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Abstract

The ambitious targets for reducing Greenhouse Gas (GHG) emissions necessitate the increased
utilization of Renewable Energy Sources (RESs) and their integration into the existing grid
infrastructure. Additionally, the growing dependence of various sectors on electrical energy
poses significant challenges for the power grid as demand fluctuates greatly. An Energy Hub
Gas (EHG) represents a promising approach to support the operation of energy grids formed
by these developments. The EHG concept combines various technical components into a sector-
coupling system to support the power grid with ancillary and balancing services, helping to
cope with fluctuating generation from renewable energies and varying demand. Additionally,
the EHG facilitates the provision of (renewable) energy sources, such as green hydrogen, for
industrial processes that are difficult to electrify.

In this thesis, a co-simulation approach is used to integrate several separate models from different
technical areas into an EHG system model. This approach offers flexibility in modeling aspects
and modularity needed for easy adaptability for other use cases. The concept is evaluated using
two different test cases. The two configured EHGs demonstrate their ability to provide flexibility
by reducing the difference between maximum and minimum load flow from and into the higher
level grid infrastructure by up to 30%. Additionally, the average energy exchange is reduced by
8%. By relieving the load on the surrounding grid infrastructure, additional renewable energy
potential is unlocked, and the curtailment of existing energy is reduced.

Optimized planning of Distributed Energy Resources (DERs) is crucial for the Energy Hub (EH)
concept. However, this planning represents an NP-hard optimization problem and requires the
use of powerful heuristic algorithms. One such heuristic approach is an Evolutionary Algorithm
(EA). However, like all heuristics, they can produce inferior quality solutions and may need
a lot of computation time if the search space is complex. Therefore, in this thesis, the applied
EAs are adapted and improved by considering the predicted objective values of the optimization.
Specifically, Machine Learning (ML) methods trained on previous solutions are used to predict
the objective values of the optimization. Based on these predictions, the computational effort
of the EA is directed to particularly difficult areas of the search space. This adjustment is
achieved through a dynamic interval length assignment during the translation from genotype
to phenotype. The approach is evaluated based on the optimization results using several ML
prediction algorithms on two different EAs. The results show a significant increase in the Degree
of Fulfillment (DOF) by up to 8.6%. Hereby, this thesis demonstrates that the EHG can make
an important contribution to the operation of future power grids.
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Kurzfassung

Die ambitionierten Ziele zur Verringerung der Treibhausgasemissionen erfordern die verstärkte
Nutzung erneuerbarer Energiequellen und ihre Integration in die bestehende Netzinfrastruk-
tur. Außerdem stellt die Elektrifizierung verschiedener Sektoren das Stromnetz vor erhebliche
Herausforderungen. Der Energy Hub Gas (EHG) ist ein vielversprechender Lösungsansatz zur
Unterstützung des Energienetzbetriebs. Das EHG-Konzept kombiniert verschiedene technische
Komponenten zu einem sektorgekoppelten Systemverbund, der das Stromnetz unterstützt fluktu-
ierende Erzeugung und Nachfrage zu bewältigen. Zusätzlich ermöglicht der EHG die Bereitstel-
lung von (erneuerbaren) Energieträgern, wie z.B. grünem Wasserstoff, für industrielle Prozesse,
die schwer zu elektrifizieren sind.

In dieser Arbeit wird ein Co-Simulationsansatz verwendet, um mehrere separate Modelle aus
verschiedenen technischen Bereichen in ein EHG-Systemmodell zu integrieren. Dieser Ansatz
bietet die notwendige Flexibilität für eine einfache Anpassung des Systemmodells an unter-
schiedliche Anwendungsfälle. Anhand von zwei Testfällen wird die Flexibilitätsbereitstellung
des EHG demonstriert, indem die Differenz zwischen maximalem und minimalem Lastfluss von
und in die übergeordnete Netzinfrastruktur um bis zu 30% verringert wird. Zusätzlich wird der
durchschnittliche Energieaustausch um 8% reduziert. Durch die Entlastung der umgebenden
Netzinfrastruktur werden zusätzliche Potenziale zur erneuerbaren Energieerzeugung erschlossen
und die Abregelung vorhandener Erzeugungsanlagen reduziert.

Die Optimierung der Betriebsführung stellt jedoch ein NP-schweres Problem dar und erfordert
leistungsfähige heuristische Algorithmen, wie z.B. Evolutionäre Algorithmen (EA). Heuristiken
können jedoch Lösungen minderer Qualität erzeugen und benötigen u.U. viel Rechenzeit bei
komplexen Suchräumen. Daher werden die angewandten EA-Optimierungen angepasst und er-
weitert auf Basis des vorhergesagten besten Zielfunktionswertes. Methoden des maschinellen
Lernens (ML), die auf früheren Lösungen trainiert wurden, werden verwendet, um den erreichten
Zielfunktionswert der Optimierung vorherzusagen. Basierend auf diesen Vorhersagen wird der
Rechenaufwand des EA auf besonders schwer zu optimierende Bereiche des Suchraums fokussiert.
Diese Anpassung wird durch eine dynamische Intervalllängenbestimmung im Zuge der Überset-
zung vom Genotyp zum Phänotyp realisiert. Unterschiedliche ML-Vorhersagealgorithmen werden
auf zwei verschiedene EAs angewandt und anhand der erzielten Optimierungsergebnisse evaluiert.
Die Ergebnisse zeigen eine signifikante Verbesserung um bis zu 8,6%. Damit wird in dieser Ar-
beit gezeigt, dass ein EHG durch seine Flexibilitätsbereitstellung einen wichtigen Beitrag zum
Betrieb zukünftiger Stromnetze leisten kann.
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1 Introduction

In the Paris Agreement1, 196 countries committed themselves to the goal of keeping the global
warming well below 2 ◦C by reducing their Greenhouse Gas (GHG) emissions. Beyond that, the
German target is to reach a net-zero energy system by the year 2045. To achieve this goal, it
is necessary, on the one hand, to expand and accelerate the deployment of Renewable Energy
Sources (RESs), and, on the other hand, to ensure the integration of these into the existing
grid infrastructure. The share of RES generation in the gross electricity consumption for the
year 2023 in Germany is 51.8%2, which illustrates the magnitude of the required changes in the
coming years in order to achieve the set goals. If we look at the gross final energy demand, the
situation is even more dramatic. Only 22.0% of this demand is currently sourced from renewable
generation2.

The established grid infrastructure was developed for a traditional downstream energy flow,
originating from large centralized energy plants. With a high penetration of RESs in the en-
ergy system, as demanded by the set goals, this strict downstream flow disappears, and instead,
energy may flow in any direction, constituting a bi-directional grid. Consequently, new energy
security challenges emerge, particularly around fair energy access and environmental sustainabil-
ity [102]. In particular, feed-in fluctuation by RESs generation, but also peaks in demand due
to the electrification of several sectors, cause challenges concerning grid stability. Hence, the
ability to adjust both the generation and consumption of useful energy in terms of flexibility
provision is paramount for future energy grids. A possible source for flexibility could be the
use of Distributed Energy Resources (DERs), which often are controllable small-scale facilities
that can be categorized as generation, conversion, and storage systems. DERs can provide the
needed flexibility to the grid by deviating from their planned operation schedules [29, 55, 99].
Especially, the Energy Hub (EH) concept, introduced by [57, 58, 59, 60], offers a promising ap-
proach to address the upcoming challenges. This concept combines the mentioned DERs with
a wide range of existing and market-ready technologies. The EH concept has already shown
in several works that it is able to reduce volatility in the electrical grid and provide grid ser-
vice [135, 103, 104]. However, the energy system needs to be considered in total, not only the

1 https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
visited 22.08.2024

2 https://www.bmwk.de/Redaktion/DE/Downloads/Energie/zeitreihen-zur-entwicklung-der-erneuerbar
en-energien-in-deutschland-1990-2023.pdf?__blob=publicationFile&v=6
visited 22.08.2024

1
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https://www.bmwk.de/Redaktion/DE/Downloads/Energie/zeitreihen-zur-entwicklung-der-erneuerbaren-energien-in-deutschland-1990-2023.pdf?__blob=publicationFile&v=6


1 Introduction

electrical side. The EH concept allows a holistic control of the energy supply with its sector
coupling ability. An effective and smart interconnection between energy generation and usage
increases local flexibility for electricity grid operation while providing renewable energy carriers,
such as green hydrogen, for hard-to-de-fossilize sectors. The decentralized approach may help
accelerate the energy transition to a more sustainable energy system by possibly reducing the
required electricity grid extension. This could be possible by lowering the interconnection power
flow between different voltage levels due to the reduced fluctuation and the direct use of energy
generated by surrounding RESs in a lower voltage level. This local balancing promises to act
as a preventive congestion management measure. Moreover, interconnecting different (energy)
sectors through conversion and storage units may address the different time constants between,
e.g., electricity and gas supply infrastructures. Overall, the integration of gas infrastructure,
storage units, and different energy carriers offers an opportunity to reduce the operation cost
for congestion management and re-dispatch for the electrical grid while gradually de-fossilizing
non-electricity demand sectors.

However, the optimized scheduling of such EHs, or more generally DERs, is still a challenge.
The complexity of the optimization task can be attributed to the following three main reasons:

• Operation of weather-dependent RESs causes uncertainty, as consumer-driven load varia-
tions on various time scales do,

• non-linearities caused by multi-objectives and complex boundary conditions,

• various control variables span a huge search space.

This leads to an NP-hard optimization problem [30, 133] and calls for powerful heuristic al-
gorithms to find high-quality solutions within a reasonable time. The complexity due to the
high dimensionality as stated in [97] is hard to formulate in a simplified manner as Mixed In-
teger Linear Program (MILP) and difficult, that is, needing excessive time and computational
effort, to solve as a Mixed Integer Non-Linear Program (MINLP). Furthermore, the large search
space challenges naive search heuristics, such as Monte Carlo optimization. In [123], empiri-
cal comparisons show the advantage of Evolutionary Algorithms (EAs) over classical methods
with multimodal functions. Moreover, as stated in [101], EAs can directly deal with arbitrary
linear and nonlinear conditions. In summary, EA based optimization algorithms are a viable
approach and are already applied to cope with these challenges [107, 83, 24, 86, 87]. With the
goal of advancing EH scheduling and promoting the usefulness of EHs in practical use cases, this
thesis proposes and evaluates novel EH scheduling approaches based on the following research
questions:

RQ 1: To what extent can DERs be instrumented to provide flexibility and grid supporting ser-
vices?

2
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RQ 2: Which (dis-)advantage can a dynamization of EA-based optimized scheduling provide to
enhance flexibility provision by DERs?

RQ 3: To what extent can a Machine Learning (ML) model improve the dynamization of EA-based
scheduling?

For this purpose, a modular EH co-simulation model is set up to evaluate the flexibility provision
of this concept and to answer Research Question (RQ) 1. When trying to fulfill an external
control signal, further referred to as target schedule, an EH using an EA for the optimization
of its operation schedule for each DER can suffer from difficulties when responding to those
parts of the target schedule exhibiting high variability, as stated in [31]. In the present thesis,
the target schedule for the total power output of the EH is provided by a Distribution System
Operator (DSO) or Transmission System Operator (TSO) to enhance the grid operation and
avoid congestion. With an employed generic EA, the solutions suggested by the algorithm
are translated to schedules for the controlled DERs and evaluated by an Energy Management
System (EMS). In the literature, this mapping from EA solutions to schedules is based chiefly on
time intervals with a fixed length of 15 minutes. Increasing the time resolution to achieve a more
accurate approximation would likely improve results, though it would also require additional
computation effort without any guarantee for improvement. However, if increasing the temporal
resolution of the entire schedule is too costly or not possible, one approach may be to modify the
temporal resolution of individual schedule parts dynamically. The general concept to solve the
mentioned challenges and answer RQ 2 is that the EA should focus its computational effort on
specific time segments in the schedule. This allows the computational effort to concentrate on
segments with higher frequency fluctuations instead of those with lower frequency fluctuations.
In other words, the computational effort required to find a solution within a specific time frame
is scaled according to the time resolution in the schedule. Therefore, finding time segments that
are more difficult to optimize is crucial. Finally, ML-based forecasting models are investigated to
gain knowledge about the optimization result in advance. Given this information, the dynamic
time interval length adaption can control the allocation of the computational effort and provide
an answer to RQ 3. The allocation can be achieved by a dynamic genotype-phenotype mapping
within the EMS.

The thesis is structured as follows to address the previously stated RQs: First, in Chapter 2, the
basic concepts used throughout the thesis are briefly introduced. Second, Chapter 3 presents an
overview of the scheduling problem in general and specific methods to solve it in the context of
DERs. Furthermore, an approach to deal with the challenges that come with the implementation
of a generic EA for scheduling DERs is described. The mapping of objective functions calculated
by an EMS into a fitness value within the EA and its evolutionary operators are adapted to
a newly introduced Degree of Fulfillment (DOF). Additionally, the Energy Hub Gas (EHG)
as an exemplary instance of the EH concept is introduced, and insights into the modeling and
simulation environment are given. In Chapter 4, the general idea of dynamic interval length

3



1 Introduction

adjustment is described. Based on the results from a first experiment, the use of ML-based
forecasting to direct the computational effort on difficult search space areas is presented. In
Chapter 5, the combined results of the proposed approaches are discussed in detail. Finally,
Chapter 6 concludes the present work, followed by a brief outlook on possible future work.

Parts of the thesis are partially based on previous works listed under "Previous Publications".
These parts have been significantly extended.

4



2 Fundamentals

In the following chapter, the basic concepts and fundamentals used over the course of this thesis
are briefly described. Starting with the introduction of the EH concept, an overview of the
co-simulation frameworks used for multi domain investigations is given. Following, a deeper
insight into the concept of EAs as a heuristic optimization method for the previously described
scheduling problem is presented. Finally, the equation-based optimization by MILP is described
as a widely used alternative.

2.1 Energy Hub

The idea of an EH was first introduced by [57, 60] in 2007 and is defined as following:
EHs consist of multiple [facilities], that can convert, condition and store multiple
forms of energy. Formulated more [abstractly], they define a black box with energy
inputs and outputs of different types, which [are internally transformed from one type
to another and may be] stored for later use. [5]

Transformation, conversion, and storage of various forms of energy in decentralized
plant networks as flexibility resources called EH is a promising approach for smooth-
ing out and balancing local generation and demand as stated in [103], especially if
RES are integrated. In [135] usage of the EH concept on an neighbourhood scale
is proposed, which fits as one [application for the EH concept]. However, the EHG
model described in [Section 3.3] is designed to serve not only for small neighbour-
hood use cases, but is also applicable to industrial areas as well as small cities and
at interconnections to the transmission grid. [5]

In general the concept itself can be used to serve a wide range of applications.

“Mathematically, the transformation process can be interpreted as a coefficient matrix Hab that
connects multiple energy inputs Iω to a number of energy outputs Oσ.” [5]

“A generic conversion formulation with multiple in- and outputs for a single unit [, representing
an EH instance,] can be described by three parts: power output vector L, the converter coupling
matrix C, and the power input vector P .” [5] Both P and L are vectors comprising all considered
energy carriers ε = [α, β, ..., ω], e.g., [hydrogen, natural gas, ..., heat] into one vector.

5



2 Fundamentals

Table 2.1: Conversion types [57].

Type of Coupling Coupling Factor Energy Carriers

Lossless transmission cαβ = 1 α = β

Lossy transmission 0 < cαβ < 1 α = β

Lossless conversion cαβ = 1 α ̸= β

Lossy conversion 0 < cαβ < 1 α ̸= β

No coupling cαβ = 0 any α, β

The coupling matrix C consists of all instrumented energy conversions [α, β, ..., ω] −→
[α, β, ..., ω], where the element cαβ is the conversion factor for a transformation from
α to β, e.g., hydrogen to natural gas. Adopted from [57], these connections can
generically be formulated as:

Lα

Lβ

...

Lω


︸ ︷︷ ︸

L

=


cαα cβα . . . cωα

cαβ cββ . . . cωβ
...

...
. . .

...

cαω cβω . . . cωω


︸ ︷︷ ︸

C

·


Pα

Pβ

...

Pω


︸ ︷︷ ︸

P

(2.1)

The components cαβ of the coupling matrix C are called coupling coefficients and map
in- to output power. cαβ can either convert between different energy carriers in the
case of α ̸= β, or transmit one energy carrier to itself α = β. In both cases, cαβ can be
between 0 and 1, or equal to 1, making it a lossy or lossless conversion/transmission.
The special case where cαβ is equal to 0 represents no coupling between given carriers.
[The different conversion characteristics are summarized in Table 2.1.] [5]

“C can be dependent on the power input or other factors, e.g., the control performed by an EMS
on a conversion unit, therefore C = f(P, t, ...), which” [5], in general, makes the EH model non-
linear. Another important property of Equation (2.1) is stated in [57]: From two energy carriers
on upwards, it represents an under-determined system of equations, which results in C not being
invertible. In other words, there are degrees of freedom for the solution of an optimization. Only
in case Equation (2.1) is regular, it describes a one-to-one mapping with a single solution for P

at given L.

In [57], two important characteristics of the converter coupling matrix are stated,
that can be summarized as

0 ≤
∑
β∈ζ

cαβ ≤ 1∀α, β ∈ ζ ⊆ ε. (2.2)
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The sum over any subset ζ from ε must be larger than 0 but less or equal to 1, meaning
that no energy conversion can increase the overall amount of energy available from
the inputs. [5]

Furthermore, for a converter with several in- and outputs or several converters with the same
in- or output, it may be necessary to split the input of an energy carrier so as not to violate
the energy conservation as stated in Equation (2.2). Therefore, dispatch factors are introduced
that split inputs into multiple inputs for different facilities PαNBα

. With NBα the number of
converters that utilize the same input energy carrier α. To quantify the flow going through each
junction, the dispatch factors ναk are introduced as

Kαk = ναkKα (2.3)

where k ∈ Bα = {1, 2, ..., NBα} is the kth dispatch and Bα the set of all possible junctions one
energy carrier α has. The energy conservation is considered according to Equation (2.2) for the
dispatch factor by

0 ≤ ναk ≤ 1 ∀α ∈ ε, ∀k ∈ Bα, and (2.4)∑
k∈Bα

ναk = 1 ∀α ∈ ε. (2.5)

“Beside conversion, the energy storage needs special consideration. The desired EH can not
only convert but also store energy over a certain time. The storage of energy results in time
dependencies of all modelling variables.” [5] In [57], any energy storage is interpreted in terms
of an interface that exchanges power Qα with the surrounding system. The internal power flow
Q̃α that includes charging and discharging efficiencies of the storages is introduced as

Q̃α = eαQα, with (2.6)

eα =

 e+α if Qα ≥ 0 (charging/standby)
1
e−α

else (discharging).
(2.7)

eα describes the combined charging (e+α ) and discharging (e−α ) efficiency that connects the internal
power flow Q̃α with the power flow Qα that is observed from the outside. With the help of the
internal power flow in combination with the stored energy Eα(T ) of a carrier α the storage
equation at a time T is formulated as

Eα(T ) = Eα(0) +

∫ T

0
Q̃α(t)dt ≈ Eα(0) +

∫ T

0
Ėα(t)dt, (2.8)

with the internal power flow being approximately equal to the time derivative of the stored
energy dEα

dt = Ėα ≈ Q̃α.
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In [57], the storage influence on the total power output of an EH is summarized in the storage
flow vector

M eq = CQ+M. (2.9)

In this representation Q is the storage power output before, and M the power output
after an energy carrier is converted. Each component of M eq can be restated as

M eq
β = cαβQα +Mβ =

cαβ
eα

Ėα +
1

eβ
Ėβ, (2.10)

with eα, eβ the charging or discharging efficiencies, according to Equation (2.4), for
respective energy carrier, and Ė the change in energy of an energy carriers storage.
The relationship between the total storage influence of storage units with respect to
its change in energy can be formulated in matrix notation to fit the concept of the
coupling matrix C as follows:


M eq

α

M eq
β
...

M eq
ω


︸ ︷︷ ︸

Meq

=


sαα sβα . . . sωα

sαβ sββ . . . sωβ
...

...
. . .

...

sαω sβω . . . sωω


︸ ︷︷ ︸

S

·


Ėα

Ėβ

...

Ėω


︸ ︷︷ ︸

Ė

(2.11)

thereby representing the complete EHs output power as

L = CP − SĖ = [C − S]

 P

Ė

 . (2.12)

[5]

2.2 Co-Simulation

A monolithic simulation model implemented in one simulation software system would
be one option for implementing the plant network and the behavior of all IT compo-
nents. But there are several disadvantages or trade-offs that come with this solution,
as stated in [110]: First, there is a need to find a development environment that cov-
ers all used domains. Second, experts for each sub-system or domain need to work
strongly together and have to use the same implementation environment to build
the system simulation model. Third, models of the different storage and conversion
technologies, or the implementations of the IT control logic cannot be easily reused
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in other application settings. Finally, the performance of the whole model, and there-
fore the scalability of the system model is limited by the execution environment of
this single simulator. [5]

As the EH modeling presented in the previous Section 2.1 shows, various domains need to be
considered. Several technical domains are taken into account by the sector coupling character
of the EH concept, such as electricity, natural gas, and heat. Furthermore, the EH concept calls
for the ability of flexible adjustment of the considered components to investigate different EH
instances. Thus, for simulating and evaluating EH use cases, the use of co-simulation frameworks
is an eligible solution.

There is abundant and vast literature proposing various kinds of co-simulation ap-
proaches that can be used to model, simulate, and evaluate complex systems such as
Smart Grids. Due to the interdisciplinarity needed for modelling each component of
a complex sector-coupled energy system, various heterogeneous tools must be con-
nected into a system simulation, e.g., by use of a co-simulation approach. However,
many co-simulation approaches are limited to particular scenarios. Moreover, they
do not allow to integrate many different kinds of simulators that could provide a more
universal co-simulation framework for simulating real complex multi-domain energy
system models, such as the EH use case consisting of multiple physical components
and technical plants, energy carriers, IT communication, and control components.

Preliminary work [117] has shown the challenges of developing co-simulation frame-
works that allow for the integration of (dynamic) plants, converters and also in-
frastructure models (electricity, gas, heat). Furthermore, there are also some co-
simulation frameworks, e.g., Mosaik and the PROOF, that are more flexible and
allow to combine, and reuse a bigger number of existing component models executed
in different simulator tools to create complex system models and execute Smart Grid
scenarios. [5]

2.2.1 Mosaik

As described in [122, 129], the Mosaik framework is designed as a flexible solution
specifically for CPES/smart grids research with a focus on co-simulations across mul-
tiple domains. Its architecture consists of a simulator management module for config-
uring and integrating different component models. This is implemented for different
simulators by, e.g., using FMUs and enabling data exchange between the simulators,
and a scheduler acting as master for coordinating the execution steps and the ex-
change of data between simulations. For implementing system models, Mosaik offers
two APIs to system modellers:
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• the component API that has to be implemented by users for connecting simu-
lators to Mosaik,

• the scenario API for setting up co-simulation scenarios by using the Mosaik
scheduler as a master for controlling data flow and execution of simulator oper-
ations according to a test scenario.

Note, that with Mosaik, modelers will model their system by writing programming
code in Python using the Mosaik APIs. [5]

2.2.2 Process Operation Framework

[As described in] [96, 95], the PROOF is a generic, modular, and highly scalable
framework that automates the startup, synchronization, and management of scientific
computational workflows. By using container-automation, distributed message ori-
ented middleware and a microservice-based architecture it enables novel distributed
process execution and coordination. It also supports trans-disciplinary, multi-domain
co-simulations as part of larger workflows including different simulation tools [and
programming languages] (e.g., Python, Matlab, FMU, Julia, Java, etc.). Moreover,
an easy-to-use web user interface is provided to allow system modelers to easily set
up, perform and control workflows or co-simulations, which can be executed remotely
on a computing cluster without the need to think about the underlying computing
infrastructure as an execution environment.

While the integration of different simulator types and tools within PROOF needs
some programming effort for setting up the tools as reusable building blocks for
creating workflows and system simulations, the setup of a system model itself is
done using a graphical editor in a declarative way. PROOF is also part of a larger
ecosystem where scenario data can directly fetched from different data sources and
injected into a simulation workflow. Output and intermediate results can be written
to data storage on the cluster and, e.g., visualized in dashboards. [5]

2.3 Energy Management System

Energy management is defined by the Association of German Engineers as a “forward-looking,
organized and systematic coordination of energy procurement, conversion, distribution and uti-
lization in order to cover requirements whilst taking into consideration ecological and economic
objectives” [16]. [53] aptly describes the EMS as a “(...) decision making tool that determines the
operation schedule of dispatchable generation resources and (flexible) loads, by using a scheduling
algorithm and information coming from DERs, energy markets (price signals), and consumers
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(...)”.
The main goal of an EMS is to manage facility operation in a near-optimal way. In reference to
Figure 2.1 the EMS orchestrates all facilities inside the most outer circle of the Venn diagram,
namely power and thermal demand, DER generation, and storage utilization under consideration
of the connection to the distribution grid. To do so, the EMS communicates with the facilities.
Communication is not direct but conveyed via a controller, as Figure 2.2 displays. Introducing
a hierarchical communication structure helps to orchestrate different facilities in an optimized
manner. Instructions for facilities are sent to the respective controller in the form of schedules
as defined by the International Electrotechnical Commission (IEC) [73].
Creating schedules takes into account the current facility state, predictions, and collusion with
higher level aggregators. The collusion includes a flexibility offer and unit commitment schedule
in return. Processing these quantities is done by a scheduling algorithm in a way that satisfies
the unit commitment under optimization for further (economic) factors as further described in
Chapter 3.
The EMS acts as representative for the collective facilities as an interface to outside aggregators
like the market or coordination signals from the utility operational grid operator. One quantity
the EMS offers to other aggregators is flexibility. Figure 2.2 visualizes a communication concept
of an EMS for an EH approach on basis of a hierarchical communication concept developed by
the IEC [74]. In total, six participants take part in the communication on levels ranging from
process (facilities), to field (controller), station (EMS), operation, and enterprise (aggregator/
utility operational grid management), up to market level.

Figure 2.1: Venn diagram of the aggregation level, based on [53]

Typical optimizations include economic or environmental aspects. Depending on the optimiza-
tion goal, different quantitative and qualitative information are needed. Typical information
include price predictions for various energy carriers, demand and generation predictions, and
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Figure 2.2: Hierarchical communication concept for DERs

specifications on generation and demand from superordinate aggregators. The definition of op-
timality is discussed in more detail in Section 2.4.

The EMS has many different tasks but, most importantly, represents the EH as a single unit to
market participants on a higher hierarchy level. The EMS needs to interact with different com-
ponents. Following the controller architecture, this communication has been specified in order
to fit the use case depicted in Figure 2.2. The EMS has to provide communication ability with
different components: the DER controller, aggregator, utility operational grid management, and
the market. The communication interface with the controller must be bidirectional. First, the
EMS needs to gather information about the current state from the controller. This information
is then internally processed to offer power and flexibility to the aggregator. The aggregator
then sells power and flexibility, which is in line with the offer on the market. The sold power
information is expressed in the form of a schedule and sent to the EMS by the utility operational
grid management. The EMS then processes these schedules and sends instructions to the DER
controller. This, again, can be done in the form of a schedule. The scheduling concept holds the
advantage that one central EMS can divide a specified schedule into several ones and pass them
to different facilities through their respective controller. Also, one EMS is shown to be able to
provide communication with several different controllers. Further specified communications can
be established with the DER communications system, the aggregator DER and Load Manage-
ment System, and the Retail Energy Market Clearinghouse. Thereby the EMS has to be able
to
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• calculate flexibility of the EH,

• offer flexibility,

• accept EH schedule,

• generate and solve optimization problems,

• evaluate schedule suggestions, and

• pass schedules to respective controller.

The mentioned capabilities are addressed in the implementation further described in Section 3.3
to enable the flexibility provision of an EH instance.

2.4 Multi Objective Optimization

The following overview of different Multi Objective Optimization (MOO) methods is based en-
tirely on [77]. The optimization methods described are Pareto Optimization (PO), Weighted
Sum (WS), and Cascaded Weighted Sum (CWS).

MOO is the optimization of different, possibly contradicting objectives. In such a case, an
optimal solution is a trade-off where the improvement of one objective leads to the deterioration
of another objective. These optimal solutions are called Pareto optimal solutions. A set of
all Pareto optimal solutions is called Pareto Front (PF). Figure 2.3 illustrates the PF for an
optimization problem with two objectives f1, f2. The left side shows the feasible region S, which
contains all possible decision vectors x = (x1, x2)

T . The right side shows the feasible objective
region Z. It contains objective vectors f = (f1, f2)

T , which are images of the decision vectors
Z = f(x1, x2). max(f1) marks the maximum value of objective one f1 accordingly, max(f2)

marks the maximum value of objective two f2. The ideal objective vector z∗ marks the maximum
values of objectives one and two and is outside the feasible objective region Z. The green line
contains all Pareto optimal solutions and is called Pareto Front (PF).

In PO, initially, the PF is computed. Subsequently, the final solution is chosen by a human,
who decides which solution and, therefore, which trade-off is most suitable for the problem to be
solved.

Determining the PF can require high computing effort. If the area of interest is already known,
calculating the PF can be omitted by using the WS or CWS. The advantages of using the WS or
CWS are that they provide a single quality value and do not require human involvement to select
the final solution. These properties are particularly useful when EAs are used for optimization.

The WS is given in Equation (2.13). To each objective fi a weight wi is assigned, representing its
relative relevance in the optimization problem. The weighted objective values are then aggregated
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into a single objective value WS(x). Before calculating the WS, often a normalization is necessary
to ensure that the objectives share the same scales.

WS(x) =
k∑

i=1

wifi(x), x ∈ S where wi > 0 for all i = 1, ..., k and
k∑

i=1

wi = 1 (2.13)

Any point of a convex PF can be reached by varying the weights. Figure 2.4a illustrates this
by showing how varying the weights w1, w2 influences the optimal solution P in a maximization
problem with two objectives f1, f2. The optimal solution is found by moving the orange dashed
line into the upper right corner of the objective region. The point where the line becomes
tangential to the feasible objective region Z is the optimal solution. The slope of the orange
dashed line results from the weights w1 and w2. Increasing w2 results in a more horizontal
line, while increasing w1 results in a more vertical line. The black arrows show the direction of
optimization based on the weights perpendicular to the orange dashed line.

The drawback of the WS is depicted in Figure 2.4b. For a non-convex PF not every point of
the PF can be reached by varying the weights. In the shown maximization problem with two
objectives, the solutions between the solutions A and B cannot be reached.

The CWS mitigates the drawback of the WS by adding priorities to the weighted objectives.
Initially, only the objectives within the highest priority group contribute to CWS(x). When the
objective values fi(x) of the highest priority group reach certain thresholds ϵi, the objectives of
the following priority group are added to the CWS. Subsequently, the priority groups are added
to the CWS. If an objective falls under the ϵi threshold, the sum decreases drastically, as the
objective values of the following priority groups are no longer considered.

Equation (2.14) shows the calculation of the CWS for three priority groups a, b, c, where a is the
highest priority group, b is an example for any priority group, which is neither the highest nor
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The focus on maximization is without loss of generality, because ( ){ } ( ){ }xfxf −−= maxmin . The 
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x = (x1, x2, …, xn)

T
. As it is of no further interest here, we do not describe the constraints forming S in 

more detail. Frequently, the Si are the set of real or whole numbers or a subset thereof, but they can be 

any arbitrary set as well. Objective vectors are images of decision vectors, consisting of objective 
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Figure 1. Feasible region S and its image, the feasible objective region Z for n = k = 2.  

The set of weakly Pareto optimal solutions is shown as a bold green line in the diagram on 

the right. The subset of Pareto optimal solutions is the part of the green line between the 

black circles. The ideal objective vector z* consists of the upper bounds of the Pareto set. 

 

In the following sections Pareto optimization and two frequently used aggregation methods, which 

turn a multi-objective problem into a single-objective task, are introduced and compared in the end. 

2.1. Pareto Optimization 
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A decision vector Sx ∈′ , which is not dominated by any other Sx∈ , is called Pareto optimal.  
The objective vector =′z  f ( )x′  is Pareto optimal, if the corresponding decision vector is Pareto 

optimal and the corresponding sets can be denoted by P(S) and P(Z). The set of weakly Pareto optimal 

solutions, which is a superset of the set of Pareto optimal solutions, is formed by decision vectors, for 

which the following applies: An Sx ∈′  is called weakly Pareto optimal, if no other Sx∈  exists such 

that ( ) ( )xfxf ii ′>  for all i = 1, …, k. As the set of Pareto optimal solutions consists of decision vectors 

only, which are not dominated, they can be regarded as the set of good compromises mentioned in the 

introduction. It follows from the definition that they are located on the border of the feasible objective 

region, as shown in the right part of Figure 1. The figure also illustrates the concept of weakly Pareto 

optimal solutions lying on the part of the green line outside of the section bounded by the black circles 

Figure 2.3: Example for a Pareto Front (green line) for an optimization problem with two objectives, adopted
from [77]
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Figure 2.4: Weighted Sum for convex and non-convex Pareto Fronts, adopted from [77]

the lowest priority group and c is the lowest priority group. As in the WS, each objective fi is
weighted with the specified weight wi.

Priority a: (highest priority)

If not all fi(x) ≥ ϵi ∀i = 1, . . . , k

CWS(x) =
k∑

i=1

wifi(x), x ∈ S

Priority b: a < b < c

If all fi(x) ≥ ϵi ∀i = 1, . . . , k and not all fi(x) ≥ ϵi∀i = l, . . . ,m

CWS(x) =
m∑
i=1

wifi(x), x ∈ S

Priority c: (lowest priority)

If all fi(x) ≥ ϵi ∀i = 1, . . . ,m

CWS(x) =

p∑
i=1

wifi(x), x ∈ S

with wi > 0 for all i = 1, . . . , p and
p∑

i=1

wi = 1.

(2.14)

Figure 2.5 illustrates the process of the CWS, using an optimization problem with two objectives
f1 and f2 as an example. Here, objective f2 is in a higher priority group than f1. Therefore the
optimization initially aims to improve f2 only. The optimization of f2 is depicted with the red
arrow. When the threshold ϵ2 is reached, the optimization optimizes the WS of f1 and f2. The
black arrows represent the direction of optimization in the second step. As for the WS, it can be
seen in Figure 2.5a that any point of a convex PF can be reached by the CWS. In Figure 2.5b, it
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close to it. Especially for EAs, which preserve genotypic diversity to some extent, good but suboptimal 
solutions close to the best one covering at least parts of the area of interest are very likely to be found. 
This means that a run is stopped when stagnation occurs over a longer period of time and not when the 
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Figure 6. Cascaded weighted sum for k = 2 and objective two having a higher priority than 
objective one. Thus, solutions in the hatched area are bettered according to f2 only and will 
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An example of a Pareto front with a non-convex section is shown in Figure 7 using the objective 
region and the threshold value of Figure 5. As the part between F2 and the rightmost end of the Pareto 
front is quasi excluded, it is possible now to obtain solutions in the marked area of interest. This would 
not be the case for the original weighted sum. On the other hand, if the region of interest was located 
between the magenta dot and F2, most of the Pareto front would still be missed. 
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front is quasi excluded, it is possible now to obtain solutions in the marked area of interest. This would 
not be the case for the original weighted sum. On the other hand, if the region of interest was located 
between the magenta dot and F2, most of the Pareto front would still be missed. 

Figure 7. Cascaded weighted sum and region of interest for the example with a non-convex 
Pareto front given in Figure 5. 
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Figure 2.5: Cascaded weighted sum for convex and non-convex Pareto Fronts, adopted from [77]. Objective f2 is
in a higher priority group than f1; therefore, initially, only f2 is optimized, which is illustrated with
the red arrow. As soon as the threshold ϵ2 is reached, the WS of f1 and f2 is optimized, represented
by the black arrows.

is illustrated that using the CWS, it is also possible to reach an area of interest in the non-convex
part of the PF.

2.5 Evolutionary Optimization

EAs are meta-heuristic optimization algorithms based on Darwin’s evolutionary theory. There
are many further meta-heuristics, such as simulated annealing, taboo search, and Particle Swarm
Optimization (PSO). For the present thesis, only EAs are considered. They emerged from the
evolutionary programming, genetic algorithms, and evolution strategies, which can be summa-
rized as evolutionary computing [50]. A population of individuals is exposed to selection pressure.
Each individual represents a solution to the optimization problem. Over the course of multiple
generations, the solutions are adapted by applying genetic operators until a specific termination
criterion is met. Figure 2.6 illustrates the schematic process of an EA. The individual steps are
described below. [27]

2.5.1 Creating a Start Population

At the beginning of an optimization, a start population with a set amount of individuals is
compiled. These individuals can be created entirely randomly or by integrating existing knowl-
edge, e.g., using solutions of previous runs in some individuals. An individual, also called a
chromosome, represents a solution in an encoded form. [27]
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2.5.2 Encoding and Decoding

The gene model determines how a problem is coded into chromosomes. A chromosome is com-
posed of genes [27], and each gene contains a set number of variables. Different types of genes
can be allowed in the gene model, with the number of variables depending on the gene’s type
[76]. The value of a gene’s variable is called an allele. The genetic information, which is the
encoded form of a chromosome, is the genotype. This genotype is one individuum in the decision
space [38]. The decoded form and, therefore, the actual solution is called phenotype [27]. The
phenotype is the acting representation of the genotype in the solution space [38].

Table 2.2: Exemplary chromosome for encoding a schedule for four DERs

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 ... Gene n
Unit ID 2 1 2 4 3 1 ... 3

Start time 3 2 1 5 2 1 ... 3
Duration 5 1 5 2 1 4 ... 6

Power fraction 0.2 0.3 0.6 0.4 0.5 0.2 ... 0.1

In the following, a scheduling problem comprising four DERs is used as an example for explaining
encodings. The example is based on [83]. In this optimization problem, the challenge is to

Figure 2.6: Flowchart of an Evolutionary Algorithm, based on [27]
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Table 2.3: Schedule resulting from decoding the chromosome shown in Table 2.2. The numbers highlighted in
turquoise represent power fractions.

Time interval 1 2 3 4 5 6 7 8
Unit 1 0.2 0.2 0.2 0.2 0 0 0 0
Unit 2 0.6 0.6 0.6 0.6 0.6 0.2 0.2 0.2
Unit 3 0 0 0 0.5 0 0 0 0
Unit 4 0 0 0 0 0.4 0.4 0 0

Generation of
PopulationEncoding Decoding Evaluation

Gene model Genotype Phenotype Objective values

Mapping

Fitness

Weighting

Figure 2.7: Encoding and decoding within the evolutionary process

meet a power demand as accurately as possible for each time step. The problem is coded into
chromosomes with genes. The gene model specifies one gene type with four variables. The first
variable of each gene is the unit ID. It specifies to which unit the gene refers to. The following
variables determine a time interval at which the unit operates at a specific power fraction. The
time interval is set by a start time and a duration, corresponding to variables two and three.
The power fraction is specified in the fourth variable. The gene model also specifies that the
chromosomes contain a variable number of genes. Table 2.2 exemplarily shows a chromosome
and, therefore, a genotype of a schedule of four DERs.

For the evaluation of the population, it is necessary to decode the chromosome. In decoding, every
genotype is transposed into its corresponding phenotype. In this example, every chromosome is
decoded into the schedule it represents. In the decoding process of the scheduling example, if
an ID occurs more than once in a chromosome and the times overlap, the later gene overwrites
the earlier one [83]. The resulting schedule or phenotype, thus, allows only limited conclusions
to be drawn about the genotype. The general process is depicted in Figure 2.7. The dashed
lines after the evaluation of the phenotype and the mapping from an objective value to a fitness
symbolize that these steps only occur if the EA does not directly operate on the objective values.
Furthermore, the weighting is only necessary if multiple objectives are taken into account.

The chromosome as a genotype shown in Table 2.2 is decoded into the phenotype as schedule
shown in Table 2.3. The schedule of unit one corresponds to the exact decoding of gene six.
Gene two, which also contains information about the first unit, is overwritten by gene six, as the
time interval of gene two lies entirely within the time interval of gene six. Therefore, unit one
runs from the time one to four with a power fraction of 0.2. The schedule of unit two results
from decoding genes one and three, as both have the unit ID two. Here, gene three overwrites
gene one partially, as the time intervals overlap partially. As a result, unit two runs from the
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time one to five with a power fraction of 0.6 and from time six to eight with a power fraction of
0.2. Accordingly, the schedule of unit three results from decoding gene five, and the unit runs at
time step four with a power fraction of 0.5. The schedule of unit four is only influenced by gene
four. Therefore, unit four runs from time five to six with a power fraction of 0.4.

2.5.3 Evaluation and Fitness Functions

After decoding, the solutions are rated. In this example, for rating a schedule, the total power
production of all units is calculated for each point in time, and the deviation from the target
schedule is determined. The objective value of a solution or schedule is the overall deviation
from the target schedule for all time steps. After determining the objective values, a fitness
value is assigned to each solution [27], using mapping functions, which map objective values
to fitness values [116]. In some cases the result of the considered objective function is directly
used for rating the proposed solutions. This leads to the drawback that with MOOs problems,
the objective functions are difficult to set in a reasonable relation. Therefore, the mapping to
a fitness value is used. To create the mapping functions, it is necessary to estimate reference
values or the boundary values of the objectives so that the best objective value is mapped to the
maximum fitness value and the worst objective value is mapped to the minimum fitness value. A
good estimation of the boundary values is essential for the well-functioning of the algorithm [70].
The influence of the boundary values is described in Section 3.4. In this case, zero deviation is
the optimum and mapped to the highest fitness value. The maximum deviation is mapped to the
lowest fitness value. The corresponding fitness values depend on the value range the utilized EA
uses. The EA General Learning Evolutionary Algorithm and Method (GLEAM), for example,
uses fitness values between 0 and 100000. Figure 2.8 shows two possible mapping functions that
map deviations to fitness values.

min max
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deviation
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s

(a) Inversely proportional exponential

min max
min

max
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f
it
n
es
s

(b) Inversely proportional linear

Figure 2.8: Examples of mapping functions
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Table 2.4: Exemplary offspring generated with order based one point crossover

Parent A Gene A.1 Gene A.2 Gene A.3 Gene A.4 Gene A.5 Gene A.6
Parent B Gene B.1 Gene B.2 Gene B.3 Gene B.4 Gene B.5 Gene B.6

Offspring 1 Gene A.1 Gene A.2 Gene A.3 Gene A.4 Gene B.5 Gene B.6
Offspring 2 Gene B.1 Gene B.2 Gene B.3 Gene B.4 Gene A.5 Gene A.6

2.5.4 Creating Next Generation and Termination

The higher the fitness value of an individual, the higher the likelihood of being selected as a
parent or to be part of the next generation [76]. After selecting parents, offspring are created
by recombination and mutation [27]. Table 2.4 shows one kind of recombination, the one-point
crossover. A crossover point is set randomly into the parents’ chromosomes, dividing them into
two parts [27]. In this example, the crossover point is set after the first four genes. The first
offspring combines the first part of parent A and the second part of parent B. Accordingly, the
second offspring is a combination of the first part of parent B and the second part of parent A.

To diversify the gene pool, offspring or clones of parents can be mutated. A mutation is a random
change in chromosome. One way of mutation is a change in the alleles, the values of the variables
of the genes [27]. In the example at hand, a possible mutation is a change in the start time of
a gene. For instance, in the chromosome in Table 2.2, the start time of Gene three could be set
from one to four. After the execution of genetic operations, all the individuals, namely offspring,
parents, and mutants, are evaluated. Depending on the EA’s acceptance rules, offspring are
selected to form the next generation. A possible rule is to accept offspring only if they are better
than their parents [27]. Accepting only a part of the offspring limits the number of individuals
that need to be stored and evaluated.

Finally, termination criteria are checked [27]. If an individual’s fitness exceeds a requested
value, the best individual is issued as the solution, and the optimization process is terminated.
If no individual is fit enough, further termination criteria, such as exceeding the maximum
calculation time or stagnation in improvement, are checked. If no termination criterion is met,
another generation is created and evaluated until a termination criterion is met. Note that the
mentioned termination criteria are provided solely as examples based on [76], and alternative
or supplementary criteria can also be utilized. Furthermore, termination criteria may also be
checked before forming the new generation.
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Figure 2.9: Optimization process with a MILP

2.6 Mixed Integer Linear and Quadratic Programming

In contrast to the EA presented in the previous section, the MILP represents an analytical
approach for optimizing DERs. The MILP is a widely used and versatile form of integer pro-
gramming. It extends the basic approach of Linear Programming (LP) to include integer and
binary decision variables in addition to continuous variables. Unlike its LP counterpart, a MILP
optimizes in addition a subset of decision variables being restricted to integer numbers, aside
from linear objective functions. A further extension is described as Mixed Integer Quadratic
Program (MIQP) that can handle problems containing quadratic objective functions. Describ-
ing components of an EH with linear functions might be too inaccurate or the objective function
might utilize a quadratic error metric, such as the Root Mean Squared Error (RMSE). This
example leads to a MIQP. The MILP uses linearized component models. These describe the re-
lationship between the input and output of a component using linear equations. The interactions
between the different components are also described by linear equations.

The general approach of the analytical optimization process is given in Figure 2.9. The general
formulation is given by Equation (2.15) for a MILP

min
x

cTx s.t. Ax ≤ b x, c ϵRn, (2.15)

where the vector c represents the coefficients of the objective function and matrix A the coeffi-
cients of the constraints. The vector b describes the right-hand side of the constraint inequality
[20]. Equation (2.16) is the equivalent standard formulation for a MIQP with a quadratic objec-
tive function

min
x

1

2
xTQx+ cTx s.t. Ax ≤ b x, c ϵRn, (2.16)

where Q is a symmetric matrix. [109]

Each component needs to be modelled as linear or quadratic equation. Furthermore, the ob-
jectives also must be formulated as linear or quadratic functions, according to Equation (2.15)
or (2.16). To solve the equation system, commercial or open source solver are available with
sufficient performance. As a popular framework for modelling a MILP or MIQP, Pyomo [33, 69]
offers a wide range of solvers, e.g., Gurobi [67], a commercial solver. To assess whether an ana-
lytical or a heuristic approach for the scheduling problem of an EH is beneficial, a comparison of
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of both is presented in Subsection 3.2.1 on basis of the specific optimization problem concerning
the EH.

2.7 No Free Lunch Theorem

To decide, which algorithm is most suitable for the optimization problem of scheduling an EH,
the No Free Lunch Theorem should be mentioned. According to [138], there is no optimization
algorithm that outperforms another algorithm on all problem classes. More precise, when an
algorithm gains in performance on one class of problems it offsets this gain by performing worse in
all other problem classes. This is formulated in the following Equation (2.17) with P (dym|f,m, a)

as conditional probability of obtaining a sample dym, which is a time-ordered set of evaluated
solutions, if algorithm a is applied m times with the corresponding cost function f [54, 138]:∑

f

P (dym|f,m, a1) =
∑
f

P (dym|f,m, a2) (2.17)

In [138] it is stated and proven, that for any performance measure Φ(dym) as average over all
f of P (Φ(dym)|f,m, a) is independent from the chosen algorithm a. For the decision which
optimization algorithm to chose for a certain class of problems this fact should be taken into
account. Therefore, a comparison of two different algorithm is provided in the further course of
this thesis. On one hand a classic MILP is set up for the scheduling problem and on the other
hand a generic EA. As stated in the No Free Lunch Theorem, there is no best algorithm for
solving every problem. But in turn, there are opportunities to enhance an optimization algorithm
within one problem class by tailoring its behavior, which is presented later.
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In the following chapter, a deeper insight into the optimized scheduling is given. The problem
can be defined as the scheduling of generation, storage and conversion units over a certain
period of time with a defined resolution to accomplish several objectives [72]. Taking complex
boundary conditions into account, this results in a large-scale non-linear optimization problem.
To achieve intelligent control of the EHG, which is a specific instance of the EH concept and
further described in Section 3.3, an EMS, as described in Section 2.3, is crucial. First, an
overview of the general scheduling problem is provided and methods to solve this are described.
Second, EHG is introduced by describing the setup of the system with a comparison of different
methods and algorithms for optimization. Especially, the adaptability and scalability of the
chosen method for optimization are of interest, because of the rapidly growing amount of DERs
to be integrated into the grid infrastructure. Based on the work presented in [6] and further
extended in [3, 2], this section is dedicated to give an answer to RQ 1: To what extent can
DERs be instrumented to provide flexibility and grid supporting service? Finally, a method to
dynamically adapt the mapping function is introduced to enhance the employed EA and address
the identified limitations. This method is described in detail and evaluated in two different
ways. First, the general performance of the algorithm is evaluated. Second, a positive side-effect
is elaborated and described concerning the ability to adjust the weighting of multi-objective
optimization.

3.1 Scheduling

Scheduling as a research area is motivated by the problem of allocating limited resources to
activities over time [10]. It faces a virtually unlimited number of problem types. In general, a
schedule is an allocation of one or more jobs to one or more machines [30]. Furthermore, this
task is characterized by

• the jobs to be scheduled,

• the number and types of machines,

• possible constraints,

• and the evaluation criteria [40].
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In the field of energy supply the job is to provide a certain amount of power at a specific point
in time. Here, the power is one of the decision variables to be determined by a scheduling
algorithm. The solution space can be restricted by constraints, which can be related to, e.g., the
machine properties. The machines are the DERs to be scheduled. To find an optimal solution
each schedule needs to be evaluated according to one or more evaluation criteria. This leads
to either a Single Objective Optimization (SOO) or MOO problem as described in Section 2.4.
The complexity of this optimization problem is studied widely and the scheduling tasks can be
categorized according to [56]. According to [56, 30], scheduling of DERs is an NP-hard problem
to solve because of the high dimensionalty of the decision variables and the complex constraints.

It is crucial to enable the flexibility provision from DERs by optimized scheduling. Beside
scheduling, the term ”unit commitment” is common to describe the ability of a DER to deliver a
planned amount of power and energy or to consume and convert it, respectively. The difference
between Unit Commitment (UC) and the discussed scheduling is, among others, that UC only
aims at the optimization of the operational costs. Scheduling, in the sense used throughout
this thesis, offers the opportunity to consider various objectives while optimizing the planned
operation of DERs. In the field of energy scheduling, different time constants are common to
use. In case of scheduling DERs within an EH a 15 minute resolution is widely used based on
the day ahead and spot market for electrical energy [48, 103, 135, 104, 98, 128]. Furthermore,
flexibility for a preventive or curative congestion management is also conducted on a 15 minute
basis. Additionally, the time horizon to be considered is usually 24 hours. Scheduling of EH‘s
components can be calculated once for the coming day or repeatedly conducted for the next
24 hours to take new information about the grid infrastructure and RESs generation depending
on weather conditions into account.

3.2 Methods for Optimized Scheduling of DERs

Various methods and algorithms are used for optimal scheduling of DERs to improve the system
under consideration in terms of efficiency, performance, and further objectives. Several reviews
on the optimization methods in context of the EH are given by [48, 103, 135, 104, 98, 128].
Analytical methods such as Priority List (PL), Dynamic Programming (DP), Lagrangian Re-
laxation (LR), LP, and Successive Linear Programming (SLP) have been employed to solve the
problem since the 1960s [124]. More advanced methods such as Non-Linear Programming (NLP)
and as a subclass Quadratic Programming (QP) have been developed to handle several of the
faced challenges and to enhance the solutions for the UC problem. The main drawback of the
aforementioned approaches is the limited capability to handle the high dimensionality and non-
linearities of real-world scheduling problems. This drawback can be addressed by employing
heuristic approaches. These algorithms are based on experience and rules to quickly find good
solutions without performing a complete and exact search. Examples of heuristic algorithms
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include Tabu Search, Simulated Annealing, and Ant Colony Optimization. In addition, PSO is
gaining interest in the search for an adequate search algorithm according to [48]. This algorithm
is based on the behavior of particles in nature. Each individual in the swarm (particle) has a
position and velocity influenced by the best solutions found so far. Through interaction between
particles, the swarm gradually converges to a near optimal solution. Furthermore, EAs belong
to the category of heuristic algorithms. EAs are based on the principles of natural evolution
and use genetic operations such as mutation and recombination to find optimal or near-optimal
solutions, as described in Section 2.5. The main drawback of heuristic approaches is that they
do not guarantee optimality. However, they can lead to near-optimal solutions in a reasonable
time. Furthermore, at every iteration, they provide a valid solution that respects the boundary
conditions or constraints. [31] These algorithms can be used individually or in combination to
optimize the scheduling of DERs and ensure efficient resource utilization. The choice of suitable
algorithm depends on the specific requirements of the system and the available data.

3.2.1 Comparison of MILP and EA

In [107] an EA is compared to a MILP in the context of unit commitment. It is stated that
with highly-constrained use cases, the EA performs better than the presented MILP. Further
applications of EAs can be found, e.g., in [119] and in the reviews conducted in [48, 128].

In the following the employed generic EA GLEAM for scheduling the DERs as components of
an EH is compared to an equation-based approach. This comparison is conducted to underline
the usefulness of heuristic approaches in general and EAs especially. According to [4] and as
described in Section 2.6 a simplified model for the EHG and its components can be used to
formulate a MILP or MIQP for the scheduling problem. The corresponding models are available
as open source and further models can be found in [118]. It is stated that the simplifications
are appropriate when having only a single objective function. The results show a good approx-
imation with fast scheduling results by only taking the deviation between target schedule and
scheduled electrical output of the EH, introduced in Equation 3.3, into account. However, if
further objectives are considered, especially the minimization of the system operational costs as
formulated in Equation 3.1 introduced in 3.3.7, the analytical approach is not able to handle the
non-linearities introduced by, e.g., the electrical efficiency of the Polymer Electrolyte Membrane
Electrolysis (PEM). This efficiency depends on the power fraction, the temperature and several
other parameters as detailed in [142].

As depicted in Figure 3.1, the efficiency of a PEM changes with the current that is used to split
H2O into H2 and O2. Assuming a constant voltage, the efficiency depends on the provided elec-
trical power. For the objective function concerning the operational cost, given by Equation 3.1,
this leads to a non-linear dependency between power input and H2 output and consequently to
non-linear H2 generation costs. Especially at low partial load, the efficiency is highly variable.
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Figure 3.1: System efficiency of a 5 kW PEM electrolysis at partial load [142]

But also the difference between maximum efficiency (≈ 77%) at partial load to ≈ 67% at full
load means a significant deviation in the generation costs for H2.

However, the linear or quadratic approximation is a valid approach for optimization tasks where
a fast re-calculation is necessary, e.g., within a rolling horizon optimization process. If the
computing time is not the decisive factor to a certain extent, but the exact mapping of the system
parameters is more important, the use of a heuristic optimization method, such as an EA, can
be advantageous. Furthermore, as stated in [4], the configurability of a heuristic optimization
approach is superior to that of the equation-based approach. For investigating several different
EH compositions without loosing accuracy the use of, e.g., an EA, is recommended.

3.3 The Energy Hub Gas

Parts of the following section are taken exactly from [6] and [3] and have been supplemented.
First, selected EAs for optimization within the EH are compared. Then, the structure and
functionality of the EHG as a representative of the EH concept is presented. As one instance of
the EH concept presented in Section 2.1, the EHG is introduced. It lies a special emphasize on
the provision of renewable energy carriers for hard to decarbonize sectors and applications. The
general implementation is conducted according to [1] and illustrated by Figure 3.2.
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Figure 3.2: General simulation setup according to [1]

The different components are split into the co-simulation framework with its physical models for-
mulated as FMUs, an EMS connected to an optimization service and the respective optimization
algorithm. This modular approach allows for easy adaptation and replacement of the different
components and algorithms and allows for the comparison of different approaches.

A schematic overview of the implemented system model is given in Figure 3.3. Further descrip-
tions are provided in the following subsections, as well as a literature review of the relevant works
concerning the EH concept and its implementations.

3.3.1 Related Work

In the following section, a brief overview of the related work in the field of co-simulation and
CPES simulation is given to set the present approach for system modeling in relation to existing
work.

Figure 3.3: Energy Hub Gas Overview [6], a legend for the symbols is given in Tables 3.1 and 3.2
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As further development of the approach in [5], the EHG concept utilizes a distributed
system simulation model of a controllable modular set of technical plants. This sys-
tem model interconnects electricity and gas supply with different final energy demand
sectors (electricity, heat, fuel for mobility, chemical intermediate or commodity for
industry) in a smart and flexible way, providing, e.g., utilities flexibility for grid op-
eration. In contrast to [125], RES are considered but not included inside the EHG.
[3]

Following the EH concept, RES based on weather are not controllable and thus, they cause the
volatility that an EH could dampen to relieve the electricity grid.

The [presented approach] focuses on the modular design of the EH concept inspired
by [59, 60, 57, 68], which allows adapting the model of the plant ecosystem to dif-
ferent settings of existing infrastructure and specific operational requirements. [...
As suggested] in [103, 104], besides the main functionalities, the presented work con-
siders local, sustainable mobility as fuel station hydrogen demand and connects to
hydrogen pipeline infrastructure, resulting in a more diverse and realistic scenario.

In contrast to [126, 107, 42, 14, 113], for both gaseous energy carriers, the feed-
in pathways are also considered and made economically feasible by introducing a
compulsory green gas quota for gas suppliers [13]. The EHG participates in fulfilling
this quota together with large-central upstream renewable gas feed-in and existing
distributed biomethane feed-in. The controversial topics of green gas certification and
"colors" for different hydrogen origins are thereby not considered and discussed as
constraints. For the present work, climate-neutral gas shall be considered of non-fossil
origin. Thereby, methane from the 3PM can be considered climate-neutral concerning
the conversion process from hydrogen to methane. The positive correlation between
low electricity prices, high renewable electricity feed-in, and the high need for feed-
in management facilitates to hydrogen production with decreasing carbon footprint.
Local heat demand is modeled to provide a more complete analysis of simulation
data, especially regarding the level of integration and economic cost for flexibility.

The semantic description of the system and component behaviour and its extrinsic
controllable interface are based on the hierarchical concept of DER modelling accord-
ing to the IEC61850 standardization, especially part 7-420 with a focus on MDERs
[39]. The central control logic for steering the internal plant network and allowing
control, e.g., by utilities, is provided by an EMS utilizing this semantic model inter-
nally. It provides a lightweight communication interface where external control can
be provided by implementing grid code behaviour in a modular fashion. The EMS
covers the possible complexity of the investigated EHG instance by defining a mod-
ular plugin interface for integrating the control interfaces of, e.g., technical plants
or components. It aggregates their abilities in a black-box fashion to a composed
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mixed DER that is externally controllable. The provided control functionality for
either TSOs or DSOs especially allows executing UC schedules on a DER[. This] can
address re-dispatch 2.0 requirements for balancing generation and load[. Further-
more,] retrieving individual forecasting schedules of plants over 100 kW for planning
[is possible]. Internally, the EMS uses, in contrast to [19], a multi-objective optimiza-
tion method [that] converts the overall plant network schedule into an optimized set
of schedules for each plant of the hub ecosystem. Thereby, the presented approach
opens the opportunity to fulfill a wide range of configurable objectives to [adjust] the
EHG operation to the local needs. [3]

3.3.2 Simulation Setup

As described in Section 2.2, the use of a co-simulation framework to investigate a
multi-domain system is an advantageous approach. As a generic setup, the concept
and corresponding system simulation model separate control and communication logic
from the physical models of the technical plants in a modular fashion in contrast to
[105]. With this, different components of the EHG system are represented either by
FMUs or simulation models implemented in Python for generic control and commu-
nication behaviour. The presented implementation illustrates the advantages of this
modular approach: The co-simulation framework enables the integration of different
levels of details from various domains and different modeling languages. Furthermore,

Controller

Scenario Data

Controller Controller Controller Controller Controller

EMS

Data 
Collector

Figure 3.4: Energy Hub Gas simulation setup [6]
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added features pose new sets of boundary conditions to the system and provide an
opportunity to display advantages of the modular approach in both simulation setup
and EMS. Finally, the modules are combined into a system model to set up a spe-
cific application environment using a distributed simulation runtime environment,
which allows executing the model to perform different test cases for evaluation. To
use component models from various domains and different modeling languages, a
co-simulation framework needs to wrap the execution environment of the component
model into a software layer that allows it to execute the model, and exchange input
and output data. E.g., for executing the physical models, which were exported from
Dymola according to the FMI standard [25], the co-simulation framework needs to
implement a wrapper, which executes the FMU model as so called secondary models,
and takes care of the data exchange between the co-simulation environment and the
FMU secondary model. To connect the local co-simulation of the EHG to a dis-
tributed co-simulation with further infrastructure assets and, e.g., grid simulation,
a message server is provided. As the purpose of the simulation lies within the time
horizon of the operational planning, there is no need for real-time communication.
The latency in the communication via a message server is therefor neglected. In con-
trast, the advantage of this architecture is the large amount of possible participants.
Furthermore, asynchronous communication enables the distributed co-simulation to
be executed independently. The general data flow of the simulation system follows
the concept depicted in Figure 3.4. Blue arrows indicate direct data transmission
within the same time step, whereas red dashed lines indicate an asynchronous con-
nection, where data is transmitted in the subsequent time step. The EMS calculates
schedules for all six facilities in this example and sends them to the respective con-
troller instances. Each controller processes these schedules to a time series of single
setpoint commands forwarded to the facility. A facility tries to follow these setpoints
in compliance with its physical boundaries, resulting in a realistic behavioral trace of
each facility. Outputs of the facilities are routed into the Data Collector, where they
are finally processed and stored. [3]

Scenario data, such as RES generation, produces behavioral traces without controllers as they
only react to the current simulation time and external data, e.g., weather conditions. They are
modelled to provide the non-controllable energy outputs that the EHG needs to cope with and
provide a holistic scenario.

Finally, the behavior of the hydrogen pipeline, which is added to the system and
bidirectionally coupled with the methanation, electrolysis and H2 gas station, has to
be taken into account. The pipelines ensure energy conservation in the simulation
system as methanation and gas station cannot consume hydrogen when the pressure
of the pipeline falls under a given threshold, and respectively the electrolysis stops
production when a pressure limit is surpassed. The modular, scalable, and extendable
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setup allows to re-use, add, and parameterize individual component models within
a system model and therefore, to easily create dedicated instances of the EHG for
different application settings. This facilitates the configuration, evaluation, and usage
of a specific EHG instance in different application environments and use cases. [3]

3.3.3 Component Models

The simulation setup in the present exemplary implementation contains component models for a
PEM, a 3PM, a Combined Heat and Power Plant (CHP), a lithium-ion battery and a hydrogen
supply unit for a hydrogen fuel station based on FMUs. “The FMUs are created in Dymola using
Modelica. Furthermore, a methane storage implemented in Python is included. The models are
based on technical parameters, e.g., nominal power. These parameters are provided in [Table 3.1]
and are used for the internal optimization within the EMS.” [3] Furthermore, RESs, such as Wind
Power Plants (WPPs), Photovoltaics (PVs) and Bio Gas Plants (BGPs), are included in the co-
simulation system. As non-steerable demand for the different energy carriers electrical charging
stations, typical households and industrial demand are modelled. Finally, the considered grid
infrastructure, e.g., electrical grid and natural gas grid, provides information for the optimization
process. The technical parameters for these models are given in Table 3.2.

Detailed electrochemical and thermodynamic processes are not part of the component
models, but could be implemented due to the modular co-simulation framework. [...]
Communication interfaces allow for communication in order to receive schedules from
the EMS and to send relevant operating status to the Data Collector.
The sector coupling models CHP, PEM, and 3PM instrument key parameters for
modeling conversion efficiency, systems dynamics, as well as minimum and maximum
power. The conversion efficiency of the electrolysis is the ratio between specific
power demand and corresponding hydrogen production [127]. The 3PM is assumed to
convert hydrogen and carbon dioxide at the stoichiometric ratio of the methanation
reaction [65]. The electrical efficiency of the CHP is taken from [106]. The system
dynamics of CHP, PEM, and 3PM are modeled using characteristic start-up times
from stand-by to full load. Information about the load status of the assets are sent
to the Data Collector. The lithium-ion battery and the methane gas storage are
modeled using parameters for capacity and maximum rate of charging and discharging
[130]. Information about the current SOC is sent to the EMS as model output. The
hydrogen supply unit is a gas buffer tank, which has to be completely loaded at
certain times in order to be delivered to a gas fuel station. Charging times of the
supply unit are scheduled by the EMS. [3]
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Table 3.1: Technical parameters of the component
models within the EHG

Parameter Value Symbol
Combined Heat and Power Plant

Maximum power output 2MW

Minimal power output 0.7MW

Electrical efficiency 0.30 - 0.43
Start-up time 120 s

Polymer Electrolyte Membrane Electrolysis
Maximum power input 1MW

Minimal power input 0.31MW

Efficiency coefficient 0 - 0.73
Start-up time 60 s

Three-phase Methanation
Maximum production rate 65 kg h−1

Minimum production rate 10 kg h−1

Specific hydrogen demand 4molmol−1

Start-up time 60 s

Battery
Capacity 3MWh

Maximum charge power 1MW

Maximum discharge 1MW

Charging efficiency 0.92

Discharging efficiency 0.92

Methane storage
Capacity 1500 kg

Maximum charge power 0.27 kg s−1

Maximum discharge 0.27 kg s−1

Hydrogen fuel station supply

Maximum charge rate 1.8 kg h−1

Time period of H2 delivery 168 h

Table 3.2: Technical parameters of the component
models within the Scenario Data

Parameter Value Symbol
Wind Power Plant

Maximum power output 2MW

Minimal power output 0.7MW

Photovoltaic

Maximum power output 1MW

Bio Gas Plant
Maximum production rate 65 kg h−1

Minimum production rate 10 kg h−1

Start-up time 60 s

Charging Station

Maximum charging power 0.15MW

Household Demand

Maximum electrical demand 12.25MW

Maximum natural gas demand 12.2MW

Industrial Demand

Maximum electrical demand 12.25MW

Maximum natural gas demand 12.2MW

Electricity Grid

Price day ahead Euro/MWh

Power flow MW

Natural Gas Grid

Price day ahead Euro/MWh

Power flow MW
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3.3.4 Test Case Description

In order to use the framework described in the previous [Subsections] to answer
research questions [in general], a methodical preparation of test and evaluation data
for driving the simulation through use case scenarios related to research questions is
required. In [137] a systematical assessment methodology is proposed that is applied
to the presented EHG approach due to its holistic scope of the used energy carriers.
A test environment emerges [...] by combining the specification of individual models,
the scenario data1, and previously determined evaluation criteria. Within this test
environment driven by the presented framework, raw data are generated to which the
evaluation criteria are applied. [3]

With these results, the previously posed research question RQ 1, to what extent DERs can
provide grid supporting service, and goal settings can be answered.

The separation of the individual data, models, and the framework has the advantage
of allowing the flexible adaptation to a wide variety of use cases while at the same
time ensuring comparability. [...] In [137] the test case description is divided into
goal settings, operational strategy, system configuration, and scenario data.
As shown in Figure 3.5, the data needed for a complete simulation and evaluation
cycle can be [formulated according] to the basic idea of an EHG presented in the
previous [Subsection]. With the [...] input data, for example, global radiation from
weather data, the simulation system converts it [...] to [...] the power generation by
RES. The information [given] by the grid data is, for example the actual load without
the EHG interacting. The [target schedule] is the interface for external authority, e.g.,
DSO or TSO, to make use of the offered flexibility from the EHG. In [this] example
setting, the control value is an active power signal [split into] 15 minutes intervals
according to the re-dispatch and day-ahead UC. Furthermore, the scenario data
include price information for each considered energy carrier, for example, hydrogen,
electricity, and natural gas. By extracting and directing the relevant information to
the inputs of the EHG simulation model, respectively, the coupling matrix C from
[Equation (2.1)], the raw data are calculated by the co-simulation system described
in the previous [Subsection]. Each component model calculates independent results
that need to be collected and analyzed. These results are summarized in the output
vector L used to evaluate the results further. [3]

1 Optimized Energy Hub Scheduling Using Evolutionary Algorithms - Supplementary Materials, 2024,
doi: 10.35097/hubh72dd9d5mt43g
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Figure 3.5: Test case data within the Energy Hub Gas system [6]

3.3.5 Industrial Area in Karlsruhe (Germany)

The first test case to investigate the presented system approach targets an industrial
area in the south-west region of Germany[, the Campus North of the Karlsruhe Insti-
tute of Technology (KIT),] which is a characteristic region for high PV penetration.
The considered time horizon [covers the year 2021]. Furthermore, the installed power
of WPPs is relatively low compared to the northern part of Germany, which is con-
sidered in the second test case. In industrial areas, the load curve is dominated by a
workday pattern, and the dependence on the outside air temperature is smaller. [3]

The characteristic load curve that is also used in the evaluation in Subsection 3.3.9 is depicted
in Figure 3.6.

In Figure 3.7, the 20 kV electricity grid of the area of interest is illustrated, including the
integrated EHG marked in red.

This leads to the test case that can be comprehensively described as follows:

Goal setting: Investigate how and to what extent the EHG system approach can
help to reduce RE curtailment caused by feed-in management or congestion manage-
ment. Thus, providing flexibility to attenuate grid variability is synonymous with
integrating RES [and reducing the GHG emission]. Furthermore, the ability to pro-
vide flexibility and the amount of flexibility provided by the instantiated system
model is of high interest. [... A] direct connection can be drawn to the possible
substitution of fossil chemical basic molecules, e.g., methane.
Operational strategy: The operating strategy of the presented experimental setup
aims to implement grid-serving control of the EHG with simultaneous cost-optimized
use of its internal plants. The internal system structure is represented in a more
abstract way and thus hidden by the EMS. Therefore, a schedule for the following
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Figure 3.6: Load profile of an exemplary day for the industrial area for March 3rd, 2021

24 hours can be transmitted to the EMS to control the [...] EHG [in total. This
schedule] is used to control the internal [DERs] in an optimized way. [...] The opti-
mization target is on the one hand the operating costs of the EHG including expenses
for CO2 emissions and on the other hand the fulfillment of the external power demand
by adjusting the components setpoints for their power output.
System configuration: The system configuration schema introduced in [Figure 3.3]
consists of the EHG system model including the presented component models [(see
Subsection 3.3.3)]. Furthermore, [...] the surrounding system into which the EHG
model [...] is integrated, local [...] RES [...], local demand by industry, and regional
mobility demand are [taken into account] by the scenario data. For TC1 the con-
sidered RES possess the following peak [megawatt (MWp)]: local PV plants with
10MWp and a single WPP with 2.5MWp.
Scenario data: To complete the set of information for a simulation and evaluation
run, scenario data are needed. Weather data regarding solar irradiance and wind
speed are used to determine renewable generated energy. These are available for
TC1 as real-world data from measurements [collected] at the Campus North of the
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Figure 3.7: Single-Line Diagram of the 20 kV Grid of Campus North, KIT, where the EHG is integrated [2]

KIT. The price information for the period under consideration in 2021 has been
prepared from publically available sources, e.g., Bundesnetzagentur (smard.de). The
electricity prices are data from the EPEX SPOT day-ahead market. The prices for
the other energy sources are average prices from 2021 and [are valid for] the entire
period under consideration, as these are not traded on an intra-day market. The con-
trol signal, [which would be send by a network operator in a real-world application,]
is based on a measured load series. A perfect forecast of the power flow for the next
24 hours is assumed in each case.
[3]

3.3.6 Industrial Area in Northern Germany

The second test case considers a location in the northern part of Germany close to
the coast. This area [is characterized by] a high share of WPP generated RE in
[combination] with low consumption. The amount of curtailed RE from WPP is of
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Figure 3.8: Curtailment in Germany and the respective compensation costs from 2018 to 2021 according to [32]

high interest for the operation of an EHG from an economic point of view, as well as
for the society from an ecological point of view. [3]

The development of the curtailed energy from RESs and the compensation costs between the
years 2018 and 2021 are depicted in Figure 3.8. Eventhough the curtailed energy varies between
5.400GWh and 6.500GWh, the corresponding compensation costs are continuously rising from
nearly 650 million Euro in 2018 to over 800 million Euro in 2021. This reduction of electric
energy from RES under feed-in management represents about 3% of the total generated RE [32].
Both, the lost RE and the immense cost related to feed-in management measures underline the
need for flexibility provision, which the EHG can be part of.

The considered time horizon is the same as in TC1. This leads to the following test
case description:
Goal settings: The avoidance of curtailment of RE is the primary goal since, on
a coastal level [in Germany], there is significantly more generation by WPP than
consumption [... . T]hus, the large transmission lines [from northern Germany to
southern Germany] are to be relieved by transferring the RE to other sectors. At the
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same time, the provision of renewable chemical energy sources offers an opportunity
to reduce greenhouse gas emissions in different application areas.
Operational strategy: The operating strategy of the experimental setup presented
aims to implement grid-serving control as described in TC1. With [internally gen-
erated and optimized schedules for the following 24 hours, considering the] external
requests of utilities, the EMS offers flexibility to the DSO or TSO, [allowing the in-
tegration of] the fluctuating generation by RES [...]. The economic benefit of this
operating strategy consists of two parts: First, selling the long-term storable en-
ergy carriers converted from RE [...]. Second, [generate] additional income [from the
compensation payment the DSO or TSO must pay for curtailment under feed-in man-
agement to the RES operator]. The internal optimization target again consists of two
objectives: First, the operational costs [...]. Second, the fulfillment of the external
power demand [...].
System configuration: The system configuration for TC2 differs only in the con-
sidered RES [...]. The EHG system model including the same component models with
the same rated power as in TC1 assumed to be located next to a RES farm with a
PV plant with 2.5MWp and WPPs summarized to 10MWp. Furthermore, the local
demand of industry and the regional mobility demands are identical to TC1.
Scenario data: Weather data is taken from measurements of the DWD in a 10-
minute resolution. The control signal is adapted by calculating the possible renew-
able generation for the considered area. Furthermore, the same [price data] is used
as in TC1. In addition, the same load curve of local industry is used.
[3]

3.3.7 Specification of the Optimization Problem

In the following subsection the general problem formulation concerning the EH scheduling prob-
lem is provided. The optimization can be conducted by regarding several objectives that can
be configured upon the needs of the use case investigated. Depending on the application and
perspective, the selected objective functions may complement or contradict each other. With
regard to the different perspectives, the distinction between business and economic optimization
should be mentioned here, for example, to illustrate with just one example that a flexibly config-
urable formulation of the objective functions is indeed useful. For the further course of the thesis
three of the most common objectives in literature are considered: 1) system operational cost, 2)
emissions, and 3) deviation from target schedule. These three objectives represent a combination
of social and economic benefits and the profit of the DERs’ operator. From a general perspective,
both minimization for system operational cost and system emission are the same, as they punish
an energy or mass flow with a price pα. Resulting in the minimization of operational cost
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min coperational =
∑
t

∑
i

∑
α

P i
α(t) · pα(t) (3.1)

It is common in literature to separate the emission cost from the operational cost. The minimiza-
tion of operational cost can generally be formulated as the sum over all time steps t, facilities
i ∈ N and energy carriers α ∈ ε as in Equation (3.1) with P i

α(t) the power flow, and p the price.
In the same way the total cost of emission cCO2 is formulated as sum over t for cCO2(t), the cost
of emission at each time step :

min cCO2 =
∑
t

cCO2(t)

=
∑
t

ṁCO2(t) · pCO2(t).
(3.2)

Last, the deviation from the target schedule is integrated as RMSE in terms of

min drmse =

√∑n
t (PEH(t)− Ptarget(t))

2

n
(3.3)

with Ptarget the demanded power of the target schedule provided by a grid operator and PEH the
total electric power flow of the system. For the EHG PEH is the sum over all α ∈ ε, considering
only power flows that influence the electrical interconnection. The objective functions evaluate
the generated energy and mass flow matrix and return a combined cost c = coperational + cCO2 in
Euro, as well a value for the deviation from the target schedule dRMSE in MWh.

3.3.8 Comparison of GLEAM and DEAP

As outlined in the Subsection 3.2.1, the application of an EA offers a range of benefits for
solving the scheduling problem. For this purpose, in the following subsection two different EAs
are applied and compared to identify a suitable algorithm for the further course of this thesis,
namely the EA GLEAM and the Distributed Evolutionary Algorithms in Python (DEAP), a
framework with several different EAs to use. Both are employed to optimize the schedules
of different DERs within the context of an EH. These two frameworks have been selected
because of their generic adaptability and wide range of parameterization abilities. Furthermore,
both have proven in several studies that they are able to deliver good results. In addition,
both frameworks offer parallelization to accelerate the optimization process. The comparison
is conducted on both, a qualitative and quantitative basis. The qualitative comparison aims
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Table 3.3: Comparison of GLEAM [75] and DEAP [43], employed settings are marked in bold

GLEAM DEAP
General

Programming language C Python
Design purpose generic with existing adaption to

scheduling tasks
generic

Parallelization BeeNestOpt.IAI [84] SCOOP [111]
Gene model

Chromosome length adjustable, 120-240 (random) adjustable, 120-240 (random)
Gene sequence relevant for evolution and

genotype-phenotype mapping
relevant only for genotype-
phenotype mapping

Deme applied, size = 8 -
segmentation 8 genes -
Initialization random, best, mix, best new random

Evolution
Mate selection linear ranking random
Offspring selection always, local least, always-elitist,

local least elitist
tournament, roulette, NSGA2,
SPEA2, random, best, worst, tour-
namentDCD, double tournament

Crossover 7 pre-defined functions 13 predefined functions
Mutation 21 pre-defined functions 6 predefined functions
Maximum generation with-
out acceptance in deme

40, adjustable -

Maximum generation with-
out enhancement in deme

200, adjustable -

Stop criteria fitness threshold -
Evaluation

Multi objectives yes yes
Weighting WS, CWS WS
Fitness mapping linear, exponential -

at general algorithm characteristics such as programming language, adaptability, and further
parameters. The characteristics are listed in Table 3.3. The quantitative analysis compares
the performance of both algorithms on the same scheduling problem, presented in the previous
Subsection 3.3.7. Here, the optimization quality in terms of fitness and the calculation time
are taken into account. The calculation time is compared by running the algorithm on the
same machine with the same scheduling task without any parallelization method applied. The
fitness can be compared as the mapping function of the objective values is identical in both
implementations.
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3.3.8.1 Qualitative Comparison

To compare the mentioned frameworks, GLEAM and DEAP, on a qualitative basis, first, the
general features are described and listed in Table 3.3. Furthermore, the different gene models are
described and the opportunities to modify these models within the investigated frameworks are
discussed. Next, the evolutionary process including the genetic operators applied are presented
in detail. Finally, the evaluation of the individuals of a generation is compared.
As listed in Table 3.3 the core algorithm of GLEAM is based on C, while DEAP and its im-
plemented algorithms are Python code. Both algorithms are generally designed to serve a wide
range of application and can therefore be categorized as generic. However, GLEAM has already
been adapted to the scheduling problem and is therefore, ready to use for the problem faced in
this thesis. DEAP, on the other hand, must be set up from the beginning and only provides the
basic functionality of a generic EA.

Both frameworks offer a ready-to-use parallelization option. While GLEAM is extended by [84]
to facilitate the parallelization options, DEAP is making use of the open source package Scalable
Concurrent Operations in Python (SCOOP) [111]. GLEAM also provides a flexible application-
oriented method to map

the decision variables and other degrees of freedom of the application to the genetic
representation [26, 27], which is used in the [encoding] described [in Subsection 2.5.2
and adopted from [80, 83]]. The [...] framework [used] [82] is based on parallelization
according to the coarse-grained or island population model [34]. Each island in turn
uses a structured population based on the neighborhood or fine-grained model using
a ring structure [63]. This combination of population models efficiently reduces the
risk of premature convergence and allows a self-adaptive balance between breadth
and depth search [64, 78]. Since the encoding used is based on dynamic length
chromosomes [80, 82], the related genetic operators described in [80, 78, 26] are
applied. For the island sub-population, a neighborhood size of 8 as used in most
applications of GLEAM is employed [27]. [9]

As described in Subsection 2.5.2, the gene model is encoded by the use of four alleles: "Unit ID",
"Start time", "Duration" and "Power fraction". This gene model is applied to both algorithms
for comparing reasons. The length of each chromosome is dynamically changing between 120 and
240 genes. While the gene sequence is relevant to GLEAM for both, the evolutionary process
and the genotype-phenotype mapping, to DEAP the sequence is just relevant for the genotype-
phenotype mapping. For GLEAM the concept of demes, which represent isolated parts of the
population, and segmetation of chromosomes is used to apply the genetic operators. Further
details are given in [26].
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3.3.8.2 Quantitative Comparison

The quantitative comparison of GLEAM and DEAP is conducted by appliying both algorithms
to the exact same problem instance. For the evaluation of their performance, the optimization
results for an exemplary week from the year 2022 are compared. Both, the operational cost
objective as well as RMSE objective which describes the approximation quality concerning the
target schedule, as introduced in Subsection 3.3.7, are compared on the basis of the obtained
fitness per day. DEAP is set up to use the Non-dominated Sorting Genetic Algorithm (NSGA2)
[45, 47]. The parallelization options of both frameworks are neglected due to the fact that
the focus of the comparison is on the optimization quality achieved after a given number of
generations. The evaluation of the chromosomes provided by both algorithms is conducted by the
EMS as depicted in Figure 3.2. The exponential mapping function used in GLEAM is adopted for
DEAP to ensure comparability. Furthermore, the WS is parameterized with 60% RMSE objective
and 40% operational cost objective. The fitness as WS per day of each optimization method is
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Figure 3.9: Boxplot of obtained fitness per day for comparing the two different heuristic algorithms GLEAM
and DEAP

42



3.3 The Energy Hub Gas

depicted in Figure 3.9. The upper fitness limit is set to 100000. The average fitness obtained
throughout the presented week for GLEAM is 74397 and for DEAP 62068. Furthermore, GLEAM
outperforms DEAP for every single day, while the differences between the days are similar except
for Monday and Thursday, where GLEAM performs drastically better then DEAP.

Taking the calculation time into account, DEAP is five times faster then GLEAM. On one hand,
DEAP generates less individuals to evaluate than GLEAM and on the other hand, only newly
generated individuals are evaluated at DEAP instead of evaluating the complete generation as
done at GLEAM. The evaluation of the entire generation is mandatory for GLEAM due to
the evolutionary process using the concept of demes. The difference in the total number of
individuals evaluated during evolution is caused by the differently applied genetic operators of
each algorithm.

3.3.9 Evaluation of the Energy Hub Gas

The usefulness of the modular EHG concept is exemplarily evaluated for the two
different test cases described in the previous Subsection 3.3.4. Two sets of evaluation
criteria are used for the evaluation of the EHG operation: (a) In order to assess the
EHG’s ability to deliver flexibility in different time scales, a power spectral density
analysis is performed. Short-term (minutes to a few hours) and mid-term (hours to
a few days) flexibility provisions can be individually weighted and attribute differ-
ent economic values to flexibility in different time scales. (b) Ecological (e.g., CO2

reduction of provided final energy), economic (e.g., operational cost), and efficiency
(e.g., conversion and storage energy losses) properties are assessed on the basis of the
resulting power flows either with a Sankey-diagram or the analysis of exemplary load
profiles. Furthermore, the attenuating effect of the EHG is evaluated by determining
the percentage reduction of the difference between the minimum and maximum active
power load with (∆Pw/EH) and without (∆Pw/oEH) the EHG interacting according
to Equation (3.4) over one day. The reduction of exchanged energy in the considered
grid segment is calculated to emphasize the potential for installing additional RESs,
measured in nominal power, that again would increase the volatility.
[3]

∆Pw/oEH −∆Pw/EH

∆Pw/oEH
= % Pdeviation (3.4)

“For the evaluation of the simulation results, exemplary days are considered that show the impact
of the EHG particularly clear. In addition, the entire period is evaluated in order to illustrate the
grid-serving operation of the decentralized plant network.” [3] In accordance to the comparison
described in Subsection 3.3.8, GLEAM is used as optimization algorithm.
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PEM: 13.42

Losses: 9.43

H2 Gas station: 0.64

Methanation: 9.16
CH4 output: 7.17
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Electricity output: 14.65

Electricity grid: 13.42

Figure 3.10: Energy flow chart in MWh for March 3rd, 2021 [3]

3.3.9.1 Test Case One

With TC1, the ability of the EHG to provide renewable chemical energy carriers
to sectors where the processes are difficult or expensive to electrify is evaluated.
The industrial area in TC1 described in the previous section with its demand for
chemical energy carriers can be supplied with the energy flows shown in [Figure 3.10].
Depicted are the energy flows, including the conversion paths of the individual energy
sources on March 3, 2021 including the total losses (9.4MWh) due to conversion
efficiencies. It is depicted that around 13.4MWh of electrical energy is converted to
around 9.2MWh hydrogen that is further processed to around 7.2MWh methane
and 0.6MWh hydrogen for the gas station. About 2.0MWh are either used as
heat energy or summed up within the total losses. By replacing about 7.2MWh of
natural gas with renewable methane, approximately 1.45 t of CO2 emissions can be
avoided. Most of the energy is [...] sourced from the natural gas grid and converted
to electrical power and heat by the CHP. However, the fluctuation in the electrical
grid can be used to [provide] other chemical energy carriers from renewable energy,
for example, hydrogen. A total amount of [32.5 t] of hydrogen is produced under the
grid-supporting operation conditions over the entire simulation period of [one year as
reported in Table 3.4]. By selling this product as green hydrogen, ignoring possible
uncertainties or [costs related] to certification, a revenue of around [186 000EUR],
according to the price of green hydrogen calculated by [11], could be achieved. [3]
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Figure 3.11: Resulting power w/ and w/o EHG interacting at March 3rd, 2021 [3]

Taking the complete simulation into account, the average exchanged energy is reduced by 7.2%

which results in a reduction of around 17.8MWh per day for the overlaying transportion grid.

A more detailed look into the electrical energy [...] is given in [Figure 3.11]. Here, the
electrical load profile at the ECP with and without the EHG interaction is shown.
Negative values, which do not occur in this case, would mean backfeeding into the
transmission grid level. The attenuating potential of the EHG can be quantified for
the considered date by a reduction of 29.8% concerning the maximum power variation

Table 3.4: Summary of the results for TC1 over the complete year 2021

Parameter Value

Average Pdeviation 11.6%

Relative electrical energy exchange reduction 7.2%

Total electrical energy exchange reduction 6497MWh

Produced H2 32.5 t
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Figure 3.12: Power Spectral Density (PSD) of the power flow w/ and w/o the EHG on March 3rd, 2021 [3]

over the course of one day according to [Equation (3.4)]. This relieves the existing grid
infrastructure and opens the possibility for additional RESs. If the entire simulation
period [...] is considered, the average attenuation through the EHG is 11.6%.
To evaluate the [...] provided flexibility and hence the electricity grid supporting
effort the EHG can achieve, a PSD analysis is conducted and shown in [Figure 3.12].
The relative power variation c with and without the EHG interacting is depicted over
the frequency f for March 3rd, 2021. The solid line depicts the power variation with
the EHG interacting. For a frequency of 2h−1 or lower, the EHG can reduce the
fluctuation. Around frequencies of 15 min−1 the power variation is even increased
which in combination indicates that the flexibility provision by the presented EHG
instance is only useful for longer time periods. [3]

3.3.9.2 Test Case Two

In TC2 the evaluation is focused on the [goal] of relieving the grid infrastructure
for increasing renewable feed-in. Therefore, an exemplary load curve from 25th of
February, 2021, is evaluated and shown in [Figure 3.13]. The power flow within
the considered grid segment is depicted with and without the EHG interacting. A

46



3.3 The Energy Hub Gas

Figure 3.13: Resulting power w/ and w/o EHG interacting on February 25th, 2021 [3]

reduction by 13.1% is achieved concerning the difference between maximum load and
maximum feed-in according to [Equation (3.4)]. [3]

Furthermore, the energy exchanged within the evaluated day at the ECP is abated
by 30.2%. The colored areas in [Figure 3.13] mark the positive (green) and negative
(red) power adjustments achieved by the EHG interacting and resulting in a total
reduction of 24.8MWh within one day. The red area in [Figure 3.13] describes the
additional load caused by the EHG to convert electrical power to hydrogen for either
direct use or further processing within the methanation. The total additional load
summarized over the evaluated day is 11.98MWh. This reduction, in combination
with the attenuated load curve, offers the opportunity to install additional RESs or
integrate existing but curtailed RESs on the same scale without extending the grid
infrastructure. Using the curtailed energy, there is a potential reduction in CO2 emis-
sion of around [4.7 t] within the considered day according to the emission coefficients
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Table 3.5: Summary of the results for TC2 over the complete year 2021

Parameter Value

Average attenuation at ECP 4.9%

Relative electrical energy exchange reduction 7.7%

Total electrical energy exchange reduction 4417MWh

Produced H2 46.7 t

[(395 g/kWh) given by [52]]. Furthermore, the average compensation paid by utili-
ties to RES operators for curtailment under feed-in management is 124EUR/MWh

according to [32], which results in additional revenues of around 1485EUR. [3]

At the same time, the amount of green hydrogen or methane provided by the EHG
by using this energy, which would be curtailed, results in additional income. The
evaluation of the entire simulation period of [one year, reported in Table 3.5], shows
an average reduction of power fluctuation by 4.9%. Furthermore, the average energy
exchanged at the ECP is reduced by 7.7% [resulting in a total amount of 4417MWh.
The production of hydrogen accumulates to 46.7 t for the entire year.] [3]

PEM: 9.34

Losses: 7.22

H2 Gas station: 0.70

Methanation: 6.12
CH4 output: 4.79

Heat output: 12.91

Natural gas grid: 28.41 CHP: 28.41

Electricity output: 12.13

Electricity grid: 9.34

Figure 3.14: Energy flow chart in MWh for February 25th, 2021 [3]

The energy depicted by the colored areas in [Figure 3.13] is converted and conditioned
as shown in more details in [Figure 3.14]. Depicted are the energy flows, including
the conversion paths of the individual energy sources on February 25, 2021 including
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the total losses of around 7.2MWh due to conversion [inefficiencies]. It is depicted
that around 9.3MWh of electrical energy is converted to around 6.8MWh hydrogen
that is further processed to around 4.8MWh methane and 0.7MWh hydrogen for
the gas station. As in TC1, most of the energy is sourced from the natural gas grid
(28.4MWh) and converted to electrical power (12.1MWh) and heat (12.9MWh) by
the CHP. [3]

To assess the [...] flexibility provision and hence the electricity grid supporting service
the EHG can deliver, a PSD analysis is conducted. [Figure 3.15] shows the relative
power variation c with and without the EHG interacting over the frequency f for
the evaluated day. The solid line depicts the power variation with the EHG trying
to follow the schedule provided by the grid operator. For a frequency of 1h−1 or
lower, the EHG can reduce the fluctuation, but within higher frequencies, there is no
effect on the power variation. Although the EHG is equipped with components that
technically can adjust their power in the frequency range of seconds, [in the present
co-simulation framework it is not possible to make use of this to reduce the power
variation]. [3]

Figure 3.15: PSD of the power flow w/ and w/o the EHG on February 25th, 2021 [3]
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3.4 Dynamic Fitness Mapping for EA-based
Optimization

Parts of the following section are taken exactly from [8] and have been supplemented. The
large number of plants, the large number of decision variables and the tracking of different
objective functions represent a suitable optimization problem for EAs, as elaborated in the
previous Subsection 3.2.1 and stated in [107, 83, 80, 17, 31]. “Many of the EAs employed use
a normalized mapping of the objective values to corresponding fitness values to apply their
particular evolution strategy in order to serve a wide range of applications and especially for the
optimization of multiple objectives [27].” [8]

The functional relationship between an objective value and the fitness can be defined
in different ways. A common practice is the use of an exponential function[, as
depicted in [Figure 3.16].] This allows the gradient of the fitness to increase with
increasing quality of the proposed solutions, in order to foster the search process
of the employed EA. The disadvantage of this mapping function is that individual
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Figure 3.16: Exemplary mapping function for EAs

50



3.4 Dynamic Fitness Mapping for EA-based Optimization

objective functions can be neglected in MOO tasks if they are very far from the
optimum [and the gradient is rather small]. [8]

In this case, a change in the objective value results in a small gain or loss for the respective
fitness. More generally speaking, the EA is less sensitive at low objective values.

Furthermore, the mapping is used to normalize different objectives to combine them
within a MOO.

This mapping function and the boundary values that define the fitness range within
which the proposed solutions are evaluated, play a decisive role in the search for the
best possible solution within a complex search space [27]. If the boundary values for
the translation into fitness are poorly chosen, it is difficult for the EA to find a good
solution when searching the solution space. [8]

“Whether an objective value is neglected due to the mapping function is significantly influenced
by boundary values of the defined exponential mapping function. This leads to the fact that
the determination of these boundary values [is crucial].” [8] “Unfortunately, expert knowledge is
required to determine these boundary values, or it may even be impossible to determine them
at all in advance.” [8]

So far, there are different approaches to deal with this challenge. As a simple attempt,
an average achievable value can be used, as in previous works [5, 6]. However, this
neglects the different possibilities, depending on the optimization task. To address
this challenge, a concept for dynamic evaluation of objective functions is presented
in the [following Sections]. [8]

“In addition, in the field of [DER] scheduling, the possible boundary values change depending
on the time and the given surrounding conditions. Thus, to address this challenge, a dynamic
adaptation of the mapping function to the optimization task at hand is needed.” [8]

3.4.1 Related Work

“[... S]everal studies have addressed dynamic optimization problems using EAs.” [8] Real-world
applications of EAs often face dynamic changes by nature since the objectives, some of the
environmental settings or parameters may vary over time [28].

In [the] literature, the term mostly refers to optimization problems with a changing
fitness landscape during evolution. Jiang et al. provide a survey of different works
[81]. In the present work, the fitness landscape does not change during evolution, but
between [different problem instances, respective different] optimizations of schedules
for each day. This poses the problem of the dynamic calculation of the reference
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values for each optimization [run]. Tracking of moving optima during evolution is
not necessary.

In MOO many approaches do not explicitly calculate fitness values, but normalize
objectives and choose the best individuals according to normalized and aggregated
objectives. In [85], an overview of [different] MOO approaches for fitness calculation
and normalization using genetic algorithms, a subcategory of EAs, is provided. Re-
gardless of whether the objective functions are normalized or a mapping function is
used, reference values are necessary. A description of how reference values are used
to create mapping functions can be found in [Subsection 3.4.2].

For many optimization problems, the range of objective values, respective the bound-
ary values, is not known before optimization [134]. Hence, boundary values are often
calculated during evolution. A common approach to estimate the reference points
during evolution is to use the objective values of the current population. Accord-
ingly, the best objective values of the current population are used to create the ideal
vector, and the worst objective values of non-dominated solutions are used to create
the nadir [...] value vector[, that is the worst objective value vector] [70, 91].

A drawback of estimated reference values during evolution is their lack of accuracy
at the beginning of the evolution [70]. Furthermore, using already found objective
values for an ideal point, also referred to as an upper boundary value, can lead to too
much exploitation, since it cannot be ruled out that the solutions found are in a niche
with a local optimum, which leads to a false upper boundary value. Additionally, the
ideal point can mislead the search, if it is close to one true ideal objective value and
far from the true ideal value of another objective [70]. Another disadvantage is that
reaching a certain fitness value cannot be used as a termination criterion, due to the
moving boundary and fitness values. This can prolong the calculation process. To
address these challenges, in the present concept, the boundary values are calculated
based on predicted external influences and a simplified model of the components to
be scheduled as described in [Subsection 3.4.2].

Wang et al. address the drawbacks of estimating the ideal point during evolution
by adding or subtracting a dynamic variable ϵ to the ideal point [136]. Using a
minimization problem as an example, the dynamic ideal point is calculated by using
the smallest objective values [of a population] and subtracting ϵ. At the beginning of
the evolution, ϵ is set rather high. This is done since the early population’s objective
values are likely to be far away from the true ideal objective values and the high ϵ

maintains the population’s diversity. As evolution progresses, ϵ is set smaller since
the population’s objective values get closer to the true ideal point, and convergence is
intended. This approach allows balancing exploration resp. diversity and exploitation
resp. convergence. The method is applied to problems where the true ideal point is
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not known and in comparison to problems where the true ideal point is known. The
analysis shows good results when the true ideal point is not known in advance. When
knowing the true ideal point, the method still performs slightly better than using the
static ideal point. Since this work assumes the possibility of adjusting the evaluation
of the objective values at its runtime, it is not easy to apply to certain EAs, as for
example GLEAM2 [26].

In [94], Liu et al. propose a method for calculating reference points, especially the
ideal point in a preceding evolution. They divide the optimization process into dif-
ferent stages. [In the first stage], the MOO is divided into n SOO problems, where n
corresponds to the number of objectives. Then for every SOO problem, an optimiza-
tion is performed using an EA. The best values obtained in these SOOs are then
used to create the ideal point. In the following stages, the MOO is performed by
the EA with the previously calculated ideal point. In empirical tests, the proposed
method achieved good results. A drawback of the optimization in several stages is the
additional computational effort, which is addressed in the present work by a single
stage optimization approach.

Zhou and Jiao introduce a method for calculating reference values before evolution
for cloud workflow scheduling [144]. The objectives in Zhou’s work are minimizing
makespan and cost. Therefore, the ideal vector consists of the minimal makespan
and the minimal cost. Accordingly, the worst vector contains the maximal makespan
and cost. In the present work, the minimum makespan is estimated by scheduling
all tasks on the fastest resources. Analogously, the minimum cost is estimated by
scheduling all tasks on the cheapest resources. The maximum makespan is estimated
by scheduling all tasks on one resource. The maximum cost is estimated by scheduling
all tasks on the most expensive resource. The approach leads to good results based on
the diversity of the population at the beginning of the evolution and the convergence
when approaching the estimated ideal point. This approach is adjusted in the present
thesis to the needs of scheduling DERs within an EH to fulfill different contradicting
objectives. [8]

3.4.2 Concept of Dynamic Mapping

In the following section, the conceptual approach is presented followed by a detailed description
of the boundary value determination.

[It is assumed that] the employed EA maps each objective value to a fitness value and
this mapping cannot be changed during the optimization process. Furthermore, the

2 https://github.com/KIT-IAI/Gleam
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Figure 3.17: Process overview of the evaluation within the EMS and further mapping of DOF to fitness within
the optimizer [8]

prediction of external influences, e.g., prices, is considered to be perfect as finding an
appropriate forecasting method is out of scope for this [thesis]. [8]

3.4.2.1 Conceptual Approach

In order to obtain the full functionality of the evolutionary optimizer, e.g., GLEAM,
multiple objective functions, and the respective mapping functions have to be adapted
to the boundary values caused by external influences. This adaptation is necessary
for each problem instance in the case of daily scheduling of DERs, since the external
influences, e.g., prices for energy, can change over time. This process is depicted in
[Figure 3.17]. Within the EMS box (top left corner in [Figure 3.17]), the technical
boundaries of the underlying physical simulation models are applied to the schedule
suggestions from the optimizer. Based on a forecast for the day to be optimized,
the boundary values for each each objective are calculated. These boundary values
are a theoretical [maximum and minimum] for each objective function. These values
are to be understood as [upper and lower bounds] for the current optimization task.
Instead of the direct absolute result of the objective function evaluation, the DOF
as the relative value is submitted to the optimizer to be mapped to a respective
fitness value. For this purpose, the schedule suggestions are evaluated based on the
objective functions, and the DOF is determined by setting the evaluation result in
relation to the adjusted boundary values of the objective functions. The mapping to
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Figure 3.18: Mapping function between DOF and fitness [8]

the fitness within the employed EA can therefore be determined statically because the
DOF is calculated dynamically in accordance with the boundary values, as depicted
in [Figure 3.18]. In this figure, the fitness assigned to a certain DOF is plotted.
From this point, the mapping within the EA is dynamically adaptable because of the
aforementioned use of the calculated DOF inside the EMS. [8]

3.4.2.2 Boundary Values

The determination of the boundary values used in the present concept to calculate
the DOF spans the solution space for each objective function to be searched by the
EA. For this purpose, forecasts of the external influences are used, such as price in-
formation. The components of the EHG are first divided into conversion and storage
plants according to the concept presented in [57], since different technical charac-
teristics require adapted calculations. For example, the SOC of a storage facility is
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Figure 3.19: Process of determining the boundary values on the example of storage units with pmin and pmax

as minimum and maximum price of a sorted price list [8]
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relevant for the calculation of its maximum achievable profit. By taking the nom-
inal values of each conversion and storage plant into account for the calculation of
the boundary values, a simple model of the respective plant is formulated and sub-
sequently evaluated [with] the time-dependent price and power information. These
simplified models are used to estimate the best and worst case for each optimization
task and each objective separately. The exemplary calculation methodology for a
storage is shown in the flowchart in [Figure 3.19]. In this figure, a storage facility is
discharged at the maximum price for electricity and charged again at the minimum
price. Furthermore, the SOC is taken into account to determine the capacity for
charging or discharging the storage. To calculate the energy to be charged or dis-
charged, referred to as ∆SOC in [Figure 3.19], the nominal power is multiplied by the
duration of the considered time step, e.g., 15 minutes. The calculation method for
conversion plants is simplified since only the nominal power and the price information
of the used energy sources have to be taken into account. [8]

3.4.3 Evaluation of the Dynamic Objective Mapping Function

In the following, first, the evaluation environment is described. Second, an analysis is
conducted to demonstrate the enhanced parameterization ability of the EA‘s weights
between different objectives with the presented concept. Finally, the results of the
applied concept are presented in comparison to a Base Case without the dynamic
objective mapping. [8]

3.4.3.1 Evaluation Environment

The evaluation environment is adopted from [6], and the used test case data, e.g.,
price information as forecast and a target value for the electrical output of the EHG,
is taken for the year 2019. As in [6] and already introduced in [Section 3.3], the system
consists of three parts: First, the EMS that is responsible for the evaluation of the
proposed schedules. Second, the optimizer, i.e., GLEAM as a representative of an
EA that suggests schedules for the EHG, maps the evaluation results to a normalized
fitness value and conducts the evolution process according to [83, 27]. Finally, the
simulation environment that calculates the results based on the physical models of
the EHG‘s components[, given] the final schedule that has been found during the
optimization process [...]. The considered objective functions are the total operational
cost, further referred to as “cost objective”, and the deviation between a given target
[schedule] for the electrical output of the EHG and the scheduled electrical output of
the EHG, calculated as [RMSE]. The target [schedule] is meant to be a control signal
of an external authority, e.g., a DSO or TSO, to retrieve flexibility of the EHG. The
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Figure 3.20: DOF results sensitivity analysis for a single day [8]

better this target [schedule] can be approximated by the scheduling optimization, and
subsequently by the EHG itself, the more grid supporting service can be provided by
the EHG. [8]

3.4.3.2 Parameterization Analysis

To analyze the ability of the used EA to weight different objectives within a MOO
according to its parameterization, as described in [Subsection 3.4.2], two experiments
are conducted. First, the Base Case with fixed boundary values for the evaluation of
the objective functions is investigated with step-wise changed weights of two objec-
tives, i.e., cost and [RMSE]. Second, the presented concept is applied, and again the
weights of both objectives are iterated to obtain the PF [as described in Section 2.4].
[Figure 3.20] shows the respective results for the scheduling of an exemplary day,
while the Base Case is expressed also in DOFs even though during the optimization
process the absolute boundary values are used for evaluation of the schedule sugges-
tions. The weights of both objectives are varied from 0% to 100% in steps of 10%.
The Base Case results show clearly that the parameterization of weights has no in-
fluence on the search of the EA except for the experiments, which consider only one
objective by weighting one objective either with 0% or 100%. The improved mapping
through the introduction of the DOF enables the targeted parameterization of the
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Figure 3.21: Boxplot of the simulated year 2019: in comparison the applied EA concept and the Base Case [8]

optimization based on the different weightings of the respective objective functions,
as it is depicted by the results of the Concept Case in [Figure 3.20]. As a further
result of this analysis, an estimation for the cost of flexibility can be found in the
difference of the DOF for the cost objective between the weightings of 0% and 100%
in the Concept Case. With an objective weighting of 100% on the cost objective, the
DOF reaches nearly one, while 100% weighting on the [RMSE] decreases the DOF of
the cost objective to approximately 0.55. This means that around 45% of the max-
imum possible revenue for the considered day is spent on the provision of flexibility
by weighting this objective with 100%. [8]

3.4.3.3 Comparison of Base Case and Concept Case

As an overall evaluation of the concept, [Figure 3.21] shows the results of the achieved
DOFs for the Base Case and the Concept Case for the year 2019. Again, [for the sake
of comparability], the DOFs for the Base Case is determined afterwards [...]. The
[RMSE] objective is weighted with 60% and the cost objective with 40%, respectively.
This weighting is applied as a result of the previously mentioned parameterization
analysis in [Subsubsection 3.4.3.2]. The average DOF at the Concept Case is 10.2%
higher than the Base Case and leads to significantly smaller [variance] around the
median. This results in more uniform and better optimization solutions. [8]
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The following chapter is dedicated to find an approach answering the RQ 2: Which (dis-) advan-
tage can a dynamization of EA based optimized scheduling provide to enhance flexibility provision
by DERs and RQ 3: To what extend can a ML model improve the dynamization of EA based
scheduling? For this purpose, in a first step the general opportunity to dynamically adapt the
time resolution at finding a suitable and near optimal solution schedule to follow a given target
schedule is investigated. Furthermore, this chapter addresses the outlined challenges from pre-
vious Section 3.3 on the basis of the general knowledge about the effectiveness of dynamically
allocating the computational effort of an optimization algorithm, as elaborated to answer RQ 2.
An answer to RQ 3 is given in a second step, by applying ML methods to predict the optimiza-
tion quality. This approach is evaluated with two different EAs employed for the optimization
problem. This Chapter is based on the works [6, 9].

4.1 Problem Statement

As introduced in Chapter 1 and further detailed in Subsection 3.3.7, scheduling of DERs is a
difficult task, especially when considering multiple objectives.

For the scheduling of DERs within an EH, an EMS is needed [53]. By using a
multi-objective heuristic optimization algorithm like [an EA, as elaborated in Sub-
section 3.2.1], the EMS calculates appropriate schedules for the sub-plants of an EH
that can meet a third-party control demand of, e.g., a power network operator and
additionally respect internal optimization criteria and boundary conditions. It then
uses these schedules to coordinate the internal power flow between dispatchable gen-
eration units and loads. In the current concepts of EHs, several problems of finding
a near optimal solution for internal schedules that also meets the external control
demand are unsolved. For example, as stated in [5] [and further described in Sub-
section 3.3.9], simulation results show that an EH using an EA can have difficulties
optimizing schedules that cover a load with high variability. Moreover, analyzing
the flexibility provision in those cases shows that the used EA optimization solution
could not reduce the relative power variation of the specified load in frequencies above
[1h−1 and, therefore, provides] no flexibility in higher frequencies. [7]
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In the context of scheduling DERs, it is common to use a fixed time interval length of, e.g.,
15 minutes. This results in a homogeneous distribution of decision variables over the optimized
time horizon. Doing so, differences in the difficulty of finding adequate solutions for individual
parts of the optimized time frame are neglected in general. To overcome this difficulty, a general
approach that focuses the computational effort on the challenging areas within the search space
is introduced in the following Section 4.2. This approach yields a two-step optimization that
requires additional calculation time. This increase in calculation time is addressed in the further
course in Section 4.3 by applying ML to predict in advance the quality of the schedules proposed
by the EA optimization. The associated computational effort is directed on the basis of the
forecast delivered by the trained ML model.

4.2 Basic Approach

In the following section, parts are exactly taken from [7] and have been supplemented, a basic
approach to dynamically allocate the decision variables of an EA according to the complexity
of the search space is introduced. An improvement of the optimization results can be achieved
in many different ways: One obvious approach is to increase the parameters for exploration and
exploitation which are, in terms of an EA, the population size and the number of generations
as explained in Section 2.5. Changing these parameters can improve the optimization quality
with a trade-off of more calculation time and is therefore a good benchmark to compare with the
results of testing the new optimization approach presented in Subsection 4.2.2. Analyzing the
EA settings with the optimization process described in Section 3.3 shows how much impact the
population size and generations have on the optimization results as well as how the calculation
time changes with it. Table 4.1 shows the results of the meet demand function and the calculation
time in hours for each optimization as well as the average of both values over all optimizations.
The tests are done with 50 generations and population sizes of [50, 100, 200, 800, 1000] as well as
for [100, 150] generations and population sizes of [50, 100, 150]. Every setting is tested only once
and a test with the same setting will have a different result due to the randomness of EA’s. For
a robust representation of the performance of the EA with these settings, more tests are needed.
But, due to the computing time, it is not easily affordable and tendencies are sufficient for the
evaluation of the approaches in the further course of the thesis. It must also be mentioned that
the evaluations are executed on a local machine.

Nevertheless, the results show that with 50 generations an increase in the population size does
not always lead to an improvement in the RMSE objective result. Additionally, it shows that
after a population size of 200, no significant improvement can be noticed. For 100 generations the
RMSE performance did also not improve from a population size of 50 to 100. An increase in the
number of generations results in nearly all tests to an improvement except for optimization run
1 and 7 for the change of [100gen, 50pop] to [150gen, 50pop]. Comparing the values for [50gen,
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200pop] with [150gen, 50pop] shows that with the same calculation time and setting [150gen,
50pop] an average increase of the RMSE result of 0.35 is achieved. Inspecting the results of the
individual optimization runs which correspond to different days clearly show that optimization
run 1, 6 and 7 are performing always much better than for the other days.

In conclusion, an increase in the number of generations resulted in a better RMSE value than
an increase in the population size in comparison to the calculation time. This shows that a
high population size is not always needed for an acceptable exploration of the search space, but
instead, the exploitation of problem domain oriented search strategies have high potential for
improvements of the RMSE objective. Also the test results show a clear difference of optimization
complexity between different days.

Table 4.1: EA settings tests with different population sizes and numbers of generations

Optimization run 1 2 3 4 5 6 7 Average

RMSE [MWh] 0.44 2.39 2.68 2.95 3.18 1.43 0.67 1.96
50pop

Calc. time [h] 0:08 0:08 0:08 0:08 0.09 0:08 0:08 0:08
RMSE [MWh] 0.70 2.95 2.88 2.79 3.14 1.35 0.66 2.07

100pop
Calc. time [h] 0:13 0:14 0:15 0:15 0:15 0:14 0:13 0:14
RMSE [MWh] 0.58 2.41 2.37 2.25 2.58 0.95 0.61 1.68

200pop
Calc. time [h] 0:28 0:30 0:30 0:30 0:31 0:28 0:26 0:29
RMSE [MWh] 0.45 2.33 2.24 2.10 2.48 0.91 0.49 1.57

800pop
Calc. time [h] 2:40 3:07 3:06 3:19 3:34 2:44 2:40 3:01
RMSE [MWh] 0.45 2.27 2.46 2.11 2.67 0.90 0.46 1.62

50gen

1000pop
Calc. time [h] 3:42 4:35 4:48 4:22 5:02 3:51 3:39 4:17

RMSE [MWh] 0.36 2.00 2.16 2.50 2.36 0.80 0.48 1.52
50pop

Calc. time [h] 0:17 0:17 0:18 0:17 0:20 0:17 0:17 0:17
RMSE [MWh] 0.33 2.28 2.13 2.37 2.47 0.79 0.47 1.55

100pop
Calc. time [h] 0:27 0:35 0:44 0:37 0:34 0:29 0:31 0:33
RMSE [MWh] 0.38 1.99 2.26 1.82 2.57 0.65 0.46 1.45

100gen

150pop
Calc. time [h] 0:45 1:02 0:58 0:58 1:01 0:48 0:45 0:53

RMSE [MWh] 0.54 1.92 1.99 1.65 1.99 0.69 0.55 1.33
50pop

Calc. time [h] 0:25 0:27 0:26 0:28 0:34 0:27 0:27 0:28
RMSE [MWh] 0.26 1.95 1.70 1.48 2.04 0.60 0.36 1.20

100pop
Calc. time [h] 0:47 1:00 0:54 1:07 1:20 0:50 0:49 0:58
RMSE [MWh] 0.29 1.89 1.65 1.71 2.13 0.55 0.37 1.23

150gen

150pop
Calc. time [h] 1:30 1:38 1:41 1:37 1:33 1:26 1:07 1:30
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4.2.1 Related Work

The proposed adaptive optimization approach makes use of time steps of varying length, that is,
different time scales.

In current research, several concepts using more than one timescale are discussed, e.g.,
multi-timescale coordinated optimized scheduling in [139], multi-timescale rolling op-
timal dispatch in [115], timescale adaptive dispatch in [90] and multi-timescale model
predictive control in [37], which are grouped in the present thesis under the term
multi-timescale scheduling. The basic idea is using multiple timescales for calculat-
ing the optimal unit commitment of various energy resources [88]. Multi-timescales
are mainly used in the literature for solving problems regarding uncertainties in the
optimization, e.g., in [18, 115, 90], separating optimization for economic and oper-
ational factors, e.g., in [141, 140, 37], improving the control in energy systems or
shifting deferrable loads in [100]. In this context, a rolling optimization approach
is often used, allowing different look-ahead periods to combine short-term and long-
term benefits [89]. In the following, different multi-timescale scheduling approaches
are described to distinguish them from the present work. [7]

In [139], a hierarchical optimization approach with three different timescales is used
to schedule a combined system of RES, thermal generator, hydro pumped storage,
and batteries. The first timescale is a day-ahead scheduling for thermal units based
on a 24 h ahead forecast. For optimizing the dispatch of hydro-pumped unit power
outputs, a second scheduling is proposed in which a day-ahead schedule as well as a 1 h

ahead forecast are used. On the smallest time scale of 15 minutes, the aforementioned
schedules are taken into account to obtain an optimal battery system schedule. [7]

But in summary, each time scale is used with a fixed interval length.

In [18], an approach for an integrated multi-timescale optimization of a coupled multi-
type energy supply similar to an EH is presented. Regarding multi-timescale oper-
ation, a day-ahead schedule takes the uncertainty of RES generation into account.
Additionally, real-time dispatch for storage, combined cooling and heat power, and
ice storage air conditioners is used to react to fluctuations in RES and demand.

In [115], a multi-timescale rolling optimal dispatch framework is developed to cope
with the impact of uncertainty in load on hybrid micro-grids at timescales of day-
ahead and intraday. For the day-ahead scheduling, a distributed robust optimization
model considering uncertainties in source-load power is used [with a fixed interval
length of 1 h]. While performing the intraday rolling optimization with a fixed 15min

resolution, a relaxed penalty cost for the final state of charge is added to ensure cyclic
regulation of the energy storage.
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In [90], the selection of the timescale is based on a threshold which is defined by a
confidence interval. The optimization addresses the scheduling of a RES on an island
and has to deal with very high uncertainties. When the prediction error exceeds the
available reserve, the energy system can become unstable. Therefore, the timescale
is dynamically selected to stay within the confidence interval.

A multi-timescale economic scheduling strategy for a virtual power plant is presented
in [141]. Their goal is to unlock the potential of a large quantity of DL by participating
in the wholesale energy and reserve market. A day-ahead bidding and real-time
operation are used for the multi-timescale scheduling. With the proposed strategy,
efficient management of a large number of DL can be realized while reducing energy
management complexity and increasing overall cost-effectiveness.

A multi-timescale coordinated optimization of an EH is proposed in [37]. It includes a
global optimization of day-ahead economic dispatch, a local intraday model predictive
control with 15 minute timescale and a minimization of the total adjustment amount
of all controllable devices every 5 minutes.

The authors of [140] propose a multi-timescale model for regionally integrated energy
systems. The multi-timescale aspect is used on two levels in the model. On the first
level, it is applied to differentiate between day-ahead and intraday scheduling. For
day-ahead scheduling, the objective is to minimize costs in scheduling the energy
system. The intraday scheduling uses a rolling [horizon] optimization which is divided
into three different control sub-layers. They achieve a balance of supply and demand
in the system and can also restrain the fluctuation of renewable energy and load in
the intraday scheduling.

In [143], the main goal is to coordinate the substation on-load tap changer operation
on an hourly time scale [in the context of smart distribution grids. This is conducted
in a power network with PV inverters and battery storage on a 15 minute interval
basis].

The usage of multi-timescale scheduling in the context of deferrable appliances in a
smart home is proposed in [100]. The appliances are categorized into two groups.
While one group can be shifted on an hourly scale within a day, the second group
can be additionally shifted between days.

With the main focus on managing uncertainties in the demand and power generation
of RES, multiple methods are applied. In [18], several fixed timescales are used for
the optimization, and specific facilities are assigned to one of these. Additionally, in
[139, 115] the timescales are optimized in hierarchical order so that finer timescales
use the result of a coarser timescale optimization as an input. In [90], the timescales
are dynamically chosen. Another approach is presented in [141, 140, 37] using a
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day-ahead timescale with focus on economic and intraday timescales for operational
aspects. [140] introduces –as a multi-timescale approach– an intraday rolling opti-
mization for control, and is applied with a special focus on battery systems in [143].
Finally, [100] applies different timescales to shift deferrable loads.

However, in the aforementioned related work, there is no approach that uses different
timescales to apply adaptive time segments for scheduling flexibility provided by
DERs on a day-ahead scale. The method presented in [Section 4.2] uses different
timescales within the same schedule to solve the problem of optimizing schedules for
an EH to follow a target schedule with different DERs included. In other words, all
DERs are considered in the day-ahead scheduling without distinction of specifically
related timescales. Timescales are therefore applied using adaptive time segments
which are chosen based on the deviation to the target schedule. Furthermore, the
EA implemented for evaluation of the present method relies on [27, 82, 83]. [7]

4.2.2 Concept

The goal of the present method is to improve the EH operation to enhance the
flexibility provision of the EH and reduce the total power exchange of the EH at its
electrical connection point. The total power exchange results from the superposition
of the calculated schedules provided for each subsystem to meet a third-party target
[schedule]. The main task of the optimizer, such as EA – beside other objectives like
economic cost – is to minimize the difference between the power output of the EH
PEH(t) and the third-party target [schedule] Ptarget(t) for all time segments according
to [Equation (3.3)]. [7]

“The general idea of [the] method for solving the problem described is to concentrate the com-
putational effort of the EA on specific time segments where there is high variability in the given
target [schedule].” [7] “Optimizing a complete schedule with an EA in higher time resolution
but with the same computational effort does not necessarily lead to an improvement of the
optimization as only a larger search space is inspected.” [7] This is due to the fact that the
number of decision variables increases with the temporal resolution of a schedule. “The present
method allows an EA to generate schedules with more control point changes for those segments
than for others to achieve a better approximation.” [7] By allocating more control points in a
certain time segment, the computational effort to find a solution in this specific time segment
is scaled. According to the time resolution considered for this segment, the focus is to shift the
computational effort to time segments that are more difficult to optimize.

[On the other hand], this approach can also be used vice versa. If there is little to no
fluctuation within a time segment, there is no need to provide more than one schedule

66



4.2 Basic Approach

entry for this segment. The computational effort is [made] adaptable for each time
segment. Time resolution determines the number of entries in the schedule and,
therefore, also the number of possible solutions to approximate the target [schedule]
for the power output of an EH.
[7]

The time resolution in the optimized schedules can be inspected from two perspec-
tives, the use case and the optimization algorithm, namely the EA in combination
with the EMS. In the perspective of the use case, the time resolution determines
how fast an EH can respond to changes in the target [schedule]. For example, if the
demand changes in 15 minute intervals and the schedule only provides control steps
every 30 minutes, the EH is not able to respond to changes below 30 minutes. The use
case benefits only from a higher time resolution as long as it is not more granular than
the input data. Looking at the EA calculation time or the number of populations
analyzed is another perspective. An EA uses genetic operators, which are based on
random changes in the solutions to find new and better solutions over multiple gen-
erations. In general, scheduling DERs is an NP-hard problem, and therefore, when
applying an EA, the goal could not be to find the best possible solution but only a
good approximation in timely manner using the available computing resources. The
more fine-granular the time scale for schedules is defined, the larger the search space
which directly results in higher computation time for finding an appropriate solution.
[7]

The proposed method makes use of the general process described in Section 2.5, and especially
of the translation from a chromosome to a schedule.

The value of the power output of a subsystem in a certain scheduling interval, as well
as the start time and duration are not interpreted by the EA itself, but by the EMS.
In the employed EA, a schedule (chromosome) is represented by a chain of set points
(genes) which are interpreted as a schedule with a certain number of time intervals.
The set point value is a unitless number between -1 and 1. "Duration" and "Start
Time" can be interpreted as relative values, whereas the "Start Time" is the index
of the corresponding schedule segment. It is one main duty of the EMS to transform
the contextless information within the chromosomes to their technical interpretation
context. Thereby, translating the unitless and relative values to their absolute val-
ues, e.g., the real power output of a technical sub-system will be calculated by the
EMS based on the relative value given by the optimizer and configuration parameters
specifying how to interpret this number for the given subsystem. The same trans-
formation will be applied for the scheduling interval by translating index values into
start times and durations into time intervals. A second important duty of the EMS
is then to calculate objective functions and to verify the boundary conditions. [7]
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Figure 4.1: Adaptive optimization process overview [7]

The complete optimization process, including the implemented use case, is depicted
in [Figure 4.1]. First, the current state of the system under concern is determined
either via the system simulation (1) or, in a real-world application via sensor data
of real DERs, to initialize a new optimization run with low time resolution (2).
Then, the first optimization is executed (red box, 3-8). The optimizer performs a
loop where the EA first generates new populations (3) by applying genetic operators
to the (initial) populations (8). The schedules are then sent to the EMS, which
translates them into the technical context (4) and then evaluates the schedules (6)
by first calculating and checking the boundary conditions (5) and then calculating
the objective functions. With the results from the evaluation from the EMS a new
fitness value is calculated in (7) by the optimizer. If the fitness value is too low, the
optimizer performs the next generation cycle. If the fitness threshold configured [as
termination criterion, according to Subsection 2.5.4,] is reached, the optimization run
ends and the found schedules are translated into the technical context [(12)] and are
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then send to the simulation [(13)]. The simulation will apply the schedules to the
system model, which calculates the resulting behavior of the EH at its connection
point to the external network [as described in Section 3.3]. These values can then
be compared to the given target [schedule] curve to calculate how well the internal
schedules approximate the target [schedule]. In this first optimization run using a
low time resolution, the EA has less options to respond to changes in the target
[schedule]. Giving only one set point for a larger time interval that approximates the
given target [schedule well] is unlikely. Hence, after the first optimization run, an
analysis of the approximation quality is performed where the time segments [that do
not provide a good approximation are identified] (9). [7]

Then, a new optimization run (green box) that uses a higher time resolution for the determined
time segments is initialized, which means additional decision variables are introduced for this
time segments. When this optimization run finishes, the schedule parts with lower time resolution
are rescaled to the resolution of the new optimized parts (10) and then merged (11). Finally,
one merged schedule with high and low time resolution parts is build to be evaluated in (6) after
another check for boundary conditions in (5).

To apply this approach, a method is needed to identify time segments that could
not be adequately approximated with the lower time resolution. The [refined] time
resolution is defined for the segments according to their variability and approxima-
tion error. One approach is by sequentially executing two optimization processes as
depicted in [Figure 4.1]. Suitable criteria for classifying time segments for a second
optimization need to be defined. [... O]ne possible criterion is the absolute error
[dabs(Ts) of time segments Ts, which is the difference between the proposed schedule
and the target schedule] calculated according to [Equation 4.1]. [7]

dabs(Ts) =
∑
ts∈Ts

∣∣PEH
target(ts)− PEH(ts)

∣∣
(4.1)

On the basis of a configurable threshold for dabs(Ts), time segments are identified and optimized
with higher time resolution.

These shortened time segments replace the respective longer, low time resolution segments. This
replacement is conducted by the EMS. Afterwards, the adapted time segments are optimized
with higher resolution in a second optimization run. The evaluation in this second optimization
run is done for the complete schedule and not only for the identified segments. By evaluating
the entire schedule with different time resolutions feasibility of the schedule is guaranteed.

69



4 Adaptive Schedule Optimization

Power fraction

100

0.1 0.2 0.2 0.4 0.8 0.6 0.6 0.6

15 30 45 60 75 90 105 120

0.20.2 0.2 0.60.6 0.60.20.2 0.20.10.1 0.1 0.80.8 0.8 0.60.6 0.60.40.4 0.4 0.60.6 0.6

0.20.5 0.1 0.40.4 0.50.50.3 0.7

0.20.5 0.1 0.40.4 0.50.50.3 0.7

0.20.5 0.1 0.40.4 0.50.50.3 0.70.20.2 0.2 0.20.2 0.20.10.1 0.1 0.60.6 0.6 0.60.6 0.6

15 12010 25 40 55 70 85 1155 110

10015 12010 25 40 55 70 85 1155 110

Time in minutes

Schedule with low
time resolution

Scaled up schedule

New set points from
optimizer

Schedule with high
time resolution

Combined schedule

Opt 2

Opt 1

0.6

Figure 4.2: Combining schedules with different time resolution [7]

4.2.3 Evaluation of the Basic Approach

To assess whether the previously presented approach is a viable method to improve
the ability of an EH to follow a target [schedule and answering the RQ 2], an eval-
uation is [conducted] using a concrete use case. The evaluation setup includes a
specification of the evaluation environment with a test scenario, as well as an im-
plementation of the approach. Furthermore, a precise definition of the evaluation
criteria used to analyze the test results is needed. [7]

The evaluation environment is based on previous work described in [5] and [82, 83, 27]. The
co-simulation environment from [5], presented in Section 3.3, is used with the combination of
DERs depicted in Figure 3.3. The EA used for scheduling the EH is the GLEAM from [27] in
combination with the EMS from [5]. The decisive criterion is the RMSE dRMSE calculated ac-
cording to Equation 3.3. Furthermore, the calculation time for the complete process is evaluated
and compared.

The settings for the EA are as follows: The maximum amount of generations is 100 and con-
sidered as termination criterion. The start population size is 50 individuals. Both parameters
are identified from the experiment results given by Table 4.1 considering the trade-off between
optimization quality and calculation time:

A drastically reduced population size produces low quality solutions, whereas a pop-
ulation size bigger than 50 does not lead to significantly better results. Further
configurations, e.g., mutation and crossover, are adopted from [78]. In the first op-
timization process, the simulation and optimization time resolution is 15 minutes,
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Figure 4.3: Optimization result with low time resolution for an example day [7]

which corresponds to 96 intervals in the schedule. The [...] optimization time resolu-
tion in the second optimization process is [...] 5 minutes[, only for the identified time
intervals]. The number of intervals for [the second] optimization is calculated after
the time segments are identified. The optimization time horizon [in total] is one day
and seven days are evaluated. The number of optimization runs that can be tested
in the second optimization process depends on the time segments identified for each
day. The criterion used to identify time segments is the absolute deviation between
the target schedule and the proposed schedule computed from [Equation (4.1)] for a
rolling period of 4 hours [as d4h]. [7]

The threshold to identify a time segment for the second optimization run is set to 2MWh. This
threshold has been tested in advance.

4.2.4 Results

The results of the first optimization runs for an exemplary day of the evaluated
week are shown in [Figure 4.3]. According to the criterion described above, the time
segment identified for a second optimization with higher time resolution is marked
by the solid blue line at 2MW between 9.75 h and 17.25 h. The RMSE after [the]
first simulation run accumulates to 2.0MWh with a total calculation time of 17min.
For the identified time segment of 7.5 h a second optimization with 90 intervals is

71



4 Adaptive Schedule Optimization

conducted. The combined schedule is shown in [Figure 4.4]. Blue dotted lines mark
the time segment where the second schedule is inserted. By evaluating the merged
schedule, only solutions with continuous transition at the edges of the identified time
segments are valid. In the example shown in [Figure 4.4], the RMSE is reduced by
15.5% to 1.69MWh. The average improvement for the evaluated week is 11 %, while
the computation time increases up to three times [due to the additional optimization
processes]. [7]

Figure 4.4: Combined schedule for an example day [7]

4.3 Hybrid Evolutionary Algorithm for Scheduling
Energy Hubs

In the following section the drawback of a two-step optimization approach as presented in the
previous Section 4.2 are addressed by applying ML methods. This approach is described in detail
and evaluated to answer RQ 3: To what extend can a ML model improve the dynamization of EA
based scheduling? First, the related work dealing with multi-timescale scheduling is discussed
to emphasize the novelty of the concept presented in Subsection 4.3.2. Second, several different
forecasting algorithms are evaluated on two different EAs to underline that this approach is
agnostic concerning the underlying employed EA. This Section is based on the concept presented
in [9].
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4.3.1 Related Work

All the works on the topic of multi-timescale scheduling for optimal control of DERs mentioned
in Subsection 4.2.1 use discrete and equal length time step sizes within each timescale. The
approach introduced in the present thesis differs from these previous works in this point by
adjusting individual time interval lengths according to the respective predicted optimization
quality. To the best of the author‘s knowledge, no previous work has presented such an approach.

In [92] a dynamic multi-objective EA is proposed to handle an optimization problem with time-
variant PF. It is stated, that the algorithm detects environmental changes and identifies the
similarities to historical changes, which based on response strategies are applied. One strategy is
differential prediction based on previous populations, if no similar change in the PF is detected.
The other strategy is a memory-based approach to react to the change in the PF. A mix between
existing solutions and randomly generated ones is used to alleviate the effect of the strategies.
A different approach to address the dynamic interval multi-objective optimization problem is
presented in [61]. The basic idea is to decompose the decision variables and group them into
two different groups according to their similarity. Then these two groups are optimized by two
different sub-populations. The evolutionary process is driven by two different strategies: one
is based in the intensity of change in the PF and the other is a random mutation strategy.
Furthermore, a summary of the main dynamic evolutionary optimization methods is given by
[108] and general overview is presented by [28]. This approaches directly effect the generation of
individuals during the evolutionary process in contrast to the concept presented in the following
Subsection 4.3.2.

A different approach to reduce the complexity in the optimization process to use an equation-
based algorithm is presented in [121] by substituting similar time intervals. Hence, the amount of
decision variables can be reduced if similar intervals can be determined. In [120], this approach
is extended by a systematic method for the identification of promising initial time intervals that
can be aggregated. This leads to a further reduction in the decision variables. This approach is
the inversion of the concept presented in the following section.

In the literature, some research works, e.g., [44, 46, 22, 21] have proposed different algorithms
and techniques to deal with complex search spaces of EAs. While [44] and [46] alter the genetic
operators or the optimization problem itself to reduce the complexity, [22] and [21] instrument
a Variational Autoencoder (VAE)

to generate a new and simple search space from a complex and discontinuous one,
aiming at reducing the problem dimensionality. The authors of [22] and [21] proposed
a method with three steps to create a better search space by mapping a difficult search
space to a learned latent representation that is easier to be explored by an EA. [9]
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Figure 4.5: General concept overview. The approach consists of two phases: First, initial model generation using
a database of solutions with a fixed interval length and second, a dynamic time interval optimization
for each day, based on the results of the trained forecasting model. [9]

The steps of this method can be summarized as follows: First, a dataset is generated with
random solutions to the optimization problem that meets some additional criterion, e.g., a range
limit or correlated variables as chained inequality. These random solutions are obtained from
a simple optimizer such as a simple genetic algorithm. Second, a VAE is employed to learn
the representations of the original search space and facilitate it by generating a new and simple
one with the learned latent representations. Finally, a genetic algorithm is used to solve the
optimization problem with the help of the newly generated search space, considering the objective
function and further criteria. The results of both works show that using VAE to reduce the
complexity of a search space can improve the overall performance of an EA in terms of solution
quality and computational efforts required to reach such a solution.

To dynamically parameterize the chromosome interpretation of the used optimizer for directing
its computational effort to difficult regions in the search space, the present work uses a forecast of
the quality of the optimization solution. This quality is interpreted as the absolute error between
the target schedule and the actual EH output power for each point in time and is therefore a time
series. Time series forecasts are commonly applied in the context of renewable energy systems
[12] and a variety of time series forecasting methods exist [114, 23, 36, 93, 35, 132, 131]. Such
time series forecasts are often used as input for a given optimization [12], and have even been
applied to optimally determine the input parameters of an optimization problem [51]. However,
to the best of our knowledge, no previous work has used time series forecasts of the quality of an
optimization solution for the purpose of parameterizing the interpretation of the used optimizer
dynamically.

4.3.2 Concept

“The general concept is depicted in [Figure 4.5]. An initial forecasting model is trained based
on a data set [that is previously] generated by the optimization process with fixed time interval
length.” [9] This initial training is only necessary once to generate the forecasting model which
is described in detail in Subsection 4.3.7.

With the results produced by the generated model, the schedule optimization with
dynamic interval length is conducted. The starting point of the [...] scheduling
process[, depicted in Figure 4.6], is the initialization of a start population within the
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EA, e.g., GLEAM. As further described in [Subsection 4.3.4], the list of chromosomes
is interpreted as raw schedules. Each of these raw schedules is processed within the
interval length assignment to define the exact timestamp for each power fraction from
the previously ordered ascending interval numbers. Details of the interval length
assignment process are described in [Subsection 4.3.5]. To [ensure] the validity of a
schedule, the boundary conditions, i.e. ramp rate, SOC, etc., are enforced within the
EMS or an equivalent calculation service with domain knowledge. A more detailed
description is given in Subsection 4.3.6. As a result of this evaluation process, each
chromosome, i.e. schedule, is listed with its respective result concerning the evaluated
objectives. This list of results for the entire generation is [returned] to the EA to
map them to a weighted fitness value. After checking the termination criteria, the
EA either determines the final schedule or continues the evolution process. Within
the evolutionary process, genetic operators are applied according to the fitness of
each individual. Details of this process are given in [80, 78, 26]. [9]

4.3.3 Population Generation and Coding

[Regarding the] optimized scheduling of DERs, a population generated by the EA
consists of a set of chromosomes, which represent the respective schedule proposals.
Within each generation, each chromosome contains a list of genes, and each gene
is represented by different decision variables that are equivalent to alleles. In the
context of scheduling DERs, the respective alleles are Unit ID, Start Time, Duration,
and Power Fraction [9],

as shown exemplarily in Figure 4.6 with the Chromosome List. Slightly different from the process
in the loop, depicted in Figure 4.6, is the first generation. This initial population can be built
in many different ways, as stated in [26, 27]. In the presented approach “a random distributed
initial population is used.” [9]

4.3.4 Chromosome Interpretation

“[... T]he interpretation of the proposed chromosomes as schedules is [a crucial step]. Depending
on the implemented gene model of the EA, this offers a wide range of applications and interpre-
tation space.” [9] As described in Subsection 4.3.3 a gene consists of four alleles. This modeling
has been adopted from [80] and can be used with further EAs beyond GLEAM.

The Unit ID refers to a defined component of the respective EH. The Start Time
determines the interval from which the Power Fraction as a set point is valid for
the respective Unit ID. The Duration defines how long the Power Fraction is set in
terms of interval counts. Each chromosome consists of a list with n genes that are
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Figure 4.6: Optimization process using results of forecasting model for the Interval Length Assignment
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interpreted as a schedule. The transformation from a chromosome to a raw schedule
is adopted from [83]. To build the Raw Schedule [depicted in Figure 4.6] from a
single chromosome of the Chromosome List [, shown in Figure 4.6], the chromosome
interpretation reads the listed genes one after the other. In this process, the preced-
ing gene is overwritten by the following one if they carry information for the same
time interval and component. Finally, a list of raw schedules is handed over to the
following interval length assignment process. In each raw schedule from this list, each
component has a power fraction representing a setpoint during a time interval further
described in the subsequent step. [9]

4.3.5 Interval Length Assignment

The main contribution of the present concept is to focus the computational effort of
the optimization on the time ranges that are difficult to approximate. This is under-
taken by varying the length of the intervals as described in [Section 4.1]. From the
previously only ordered setpoints per DER of each schedule proposal, a concrete point
in time is determined in the interval length assignment based on the predicted quality
of the approximation by the optimizer. The better the approximation predicted, the
longer the time intervals, and vice versa. [9]

Through this, the EA is assigned a particularly large number of alleles for variation in the
time intervals in which an approximation to the target schedule is considered to be particularly
difficult. “The original number of intervals is kept equal, but the length of each interval is
dependent on the predicted quality.” [9] In other words, the length of the interval is determined
dynamically.

Applying Forecast Result to Time Interval Length Assignment.

[From] the forecast, the deviation between target schedule and predicted power output
of the considered EH instance is computed. To [convert] this result into the respective
time interval length for the evaluation of the proposed schedules, the relative error
Êopt, rel(n) per time interval n is determined by dividing the predicted error Êopt(n)

for time interval n by the sum of the predicted error over the complete day [as shown
in Equation (4.2)]. In accordance with the standard time interval length for a unit
commitment of 15 minutes the total number of intervals per day n is exemplarily 96.
[9]

Êopt, rel(n) =
Êopt(n)∑96
n=1 Êopt(n)

(4.2)
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The relative error distribution Êopt, rel should be equal to the new interval length
distribution over time. [For this reason], the relative error per time interval is mul-
tiplied by the total number of setpoints (96) to redefine the number of setpoints per
interval. This is summed up and plotted over time. To determine the new time
interval length per setpoint, the inverse function of the previously described plot is
calculated. As a result, a list of 96 entries with [exact points in time] is determined.
This time information is used in the interval length assignment to prepare schedules
for the evaluation within the EMS. [9]

An exemplary forecast result is depicted in Figure 4.7 with Êopt, rel(n) and the corresponding
interval length assignment plotted over the intervals n.
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Figure 4.7: Exemplary determination of the interval lengths depending on the relative predicted error Êopt(n)

4.3.6 Boundary Condition Enforcement and Evaluation

“Before the schedules can be evaluated, the technical boundary conditions of the underlying
physical models must be checked, and, if necessary, the respective power fractions must be
adjusted and updated schedules generated.” [9] During this process, in addition to the rates
of change, the current SOC of a storage facility is monitored, and the technical possibility of
implementing the proposed schedule is checked. For this purpose, the verifying instance, i.e.,
the EMS, has the corresponding information about the underlying models. After the boundary
condition enforcement, the evaluation of the objective functions is conducted. These can be one
or several different objectives which are evaluated. “The result for each schedule proposal and
each objective is summarized in a list of results that are handed back to the EA for translation
into fitness values per schedule proposal.” [9]
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Figure 4.8: An overview of the approach used to forecast the optimization error. After pre-processing the input
time series, the optimization error time series is forecasted and scaled in the post-processing step.
From the optimization error forecast, the relative optimization error time series is calculated for the
evaluation of the forecast quality.

4.3.7 Forecast Methods

The prediction of the optimization quality for the next 24 hours provides the basis for the interval
length assignment. Since there is a monotonic relationship between the fitness value of the EA
and the error between the target schedule and the actual EH power time series, that is, a larger
error leads to less fitness, this error is used as a proxy for optimization quality. To forecast this
error, the approach shown in Figure 4.8 is used and implemented as a pyWATTS [71] pipeline.
In this section, the forecasting approach with the pre- and post-processing is described in detail,
before discussing the evaluation criteria and the ML methods applied.

The optimization error time series Eopt is defined as

Eopt(t) = |PEH(t)− PTarget(t)| , (4.3)

where PEH is the power time series of the EH and PTarget the target schedule time series. Ad-
ditionally, the forecasts are evaluated in terms of the relative optimization error (Eopt, rel(n), see
Equation (4.2)) and multiple ML methods are applied to generate the forecast.

Before the input time series are used in the forecasting model, pre-processing is needed. An
overview of the pre-processing steps is given in Table 4.2. In pre-processing, first the numerical
input time series are resampled to a resolution of fifteen minutes before standardizing them to
move the mean to zero and scale the time series to a variance of one. Furthermore, important
features are extracted from the calendar information, such as the day of the week and month of
the year. To retain temporal similarity, the hour of the day, day of the week, and month of the
year are extracted and encoded with Sine and Cosine.

Since the resulting optimization error forecast is also standardized, this forecast is post-processed
in the inverse way to obtain the original scale. Therefore, the final forecast is the predicted
optimization target error in the same scale as the input time series and is used directly to
calculate the interval length assignment.
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Table 4.2: An overview of the input time series used to forecast the EH power time series and the applied pre-
processing applied to each of these time series

Input Time Series Description Pre-processing

Historical EH Time Series Historical real world power
values of the EH

Resampling, Standardization

Calendar Information Calendar Information spec-
ifying the forecast period

Feature Extraction: Sine and
cosine encoded hour of the day,
day of the week, and month of
the year.
Boolean indicating whether it is
a workday or not

Target Schedule Time Series Target power values for the
forecast period

Resampling, Standardization

To forecast the Eopt time series multiple forecasting methods are considered. Each of these
methods receives the same input data and directly forecasts the next 24 hours of the Eopt time
series, with a resolution of 15 minutes. This multi-horizon forecast approach results in each
method having an output dimension of 96. Data for the entire year 2021 are used for training
the models and evaluation of the models is conducted with data for the entire year 2022. The
prediction is made using the target schedule and mean historical Eopt values from 30 simulation
runs to create a robust prediction for the error.

For benchmarking purposes, additionally a perfect forecast is considered. It is used to explore the
maximum benefit of the proposed dynamic interval assignment and is not available in practical
application. As the name suggests, this perfect forecast uses the true values as a forecast. In
this case, the true values, which slightly differ due to the randomness of the used EA, are the
mean optimization error calculated from the 30 simulation runs used for training. As simple
forecasting methods, a Random Forest (RF) regression [131] and a K-Nearest Neighbors (KNN)
regression [23] are considered, which are implemented using the default hyper-parameters from
sci-kit learn [112]. Furthermore, a simple Feed Forward Neural Network (NN) [132] with six
hidden layers consisting of 256, 210, 150, 80, 64, and 52 neurons respectively, is implemented
with sci-kit learn [112]. To include a simple state-of-the-art method, an XGBoost regression [36]
is implemented with default hyper-parameters using the XGBoost library1. Finally, to include
state-of-the-art forecasting methods, the Neural Hierarchical Interpolation for Time Series Fore-
casting (N-HITS) [35], and Temporal Fusion Transformer (TFT) [93], both implemented with
default hyper-parameters via the PyTorch Forecasting library2, are considered.

1 https://xgboost.readthedocs.io/en/stable/
2 https://pytorch-forecasting.readthedocs.io/en/stable/
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4.3 Hybrid Evolutionary Algorithm for Scheduling Energy Hubs

In this section, [the] novel approach for scheduling DERs using an EA with dynamic
genotype-phenotype mapping based on [ML techniques] is presented. This approach
focuses on the interpretation of the proposed solution of the employed EA [rather
than the EA itself]. Hence, the approach is adaptable to any EA for optimized
scheduling applications that uses an external evaluation service for the calculation of
[the objective functions of the proposed chromosomes]. [9]

4.3.8 Evaluation Criteria

As described in Section 4.3.5, the computational effort of the optimization is directed through
the assignment of varying interval lengths. This interval length assignment is calculated based
on the relative optimization error defined in Equation (4.2). As a result, the forecast of the
optimization quality should ideally perform well with regard to the relative optimization error.
More specifically, it is more important that the forecast accurately predicts the relative opti-
mization error for a certain point in time than the actual optimization error. For example, a
forecast that does not predict the true optimization error but mimics the relative error exactly
would also be useful for the optimization problem. Therefore, to evaluate the performance of
the forecasts in terms of the relative optimization error, first the relative optimization error time
series is calculated according to Equation (4.2). Then the quality of the forecast based on this
relative optimization error time series is evaluated.

4.3.9 Evaluation of the Hybrid Optimization

The approach described in Subsection 4.3.2 is implemented for an evaluation of the concept
and the proposed forecasting methods. In this subsection, the evaluation is presented by first
introducing the evaluation environment, including a definition of the use case and the evaluation
criteria to assess whether the approach enhances the flexibility provision of an EH. Furthermore,
the evaluation comprises the forecast of the optimization quality and the optimization results
with a dynamic interval length assignment.

4.3.9.1 Evaluation Environment

The evaluation environment is based on previous work [7] as described in Chapter 3 and the
relevant data for the use case are taken from real-world data from the years 2021 and 2022, ac-
cording to [6]. More specifically, the electrical load profile of an industrial area for the mentioned
period is used for defining the target schedule depicted in Figure 4.9, which would be provided
by a DSO or TSO in a real-world application for flexibility retrieval. The target schedule aims
to dampen the power flow variation at the substation to enable further RESs installation and
integration.
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Figure 4.9: Target schedule to be approximated from the EH for the evaluated exemplary week

Two different EAs are employed to solve the optimization problem. On one hand GLEAM is
used with the general configurations of a limit of 50 generations and a population size of 100.
These settings have been tested and explored in advance and proved to produce sufficiently good
results as shown in Section 4.2 with Table 4.1 and consistent with the findings in [66]. Further
settings concerning the genetic operators are adopted from [26, 78, 79]. On the other hand the
framework DEAP is implemented with NSGA2 as algorithm. DEAP with NSGA2 is set up with
the same configuration as GLEAM regarding the population size and the amount of generations.
As presented in the comparison of both algorithms in Subsection 3.3.8 the genetic operators
differ slightly. The concept, presented in Subsection 4.3.2, is applied to both algorithms to
investigate whether the hybrid optimization approach is algorithm specific or generally applicable.
Although the optimization is implemented as a multi-objective optimization, the evaluation of
the presented approach concentrates on the objective of approximating the given target schedule
for the electrical output of the EH. Hence, as evaluation criteria, two different aspects are taken
into account. First, the general quality of the approximation by the optimized scheduling is
assessed by calculating the RMSE, the resulting DOFRMSE according to [8] and as described in
Section 3.4, and its fitness representation within GLEAM. The corresponding objective function
is given by Equation (4.4). Taking the DOFRMSE into account for the evaluation, the approach is
compared to the theoretical upper and lower boundaries, as described in [8] and Section 3.4. The
second objective, the operational costs expressed as DOFCost, is evaluated in Subsection 4.3.10.3.

min dRMSE =

√∑96
n=1 ((PEH(n)− PTarget(n)) ∗∆t(n))2

96
(4.4)
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Table 4.3: An overview of the MAE and RMSE, as evaluation metric for the optimization target error Êopt, rel,
calculated over the forecast period for each of the considered forecasting models and the different
optimization algorithms on the test data set. The best values for each metric are highlighted in bold.

GLEAM DEAP
Model RMSE MAE RMSE MAE

RF 0.007066 0.005608 0.005031 0.003923
NN 0.008377 0.006711 0.005992 0.004659
XGBoost 0.007199 0.005672 0.005523 0.004259
N-HITS 0.008855 0.007135 0.006272 0.004816
TFT 0.009319 0.007400 0.007152 0.005467

Second, the influence of the forecast quality is determined by comparing two different forecast
models (RF and TFT model) to a perfect forecast as ground truth and the base case without
dynamic interval length assignment.

4.3.9.2 Forecast of the Optimization Quality

To decide which forecasting model to use for the interval length assignment, first, the quality of
the forecasts for the optimization error time series is evaluated. This is conducted by calculating
the Mean Absolute Error (MAE) and RMSE for each forecasting model presented in Table 4.3
on Êopt, rel.

With regards to MAE and RMSE, it is observed that the RF performs best, both for GLEAM
and DEAP. XGBoost performs comparably well. Furthermore, the N-Hits and the NN perform
similarly to each other. The TFT performs noticeably worse in comparison to every other
forecasting model. While the ranking of the prediction models within a training dataset is the
same, it should be noted that the prediction quality of the models trained on the DEAP data is
significantly better overall.

To further evaluate the approach, two forecasting models used to determine the dynamic interval
length assignment are applied and further evaluated. First, the RF model is selected as the best
forecasting model. Second, to investigate whether a poor forecast is also beneficial, the TFT
is applied as the worst forecasting model. Combined with the benchmark perfect forecast, this
selection includes a range of forecasts with varying performance and allows to evaluate the benefit
of the approach accurately.
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Figure 4.10: Boxplot of mean DOFRMSE values for each considered case calculated over the complete week.
The Base Case performs worse, whilst the Ground Truth results in the highest DOFRMSE . Using
the two forecasting models in the interval length assignment increases the DOFRMSE compared to
the Base Case.

4.3.10 Results with GLEAM

To evaluate the approach, an exemplary week in 2022 is considered. This week is characterized
by a typical load profile for an industrial area, which is the basis for the target schedule to
approximate. In total, four different cases are compared in the evaluation. First, a fixed-time
interval optimization is performed for each day of the week to generate a Base Case, i.e. optimized
schedules for the EH as they would be generating according to previous work. Second, a Ground
Truth forecast is created that is based on previous optimization results that are also used for
the evaluation of the forecasting models. This Ground Truth is then used for the time interval
length assignment and is included to show the maximum potential of the approach. Third, the
forecasts from the trained RF for the interval length assignment, and fourth, the forecasts from
the trained TFT are used.

Given these four cases and the exemplary week, first the average performance over this week
is evaluated before considering the performance for each day individually. In the following, the
results of these two evaluations are reported.
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4.3.10.1 Weekly Performance

The mean DOFRMSE of each considered case (Base Case, RF, TFT and Ground Truth) for a
full week is depicted in Figure 4.10. The mean DOFRMSE of the Base Case over 30 repetitions
of the week, resulting in 210 optimizations, is 88.9%. Using the forecast results of the RF model,
the mean DOFRMSE is 4.4% higher at 92.8%. Furthermore, the mean DOFRMSE obtained
with the TFT model is 91.3% and 2.7% higher than the Base Case. Finally, using the Ground
Truth results in a mean DOFRMSE of 93.2%, which is increased by 4.8% compared to the Base
Case. Interestingly, the variance of the DOFRMSE values is similar for all cases except for the
RF, where a noticeably smaller range of values over the optimizations is observed. Taking the
improvement of the optimization quality by using the perfect forecast as a benchmark, the RF
model achieves 92% of the maximum, and the TFT model reaches 56% respectively.

Regarding the significance of the differences in mean DOFRMSE , one must first note that accord-
ing to the D’Agostino-Pearson test for normality [41], the results suggest a normal distribution
for all four cases (p-values «1%). Therefore, the parametric statistical t-test according to [49]
is utilized to compare the result‘s distribution of the Base Case and the three cases using the
dynamic interval length assignment. All three tests carried out show with sufficient confidence
(p-values « 1%), that the DOFRMSE of the cases with dynamic interval length assignment are
better than those of the Base Case.

4.3.10.2 Daily Performance

In Figure 4.11, the daily DOFRMSE from three cases (Base Case, RF, and TFT) are compared
across the week considered in 2022. Furthermore, the associated evaluation metric (MAE and
RMSE) for each day for the two considered forecasting models are plotted. On the basis of
this plot, three key observations can be made. First, the dynamic interval length optimization
improves the DOFRMSE for each day when using the RF model and for each day except Monday
when using the TFT model. Second, there is a large variation in the DOFRMSE across the days
for all cases considered. However, this variation is most noticeable in the Base Case and least
noticeable when using the RF for the interval length assignment. Third, a general correlation
between the evaluation metrics of the forecasting model (MAE and RMSE) and the DOFRMSE ,
respectively the fitness, improvement when using the corresponding forecasting model for the
interval length assignment can be observed. Specifically, the performance of the TFT is noticeably
worse than that of the RF on Monday, resulting in a worse DOFRMSE . A similar result is seen
on Thursday and Friday, where the TFT also performs worse. On Tuesday and Wednesday, the
performance of both forecasting models is similar, resulting in a similar DOFRMSE . However, this
correlation cannot be confirmed for the weekend. On Saturday and Sunday, the TFT performs
worse than the RF according to the evaluation metrics, but the resulting DOFRMSE is similar
or higher.
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Figure 4.11: A comparison of the daily DOFRMSE and the associated forecast evaluation metric (MAE or
RMSE) for each day in the considered week. The DOFRMSE of the Base Case (BC) is plotted
along with the results using the dynamic interval length optimization based on the RF and TFT.
The results show a large variation in DOFRMSE across the days and a general correlation between
the evaluation metrics and the obtained DOFRMSE .

4.3.10.3 Effect on Operational Cost Objective

The interval length assignment, described in Subsection 4.3.2, is based only on the forecast of
the optimization quality considering the RMSE objective. To evaluate whether this approach
effects also the second objective, the minimization of the operational costs, Figure 4.12 shows
the respective optimization results for the considered week for the operational cost objective
expressed as DOFCost for costs calculated according to the procedure introduced in Section 3.4.
The optimization process always considers both objectives with the concept of WS as described
in Section 2.4. The RMSE objective is weighted with 60% while the operational cost objective
is weighted with the remaining 40%. The optimization results are reported separately to clearly
distinguish the influence of the present approach on each objective. The mean DOFCost is for
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Figure 4.12: Boxplot of the DOFCost considering the operational cost objective to outline that the dynamic
interval length assignment has no effect on this objective

all four cases similar around 95%. Furthermore, the variance only reports a marginal difference
between the cases.

4.3.11 Results with DEAP

A second evaluation is conducted with DEAP and NSGA2 as employed EA. The same exemplary
week in 2022 is considered as with GLEAM in the previous Subsection 4.3.10, but the training
data set is now produced by DEAP with NSGA2 instead of GLEAM. Also, four different cases
are compared in the evaluation. First, a fixed-time interval optimization is performed for each
day of the week for the Base Case. Then, the Ground Truth based on previous optimization
results, a newly trained RF model, and a TFT on the basis of the same training procedure with
training data for the year 2021 as described in Subsection 4.3.7 is used for the time interval
assignment. The evaluation is conducted according to the results obtained with GLEAM and
therefore, first, the average performance over the entire week is reported, followed by a daily
evaluation.
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Figure 4.13: Boxplot of mean DOFRMSE values for each considered case calculated over the complete week with
DEAP. The Base Case performs worse, whilst using the two forecasting models and the perfect
forecast in the interval length assignment increases the DOFRMSE compared to the Base Case.

4.3.11.1 Weekly Performance

The mean DOFRMSE of each considered case (Base Case, RF, TFT and Ground Truth) for a
full week is depicted in Figure 4.13. The mean DOFRMSE of the Base Case over 30 repetitions
of the week, resulting in 210 optimizations, is 82.3%. Using the forecast results of the RF model,
the mean DOFRMSE is 8.6% higher at 89.4%. Furthermore, the mean DOFRMSE obtained with
the TFT model is 89.3% and 8.5% higher than the Base Case. Finally, using the Ground Truth
results in a mean DOFRMSE of 88.9%, which is increased by 8.0% compared to the Base Case.
Hence, the full potential for enhancement of the DOFRMSE , represented by the Ground Truth,
is already reached by the considered models.

Analogous to the statistical analysis of the results obtained with GLEAM, the same test on
normality is conducted. The prediction results suggest a normal distribution according to the
D‘Agostino-Pearson test [41]. The following parametric t-test according to [49] confirms with suf-
ficient confidence (p-values « 1%) the advantage of the dynamic time interval length assignment
over the Base Case.
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Figure 4.14: A comparison of the daily DOFRMSE and the associated forecast evaluation metric (MAE or
RMSE) for each day in the considered week. The DOFRMSE of the Base Case (BC) is plotted
along with the results using the dynamic interval length optimization based on the RF and TFT.
The results show a large variation in DOFRMSE across the days and a general correlation between
the evaluation metrics and the obtained DOFRMSE .

4.3.11.2 Daily Performance

In Figure 4.14, the daily DOF from the two models (RF and TFT) are compared to the Base
Case across the week considered in 2022. Furthermore, the associated evaluation metric (MAE
and RMSE) for each day for the two considered forecasting models are plotted. Both models
improve the DOFRMSE for each day in the week. The mean DOFRMSE in the Base Case ranges
from around 80% to 85%. The daily performance for both, the RF and the TFT model is
nearly the same and ranges from around 88% to 92%, while the highest DOFRMSE is reached
on Wednesday for all three cases. Besides the general performance enhancement, the variance
per day is significantly smaller using the dynamic time intervals based on the forecast models.
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Figure 4.15: Boxplot of the DOFCost considering the operational cost objective to outline that the dynamic
interval length assignment has no effect on this objective

4.3.11.3 Effect on Operational Cost Objective

According to the evaluation of the results obtained with GLEAM the effect of the interval
length assignment on the operational cost minimization objective is analyzed also for DEAP.
Figure 4.15 shows the respective optimization results for the operational cost objective expressed
as DOFCost. The mean DOFCost is for all four cases similar around 90%. Furthermore, only a
marginal difference in the variance between the cases is observable.
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5 Discussion

In the following chapter, the presented concepts and consecutive obtained evaluation results are
further discussed to outline the main benefits as well as the drawbacks. First, in Section 5.1,
the key benefits and limitations of the co-simulation approach are outlined. Second, the results
of the main contribution are discussed in Section 5.2 to provide detailed insights and a critical
examination.

5.1 Energy Hub Gas

The results of the simulations of the co-simulation model in Section 3.3 already show the positive
effect that an EHG can have on the surrounding electrical grid area in two different test cases. Due
to the dampened power peaks in the electrical grid caused by the EHG, additional capacities are
available to integrate volatile renewable generation. However, some limiting factors must be taken
into account when assessing the provision of flexibility by the EHG. Firstly, it should be noted
that only one instance of the EHG was considered in the simulation results of the two different
test cases presented. Comparing the results of both test cases leads to the conclusion that the
usefulness of an EHG highly depends on its composition and the corresponding objectives of its
application. While in TC1 the average attenuation for the complete simulation period results
in a reduction of the difference between minimum and maximum active power load by 11.6%,
in TC2 only 4.9% can be reduced. A possible reason for this deviation may be the significantly
higher share of WPPs generated RE in TC2. However, the aforementioned modularity offers the
possibility of investigating customized system compositions for a wide variety of applications. A
corresponding design optimization for the optimal system composition is useful and required for
this. The presented EHG instance is tailored to meet the demand of both presented industrial
areas in south-west Germany as well as the coastal area in northern Germany.

Furthermore, the evaluation of the results is limited to the operating costs. An overall assess-
ment and a comparison with an alternative solution, e.g., a classic grid expansion, can only be
meaningfully evaluated with a total cost calculation. On the positive side, however, it must be
emphasized that a corresponding EHG is available much more quickly than is the case with a grid
expansion due to the lengthy planning and approval processes. This fact compensates a possible
disadvantage at the total cost comparison in the way to fasten the required energy transition.
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However, the current legal situation does not make it clear which stakeholder is eligible to operate
an EHG. Apart from operators of larger industrial areas with diverse energy demands and the
incentive to reduce the power price to be paid through peak capping, the current legal situation
prohibits, for example, a grid operator from operating an EHG. In addition, the possible revenue
from compensations to be paid for feed-in management measures needs to be further defined.
In order to incentive a DSO or TSO to activate the flexibility provision by an EHG instead of
making use of feed-in management and thereby curtailing RESs, a corresponding cost saving
must be achieved for grid operators, so that the assumption of full compensation of the grid
operator‘s costs as revenue for the EHG operator must be viewed critically. Furthermore, the
trading of flexibility for the electricity grid is not uniformly regulated. Several approaches and
demonstration sites are under development in recent research. Although there is a balancing
energy market, this requires pre-qualification, which excludes the EHG in its current form, due
to its dimensioning. The objective of the EHG also does not correspond to the provision of
balancing energy. The use of the EHG is more in line with the new regulation of Section 14
of the Energy Industry Act or a low-threshold flexibility market. However, these economic and
legal considerations are outside the scope of the thesis, as they need expert knowledge.

In addition to the positive effects on the electricity grid, the EHG establishes the connection to
other energy sectors with its sector coupling components. In the context of the results presented,
the focus is placed on relieving the electricity grid. The gas and heating grids are considered in
a simplified manner. However, the proposed architecture would also allow the gas and heating
infrastructure to be integrated in detail alongside the electricity grid. By varying the considered
technologies (modularity) and certain plant sizes either by scale-up (scalability) or numbering-
up (modularity), the effects of different system network configurations on the grid infrastructure
can be adjusted. Furthermore, chemical energy carriers like H2 or CH4 provided by the EHG
can be considered RE by the assumption that only surplus energy generated locally by RESs is
converted. In fact, the true CO2 footprint of these energy carriers cannot be clearly determined
as long as the electricity grid includes energy generated by conventional power plants. However,
this simplification is also due to the lack of a legal framework and a detailed certification analysis
is outside the scope of this work.

5.2 Hybrid Optimization

The evaluation shows the prospects of this approach. However, there are numerous points worth
discussing further. In this section, first these results are discussed in more detail before highlight-
ing some key aspects regarding the forecasts of the optimization quality. Finally, the limitations
and benefits of the approach are discussed.
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Figure 5.1: Interval lengths of the different forecasting models RF, TFT and the Ground Truth for Sunday,
April 10th, 2022

5.2.1 Insights from Results

With regard to the results, four important aspects are discussed in more detail. First, the results
obtained in Subsection 4.3.10 and Subsection 4.3.11 show that the proposed approach can be
used to enhance the optimization results of an EA and thus obtain a better approximation of
the underlying power output of an EH to a target schedule. This results in a quantitative better
flexibility provision by an EH and the underlying DERs. From a qualitative point of view,
the better approximation of the optimization to the target schedule results in a more reliable
flexibility provision. The quantitative aspect of the improvement is expressed by the higher
DOFRMSE achieved. Second, the presented approach improves not only the mean optimization
results, but also reduces the variance in the DOFRMSE results. This effect is more obvious in
the results obtained with DEAP than in those from GLEAM. This could be due to the fact that
the achieved optimization results of DEAP are poorer and the forecast quality is significantly
better, so that the concept can reach its full potential.

Third, when the optimization forecast improves, this generally results in an improvement in the
reached DOFRMSE . However, fourth, this correlation does not carry over to weekends when
using GLEAM. One possible explanation for this lack of correlation is the difference in the
weekend target schedule, as observed in Figure 4.9. Due to this differing target schedule, the
TFT is possibly directing the computational power to a particularly difficult region on weekends,
even though its performance across the entire week is worse. This is underlined by the interval
lengths assigned to each interval as depicted in Figure 5.1. Three peaks in the interval length
determined based on the TFT model lead to shorter intervals throughout the remaining intervals,
which means higher computational effort.
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With DEAP the correlation between forecast quality and DOFRMSE is more difficult to analyze.
While the optimization over the considered week on average improves proportional to forecast
quality, the daily performance of the forecast is not directly reflected in the DOFRMSE . There-
fore, it is important to further analyze the performance of the forecast and its ability to identify
complex regions. This is underlined by a detailed analysis in the following Subsection 5.2.2.

Finally, it can be stated, that the dynamic interval length assignment has no effect on the
operational cost objective. Neither with GLEAM nor with DEAP a significant influence can be
found in the DOFCost. This may be due to the fact that the prices for energy carriers fluctuate
much more slowly than the target schedule does.

5.2.2 Forecast of Optimization Quality

Although the results are promising, the forecasts have not been explicitly designed to meet the
dynamic interval length calculation requirements: For this dynamic interval length calculation,
the forecasts should be designed to accurately predict the shape of the optimization error, in-
dependent of the scale. This is due to the relative optimization error (see Equation (4.2)) used
when determining the dynamic interval length. Currently, all forecasting models are trained
with quality-based metrics, such as MAE and RMSE, and an accurate forecast according to
these metrics may not be optimal regarding the shape. Therefore, it would be interesting to
investigate whether forecasts explicitly considering shape metrics in the training process improve
the results.

Furthermore, the predictions of the optimization quality are based on a single simulation run
for a complete year compared to the perfect forecast, which is calculated as the mean of 30

simulation runs. However, the promising results of the forecasts suggest that the considered
forecasting methods are robust and that multiple simulation runs are not required. Nevertheless,
also considering basing the forecasts on multiple simulation runs to investigate whether this
further increases the accuracy and robust nature of the forecasts is of interest.

Comparing the forecast quality, listed in Table 4.3 and the enhancement of the DOFRMSE based
on the applied forecasting model to the interval length assignment between both algorithms for
the complete week, depicted in Figures 4.10 and 4.13, it shows that Êopt, rel is better predicted
with the RF model trained on DEAP than on GLEAM results. This correlates with a higher
improvement in the DOFRMSE for DEAP in comparison to GLEAM. This correlation is similar
for the TFT model. Furthermore, a comparison between both models (RF and TFT) for each
algorithm also supports the correlation between the forecast error on Êopt, rel, either expressed as
MAE or RMSE, to the improvement of the resulting DOFRMSE . Additionally, the improvement
of the DOFRMSE with DEAP and both RF and TFT as forecast models is similar to the Ground
Truth. A possible explanation for this is that the forecasting performance is good enough to
realize the approach’s full potential.
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5.2.3 Limitations and Benefits

The first limitation of the approach is that it requires an initial training dataset. As a result,
when no prior data are available, i.e., the ”cold start” problem, it is currently impossible to
directly apply the approach. A second limitation of the approach is that only one objective
(RMSE) is considered for the dynamical interpretation of chromosomes, due to the focus on
flexibility provision. Consequently, the positive effect of the approach is concentrated on the
same objective without any influence on other objectives. A further limitation of the approach
is that it currently does not consider uncertainty. Therefore, it would be interesting to include
uncertainty in the approach, perhaps similar to Appino et al. [15] and González-Ordiano et al.
[62]. To address this problem the present approach could be implemented in a rolling horizon
optimization process. This allows the consideration of changing target schedules according to
updated forecasts of RESs generation and load in order to enhance the flexibility provision by
the EHG.

The main benefit of the approach is the general performance, which leads to an improvement
of the optimization results. Up to 8.6% increasement in DOFRMSE is reached when using the
RF model for DEAP. Furthermore, the implemented forecasting models, i.e., RF and TFT,
show sufficiently good results by enhancing optimization results either with GLEAM or DEAP.
This enhancement leads to a significant improvement of the flexibility provision by the under-
lying EHG, which follows the target schedule more closely. “Thereby, the concept of guiding
the computational effort of the EA on difficult time segments helps to improve the results.” [9]
Another key benefit is the computational effort. “After the forecasting model is trained once, no
additional computational effort is needed to improve the optimization results. This is achieved
by intelligently allocating the computational effort [...] based on the optimization quality predic-
tion.” [9] However, the additional computational effort required to create the training data and
train the forecasting model should be worthwhile in terms of the application. Furthermore, the
evaluation suggests that simple forecasting methods with default hyper-parameters and simple
input features are sufficient to improve optimization quality. Finally, the transferability of the
approach needs to be discussed. There are two different perspectives on transferability: First,
to interchange already trained forecasting models from one EA to another. Second, once a fore-
casting model is trained, the considered EH instance could be changed. Generally, it is shown
that the approach is able to improve the optimization results for two different EAs using the
same chromosome encoding. But it is necessary to train the forecasting models on previous data
provided by the respective EA. Tests to interchange the forecasting models failed. A concept
for transfer learning could address this aspect. Furthermore, in the present thesis, the trained
models are applied only to the same instance of the EHG, which provided the training data
set. For the mentioned cold start problem, it would be interesting to apply a trained forecasting
model on a different instance of the EH concept.
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6 Conclusion

The present work shows the methodological setup and implementation of an EH that operates
independently of any specific co-simulation framework in a modular fashion with the opportunity
to flexibly adapt the EH to the requirements of a use case. The investigated concept offers grid
supporting services and can help with the integration of RES feed-in (electricity). Furthermore, it
serves as a regional gateway for renewable energy carriers (molecules). Scalability and modularity
are essential features for expanding the model in the future. They allow the application of the EH
approach across diverse scenarios and infrastructure setups. Using the modular concept of the co-
simulation setup and configuration, two test cases were investigated using different goal settings,
surrounding generation, and demand structures. The results demonstrate the positive effect that
an EHG can achieve, providing an answer to RQ 1. By relieving the power grid, new RESs
can be built and integrated, and the curtailment of already existing RESs can be reduced. The
results indicate that bidirectional coupling of, e.g., the gas and electricity grids offers flexibility
to the power grid, reducing power flow volatility. Consequently, fewer infrastructure measures
are needed in order to integrate further RESs, which in turn results in a total CO2 reduction for
the electricity generation mix.

The performance of the employed optimization method is decisive for the applicability of the
mentioned results. Further optimization improvement will further improve flexibility provision
in terms of reliability and achievable energy quantities. EAs are a viable approach for this
complex scheduling problem, as shown in this thesis and several previous works. However, some
generic EAs require the mapping of objective values to fitness values. This mapping can heavily
influence the evolutionary process, and the choice of a suitable mapping function is an ongoing
challenge. Hence, the present work introduces a concept to dynamically evaluate the objectives
to parameterize the boundaries of the mapping function. This is conducted on the basis of
forecasts for the relevant influences, e.g., energy prices. As the evaluation of the concept shows
qualitatively, expert knowledge is no longer required to parameterize the considered mapping
function. Furthermore, test cases show a quantitative significant improvement in the found
solutions by the tested EA. Solutions using the described concept of dynamic mapping exceed
the DOFs that was achieved without the concept applied by 10.2%. As a positive side effect,
the concept has made the weighting between different objectives more controllable. The relation
between the weights of operational costs and flexibility provision by following a given target
schedule can now be investigated in depth. One direction could be determining the costs for
providing flexibility by following an external target schedule.
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This thesis further examines the impact and application of varying time resolutions in schedule
optimization in the context of the EH concept to answer RQ 2. It introduces a novel approach
using adaptive time segments for EA-based schedule optimization, alongside a method to pinpoint
time segments that would benefit from different time resolutions. Initially, a schedule is generated
with a low time resolution; then, the results guide the identification of segments requiring higher
resolution optimization. These specific segments are subsequently recalculated at a higher time
resolution. Tests on various time resolutions in the optimization process, along with the new
method, were conducted and analyzed. Findings indicate that higher time resolutions across
an entire schedule do not always enhance performance. However, focusing higher resolution
on specific time segments leads to better optimization results. The average deviation between
the EH’s electrical output and the target schedule is reduced by 11%, which results in a more
reliable flexibility provision. The study also demonstrates that similar outcomes in deviation
and processing time can be achieved with different EA parameter settings. Thus, this research
highlights that scheduling an EH with adaptive time segments and varying time resolutions can
enhance the flexibility that an EH can offer.

By introducing a forecast of the optimization results, the previously shown method can be
further enhanced. The forecast results direct the computational effort of the applied EA to time
segments that are difficult to approximate. Thus, no additional computational effort is needed
after an initial model training in order to find better solutions within a single optimization run.
By applying ML models to perform optimization result predictions, once trained, the generated
forecasting model can be used to direct the computational effort of the EA towards time segments
that are difficult to approximate. Consequently, the strategy eliminates the need for additional
computational resources to find better solutions. With the evaluation of two forecasting models
used to determine dynamic interval length assignments, an answer to RQ 3 is given. When using
the RF model, the improvement of the DOFRMSE of the optimization is 4.4% on average for
GLEAM and 8.6% for DEAP. The TFT model enhances the optimization results by 2.7% for
GLEAM and 8.5% for DEAP, respectively. These improvements are both statistically significant
and form a basis for better flexibility provisioning from the considered DERs. Furthermore, it is
shown that the approach does not affect further objectives.

As previously discussed, several aspects of the presented approaches are worth further investiga-
tion in future work. These aspects are considered out of scope for the present thesis but could lead
to a deeper understanding of the opportunities for flexibility provision by EHs. First, throughout
the thesis it is assumed that the pre-defined target load provided by a system operator as well as
the generation by RESs and prices for different energy carriers are known in advance. With the
presented concepts and their modular architecture of the system, in future work implementing
probabilistic forecasts for the above mentioned data is possible with minor adjustments. Second,
after introducing probabilistic forecasts, a rolling horizon optimization method seems to be an
appropriate approach to deal with the changing quality of forecasts according to the time hori-
zon. Third, the presented EH system with its EMS and different optimization options offers the
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opportunity to be integrated into hardware-in-the-loop tests. Therefore, the modular component
models encapsulated as FMU can be exchanged with real-world hardware, e.g., a CHP or battery,
with minor effort: To conduct real-world testing, the communication interface of the EMS needs
to be adjusted to the needs of the communication of the real-world hardware.

To overcome the "cold-start" problem at the ML forecasting model, future work could investi-
gate whether a feedback loop can be introduced into the process to train the forecasting models
online. Furthermore, it would be interesting to extend the approach by including different objec-
tive functions within the prediction of the optimization results. Forecasting models specifically
designed for the interval length assignment and focusing on the shape instead of absolute per-
formance could be investigated. Particularly, the impact of such forecasting methods on the
variance in optimization DOF and the correlation between forecasting quality and optimization
results is interesting. Additionally, the transferability of the trained forecasting models to further
instances of EHs, in terms of transfer learning, should be investigated whether the models are
beneficial in general or specific to a certain EH configuration. Finally, to improve computational
efficiency, possibilities to parallelize the approach should be considered.
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