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The stability and manageability of power systems with a growing share of renewable energies depend on
accurate forecasts and feed-in information. This study provides synthetic wind and solar power generation
time series for approximately 1,500 European transmission nodes in hourly resolution from 2019 to 2022,
along with data-driven layouts of renewable generator allocations. To create these time series and layouts,
we develop weather-to-energy conversions using high-resolution weather data. Based on the conversions and
elastic-net optimisation, the layouts, which we refer to as working layouts, represent a theoretical allocation
of generators within each country that produces the current (or alternatively any historical) observed energy
output characteristics based on the weather data. This work provides the necessary code to update and adapt
layouts and time series for use in custom applications.

1. Introduction

To reduce net greenhouse gas emissions, the EU, like most countries
worldwide, is expanding renewable energy generation capacities [1,2].
The energy system, which has so far been based on conventional
and centralised electricity generation, transforms into a decentralised
system dependent on generators with high weather-conditional vari-
ability [3-7]. Because of this, the integration of renewable energy
sources poses challenges for the electricity market, including the need
for detailed information and accurate forecasts of feed-in from in-
dividual generators as well as on different aggregation levels. The
interconnection of the European power grids and the impact of weather
on renewable energy output also calls for merged data sets of installed
capacities and feed-in on a large-scale, i.e., covering the entire con-
tinent [8]. However, actual feed-in data sets are often not publicly
available, and even the sole information on the spatial allocation of
installed renewable generation capacity is only available with a time
lag, if at all. In this paper, we, therefore, derive high spatial resolution
hourly wind and solar feed-in time series calculated from weather data
for mainland Europe. We also provide working layouts with an esti-
mated, realistic allocation of installed wind and solar capacities across
the continent. The data set has been generated with great methodical
care. Users may update it at any time using our code with the flexibility
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to limit their analysis to the regions or aggregation levels that interest
them.

Calculating feed-in of renewable energy sources is not new to
the existing literature. For example, researchers use statistical meth-
ods and calculate or predict the feed-in by time series models and
deep learning [see, e.g., 9-16]. A comprehensive overview of very
short-term forecasting wind and solar generation is provided by [17],
whereas [18-20] focus on deep-learning methods for short-term fore-
casting solar irradiance and PV power of single solar panels and PV
systems. [21] investigate regional PV power forecasting in six Italian
bidding zones over a year, evaluating the dependency of forecast
accuracy. Detailed reviews concerning solar generation forecasting are
given by [18,22-24], and wind generation forecasting by [25,26].
Other works directly use weather data for weather-to-energy conver-
sion techniques trained on historical data. Thus, instead of time-series
approaches, they develop physical models like also we do, at least
partly in this paper. A short overview of the calculation of feed-in data
from weather data is provided by [27] (see also the references therein).
Studies using weather-to-energy conversions to calculate the generation
of renewable energy sources can be found, for example, in [28-35] for
wind and in [36-41] for solar.

Approaches that rely on weather-to-energy conversion require de-
tailed data on the locations and specifics of the installed turbines and
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solar panels, which are often not publicly available for macro-scale
regions due to economic interests and high administrative burdens, as
stated above. Researchers have therefore tried to circumvent this lack
of data by using layouts only for specific regions or countries, such
as Germany or Denmark, where information is publicly available (see,
e.g., [42-44]). Additionally, [45] used layouts based on site attractive-
ness and policy targets to calculate possible trajectories of wind and
solar power generation depending on the future share of renewables in
electricity generation and other supply and demand factors, and [46]
generated forecasts based on the government’s expansion plans and
targets. The web application Renewables.ninja [47] provides high-
resolution, globally accessible data on wind and photovoltaic (PV)
generation for the time period 1980 til 2019, based on historical, hourly
weather data. Therefore, [28,40] simulate wind and solar generation
using models for wind speeds and solar irradiance and based on the
reanalysis data set MERRA [48], accounting for factors like turbine
specifications, panel tilt, and system losses. The generation data is
given relative to installed capacity, so installed capacity data must be
available to calculate point-wise or nationwide feed-in.

Another option is chosen by [49], who assumed wind and solar
generators to be uniformly distributed over mainland Europe for a first
layout and proportionally distributed to the population for a second
layout. By doing so, they come up with a comprehensive data set for
a European electricity system. However, due to their strong assump-
tions on the spatial distribution of generators, [49] did not intend the
estimated hourly feed-in of these layouts to actually conform to the
observed feed-in.

In contrast, we develop synthetic yet realistic capacity layouts for
renewable energy generation plants in our paper. The provided layouts
are learned from observed data, have a high spatial resolution, and
result in a comprehensive and precise data set for the feed-in of renew-
able energy sources. We focus on wind and PV energy, as these have
the largest share of renewable generation capacity and exhibit a high
degree of weather dependency. We provide information on potential
installed wind, onshore and offshore, and PV capacities as well as on
the feed-in generated with these capacities scaled to the network nodes
of the main continental European transmission network. The estimated
layouts are derived as follows. We convert high-resolution numerical
weather data into energy signals using physical models of the power
curves from wind turbines and solar modules. Hereby, we carefully
consider parameters like the wind conditions at hub height, the sun’s
incidence angle on the solar panels as well as the weather-dependent
proportions of direct and diffuse irradiation. Resulting energy signals
are then mapped to 1494 main nodes of the European transmission
network to form synthetic power outputs. We next use the synthetic
outputs to explain actual measured wind and solar feed-in with an
elastic-net regression approach and come up with an estimate of in-
stalled wind and solar capacities at each node, which builds our working
layout for renewable energy sources in mainland Europe. We show that
using our working layouts in weather-to-energy conversion approaches
leads to precise estimates of the actual electricity feed-in. Further, the
working layouts inherit most of the characteristics of the true layouts
for places where the true layout is known. Thus, the layouts can be used
to map and forecast the generated feed-in in the European transmission
network. Finally, we use our layouts to create a comprehensive data
set for mainland Europe, including the hourly resolution wind, onshore
and offshore, and PV power generation from 2019 to 2022 and high-
resolution layouts of installed wind and PV capacities. By making the
code publicly available, we enable others to generate results for a
specific time horizon and tailor them to their needs. Additionally, we
provide a detailed methodology for converting weather data to wind
and especially to solar generation, filling a gap in previous research by
providing a comprehensive understanding of this conversion process
and the required variables.

The remainder of the paper is structured as follows. First, the data
used in our approach are presented in Section 2. In Section 3, we
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Fig. 1. Nodes of the European transmission network marked in red.

Table 1
Countries in the European transmission network
used in this study.

Country Abbreviation
Albania ALB
Austria AUT
Belgium BEL
Bulgaria BGR
Bosnia Herzegovina BIH
Switzerland CHE
Czechia CZE
Germany DEU
Denmark DNK
Spain ESP
France FRA
Greece GRC
Croatia HRV
Hungary HUN
Italy ITA
Luxembourg LUX
North Macedonia MKD
Montenegro MNE
Netherlands NLD
Poland POL
Portugal POR
Romania ROU
Serbia SRB
Slovakia SVK
Slovenia SVN

explain the layout generation step-by-step, including a detailed descrip-
tion of the weather-to-energy conversion, the cell-to-node allocation
and the layout estimation. Section 4 presents the results of this paper. It
contains the results and evaluations of the layout and the feed-in data
sets. We conclude in Section 5.

2. Data

Our analysis is based on high-resolution historical weather data and
the main continental European transmission network nodes. The nodes
belong to a network model which comprises 1.494 buses, shown in
Fig. 1. It is based on the ENTSO-E grid map and was first developed
by [50]. We use the geographical locations of this network, which are
transformed by [49] and are available at [51]. The network captures
countries of mainland Europe, listed in Table 1.

For the weather data, we use high-resolution historical weather
data, i.e., data which is often provided from reanalysis data, where
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Table 2
Variables of the ERAS data set used in this study.
Variable Naming ERA5 Description
= 100 m u-component of wind Eastward component of the 100 m wind
Z 100 m v-component of wind Northward component of the 100 m wind
2z Forecast surface roughness Aerodynamic roughness of surface
1, 2 m temperature Temperature of air at 2 m above the surface
P Forecast albedo Reflectivity of the earth’s surface
1, Total sky direct solar radiation at surface Amount of direct solar radiation

~

Surface solar radiation downwards

Amount of solar radiation that reaches a horizontal plane at the surface of the earth

weather measurements, models and numerical model predictions are
combined into one large comprehensive data set. More specifically, our
analysis uses the ERA5 hourly data on single levels from 1959 to present
reanalysis data set [52] for the years 2019 to 2022. Since the data
set includes more than 250 variables, we only use an excerpt with the
variables given in Table 2 for each location.

The data is accessed via the Python CDS Toolbox APL.' We also use
sea depth data extracted from the GEBCO data® and match it to the
coordinates of the ERA5 data to exclude locations where offshore wind
farms are technically not possible or not profitable yet.

Hourly actual feed-in data for every country is provided by the
ENTSO-E transparency platform [53]. Note this important point: Since
the feed-in and weather data have different accumulation schemes,
with the weather data containing accumulated data for the hour ending
at the timestamp, and the feed-in data accumulating over the hour
following the timestamp, it is necessary to align the two data sets with
each other. To clarify, the 10 a.m. timestamp, for example, refers to
10 a.m. to 11 a.m. in the feed-in data and to 9 a.m. to 10 a.m. in the
weather data; thus, we shift the timestamps in the feed-in data by one
hour.

To assess the synthetic working layouts, the synthetic feed-in data is
compared with both the actual hourly feed-in data and the feed-in data
from the Renewables.ninja web application for 2019 [47]. Therefore,
the relative Renewables.ninja generation data needs to be multiplied by
the installed capacity of each respective country, which we obtain in
line with the approach from the ENTSO-E transparency platform [53].

3. Methodology

Our approach is based on comparing synthetic energy signals with
the actual feed-in of renewable energy sources. From a high level, we
first calculate the nominal power from solar and wind power generators
in each weather cell of the ERAS data set for each hour. Then, each
weather cell is assigned to a transmission node within the European
electricity grid structure, where we aggregate the information from
multiple weather cells. Third, we facilitate an elastic-net regression
approach to estimate the number of renewable generators at each trans-
mission node. The installed capacities are then given by the estimated
number of renewable generators multiplied by the rated power of the
exemplary used generators. The resulting layout information can be
used to improve forecasts, enhance grid stability or define expansion
goals for renewable energies. In the following, we first discuss the
calculation of nominal power for each weather cell and then introduce
the weather cell combination and the estimation approach. Readers
which are experts in weather-to-energy conversion can skip Section 3.1,
where we explain this step in detail.

1 The documentation of the toolbox is available under https://cds.climate.
copernicus.eu/toolbox/doc/api.html; accessed 17-01-2023

2 The data is available under https://download.gebco.net/; accessed
15-12-2022

3.1. Calculation of renewable power generation

We calculate the generated power based on historical weather data
and the technical specifications of the used renewable generators. More
precisely, we transform the measured solar radiation and wind speeds
to nominal power outputs for each weather cell. The transformation is
done using the technical specifications of state-of-the-art solar panels
and wind turbines. We first consider the calculation of solar power
generation followed by wind power generation, onshore and offshore.

Solar

To calculate the nominal power generated by solar panels, it is
important to consider both solar radiation and temperature. Solar radi-
ation consists of direct, diffuse, and ground-reflected components, all of
which must be taken into account. In the ERA5 data set, the variable
Surface solar radiation downwards (denoted as I) represents the total
amount of solar radiation that a pyranometer would measure, including
both direct and diffuse radiation. To separate these components, we
subtract the direct radiation component given in the variable Total sky
direct solar radiation at surface (denoted as I;,). We then calculate the
ground-reflected component using the Forecast albedo variable (denoted
as p), which measures the Earth’s surface reflectivity. Since radiation is
measured in Joule per square meter ([J/mz]), we convert it to Watt-
hours (Wh) by dividing by 3600. This is because 1 Joule equals 1
Watt-second (1 J = 1 Ws), which is approximately 0.00027777 Watts
per m? over the course of 1 h.

We now give a compact presentation of the important aspects and
formulas for solar conversion. In a nutshell, we first determine the
angle of the sun for the given location, time, and date. Then, the actual
radiation on the tilted surface of the solar panel is calculated. Third,
we use the radiation, ambient temperature, and specifications of the
solar panel to determine the cell temperature and, finally, the resulting
efficiency. Last, this value is multiplied by the corresponding radiation
and discounted for further losses. For more details on the following
calculations and formulas, we recommend the excellent books by [54,
55].

First, the sun’s radiation angle is needed, which depends on the
date, time, and geographical location. Since the earth’s axis of rotation
is inclined at an angle of 23.45° from the ecliptic axis of the earth’s
rotation around the sun, the polar axis is moving with respect to the
sun. Thus, we calculate the angle 6, called declination, between the
normal of the earth’s axis of rotation and the sun’s rays for each day
first. The declination in radians can be computed by the formula given
by [56]

8 = 0.006918 — 0.399912 - cos(I") + 0.070257 - sin(I")
— 0.006758 - cos(2T") + 0.000907 - sin(2I") 1

— 0.002697 - cos(3I') + 0.00148 - sin(37"),

where the day angle I in radians is given by
27 (N =1)

365
and N is the day of the year.

Further, we consider the change of declination during the day as
constant [see, e.g., 55,57] and adjust it with the hour angle h. Since

Ir= 2
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the earth does a full rotation (i.e., 360°) within 24 h of the day, each
hour accounts for a change of +15° from the solar noon (positive
numbers for afternoon hours). The apparent solar time AST, needed
for computations, is given by

AST = LST + ET +4 - (SLon— LLon),

with S Lon and LLon being the standard and local longitude to correct
for the sun’s traverse within a timezone (about 1° in 4 min). There,
SLon is a selected meridian near the centre of a timezone. The sign
is positive (4) if the location is west of Greenwich and negative (-)
otherwise. ET is the equation of time accounting for different lengths
of the day within the year calculated by

ET =9.87 - sin(2B) — 7.53 - cos(B) — sin(B),
where B = (N —81) - 360/364. For the hour angle 4 in degrees follows
h=(AST - 12)-15. 3

After the adjustments for a date, time and location, we calculate the
angle of radiation on a tilted solar panel, the incidence angle 6. We
denote the tilt angle of the panel by g and the surface azimuth angle,
i.e., the orientation of the panel (westward orientated panel positive),
by Zg. The incidence angle ¢ in radians is now calculated by
cos(f) =sin(L) - sin(6) - cos(f) — cos(L) - sin(6) - sin(p) - cos(Z,)

+ cos(L) - cos(6) - cos(h) - cos(f)

+ sin(L) - cos(8) - cos(h) - sin(p) - cos(Zg)

+ cos(6) - sin(h) - sin(p) - sin(Z,),

G

where § again is the declination of the sun during the day, L the local
latitude and & the hour angle, all converted to radians before plugged
into the above equation [55,57].°

With the radiation angles at hand, we next determine the actual
radiation at our solar panel. Therefore, we use the model proposed
by [58,59] and adjust the given direct normal radiation 7,, (Total
sky direct solar radiation at surface) such that it is assumed to be
perpendicular to the earth’s surface by I, = I, - cos(¢), with ¢ being
the solar zenith angle in radians calculated using Formula (4) for a tilt
angle of f = 0 and a surface azimuth angle Zy = 0.

The radiation on a tilted surface (i.e., the solar panel) I, with tilt
angle f converted to radians is then calculated by

I, = (I, + I;A)Rg

Direct radiation contribution

1 — cos(p) 1 .
H"(l_A)(T).(H \ Ib':IdSln(ﬂ/Z)3> )

Diffuse radiation contribution

1 —cos(p)
- )

+ Uy + 1d)ﬂ<

J

Reflected radiation contribution

where I, is the direct radiation, 7, the diffuse radiation, and the last
term reflects the ground reflected radiation with p being the forecast
albedo, i.e., the reflectivity of the Earth’s surface. Further, Ry is the
bean radiation tilt factor, which includes the earlier calculated incidence
angle 6 and is calculated by Ry = cos(6)/cos(¢), both in radians.
Next, A is the anisotropy index defined as A = I,,/I,, where I,
is the extraterrestrial radiation depending on the day of the year N,
ie, I, = 1366.1 W/m?-[1+0.033-cos(360N /365)] (see, [54], Section 2).

Last, the calculated radiation I, and the ambient temperature 7,
serve as input for the conversion to a power signal. Here we use the
LongiSolar LR4-72HBD as a benchmark solar cell and leverage its tech-
nical characteristics to calculate the corresponding nominal power. It is

3 Degrees can be converted to radians by multiplying with = and dividing
by 180.
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Fig. 2. Power of LongiSolar LR4-72HBD solar panel depending on radiation and cell
temperature.

a rather modern solar cell used in several European solar power plants.
The efficiency of the solar panel generally depends on its temperature
t. and the radiation I. To account for both, we start with the efficiency
given in the data sheet of the solar panel, the reference efficiency #,,
for testing conditions and correct it iteratively with the estimated cell
temperature ¢, similar to other authors (cf., Kalogirou [54, Section 9.5];
Durisch et al. [60] or Beyer et al. [61]). The cell temperature ¢, is
estimated based on radiation I,, the temperature of the ambient air ¢,,
and the temperature-related efficiency of the solar panel 5, (I), which
we set to the reference efficiency for the first approximation. For the
calculation follows

to (I, t,) = (tNOCT —¢NOCT). IN{;CT . (1 - %) +1, (6)
where super-script NOCT denotes the Nominal Operating Cell Temper-
ature and radiation at nominal operating cell temperature given in the
data sheet and the transmittance—-absorptance product ¢ is set to 0.9 to
account for reflected energy at the panel [55, Section 23].
Afterwards, the temperature-related efficiency 7, is updated via

M, =y + iy (1 =1V, @)

with the temperature coefficient of maximum power efficiency u,
calculated by p, = #, - puy /V,,. There, n, again denotes the reference
efficiency, uy the temperature coefficient of open-circuit voltage, and
V,,, the voltage at maximum power all given in the data sheet of the
solar panel [55, Section 23.2]. Formulas (6) and (7) demonstrate the
high interdependence between the cell temperature and the actual effi-
ciency of the solar cell. Since the first estimate of the cell temperature
is calculated based on the reference efficiency 7,, the estimates of both
variables are updated. Therefore, we use the same formulas but now
based on the first estimates of both variables to approximate the true
values of ¢, and #, . Thus, the cell temperature ¢, is updated with the
first estimate of the efficiency i, by Formula (6). Afterwards, ny, is
updated a second time using the new value of 7. This two-step update
has shown to be sufficiently precise in simulations and further updates
do only account for marginal improvements in precision. We display
the resulting power of the solar cell, depending on radiation and cell
temperature, in Fig. 2.

In the last step, the calculated efficiency , (Formula (7)) is multi-
plied by the actual radiation per square meter on the tilted surface 7,
the area of the solar panel .S and a discount value of 95% to account
for further losses, e.g., the efficiency of the inverter. Converted from
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the measured unit Watt [W] in [MW], the resulting power p, emerges
to

ps = (-1, 5)/1000 - 95%. ®)

We use hourly data and assume constant power generation within one
hour, so the actual power and the produced energy within the hour
measured in [MWh] have the same absolute value. For all calculations,
we set the tilt angle § = 45° and assumed that 50% of solar panels
are installed facing south while 25% are facing westwards and east-
wards, respectively. These values have shown to be optimal settings
for estimating the data set created in this paper for mainland Europe
in previous intensive analyses and reflect the non-optimal conditions in
reality.

Remark 3.1. Specific radiation may vary widely within a single grid
box/weather cell, depending on clouds or other local characteristics.
However, since our goal is to estimate the renewable layout on a
regional basis, i.e., on grid nodes, the resolution provided in the ERAS
data (average over each model grid box) is sufficient for our usage.

Wind

Next, we calculate the electricity resulting from wind power gener-
ation. To do so, we leverage the wind speeds given in the ERA5 data
set [52]. For each weather-cell location, we extract the lateral wind
speed components and compute the absolute wind speed v,.

In the subsequent step, these wind speeds in 100m have to be
transformed to the hub height of the used benchmark wind turbine.
For the adaption of wind speed to the hub height, we follow [62-64],
and assume a logarithmic velocity profile
Or =D <10g(hhub) - log(20)>

hub = 7100 7\ 10g(100) — log(zg) )

Here, z,, corresponds to the surface roughness depending on the typical
landscape, atmospheric conditions or state of the ocean in the weather
cell and is provided in the ERA5 data set [52].

Note, that the use of the surface roughness from ERA5 data set
for extrapolating wind speeds to turbine hub heights with logarithmic
velocity profile is a simplification and may in general be too simplistic
in particular for grid points and weather cells in coastal regions. There,
surface roughness varies with wind direction, and the assumption of
a homogeneous terrain in the logarithmic velocity profile does not
hold [65]. Additionally, ERA5 applies orographic drag parametrisation,
which affects near-surface winds, especially over complex terrain (see,
e.g., [66,671]). A simple logarithmic velocity profile fails to account for
these terrain effects (see, e.g., [68]). Given the aim of this paper, which
is to provide realistic energy signals for many grid points across Europe,
along with joint capacity layouts (both adjustable in the code and up-
dateable by the user), we must focus on simplicity and avoid increased
use of computational memory or processing time. Therefore, we choose
to accept this simplification and prioritise scalability and applicability
over regional precision. An empirical justification for this decision is
later provided by the quality of our results, at least for aggregated data,
where we can compare with measured energy production. However, if
one wanted to improve this part of our approach within the code, the
use of direction-dependent surface roughness [65] and more sophisti-
cated terrain models that account for sub-grid scale orography [67]
is recommended. More generally, hybrid methods combining obser-
vational data, mesoscale models, and data assimilation could further
enhance wind speed extrapolations, particularly in complex or coastal
regions [68]. These methodological adjustments would improve the
accuracy of wind speed projections and the reliability of wind energy
resource assessments.

The calculated wind speeds are now transformed to nominal power
outputs using the turbine’s power curves, i.e., a function that maps the
wind speed in [m/s] to power in [MW]. Again, feeding in for an hour
with that power leads to produced energy measured in [MWh] of the
same absolute value.

©)]
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We consider two different turbines for onshore and offshore instal-
lation. For the onshore component, we use the Siemens SWT 107 wind
turbine with a rated power of 3.6 MW and a hub height of 90 m. For the
offshore component, we use the MHI Vestas V164 with a rated power of
9.5MW and a hub height of 105m. We resort to these two frequently
used types as reference turbines for all weather cells, which form a
cross-section of older and newer turbines with their hub height and
rated power. To obtain a functional relationship at each wind speed,
we fit a combination of third-order polynomials to the point-wise given
nominal power of both turbines [69]. A piece-wise definition of the
function resulting in the actual power output p,, is given by

09 if Uhub < Unin
3 2 :
a vy o+ Brvy e F Vs + 01 L Uiy < Upuy < Vg

hub
- 3 2 i

Pw () =Y aaUy, + Povyy F VaUhuy + 625 if Vgpris < Upu < Urgred

Prated> if Urated < Uhub < Umax

0’ if Umax < Uhub»

where v, is the wind speed at hub height. Further, v,,;, is defined
as cut-in speed, i.e., the minimum wind speed required for electricity
production, and v,,,, is the minimum wind speed for the rated power
(related to this p,,, is the rated power of the wind turbine). At the top
end, v,,,, determines the cut-out speed, i.e., the maximum wind speed
where the turbine is operated and is set to v,,,, = 25 m/s for all turbines.
Further, we define v, as the turning point within our functional
representation, where we change to the second polynomial. This point
is located where the concavity of a fitted third-order polynomial on the
power curve changes sign (see [69] for details). The resulting power
curves are depicted in Fig. 3. In the following, we denote the actual
power of onshore turbines as p,, and offshore generation as p,,,.

3.2. Weather cell combination

In the previous section, we calculated the nominal power of solar
panels and wind turbines in each of the 15,292 weather cells in the
ERAS data set. We now aim to assign each weather cell to one grid
node to aggregate the generated power of multiple weather cells to
one transmission node. The aggregated power is later used for the
estimation of the renewable energy layout by an elastic-net.

We, therefore, first map each weather cell ¢ (thus its renewable
generators) to its closest transmission node n;, i € {1,..., N}, of all
N transmission nodes since this connection is the cheapest and most
efficient. Further, we filter the resulting allocation and only keep a
mapping of a weather cell ¢ to its transmission node n; if the corre-
sponding distance d(c, ;) is smaller than the maximal distance between
any two adjacent transmission nodes, i.e.,

!
d(e,n;) < d(ny,ny) forall k,# =1,...,N.

This condition ensures that we only take weather cells with a
reasonable distance to the power grid into account, e.g., cells covering
the coastal area (used for offshore wind constructions) but not the
complete ocean. For the special case where no weather cell is assigned
to a transmission node, we assign the closest weather cell to this node
as well. Note that this is only the case for 25 nodes in total, thus leading
to 25 weather cells which are assigned to two nodes: the node closest to
the weather cell and the node for which the weather cell is the closest.
Fig. 4 visualises the resulting assignment of all used weather cells (small
dots) to the network nodes (fat dots). Weather cells that are assigned
to a node are coloured correspondingly. The double-assigned weather
cells are colour-coded to their nearest node.

In the last step, the nominal power signals of all weather cells
associated with a transmission node are averaged by generator type.
To do so, we classify each weather cell depending if it is mainly
covering ocean or land. The ocean weather cells are not considered for
averaging solar signals, while the land cells are ignored for calculating
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Fig. 3. Power curves Siemens SWT 107 (left) and MHI Vestas V164 (right) with corresponding parameters of the fitted polynomials and change-point v,
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Fig. 4. Nodes of the European transmission network (fat) and assigned weather cells (small) of the ERA5 data set.

the average offshore wind power signals. We distinguish onshore and
offshore wind power signals in the same manner and further exclude
offshore weather cells with a sea depth > 70m due to technical and
construction restrictions of offshore wind turbines. The result is a power
signal for each transmission node, scaled to the nominal power of one
representative renewable generator by type.

3.3. Layout estimation

Now, the allocation and, thus, the working layouts of renewable
energy generators across Europe are estimated from derived power
signals per transmission node and actual feed-in data of solar and
wind power. The actual generation data for onshore wind power in,,,
offshore wind power in,,,, and solar in, is openly available on a country
level at the ENTSO-E transparency platform for the years 2019 to
2022 [53]. For the estimation, we facilitate the condition that the total
feed-in of wind and solar power has to be the sum of the produced
power at all transmission nodes, i.e., the power signal of a single solar
cell or wind turbine multiplied by the number of installed generators,
at country-based resolution for each hour. Thus the feed-in ing, in,, and
in,,, for each country at any time-step r = 1,...,T is given by

N
ing = Z w® . plm Solar Feed-in, (10)
n=1
N
in = z w? -p(,,'j} Onshore Feed-in, an
n=1
N
i, = Z w(,,'j?, . p(bﬁz Offshore Feed-in, (12)
n=1
where ", w") and w(), denote the unknown weights (i.e., number

of generators) of solar, onshore and offshore wind power generators at
each transmission node n = 1, ... N. Hence, the layout estimation aims
to estimate the values of w™”, wf:}'l), and wfft), such that the Mean Squared
Error (MSE) is minimised for each generator type separately. From a
technical perspective, this requires solving the popular least squares
problem and corresponds to a linear regression setup. Such a setup
is known to be unstable for highly correlated regressors, which leads
to poorly determined estimated coefficients with high variance [70,
cf. Section 3.4]. Since we expect weather data of neighbouring cells
to be highly correlated, we also expect the given aggregated power
signals p., of each transmission node to be highly correlated with its

neighbouring signals. Fig. 5 analyses the correlation of energy signals
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Fig. 5. Pearson correlation of power signals of 2019 from neighbouring transmission nodes for k-nearest neighbours (left) and given distance (right) per renewable generator type.

from neighbouring transmission nodes with respect to distance. The left
plot visualises the mean correlation of every transmission node with its
k-nearest-neighbours, while the right plot shows the mean correlation
of all transmission nodes and all of their neighbours within the given
distance in [km]. As expected, we observe strongly correlated signals,
with the correlations only slightly decreasing in growing distances.
Thus, the problem at hand shows high collinearities in the data and
an alternative to using a simple linear regression is called for.

Therefore, the final estimation is done by using a regularised lin-
ear regression model for each generation type and country, i.e., an
elastic-net with a L; and a L, regularisation term [see 71]. Within
this framework, we optimise the strength of the regularisation via
10-fold cross-validation. Further, a non-negativity restriction for the
coefficients is introduced to avoid unrealistic solutions, i.e., physically
impossible solutions like a negative number of generators. The resulting
optimisation problem is solved for each country and each year. Since
the shrinkage of the estimated parameters is directly related to the
variance of the features, i.e., the input signals, we standardise the
features before optimising the parameters by

(n) _ =(n)

Py, — P
”g",) =3 5 Solar, 13)
5 (n)
O-S
n =
g o wht  Twl Onshore, a4
wl.t (n)
O-wl
n =
~ 00,1
p(u'j())'t = W o Offshore, 15)
O’MJG
where ﬁf';) is the standardised power signal per generator type at time

t and node n, 3" the mean of all power signals at node » and ¢ the
standard deviation of the power signals at node n. Note that doing so
requires an intercept (w.) during estimation, which will result in nearly
zero after reversing the standardisation. With this, the optimisation
problem for the case of solar is given by

N 2
argmin(ins -, — Zw&") . ﬁ§">>

Ws n=1

(16)

N N
+aea (B0 +05- 4 (1—a) Y @2, (17)

n=0 n=0
There, (16) minimises the difference between the true feed-in and our
models’ prediction, and (17) includes the regularisation terms.* The
parameters wﬁ") denote the estimated weights in the standardised setup.

4 The hyperparameter a compromises between the L, and a L, regularisa-
tion term and is set to 0.7, as it has shown to be the best choice in our studies.
The parameter A is the cross-validated strength of regularisation.

The standardisation is reversed after the optimisation to result in the
installed capacities, i.e., by multiplying the calculated parameter values
with the standard deviation of the corresponding original input data:

(18)

W™ = G . 0,
N N N

The same optimisation is done for every year, both wind power gener-
ation types and each country separately.

Using an elastic-net regularisation is useful for two reasons. First,
as we have seen in Fig. 5, aggregated power signals of the transmission
nodes are highly correlated. We tackle this problem by using the L,
regularisation term, which causes the regressors to act more like an
orthogonal system, hence resulting in more stable estimations and
a lower MSE [72]. Further, the L, penalty causes the resulting loss
function to be strongly convex and avoids grouping effects of corre-
lated variables [71]. The grouping effect means that within a heavily
correlated group of regressors, it can be difficult to estimate the effects
of each variable on the dependent variable accurately since another
variable might partially or fully capture the effects of one variable.
In our case, that would result in an estimation where all the weight
is randomly assigned to a few transmission nodes. Besides the purely
mathematical motivation of an easier and better estimation, the L,
regularisation penalises very high negative and positive coefficients and
thus avoids technically impossible solutions. Secondly, regularisation
reduces the number of estimated weights to stabilise the estimation
with limited data and results in a more realistic, compact model. A
compact model improves the overall interpretability of results and
reduces the noise in the estimated coefficients. Since the discussed L,
penalty cannot set coefficients to zero, the L, regularisation here comes
into play. It forces some of the estimated weights to zero, reducing the
overall complexity. In summary, we use the L, ridge-like regularisation
to shrink the coefficients of correlated predictors towards each other
and the L, lasso-like regularisation to select variables, e.g., important
generator locations, in the elastic-net approach.

The estimated weights represent the total installed generation units
at the considered locations. By multiplying these with the nominal
power of the used example generators, i.e., the nominal power of both
wind turbines and the solar panel, we obtain the estimated capacities at
each node. Altogether, the elastic-net results in completely data-driven
layouts of renewable energy sources for each European country.

Remark 3.2. The estimation of installed capacities can also be done
using standardised relative power signals. Relative power signals are
derived by dividing the actual power signal of onshore, offshore and
solar (p(u')'l), pf;'f, and p&")) by the nominal power of the used power
generator. These (standardised) relative power signals can now be used
to replace the (standardised) actual power signals in the optimisation

problem of the elastic-net (Formulas (16)-(17)). Thus, the estimated
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and rescaled weights from the elastic-net directly correspond to the
estimated installed capacity at each transmission node. Note that using
relative or actual power signals results in the same estimated layout.

Estimated on such spatially and temporally high resolution, the
working layouts mimic the wind, onshore and offshore, and solar
power generation and realistically reflect the allocation of installed
capacities over the landscape. However, working layout means here that
the installed plants belonging to the estimated capacities are optimally
utilised and working regarding used weather data set. They are always
online and on the grid and are only limited by the level of wind and
solar irradiation. Due to the objective of a purely data-driven approach,
we do not make any assumptions about possible deviations of the po-
tentially and optimally generated amount, e.g., due to self-consumption
or storage in individual household batteries or the curtailment of PV
and wind power plants, which is done to ensure grid stability. For
example in Germany, PV power plants with a nominal power of up
to 25kW were only allowed to feed in a maximum of 70% of their
nominal power until the beginning of 2023 due to concerns about
grid congestion [73, §9(2)], and onshore wind energy is the most de-
regulated energy source, followed by offshore wind energy [74]. Due to
the optimal utilisation of wind turbines and solar modules, we further
do not consider wake effects of wind turbines standing next to each
other in wind farms [31, e.g.,] and other possible reasons for losses,
e.g., the age of the turbines and modules [29, e.g.,]. We, therefore,
expect that the actual installed capacity is higher than technically
necessary and that the estimated working layouts represent a lower
bound compared to the actual total installed capacity.

Note that ignoring the high collinearity in our data and estimat-
ing the capacities by an ordinary least squares regression (OLS) also
delivers suitable results, but only with respect to the production data.
The layouts are able to mimic the actual power generation similarly
well, but constitute highly unrealistic spatial allocations of the installed
capacities. For example, onshore wind power generation in Germany
is only allocated over 55 of 227 transmission nodes in 2022 (see
Appendix A for more details).

It is also important to note that the correlation between wind
locations in reanalysis data analogous to the correlation profile shown
in Fig. 5 is typically higher than in measured data (see, e.g., [75]).
As a result, the layouts derived to best model the aggregated feed-
ins may exhibit slight deviations from those estimated using measured
data instead of reanalysis data. For readers applying the code provided
with this paper to different weather datasets, it is recommended that
the resulting layouts be used primarily with the type of weather data
from which they were originally estimated, to ensure consistency and
accuracy in the results.

4. Results

In this section, we exemplary report the results for Germany and
Denmark in detail. We analyse the ability of the estimated working
layouts to mimic the actual feed-in of electricity per generator class
(onshore wind, offshore wind, PV) and depict these layouts for solar
and wind power generators across the countries for 2019 to 2022.
We further demonstrate that the estimated layouts have been rather
stable over the years and match the true installed capacities’ allocation.
Information on the estimations for all other countries of mainland
Europe are provided in Appendix C.

First, we assess the ability of the estimated layouts to mimic the
actual feed-in per generator type (onshore/offshore wind, PV). Fig. 6
depicts the actual and estimated PV generation for Germany (left) and
Denmark (right) in July 2022. Besides minor deviations in the peak
of each day, the estimation fits the actual generation and the changes
between low and high-generation days are captured very well.

Similar observations can be made when considering the onshore
wind generation in Fig. 7 and offshore wind generation in Fig. 8. Both
types of wind generation are characterised by higher volatility, but the

Renewable Energy 239 (2025) 121967

estimation generally fits the feed-in very well. Looking at the offshore
wind feed-in in Denmark in detail, we notice a drop in wind generation
on the 17th of July, 2022, which is not reflected in the estimate. This
drop may be due to the curtailment of wind turbines and, thus, the
limitation of wind energy. Since the approach presented here is based
on converting weather data to feed-in data, it is not able to consider
such curtailments.

Along with the visual evaluation, we assess the fit between synthetic
and actual generation time series using quantitative measures. Our
time series are compared with both actual feed-in data and alternative
synthetic data from Renewables.ninja [47]. As the Renewables.ninja
data is only available up to 2019, the comparison is limited to that
year. For evaluating the quality and consistency of the time series,
we employ both the root mean square error (RMSE) relative to the
annual average generation of the same hour and additional metrics
as suggested by [75] such as the Pearson correlation coefficient, the
autocorrelation function (ACF), the difference of standard deviation of
the first-difference time series relative to the standard deviation of the
first-difference actual feed-in and a comparison of density functions.
This approach allows us to compare not only point-wise generation
levels but also the underlying structure of the time series, providing
a comprehensive insight into the quality and characteristics of the
synthetic time series. Thus, by utilising these error measures, deviations
in the representation of the correlation between wind speeds or solar
irradiation can be identified, helping to detect inaccuracies in the
modelling process.

Table 3 reports the Root Mean Squared Error (RMSE) for the syn-
thetic generation and, for the year 2019, for generation given by [47]
relative to the respective realised hourly generation average and the
Pearson correlation coefficient between synthetic generation data and
actual generation. For the metrics in the case of solar, we only consider
values of hours with an actual solar feed-in bigger than zero, thus
excluding nighttime hours. A comparison of the synthetic feed-in data
generated with the working layouts created in this work and [47] shows
slightly higher RMSE of the data sets of [47], while the correlation
through both synthetic generation time series is comparable high as
shown in Table 3.

We also investigate the autocorrelation of the feed-in time series
according to [75] to show how well the simulated data can represent
the temporal variability of the measured data. Table 3 presents the
differences between the autocorrelation function at lag one for the syn-
thetic feed-in data and the actual feed-in data. Fig. 9 further illustrates
the autocorrelation functions of the synthetic feed-in time series from
the current working layouts, the synthetic data from Renewables.ninja,
and the actual onshore wind feed-in for Germany and Denmark in 2019.
Autocorrelation functions for the years 2020 to 2022 are provided in
Appendix B. For 2019, the deviations in autocorrelations at lag one
for both synthetic data sets are minimal, within the per mille range,
with the exception of offshore wind in Denmark in the single-digit
percentage range. The majority of deviations at lag one are slightly
underestimated as [75] already observe for reanalysis wind data of the
ERAS data set, though not exclusively. The results in Fig. 9 confirm
these small deviations in autocorrelations over all lags. While the
autocorrelation function of synthetic feed-in based on [47] aligns more
closely with the actual values for Denmark, the deviation for Germany
in 2019 is noticeably larger than for the synthetic feed-in time series
based on the layouts presented here.

Both the calculated lag-one values reported in Table 3 and the full
autocorrelation functions, shown in Appendix B, demonstrate that syn-
thetic data computed from the layouts adequately capture the structural
patterns of the actual feed-in for all three generation types (onshore
wind, offshore wind, and PV) across the period from 2019 to 2022. This
confirms the robustness of the generated working layouts in reflecting
actual feed-in behaviour.

In addition correctly reflecting the strong volatility of renewable
energies is crucial. We use the standard deviation of the first-difference
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time series to describe the quality of the simulated data mapping the
hourly ramps observable in the actual data, i.e. changes in the hourly
feed-in values. In order to be able to compare the values across coun-
tries and generation datasets, Table 3 shows the difference between the

standard deviations of the differentiated synthetic and real feed-in time
series and divide these to the standard deviation of the differentiated
real feed-in time series, i.e., the numbers represent percentage errors
in the standard deviations of the differentiated synthetic time series.
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Table 3
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RMSE relative to the respective hourly generation average, Pearson correlation with actual data, difference of autocorrelation of synthetic and actual data
relative to the autocorrelation of actual data and standard deviation of the first difference relative to the one from actual data; each of the elastic-net
year- and country-wise estimation for PV, onshore wind and offshore wind generation and of renewable ninja data for PV, onshore wind and offshore

wind generation for the year 2019 [47].

2019 [47] 2019 2020 2021 2022

PV DEU 0.3356 0.2176 0.2028 0.2477 0.2040

DNK 0.3380 0.2901 0.2631 0.3850 0.3597

RMSE Onshore DEU 0.2499 0.1358 0.1412 0.1462 0.1577
DNK 0.2348 0.2966 0.3115 0.2997 0.2853

Offshore DEU 0.3950 0.2648 0.2653 0.3189 0.2861

DNK 0.3515 0.3027 0.2505 0.2846 0.1986

PV DEU 0.9710 0.9735 0.9777 0.9671 0.9770

DNK 0.9417 0.9549 0.9554 0.9615 0.9529

Pearson Onshore DEU 0.9580 0.9842 0.9837 0.9842 0.9820
DNK 0.9528 0.9207 0.9090 0.9224 0.9270

Offshore DEU 0.8589 0.9037 0.9137 0.9015 0.9042

DNK 0.8562 0.8852 0.9259 0.9135 0.9544

PV DEU —0.0061 —-0.0023 —0.0022 —0.0042 —-0.0016

DNK —-0.0023 —0.0005 —0.0036 0.0016 0.0028

ACF Onshore DEU —-0.0016 —-0.0016 —0.0024 —0.0015 —0.0011
DNK 0.0040 —0.0061 —0.0029 0.0021 —0.0025

Offshore DEU 0.0067 —0.0056 —0.0030 —0.0057 —0.0041

DNK 0.0167 0.0118 0.0139 0.0090 0.0043

PV DEU 0.1745 —-0.0168 —-0.0109 -0.0131 —-0.0165

DNK 0.0323 —0.0438 —0.0252 —0.0568 —0.0695

Diff. Standarddeviation Onshore DEU 0.1892 0.1023 0.1547 0.0962 0.0419
DNK -0.1791 0.0998 -0.0131 —0.1493 0.0110

Offshore DEU —-0.2937 0.0428 —-0.0250 0.0657 —0.0029

DNK —0.4383 —0.3645 —0.3812 —0.3385 —-0.2145

The smaller the value, the better the data reflects the actual hourly
changes in feed-in. The synthetic generation data based on [47] tend to
overestimate ramp events in the PV and German onshore wind feed-in
by double-digit percentages, while underestimating ramps in offshore
wind and Danish onshore wind feed-in by similar margins. In contrast,
the synthetic generation data based on the working layouts show larger
underestimation only for offshore wind feed-in in Denmark. For Ger-
man offshore wind feed-in, onshore wind and PV feed-in, deviations are
generally within the single-digit percentage range. Overall, excepting
Danish offshore wind feed-in, the layout-based synthetic feed-in closely
simulate actual hourly feed-in variations with low discrepancies.

We complement the analysis by looking at the time series’ distribu-
tions. Fig. 10 illustrates the distribution of solar feed-in values for 2019
in Germany and Denmark, presented as a histogram and a cumulative
distribution function. Similar to the real data, both synthetic feed-in
time series, generated by working layouts and based on [47], exhibit a
concentration of values in lower generation range, effectively capturing
the general distribution pattern. The generation spectrum is distributed
analogue to the actual feed-in values with no systematic deviations,
though individual fluctuations may differ in magnitude compared to
the actual values. These discrepancies may be attributed to the use of
reanalysis data and the exclusion of factors such as shutdowns, main-
tenance, and curtailments. A similar analysis is observed for onshore
and offshore wind generation across the years 2019 to 2022, but with
greater variability in the deviations, in particular at higher generation
values and especially offshore.

In summary, in combination with the underlying weather data and
the methodology used for weather-to-energy conversions, the generated
working layouts accurately represent the real feed-in data in terms
of absolute level, distribution and dependency structures at national
aggregation and resolution. In a consecutive step, simple forecasts and
nowcasts of the generated energy could be made with these estimated
capacity layouts. However note, that proper forecasting is a much more
complicated endeavour why we do not further elaborate on it in the
following. For example, using capacity layouts based on historical data
may result in forecasts that do not fully account for the upward trend
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in renewable energy deployment and therefore tend to have a down-
ward bias. Higher forecast accuracy can be achieved by incorporating
anticipated capacity increases at national level into the layout.

In the following, we directly analyse the estimated layouts and,
thus, the estimated capacities. Table 4 compares the current total
installed capacity of Denmark and Germany with the estimated total
installed capacity for each year from 2019 to 2022. Thereby, the
estimated total installed capacity is the sum of the estimated installed
node capacities. The estimated total capacity of wind, onshore and
offshore, and solar energy for Denmark and Germany deviates from
the actual in all years. As expected, due to various factors limiting
the measured feed-in, less capacity is required overall than is actually
installed. We see that our approach requires about 44% less installed
capacity for Germany and 13% less for Denmark to generate the given
amount of photovoltaic feed-in. For wind, onshore and offshore, the
deviation is smaller. In general, the deviation shows the high potential
of renewable energy sources. Even without further expansion, optimal
and unrestricted use of the installed plants would lead to increased
power production from renewable energies.

Looking at the estimated working layouts more closely, we see that
solar is mostly evenly distributed across Denmark (see Fig. 11). This
aligns with our expectations since professional solar parks are emerging
in every region, and PV panels are becoming more popular even for
private households and investors. In Germany, we can also observe PV
capacity distributed all over the land, but with a higher concentration
in the south, especially in Bavaria (see Fig. 11). This reflects that
Bavaria is the federal state with the most installed greenfield and
rooftop PV capacity [78].

For the estimated German onshore wind capacities in Fig. 12, we
observe more estimated capacities in the north than in the south of
Germany. Interestingly, this reflects the allocation of wind turbines
in Germany, where high wind-powered electricity generation in the
north is often a problem for the nationwide grid infrastructure [74,78-
81]. In Denmark, onshore wind capacity is not as evenly distributed
as solar, with the highest installed capacity in the transmission node
characterising the area of South Denmark (see Fig. 12). Compared to
the other Danish transmission nodes, it captures the widest area and,
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Table 4

Actual installed onshore wind, offshore wind and PV capacity [76,77] and estimated onshore wind, offshore wind and PV capacity of Denmark

and Germany for each year in [MW].

Technology PV Onshore Offshore

Country DNK DEU DNK DEU DNK DEU

Actual installed 2019 1,014 45,299 4,426 52,792 1,700 6,393
2020 1,013 48,206 4,402 53,184 1,700 7,504
2021 1,300 53,302 4,481 54,499 1,700 7,774
2022 1,536 57,744 4,644 55,289 2,305 7,787

Estimated installed 2019 641 24,842 3,327 47,064 1,316 5,084
2020 804 27,248 3,069 48,530 1,400 5,567
2021 930 28,622 2,802 51,010 1,804 5,672
2022 1,341 32,285 3,218 51,354 2,042 5,232

Perc. deviation 2019 37% 45% 25% 11% 23% 20%
2020 21% 43% 30% 9% 18% 26%
2021 28% 46% 37% 6% —6% 27%
2022 13% 44% 31% 7% 11% 33%

thus, has a high potential for onshore wind power plants, represented
by the layout’s estimation. However, as with solar energy, Denmark’s
estimated onshore wind capacities are distributed throughout the coun-
try. This also corresponds to the allocation of installed wind turbines
in Denmark [see 46].

Turning to Fig. 13, we see the estimated offshore wind capacity
layout for Germany and Denmark. In Germany, most estimated high-
capacity nodes are nearest nodes to the biggest offshore wind farms
GodeWind, Borkum Riffgrund and Hohe See in the North Sea and Baltic
Eagle in the Baltic Sea, as analysed in [44]. For Denmark, the trans-
mission nodes have a larger catchment area than in Germany and,
therefore, capture the installed capacity over a larger area, representing
it on landscape nodes. This means that individual wind farms cannot
be fully identified. Still, the two big wind farms Horns Rev in the North
Sea and Kriegers Flak in the Baltic Sea as well as the haven Esbjerg,
the central point for offshore wind energy in Denmark’s North Sea, are
represented in their corresponding nearest nodes with a high estimated
installed capacity. Thus, we can conclude the layout identifying and
mapping big wind farms.
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Last, we investigate how stable the estimated capacity layouts are
across the different years. We define stable estimates as those where
capacities are allocated to the same transmission nodes each year. So
a transmission node does not have any estimated capacity in one year,
high estimated capacity the next year and none estimated capacity in
the third year again. Therefore, we compare the estimated capacity per
transmission node from 2019 to 2022 and analyse the development
of offshore wind capacity as an example. Due to the small number of
nodes in Germany (15 nodes) and Denmark (nine nodes), the results
for this generation type can be presented clearly. For onshore wind
and solar, the capacity developments at the individual nodes are more
difficult to determine due to the high number of 227 transmission nodes
for Germany. We present these results in Appendix B.

Fig. 14 plots the estimated capacity in [MW] per transmission node
for offshore wind power generators for Germany and Denmark from
2019 to 2022. We can observe peaks to occur usually at the same
transmission node. The estimated capacities do not fluctuate strongly
over the years in both Germany and Denmark. In particular, no strong
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jumps from minimum to maximum values and back are observed.
The almost constancy of the node capacities indicates a rather stable
estimation over the years.

The contrary can be observed for results estimated by a non-
regularised regression model. Due to a large number of transmission
nodes and their highly correlated nature, estimated capacities cannot
be estimated in a stable manner and a realistic allocation (see Appendix
Fig. A.4). We prevent such behaviour using the proposed elastic-net
regression, resulting in stable results for Denmark and Germany.

5. Summary and conclusion

In this paper, we describe a comprehensive methodology for de-
veloping synthetic, data-driven, and large-scale capacity layouts for
onshore wind, offshore wind and solar power plants. The approach
combines high-resolution numerical weather data with physical models
of the power curves of wind turbines and solar modules to estimate
potential installed wind and solar capacities at each network node of
the main continental European transmission network. The methodology
includes a country-specific regularised regression approach, combining
synthetic outputs with actual measured wind and solar feed-in data
to estimate the installed capacity at each node. The estimated layouts
mimic the actual generated power by renewable generators very closely
and thus are feasible as working layouts for further analysis.
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We provide these realistic high-resolution layouts of installed on-
shore and offshore wind capacities as well as PV capacities in a compre-
hensive data set for mainland Europe, including generation data from
2019 to 2022 in an hourly resolution of all three types. By making
the code publicly available, we enable others to generate results for
a specific time horizon or location and tailor them to their needs.
Layouts with any weather data, reanalysis data or real-time data, can
be created and used. The paper provides a detailed understanding of
the conversion process and the required variables to convert weather
data to solar energy information.

Overall, the presented methodology and provided data sets offer
valuable insights for policymakers and energy companies in designing
and implementing renewable energy projects. The approach could be
used to make forecasts in the resolution of single grid nodes with a
given layout or to study the necessary or recommendable expansion of
renewable generation capacities, also taking into account dark windless
and sunny strong wind days to increase the share of renewable energies
in the electricity mix. Additionally, through the data-driven calculation
of layouts and feed-ins via weather-to-energy conversions, the effects of
weather phenomena, e.g., storms or heat phases, on power generation
from renewable energy sources can be analysed. In future research,
the conversion process could be adapted and expanded. For instance,
factors such as turbine wake effects, the unavailability of turbines and
solar modules, and the efficiency degradation due to the ageing of
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turbines and modules could be considered. While this may not result
in more accurate synthetic energy feed-ins compared to the working
layouts presented here, it would generate layouts aimed at meeting
the total actual installed capacity and not only to be proportionally to.
Finally, the impact of adjusting solar feed-in data to account for stored
solar energy and self-consumption can also be explored, considering the
likely numerous regional and local differences, which would make this
a highly complex and time-consuming undertaking.
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Appendix A. Results for non-regularised capacity estimation

In this section, we report the results using a standard,
non-regularised regression model for capacity estimation.

We observe that the total estimated installed capacity is comparable
to the elastic-net estimation, but more nodes are set to an installed
capacity of zero. Corresponding RMSE values, the total installed ca-
pacity per production type and the estimated generation for July 2022
for Germany and Denmark are shown in Table A.1 (RMSE), Table A.2
(capacity) and Figs. A.1 (PV), A.2 (onshore wind), A.3 (offshore wind).

Exemplary, Fig. A.4 shows the installed capacity for each German
transmission node in 2019 and 2022, estimated by the non-regularised
linear regression. We observe that, especially in the south, a large pro-
portion of the nodes are assumed to have zero installed capacity, which
does not correspond to a realistic capacity allocation. For example,
wind turbines are installed in the Swabian Alb, located roughly in the
middle-east of the federal state Baden-Wuerttemberg. [see, e.g., 82].

Consequently, the example of the onshore wind capacity allocation
for Germany shows that the generated feed-in quantity relates to the
installed capacity at a few grid nodes, which varies over the years.
Thus, layouts generated with this estimation are not realistic and not
stable. The estimated layouts can be used for feed-in forecasts of indi-
vidual countries but do not provide any information on the allocation
of installed capacities and generation.
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Table A.1

RMSE of the ordinary-least-squares regression year- and country-wise estimation and
prediction for PV, onshore wind and offshore wind generation relative to the respective
hourly generation average.

2019 2020 2021 2022
PV DEU est. 0.2146 0.1995 0.2437 0.1994
DNK est. 0.2897 0.2618 0.3834 0.3586
Onshore DEU est. 0.1329 0.1377 0.1430 0.1533
DNK est. 0.2959 0.3104 0.2986 0.2849
Offshore DEU est. 0.2638 0.2614 0.3168 0.2832
DNK est. 0.3026 0.2504 0.2845 0.1982
Table A.2

With an ordinary least-squares regression estimated onshore wind, offshore wind and
PV capacity of Denmark and Germany for each year in [MW].

Technology PV Onshore Offshore

Country DEU DNK DEU DNK DEU DNK
2019 24,591 631 48,115 3,358 5,144 1,325
2020 26,988 800 48,742 3,113 5,634 1,407
2021 28,166 921 52,136 2,862 5,741 1,819
2022 31,987 1,326 51,094 3,255 5,294 2,058

Appendix B. Additional material for the layout evaluation

In this section, we provide further figures to evaluate the onshore
wind and solar layout estimation for Germany and Denmark.

Figs. B.5 to B.8 show the autocorrelation function from 2019 to
2022 for synthetic PV generation and actual solar feed-in, synthetic
offshore wind generation and actual offshore wind feed-in as well as
synthetic onshore wind generation and actual onshore wind feed-in, in
addition to Fig. 9 autocorrelation function of synthetic onshore wind
generation and actual onshore wind feed-in for 2019.

Figs. B.9 to B.12 show the cumulative distribution function from
2019 to 2022 for synthetic onshore wind generation and actual onshore
wind feed-in, synthetic offshore wind generation and actual offshore
wind feed-in as well as synthetic PV generation and actual PV feed-in,
in addition to Fig. 10.

Figs. B.13 and B.14 compare the estimated capacity per transmission
node from 2019 to 2022 to account for stable layout estimations.
The figures are in addition to Fig. 14 (estimated offshore wind power
capacity per transmission node from 2019 to 2022) and show the
estimated capacity in [MW] per transmission node for onshore wind
and solar power generators from 2019 to 2022. As with offshore wind
capacities, a stable level can be observed for onshore wind and solar
capacities at the individual transmission nodes in Denmark. Here, the
peaks usually occur at the same transmission nodes every year, too.
We cannot observe details for the case of solar and onshore wind in
Germany; however, the general level seems stable for most transmission
nodes over the years.

Appendix C. European mainland capacity estimations

In this section, we report the estimated total installed capacity for
each country, compared with the actual total installed capacity. There-
fore, we first use data from the ENTSO-E transparency platform [53].
We fill in missing values with data provided by the online data query
tool IRENASTAT [77], where the value of a year reflects the actual
installed capacity at the end of the previous year. Values that have
been supplemented accordingly are marked with a star (*) in the tables.
Due to missing feed-in data provided by the ENTSO-E transparency
platform [53], not all countries can be fully estimated. The results are
reported in Tables C.3-C.5.
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Table C.3
Actual installed onshore wind capacity [76,77] and estimated onshore wind capacity of all countries for each year in [MW].
Country Actual Estimated
2019 2020 2021 2022 2019 2020 2021 2022
Austria 3,035 3,133 3,198 3,500 3,406 4,093 4,570 4,160
Belgium 2,248 2,416 2,629 2,787 1,375 1,556 1,922
Bulgaria 700 700 705 705 751 822 723 667
Bosnia Herzg 87 87 145 135 105 78 161 367
Switzerland 75*% 75* 87* 87* 2,705 1,876 2,350
Czechia 316 339 339 339 303 316 333 310
Germany 52,792 53,184 54,499 55,289 47,064 48,530 51,010 51,354
Denmark 4,426 4,402 4,481 4,644 3,327 3,069 2,802 3,218
Spain 22,961 24,447 26,664 27,735 22,961 24,332 31,046
France 13,610 16,578 17,217 19,516 15,134 16,848 18,191
Greece 2,355 3,153 3,755 4,150 3,131 3,092 4,803 4,908
Croatia 616 739 796 925 668 859 1,021 1,304
Hungary 327 323 323 323 351 377 378
Italy 9,617 10,224 10,302 10,658 21,354 19,702 24,668
Luxembourg 154 154 167 167 105 111 133 135
North Macedonia 35 37* 35 37 32 54 59
Montenegro 118 118 118 118 209 117 312 382
Netherlands 3,436 3,527 4,188 5,310 1,182 1,661 1,769 1,939
Poland 5,808 5,953 6,570 7,950 5,779 6,149 6,935 7,887
Portugal 5,127 5,181 5,183 5,328 6,138 6,425 6,539 6,900
Romania 2,968 2,972 2,957 2,957 3,774
Serbia 398 397 429 533 664
Slovakia 3 3 3 4* 2 2
Slovenia 3 3 3 2 1 2 2
Table C.4
Actual installed offshore wind capacity [76,77] and estimated offshore wind capacity of all countries for each year in [MW].
Country Actual Estimated
2019 2020 2021 2022 2019 2020 2021 2022
Belgium 1,548 2,254 2,254 2,254
Germany 6,393 7,504 7,774 7,787 5,084 5,567 5,672 5,232
Denmark 1,700 1,700 1,700 2,305 1,316 1,400 1,804 2,042
France 2% 14 10 20
Netherlands 957 957 2,460 2,460 833 1,243 2,214 2,165
Portugal 0 8* 25 25 0 13 14 29
Table C.5
Actual installed PV capacity [76,77] and estimated PV capacity of all countries for each year in [MW].
Country Actual Estimated
2019 2020 2021 2022 2019 2020 2021 2022
Austria 1,193 1,333 1,851 2,500 356 440 453 403
Belgium 3,369 3,887 4,788 4,788 2,084 2,541 2,908
Bulgaria 1,059 1,084 1,246 1,726 637 675 740 856
Switzerland 2,173* 2,498* 2,973* 3,449* 1,084 1,056
Czechia 2,049 2,061 2,054 2,053 1,298 1,286 1,389
Germany 45,299 48,206 53,302 57,744 24,842 27,248 28,622 32,285
Denmark 1,014 1,013 1,300 1,536 641 804 930 1,341
Spain 6,751 8,466 11,390 14,640 4,617 6,439 8,761
France 8,188 9,438 10,213 13,154 6,264 6,673 7,470 8,347
Greece 2,441 2,606 3,055 3,820 1,756 1,946 2,147 2,598
Croatia 53 53 85 96 35 38 42 47
Hungary 936 1,407 1,829 2,524 766 856 1,254 1,567
Italy 4,717 4,874 4,979 5,137 8,767 9,143 9,177
Luxembourg 136 170 236 258 73 87 115 146
North Macedonia 21* 26* 94+ 94+
Netherlands® 4,608 7,226 11,108 14,911 39 129 201 219
Poland 430 1,310 3,473 6,664 979 2,770 5,402
Portugal 324 413 569 1,032 397 480 650 970
Romania 1,150 1,163 1,145 1,160 616 693 696 845
Serbia 21* 23* 31* 52%
Slovakia 531 531 532 536* 278 318 283 295
Slovenia 275 278 289 286 130 129 141 141

2 Solar generation data provided by [53] is incomplete for all years and thus, the estimated capacities are far too low.
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Data availability

The data and the code to produce the data presented in this
study are openly available. The code is provided in a GitHub repos-
itory through the following link: https://github.com/MWaterm/High
-Resolution-Working-Layouts-and-Time-Series-for-Renewable-Energy-G
eneration-in-Europe. The data set can be downloaded through the fol-
lowing link: https://doi.org/10.6084/m9.figshare.22439254. The data
are generated using Copernicus Climate Change Service information
[2019-2022], containing modified Copernicus Climate Change Service
information [2019-2022].
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