrum or the Raman spectrum. An example for the influence of stresses are 
measurements under uniaxial tensile stresses by Tallant et al. [2], shown in Fig. 1 
(“Frequency” in terms of the wavenumber). In this diagram, the highest two vibration 
bands are plotted with colored symbols and denoted in the nomenclature of Sen and 
Thorpe [3] and Galeener [1] by the numbers (1)-(4).   

 

 
Fig. 1 Measurements by Tallant et al [2] on silica by tensile tests, numbers in parentheses correspond 

to eqs.(1)-(4). 
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Figure 2 compiles the peak-position as a function of the hydrostatic stress according 
to data from [4] obtained from measurements by Tallant et al. [2], Hemley et al. [5], 
Vandembroucq et al. [6], Deschamps et al. [7], and Tomozawa et al. [8]. 
 

 
Fig. 2 Stress-dependent peak positions as a function of the hydrostatic stress component σh. 

1.2 Galeener’s solution 
The infrared spectrum for silica glass shows a shifting of infrared peaks under stresses. 
The strongness and direction of the peak shift depends on the chosen IR-peak frequen-
cy and the surface state (water-affected, annealed, etched [8]). A first interpretation of 
the influence of stress on the IR frequency was made possible by its influence on the 
bond angles, as had been shown very early by Galeener [1].  
Galleener suggested for the dependency between the angular frequency ω and the 
bond angle θ for the special case of the antisymmetric and the symmetric stretching 
modes [1, 3] 
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where mO =16 is the atomic mass of the oxygen atom, mA =28 the atomic mass of the 
silicon atom, and α a bond-stretching parameter. The parameters α as well as θ can 
depend on the global stress state, i.e. α=α(σ) and θ=θ(σ). In the absence of stresses, 
the bond angle is θ0, and given by θ0 ≅130°=13/18×π as can be concluded from Fig. 3. 
This plot compiles literature results for the peak position as a function of the bridging 
angle from Devine [9] and Tomozawa [10]. 

 
Fig. 3 Literature results for peak positions (in cm-1) as a function of the bridging bond angle θ0. 

Squares: measurements compiled by Devine [9], red circles: values reported by Tomozawa [10], green 
circle: Data point for θ0=130° and ω=1050/cm.  

The frequencies in the absence of stresses are 
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Figure 4 illustrates the equations (1-4) in normalized representation.  



 4 

  
Fig. 4 Peak heights as a function of the angle θ, a) normalization on the value for n=1 and θ=θ0; b) 
normalization on the individual peak positions in the absence of stresses; dashed perpendicular line 

shows the angle θ0≅130°. 

In Fig. 4, the squares of the peak position are plotted versus the angle θ in rad. In Fig. 
4a the peak position is normalized on the peak position in the absence of stresses. The 
numbers at the curves indicate the number of the related equation. The dashed per-
pendicular line shows the angle θ0, which is about 130° for SiO2. Figure 4b illustrates 
the same results but normalized on the individual peak positions for each value n=1-4. 
It is trivial that in this representation all curves must cross at θ0. 
As Tomozawa et al. [8,10] argued, the equilibrium angle θ should increase under ten-
sile stress, i.e.  

 0d/d ≥σθ  (9) 

Under this condition, decreasing peak positions for n=1 and n=3 and increasing ones 
for n=2 and n=4 would be expected for tensile stresses. However, such behavior is not 
observed in the experiments.  

2. Effect of stress on binding potential 

2.1 Results from Schell et al. 
In [11], we showed that the effect of angle stretching by a tensile stress according to 
eq.(9) is not the only effect that influences the position of the frequency of IR lines. 
Based on the Lennard-Jones potential, we were able to derive a relationship for the 
change in the frequency of the IR or Raman lines as a function of the mechanical stress.  
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When k denotes the “spring constant” under the applied stress σappl, k0 the spring con-
stant in the absence of stresses and σth the theoretical strength (the strength in the 
absence of any crack), we derived in [11] the following linear approximation up to an 
applied stress of around σappl/σ0=0.4: 
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Since k represents the same mechanical binding behavior as the parameter α in eqs.(1) 

-(8), it trivially holds 
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The minus sign in eq.(10) indicates that the tensile stress applied to the bond must 
always lead to a decrease of the vibration frequency ω with increasing stress. This is a 
consequence of 
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In the following considerations, we should distinguish between the strength of a single 
bond and that of an undamaged body. In a previous study [4], we had calculated the 
maximum force transmitted by a bond, Fmax. Under the implicit simplification that all 
bonds are oriented in the longitudinal direction (the x-direction), the theoretical 
strength of the single bond is here denoted as σth. 
In the case of a statistically random bond arrangement, only 1/3 of all the bonds will 
be oriented in the longitudinal direction and thus only 1/3 of the longitudinal forces 
Fmax contribute to the uniaxial strength. The ideal strength σ0 of the undamaged glass 
sample will then be 1/3 of the considered theoretical strength of the three-dimensional 
arrangement, namely σ0=1/3 σth. 

2.2 Superposition of the individual effects 
From eq.(9) and (12) we can see, that the effect of stresses on the binding angle θ and 
the spring constant k must show opposite effects on the sign of the frequency change.  
The total change of the peak position can be calculated for small changes in ω and 
under the condition θ≠f(k) via the total differential 
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By using eqs.(1)-(4) with eqs.(11) and (12), the partial differentials in eq.(13) can be 
evaluated. The result is in terms of coefficients c11-c42, where the first index denotes 
the numbers of the Galeener notation. The second coefficient stands for the first and 
second partial derivations in (13)  
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and with mO=16, mA=28: 

 
684.0

])9/2sin[
]9/2cos[)/(

,1)/(

21
37

2
0,33

32

0

2
0,33

31

0

0

−≅
−

−=










∂

∂
=

=










∂

∂
=

π
π

θ
ωω

ωω

θ

c

kk
c

k
 (18) 



 7 

 
3185.0

]9/2sin[
]9/2cos[)/(

,1)/(

21
37

2
0,44

42

0

2
0,44

41

0

0

≅
+

=










∂
∂

=

=










∂
∂

=

π
π

θ
ωω

ωω

θ

c

kk
c

k
 (19) 

Now eq.(14) can be written  
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Finally, we can write for the cn1 in eq.(14-15):  
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3 Conclusions 
3.1 General behavior 
Since always dk/dσ<0, namely 
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and dθ/dσ>0, it automatically follows that dω1/dσ<0 for n=1 and n=3. This tells us 
that the related curve must decrease with increasing stress.  
For n=2 and n=4 there are positive and negative contributions mixed. Only when the 
increase in dθ/dσ is strongly positive and overcompensates the negative k-influence, 
an increasing curve may be expected. This is obviously not the case in the measure-
ments compiled in Figs.1 and 2. This implies that the effect of decreasing k is stronger 
than the increasing effect by θ. So far the increase of θ with increasing stress, dθ/dσ, is 
not exactly known. 
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3.2 Quantitative behavior for the stretching modes ASS and SS 
The peak position for the SS and ASS-stretching modes under uniaxial tension σx (in 
GPa) were found by the measurements of Tallant et al. [2]. Since in eqs.(13-23) the 
squares of the relative peak positions, (ω/ω0)2, are used, we plotted the experimental 
results by Tallant et al. [2] in the same form in Fig. 5. The red symbols represent the 
data for the asymmetric stretching mode and the green ones the data for symmetric 
stretching. Straight-line fitting yields 

 σωω b+= 1)/( 2
0  (26) 

with the slope b= −0.00487 (1/GPa) for the ASS-mode and b= −0.005704 (1/GPa) for 
the SS-mode. These slopes are not strongly different.  

 

 
Fig. 5 Measurements of Raman-line position by Tallent et al. [2] in normalized form (ω/ω0)2=f(σ). 
Asymmetric stretching mode (ASS): red, Symmetric stretching mode (SS): green. Straight lines are 

obtained by least-squares fitting according to eq.(26). 

In Fig. 6, all data are shown together, without distinguishing between ASS and SS. 
This total data base was fitted according to  

 σωω ba +=2
0 )/(  (27) 
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with the results a= 0.99988 [0.9942, 1.00557] and b= −0.00524 [-0.00628, -0.00420] 
(1/GPa), illustrated by the solid line. The numbers in brackets are the 99%-Confidence 
Intervals. The related limits are entered by the dashed lines. 

 

 
Fig. 6 Data by Tallant et al. [2] from Fig. 5 and fitting straight-line for all results (solid line). The 

dashed lines indicate the 99%-Confidence Interval. 

Introducing eq.(27) into eq.(25) and assuming dθ/dσ→0 gives for the estimate of the 
theoretical strength of the bond:  

 GPa125
00628.0
784.0

=
−
−

≅thσ  (28a) 

and the ideal strength of the solid under uniaxial tension: 

 GPa413
1

0 ≅= thσσ  (28b) 

The ideal strength σ0 is higher than the measured value by Brambilla and Payne [12] 
on thin silica fibers of about 60 nm radius, resulting in σ0 ≈25 GPa. 
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