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Abstract Fatigue during assembly tasks can have a negative
effect on subjective as well as objective quality of work. We
recorded a novel dataset for the purpose of detecting fatigue
in assembly scenarios. Participants were instructed to assemble
and disassemble model cars with the help of a robot arm. The
recordings consist of video, depth video, EEG and eye tracking
data as well as questionnaires on the participants’ fatigue. The
dataset can be provided to researchers on demand. In addition
to recording a dataset, we implemented a proof of concept sys-
tem to detect fatigue solely on image data. In our approach the
eye tracking data was used to label the participants’ fatigue. Af-
terwards, a graph neural network was trained on poses extracted
from the video data and the generated labels. The classifications
of the model are made transparent through the use of explain-
able Al using saliency maps and GradCAM. This work can have
a positive impact on human-machine interaction and assistance
systems. Through explainability, we aim to increase the accep-
tance of such systems by workers and industries.
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1 Introduction

As the pace of industrial work intensifies, understanding and mitigat-
ing the effects of fatigue on human performance has emerged as a
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challenge. Fatigue can significantly impair cognitive and physical ca-
pabilities, leading to reduced productivity, increased error rates and
potentially hazardous working conditions. Therefore, detecting fatigue
is essential for enhancing productivity and improving the safety and
comfort of workers. The goal of this work is to develop a system that
can accurately detect fatigue levels in workers during assembly tasks
and provide simple explanations for the decisions made by the system.
By doing so, we aim to contribute to the development of more adap-
tive and worker-friendly industrial environments that are optimized
for both efficiency and safety.

To explore this issue, we recorded a dataset where participants per-
formed assembly tasks in a controlled environment. We used two
modalities of the dataset: eye tracking and video data. The eye track-
ing data is employed to generate fatigue labels for each timestamp with
pupil diameter variability (PDV) as the indicator, which has been em-
pirically validated as a reliable marker of overall fatigue [1]. For the
fatigue detection we only use video data. Video data does not disrupt
the worker as opposed to wearable sensors and is often already avail-
able as it is needed for many assistance systems. On the video data,
pose estimation is performed using Mediapipe [2], a tool that extracts
human poses from video frames. The resulting pose data is then used
to train a Graph Convolution Network (GCN), which is designed to
predict fatigue levels based on body posture.

Incorporating transparency into the decision-making process of Al
systems is critical, particularly in industrial contexts where the accep-
tance and trust in assistance systems are paramount. Furthermore,
the European Al Act demands transparency if Al systems are used
in “work-related relationships [...] to allocate tasks” and “monitor
and evaluate the performance and behaviour of persons” (Annex III,
4 b) [3]. To address this, our system integrates Explainable artificial
intelligence (XAI) techniques to provide local explanations for its deci-
sions.

The primary contribution of this research is the development of a
fatigue detection system that integrates deep learning methodologies
with XAI techniques while operating only on camera data. This work
has the potential to enhance the quality of work environments by fos-
tering transparency and trust in Al-driven assistance systems and In-
dustry 4.0.
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2 Related work

Fatigue detection has become an area of increasing interest due to its
wide-ranging applications, from workplace safety to medical diagnos-
tics. Various techniques have been employed to capture and assess fa-
tigue levels, each offering unique advantages depending on the domain
and context of usage. In this section, we explore different approaches
to fatigue detection, from conventional methods like eye tracking to
more recent advancements involving pose detection and XAL

One of the widely used methods for fatigue detection is eye track-
ing, particularly in domains like automotive safety and air traffic con-
trol. By measuring parameters such as blink rate, saccadic movement,
and gaze patterns, researchers have been able to infer levels of cogni-
tive and physical fatigue. Benedetto et al. [4] demonstrated the cor-
relation between eye blink frequency and driver fatigue in simulated
driving environments. Di Stasi et al. [5] leveraged saccadic velocity to
evaluate cognitive load and fatigue. Lengenfelder et al. [6] observed
mental fatigue from eye tracking while performing interactive image
exploitation. Sirois et al. [7] showed that pupil dilation responds to
task difficulty and cognitive effort, reinforcing the role of pupil diam-
eter variability (PDV) in fatigue detection. However, these methods,
while effective, are often constrained by environmental factors and re-
quire specialized, obtrusive hardware, limiting their adaptation and
applications.

Opposed to eye trackers, which are highly specialized, nearly any
camera can be used for facial recognition and pose detection. Facial
recognition techniques leverage the subtle changes in facial expres-
sions and muscle movements that occur as fatigue sets in. For instance,
Haque et al. [8] argued that features like drooping eyelids, yawning
frequency, and overall facial muscle relaxation can serve as strong indi-
cators of fatigue. In driver monitoring systems, facial recognition has
been applied to track drowsiness and fatigue by detecting changes in
eye closure duration, blink frequency, and facial muscle slackness, as
demonstrated in studies by Bergasa et al. [9], Ji et al. [10] and Garcia et
al. [11]. Similarly, Sikander et al. [12] and Liu et al. [13] explored the
use of facial landmarks in real-time monitoring systems to detect early
signs of cognitive and physical fatigue in drivers.

Pose detection has traditionally been used in fields such as sports
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science [14] and rehabilitation [15], but its recent application in health
monitoring has gained traction. The rise of pose estimation libraries
like OpenPose [16] and Mediapipe [2] have made this approach more
accessible, enabling the detection of joint coordinates in real-time using
just standard cameras. Hawley et al. [17] demonstrated using machine
learning that postural sway and joint angle deviations could be used
as indicators of physical fatigue in lifting tasks. Similarly, Wang et
al. [18] used pose estimation in athletic assistance system by incorpo-
rating deep learning methods. Strain and fatigue are detected for risk
analysis by Papoutsakis et al. [19] in an industrial environment using
pose estimation. This paper aims to provide a feedback system to in-
dustry workers on safe and unsafe poses while working. Pose-based
methods offer the advantage of being non-invasive and relatively in-
expensive making them attractive for broader deployment [20]. There
exist many more techniques for fatigue detection like EEG, body-borne
sensors of physiological markers. They do however require specialized,
wearable hardware for every worker.

XAI's role in fatigue detection is particularly crucial because of the
need for trust and validation in Al-driven decisions. Rivera et al. [21]
detect mental fatigue using EEG data and deploy XAI techniques to in-
terpret the results. They argue that applying deep learning techniques
to detect fatigue levels is of limited use and a thorough XAI technique
needs to be implemented. Hussain et al. [22] demonstrated how XAI
could be used in cognitive fatigue detection using EEG to highlight the
importance of specific brainwave patterns, allowing healthcare profes-
sionals to validate the Al’s interpretation of EEG signals. The potential
for XAl in fatigue detection systems is growing, but research is still in
its infancy, with most efforts focused on improving prediction accuracy
rather than interpretability. As fatigue detection systems are increas-
ingly integrated into workplaces and healthcare, ensuring that their
decisions are explainable will become essential for achieving broader
acceptance and fulfilling regulatory requirements.

3 Dataset

We started our work by recording a novel dataset for fatigue detec-
tion in assembly tasks. The dataset is multimodal, containing EEG, eye
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Figure 1: Setup of the assembly table during recording.

tracking, video and depth video data. Additionally, we gathered data
from questionnaires that participants had to fill out before and after
the experiment. These include the NASA-TLX [23] after the experi-
ment and participants’ fatigue on the rating of fatigue (ROF) scale [24]
before and after the experiment. The ROF scale is a scale from 0-10
with 0 indicating no fatigue at all and 10 indicating total fatigue and
exhaustion.

We invited 30 participants to the recordings. 5 of them participated
3 times each resulting in 40 total recordings. During the experiment,
the participants wore an EEG-headset, eye tracking glasses and were
recorded with a regular RGB and a stereoscopic depth camera. Pupil
Labs Core! was used as the eye tracker. To simulate an assembly task
participants were asked to first assemble and then disassemble 3 model
cars form 3D-printed components. A monitor showed step by step

! https://pupil-1labs.com/products/core
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instructions which the participants could control via buttons. Help was
also provided by a robot arm that held the partly assembled model cars
in place. The setup of the assembly table can be seen in Figure 1.

The dataset will not be publicly available but can be provided to
researchers on demand.

4 Explainable Fatigue Detection

Our approach to fatigue detection, once trained, relies only on cam-
era data to predict fatigue levels. It builds on the existing research in
fatigue detection and pose estimation, but it introduces a novel com-
bination of these fields using XAI. We begin by extracting key labels
from the eye tracking data. While several features are available from
eye tracking systems, PDV has been selected as our feature of choice
due to its established correlation with cognitive load and fatigue. PDV
offers an intuitive measure of how the eye’s pupil reacts to changes
in focus and brightness, which is often a strong indicator of mental
fatigue.

The PDV is calculated using standard algorithms that compute the
pupil diameter based on frames obtained from the eye tracker. These
frames are timestamped, and the change in pupil size over time is mea-
sured to yield the PDV. When labeling the data for fatigue detection, a
rolling window approach was utilized, assigning fatigue scores based
on a 0-5 scale to reflect varying fatigue intensities.

For extracting human poses, RGBD data from our dataset was used.
We used Mediapipe, a state-of-the-art library for pose estimation,
which provides 33 3D skeletal keypoints of the participants. Each joint
comes with X, Y, Z coordinates (representing spatial location) and a vis-
ibility score (indicating how clearly the joint was visible in the frame).
As the participants were recorded from the front while standing at an
assembly table their legs were not visible. Therefore, we removed joints
below hips during preprocessing to avoid noisy data.

Once the pose data was extracted, we aligned them with the pre-
viously calculated labels. This allowed us to use supervised learning
using Graph Convolutional Networks (GCNs). The GCN consisted of
three convolutional layers. It was tasked with predicting the fatigue
level of a participant based on their pose. To improve the model’s ro-
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bustness, we experimented with several preprocessing steps, such as
balancing the dataset using SMOTEENN, which addressed the issue
of class imbalance by combining oversampling of minority classes and
under-sampling of majority classes. This technique has proven useful
in ensuring that the model does not overfit to the dominant classes
while maintaining sufficient samples for the minority classes [25].

To make the model explainable we applied two XAI techniques:
saliency maps and Grad-CAM. These methods provided insights into
which keypoints (joints) and indirectly which skeletal connections
were most influential in determining fatigue levels. These XAI tech-
niques were instrumental in validating that the model was focusing on
anatomically relevant areas, aligning with known indicators of physical
fatigue [26] [27].

We developed a comprehensive system for detecting fatigue based
on video data. By integrating pose estimation, graph-based learning
models and leveraging XAI techniques, our method enables better in-
terpretability, which is crucial for identifying key factors contributing
to fatigue prediction. Our model lays a strong foundation for future
improvements that could enhance its practical applicability with fur-
ther optimization.

5 Results and discussion

In this section, we will provide a detailed analysis of the outcomes
from our experiments, starting with model performance improve-
ments, followed by XAI applications to interpret model predictions us-
ing saliency maps and Grad-CAM. Finally, we will demonstrate our
XAI techniques in skeletal visualizations with heatmaps, showing how
various nodes and skeletal joints contribute to the fatigue prediction.

We started with a baseline model, consisting of three convolution
layers, which was trained using a stationary window of 30ms, relying
solely on x, y, and z coordinates as features. This model achieved a 54%
testing accuracy. To improve performance, we introduced a rolling win-
dow of 1.5 seconds, added visibility as a fourth feature, incorporated
a dropout layer for regularization and a learning rate scheduler for
dynamic optimization. This raised the testing accuracy to 67%.

The next steps involved increasing the convolution layers to five,
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which further pushed the accuracy to 70%. Early stopping is added
to monitor and prevent overfitting and ensure better generalization to
test data. Further, we introduced a preprocessing step on the skeleton
by removing joints below the hips as they often were often hidden by
the assembly table which reduced the skeleton from 33 to 24 joints.
When the model was trained on this data, a testing accuracy of 77%
was achieved.

Importances

Figure 2: Heatmap of correctly predicted label 0 on depth image.

Figure 3: Heatmap of correctly predicted label 5 on depth image.
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We initially trained with ten labels (1-10) but reduced them to 6 (0-
5). By reducing the number of fatigue labels from 10 to 6, the model
achieved an accuracy improvement from 77% to 80%. By reducing
the number of classes, the impact of label noise is reduced, particu-
larly in cases where subjective assessments of fatigue might be incon-
sistent between adjacent levels. Additionally, simpler categorizations
can be more easily understood by non-technical users, leading the user
to make better decisions that are more aligned with practical applica-
tion [28].

As mentioned in the previous chapter we incorporated XAI tech-
niques in the form of saliency maps and Grad-CAM to make our ap-
proach more transparent. The saliency maps highlighted the impor-
tance of joints such as the shoulders and elbows, which tend to show
signs of fatigue during manual tasks. Grad-CAM, on the other hand,
visualized the influence of broader skeletal regions, showing how pos-
tural deviations in the upper body contributed to the model’s predic-
tions. The combined saliency and Grad-CAM visualizations offer a
detailed insight into how different parts of the body contribute to fa-
tigue prediction. Figure 2, representing a correctly predicted label of
0 (low fatigue), shows a higher importance around the hands, partic-
ularly in the wrist and elbow regions, showing that these regions are
indicative of low fatigue levels. Figure 3, which was correctly classified
as a 5 (high fatigue), shows a broader spread of important regions, with
higher intensity around both the upper body and shoulders, suggest-
ing some reliance on the upper limbs as fatigue increases. However the
most important regions are still the hands. In future, we plan to en-
hance the fatigue prediction model by integrating additional features,
such as temporal data from video streams. We also aim to explore ad-
vanced explainability techniques to gain deeper insights into the factors
influencing fatigue levels.

6 Conclusion

Recognising fatigue in assembly environments is an issue of work
safety. We presented an explainable fatigue detection system that
works only on image data. Workers do not have to wear any addi-
tional devices or sensors hindering them in their work. The video data
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for our system can stem from cameras that are often already present
for assistance systems. Additionally, we incorporated explainability
into our system through the use of saliency maps and Grad-CAM. This
makes our system more transparent and helps to comply with the Eu-
ropean Al Act which demands transparency when monitoring people
in work environments. We would like to build on our existing system
and develop it into a real-time assistance system.
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