
www.kit.eduKIT – The Research University in the Helmholtz Association

Family-Based Vulnerability Discovery
for Software Product Lines

Master’s Thesis
of

Tim Bächle

at the Department of Informatics
Institute of Information Security and Dependability

Test, Validation and Analysis (TVA)

Reviewer: Prof. Dr.-Ing. Ina Schaefer
Second Reviewer: Prof. Dr. Ralf Reussner
Advisors: M.Sc. Christoph König

M.Sc. Tobias Pett

Completion period: 28. May 2024 – 28. November 2024

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde,
sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils
gültigen Fassung beachtet zu haben.

Karlsruhe, den 28. November 2024

Zusammenfassung

Die Ausnutzung von Software-Schwachstellen durch Angreifer kann katastrophale
Konsequenzen mit sich bringen. Entdeckungen wie Heartbleed haben eindrucksvoll
aufgezeigt, dass schwerwiegende Schwachstellen trotz dieser ernsthaften Gefahr
regelmäßig unbemerkt bleiben. Dieses Problem wird durch die Einführung von Soft-
wareproduktlinien (SPLs), hochkonfigurierbaren Softwaresystemen, welche zu einer
Vielzahl an potenziell verwundbaren Softwareprodukten führen, weiter verschärft.
Die Anwendung konventioneller Lösungen der statischen Codeanalyse, welche häufig
als Hilfsmittel für die Erkennung von Schwachstellen genutzt werden, trifft bei diesen
Systemen auf Skalierbarkeits- und Vollständigkeitsprobleme. Um diese Probleme zu
adressieren, wurde durch Forschende das Konzept der familienbasierten Analysen
eingeführt. Diese zielen darauf ab, SPLs als Ganzes und nicht nur einzelne Software-
produkte zu analysieren. Bislang wurden familienbasierte Analysen für verschiedenste
Ziele vorgestellt. Es existieren jedoch kaum Arbeiten mit dem Fokus der familienba-
sierten Schwachstellenerkennung. Besonders existiert bislang keine Lösung, welche
die Vorteile von Query-Based Static Application Security Testing (Q-SAST), also der
Möglichkeit, Schwachstellenmuster in Anfragen zu kodieren und für die Analyse zu
verwenden, ausnutzt. Entsprechende Werkzeuge bieten viele Vorteile und ermöglichen
die einfache Erkennung selbst komplexer Schwachstellen. In dieser Arbeit stellen wir
einen familienbasierten Analyseansatz vor, welcher die Vorteile von Q-SAST für die
Erkennung von Schwachstellen in SPLs ausnutzt. Zu diesem Zweck untersuchen und
vergleichen wir zwei Strategien, durch welche ein handelsübliches Q-SAST-Werkzeug
geliftet, das heißt für die Analyse von SPLs verwendet werden kann. Basierend auf
den Ergebnissen dieses Vergleichs liften wir das handelsübliche Q-SAST-Werkzeug
Joern durch die Anwendung der Strategie des Lifting by Simulation. Bei dieser
Strategie wird die Variabilität einer SPL in einem Prozess, welcher als Variability
Encoding bekannt ist, in eine Form umgeschrieben, mit welcher das Analysewerkzeug
arbeiten kann. Die resultierende Implementierung wird in die bestehende Analy-
seplattform Vari-Joern integriert und auf Basis von drei praxisrelevanten SPLs
hinsichtlich ihrer Effektivität bei der Identifizierung potenzieller Schwachstellen und
ihrer Gesamteffizienz evaluiert. Die Ergebnisse zeigen vielversprechende Effektivität
und eine durchweg hohe Effizienz. Es zeigt sich jedoch auch, dass sich der Erfolg
von Lifting by Simulation auf die Verfügbarkeit von hochqualitativen Variability-
Encoding-Lösungen stützt. In dieser Hinsicht weisen existierende, dem Stand der
Technik entsprechende Werkzeuge noch erheblichen Raum für Verbesserungen auf.

vi

Abstract

The exploitation of software vulnerabilities by attackers can have disastrous conse-
quences. Discoveries like Heartbleed strikingly demonstrated that despite this grave
danger, serious vulnerabilities frequently go unnoticed. This problem is exacerbated
through the introduction of Software Product Lines (SPLs), highly configurable
software systems that give rise to a vast array of potentially vulnerable software
products. Applying conventional static source code analysis solutions, which are a
common aid for the discovery of vulnerabilities, to these systems faces scalability
and completeness issues. To address these issues, researchers introduced the concept
of family-based analyses, which aim to analyze an SPL in its entirety rather than
individual products. While family-based analyses have been proposed for various
objectives, previous work dedicated to family-based vulnerability discovery has been
limited. Notably, there is no solution that leverages the benefits of Query-Based
Static Application Security Testing (Q-SAST), which allows vulnerability patterns to
be codified into queries controlling the analysis. Corresponding tools provide many
benefits and enable convenient detection of even sophisticated vulnerabilities. In
this thesis, we propose a family-based analysis approach that leverages the bene-
fits of Q-SAST for vulnerability discovery in SPLs. To this end, we examine and
compare two strategies through which an off-the-shelf Q-SAST tool can be lifted,
i.e., employed for the analysis of SPLs. Based on the results of this comparison,
we lift the off-the-shelf Q-SAST tool Joern by applying the strategy of lifting by
simulation. This strategy entails rewriting the variability of an SPL into a form on
which the analysis tool can operate in a process known as variability encoding. The
resulting implementation is integrated into the analysis platform Vari-Joern and
evaluated on three real-world SPLs with regard to its effectiveness in identifying
potential vulnerabilities and its overall efficiency. The results showcase promising
effectiveness while also demonstrating high overall efficiency. However, they also
indicate that the success of lifting by simulation hinges on the availability of high-
quality variability-encoding solutions. In this regard, existing state-of-the-art tooling
exhibits considerable room for improvement.

viii

Contents

Acronyms xvii

1 Introduction 1
1.1 Problem Statement . 4
1.2 Scope . 7

2 Background 9
2.1 Software Product Lines . 9
2.2 Preprocessor-Based Conditional Compilation 11
2.3 Static Source Code Analysis . 12

2.3.1 Taint-Style Vulnerabilities . 13
2.3.2 Code Property Graphs . 14
2.3.3 Query-Based Vulnerability Discovery 18

3 Comparison of Common Lifting Strategies 21
3.1 Query-Based Static Application Security Testing 21
3.2 Lifting by Extension . 22

3.2.1 Source Code Representation 22
3.2.2 Query Language . 27
3.2.3 Search Engine . 29

3.3 Lifting by Simulation . 30
3.3.1 Variability Encoding . 31
3.3.2 Warning Mapping . 36

3.4 Discussion . 39
3.4.1 Precision . 39
3.4.2 Performance . 41
3.4.3 Maintainability . 42
3.4.4 Extensibility . 43
3.4.5 Implementation Effort . 44
3.4.6 Our Choice . 45

4 Design 47
4.1 Initial Considerations . 47
4.2 Variability Encoding . 48
4.3 Warning Mapping . 50
4.4 Queries . 51

4.4.1 Source and Integration . 51
4.4.2 Need for Adjustments . 51

4.5 Final Design . 52

x Contents

5 Implementation 55
5.1 Vari-Joern . 55
5.2 Sugarlyzer and its Integration into Vari-Joern 56
5.3 Adding Support for Joern to Sugarlyzer 58
5.4 Further Adjustments . 59

6 Evaluation 65
6.1 Experimental Setup . 65

6.1.1 Baseline . 66
6.1.2 Subject Systems . 67
6.1.3 Methodology . 68

6.2 Results . 69
6.2.1 Results for the Selected Subject Systems 70
6.2.2 Results in Relation to the Baseline 70

6.3 Discussion . 74
6.3.1 Effectiveness . 74
6.3.2 Efficiency . 79

6.4 Threats to Validity . 80
6.4.1 Internal Validity . 80
6.4.2 Construct Validity . 81
6.4.3 External Validity . 82

7 Related Work 83
7.1 Variability Encoding . 83

7.1.1 Variability-Aware Parsing . 84
7.1.2 Behavior-Preserving Transformation 84

7.2 Query-Based Static Application Security Testing 86
7.3 Analysis of SPLs with SAST Tools 87

8 Conclusion and Outlook 89

Bibliography 93

A Appendix 105
A.1 Compact Variability Encoding for the Example in Listing 3.3 105
A.2 Detailed Results for Toybox . 106

List of Figures

2.1 An example of a feature diagram specifying the variability model of a
small SPL . 10

2.2 The AST for the preprocessed foo function 15

2.3 The CFG and PDG for the preprocessed foo function 16

2.4 The CPG for the preprocessed foo function 18

3.1 Typical structure of a Q-SAST tool as described by Li et al. [Li+24] . 22

3.2 Structure of the lifting by extension strategy 23

3.3 Variability-aware AST subtrees for the body of the if statement of the
foo function . 24

3.4 An AST pattern matched by a variability-oblivious query and a possi-
ble variability-aware AST exhibiting the pattern 28

3.5 An adjusted version of the variability-aware AST of Figure 3.4 30

3.6 Structure of the lifting by simulation strategy 31

4.1 Categories of components in the lifting by simulation strategy 48

4.2 Design of our implementation of lifting by simulation 53

5.1 Initial structure of Vari-Joern . 56

5.2 Updated structure of Vari-Joern 58

6.1 Overview of the methodology employed for the evaluation 68

6.2 Warnings reported on axTLS and BusyBox aggregated by query . . 72

6.3 Distribution of vulnerability warnings across the source files of axTLS
and BusyBox . 73

6.4 Reported warnings on axTLS and BusyBox aggregated by source file 74

7.1 Aspects of our approach covered by previous research or existing
solutions . 83

xii List of Figures

A.1 Warnings reported by our family-based analysis on Toybox aggre-
gated by query . 106

A.2 Distribution of the number of warnings reported by our family-based
analysis on Toybox’s source files . 106

A.3 Warnings reported by our family-based analysis on Toybox aggre-
gated by source file . 107

List of Tables

3.1 A high-level comparison of lifting by extension and lifting by simulation 39

6.1 Characteristics of the selected subject systems 68

6.2 Results of the proposed family-based analysis approach on axTLS,
Toybox, and BusyBox . 70

6.3 Results of Vari-Joern’s product-based analysis approach using uni-
form random sampling that serves as our baseline 71

Listings

1.1 A variable C function inspired by the example provided by Yamaguchi
et al. [Yam+14] that exhibits a VIV 5

2.1 Examples for disciplined and undisciplined preprocessor annotations . 12

2.2 The foo function preprocessed with the CONFIG_PROCESS_INPUTmacro
defined . 13

3.1 A simple C program inspired by the example of Kenner et al. [Ken+10]
that can only be parsed after header inclusion and macro substitution
has been completed . 26

3.2 The foo function before and after variability encoding 32

3.3 Portable C code inspired by the example of von Rhein et al. [von+16],
before and after variability encoding 36

5.1 A simplified extract of the output produced by SugarC for the foo
function . 60

Acronyms

AST Abstract Syntax Tree

CFG Control Flow Graph

CPG Code Property Graph

CPGQL Code Property Graph Query Language

DB Database

JSON JavaScript Object Notation

NQ-SAST Non-Query-Based Static Application Security Testing

PDG Program Dependence Graph

SAST Static Application Security Testing

SPL Software Product Line

Q-SAST Query-Based Static Application Security Testing

VIV Variability-Induced Vulnerability

XML Extensible Markup Language

xviii 0. Acronyms

1. Introduction

As discoveries like the Heartbleed [24n] vulnerability strikingly demonstrated, vulner-
abilities in a software project’s source code can easily be overlooked, lying dormant for
years before being discovered. Crucially, the exploitation of even a single vulnerability
by an attacker can lead to severe consequences, ranging from compromising sensi-
tive user data to causing harm to virtual or even physical infrastructure [Zho+21].
Accordingly, a fundamental objective of any development effort aiming for high
software quality, especially in terms of security, is the identification and subsequent
removal of vulnerabilities [Fel+16]. To this end, static source code analysis acts as an
essential aid for the identification of corresponding structures across large systems,
for which manual code reviews do not scale [Shi+22]. There are numerous so-called
Static Application Security Testing (SAST) tools [Fel+16] dedicated to this purpose.
These tools can be categorized into Query-Based Static Application Security Test-
ing (Q-SAST) and Non-Query-Based Static Application Security Testing (NQ-SAST)
tools. NQ-SAST tools rely solely on searching for built-in vulnerability patterns,
typically contributed by their developers or maintainers [Li+24]. Q-SAST tools, on
the other hand, share the key design principle of allowing vulnerability patterns to
be freely codified into queries [Li+24]. Usually, these queries are contributed by the
community and collected in a central query Database (DB), ultimately facilitating
both reuse and knowledge sharing [Li+24].

Popular SAST tools, such as CBMC [24c], Clang Static Analyzer [24d], Cod-
eQL [24e], or Infer [24g], often face limitations when it comes to the analysis of
Software Product Lines (SPLs). In principle, an SPL is a family of related software
products (i.e., programs) that relies on a common code base [Sch+22; Thü+14].
While individual products of this family are related in that they all share a common
core [Aba+17], they are distinguished by the set of features (i.e., end-user-visible
behavior [Ape+11; Cas+21; SRS13]) they provide [Ape+13b; Thü+14]. Considering
that SPLs are finding their way into ever more safety- and mission-critical areas of
application [Ape+13b; Pet+19], being able to analyze these systems for the presence
of vulnerabilities is of great interest. Yet, from a technical viewpoint, conventional
SAST tools cannot cope with the variable source code found within an SPL [Lie+13;
Pat23]. Thus, they are generally referred to as variability-oblivious [Mor+19; Pat+22;
Pat23] and considered insufficient [Aba+17].

2 1. Introduction

Variability-aware analysis approaches, on the other hand, take the variability of
an SPL into account [Ape+13a; Tol+24]. In its simplest form, a variability-aware
analysis can be realized through a product-based strategy [Ape+13b; Thü+14]. This
strategy comprises deriving a number of software products from an SPL (thus resolv-
ing variability) and analyzing each product individually using variability-oblivious
analysis techniques [Thü+14]. In the case of an exhaustive product-based strategy,
this entails the analysis of all products derivable from the SPL [Thü+14; von+16].
Since the number of derivable products can grow exponentially with the number
of features, in practice product-based analyses are often augmented by a sampling
strategy for the selection of a subset of products to analyze [Lie+13; Pet+19; Thü+14;
von+18]. This revised strategy is referred to by Thüm et al. [Thü+14] as an optimized
product-based strategy. The optimized strategy improves scalability, given that only
a fraction of the large number of possible products is considered [Lie+13; Pet+23;
Thü+14; von+18]. However, it also renders the overall analysis incomplete [Ape+13a;
Ape+13b; Thü+14; von+16; von+18]; that is, the results (e.g., the identified vul-
nerabilities) are not necessarily identical to the ones produced by an exhaustive
product-based strategy [Ape+13a; von+16; von+18]. Specifically, findings that
are confined to products not considered in the sample, might be missed [Ape+13a;
Thü+14]. Therefore, especially for the analysis of SPLs in safety- and mission-critical
areas, where a comprehensive analysis is highly desirable, optimized product-based
approaches can only be a suboptimal solution.

An alternative is to follow a family-based strategy [Thü+14]. This strategy entails
operating directly on an entire SPL rather than analyzing the generated software
products individually [Ape+13b; Ios+17; Lie+13]. As a result, it avoids the re-
dundant computations that result from analyzing many products sharing great
similarities individually [Ape+13b; DBW19; Lie+13; Thü+14]. The family-based
strategy therefore promises to maintain scalability and precision. However, it also
necessitates dedicated analysis approaches capable of handling the feature and vari-
ability information encountered when operating on an SPL directly [Thü+14]. In this
regard, traditional off-the-shelf tools used for the analysis of single products often
face limitations and cannot be applied to an SPL’s source code [Bod+13; Lie+13;
Thü+14]. Accordingly, one solution is to develop new variability-aware analysis
tools [Pat23; Thü+14]. Evidently, developing a novel tool from the ground up can
incur a substantial engineering effort. Additionally, established variability-oblivious
tools have often been improved over decades [Ios+17; Pat23]. Thus, achieving the
same level of quality with a new implementation can be difficult and akin to playing
catch-up with a field that is still continuously advancing [GW19; Pat+22]. As
an alternative solution, the operation of existing variability-oblivious tools can be
adapted, enabling them to work with variable code [Lie+13; Thü+14]. Within the
literature, this process is generally referred to as lifting [Bod+13; Cas+21; DBW19].

Considering the field of family-based analyses, there are approaches dedicated to
a variety of different objectives, such as the calculation of software metrics [Kra19;
Lie+10], semantic slicing [GS19; GS20], type checking [Ken+10], model check-
ing [Ape+13b; Cla+10; Mei+14; Oh+21; PS08], or data-flow analysis [Bod+13;
Bra+12; Sch+22; von+18]. However, research on family-based analyses dedicated
solely to the identification of vulnerabilities in source code has been limited. This
is unfortunate, considering that SPLs are particularly popular in fields such as
embedded software, system-level software, frameworks, development platforms, and

3

web solutions [DBW19]. Systems within these fields form parts of our most critical
infrastructure [GW19; Pat+22], where the exploitation of vulnerabilities can have
particularly severe consequences. Trying to address this problem, previous work by
Patterson [Pat23] focused on applying off-the-shelf NQ-SAST tools to SPLs. However,
many common vulnerability types, such as SQL injections or buffer overflows, consti-
tute taint-style vulnerabilities [Yam+15] whose identification can require knowledge
about certain characteristics of the considered system (such as the functions realizing
sensitive operations). Detecting these vulnerabilities with NQ-SAST tools, whose
analysis cannot usually be tailored to a specific system [Li+24], can be difficult. In
contrast, by allowing vulnerability patterns to be freely specified as queries, Q-SAST
tools enable each user to contribute new queries, as well as customize existing ones for
a specific use case [Li+24]. However, currently, there is no family-based vulnerability
discovery approach leveraging the benefits of Q-SAST.

Contributions

In view of the research gap outlined above, the overall goal of this thesis is to provide
a family-based static analysis approach dedicated to the discovery of vulnerabilities
in the source code of real-world SPLs. Addressing the limitations of earlier work, the
focus of this approach is placed on leveraging the benefits of Q-SAST. Considering
the substantial engineering effort associated with developing a novel approach from
the ground up, the concrete aim is to alter the operation of an off-the-shelf Q-SAST
tool for the analysis of whole SPLs. More specifically, we aim to lift the analysis
tool Joern [24h] to the domain of SPLs, given its extensive vulnerability discovery
capabilities and open-source nature.

In summary, we make the following contributions:

• We describe the design implications of two frequently proposed lifting strategies
and discuss their individual benefits and drawbacks.

• We present a family-based analysis approach realized by applying the strategy
of lifting by simulation using variability encoding to the Q-SAST tool Joern.

• We implement our presented analysis approach and integrate it alongside the
product-based analysis strategy already available within the analysis platform
Vari-Joern.

• Finally, we evaluate our family-based analysis approach on three real-world
SPLs, demonstrating not just its promising effectiveness compared to a product-
based baseline but also its overall efficiency, which makes it suitable for practical
use.

Outline

The remaining parts of this thesis are organized as follows: Sections 1.1 and 1.2
complete the introduction by expanding on the research problem this thesis seeks to
address and defining its scope, respectively. Following the introduction, Chapter 2
provides an overview of fundamental concepts relating to the fields of SPLs, con-
ditional compilation, and static source code analysis. Next, Chapter 3 details two
common strategies through which a Q-SAST tool can be lifted to the domain of SPLs,
discusses their strengths and weaknesses, and describes our choice. Based on this
choice, Chapter 4 describes the design of our analysis approach, the implementation

4 1. Introduction

of which is detailed in Chapter 5. Chapter 6 describes the evaluation of our approach
on real-world SPLs, including an overview of threats to its validity. Considering
previous research relating to individual components of our analysis approach as well
as its overall goal, Chapter 7 surveys the existing work and discusses its relation to
this thesis. Finally, Chapter 8 concludes the thesis and gives an outlook on potential
future work.

1.1 Problem Statement

The ISO/IEC 27000 standard [ISO18] defines a vulnerability as a weakness that
can be exploited by one or more threats. In the context of software, exploited
weaknesses in design or implementation can allow malicious users to inflict various
types of harm. These can range from compromised sensitive data to unauthorized
resource consumption and even damage to physical or virtual infrastructure [Zho+21].
Considering the high costs exploited weaknesses can cause [Fel+16; LL05], analyzing
software systems for the presence of vulnerabilities is often an indispensable activity
in the development process. Especially for large systems, for which extensive manual
code reviews are often too costly [Shi+22], this activity typically involves applying
static analysis. Although static analysis is limited to providing approximate results,1 it
remains popular as it allows for a proactive approach. This means that vulnerabilities
can be identified early on, before the source code is ever actually run, thus minimizing
both their impact and cost [Bra+13; LL05; Sha+01]. Q-SAST tools further expand
on this advantage. Since they typically encourage the community to contribute their
own vulnerability queries, newly discovered vulnerabilities can be rapidly incorporated
into the analysis, allowing for their timely combat [Li+24].

However, off-the-shelf Q-SAST tools, as they are often used in industry for the
static analysis of conventional software systems, generally face limitations when it
comes to the analysis of SPLs [Lie+13; Pat23]. In this context, an SPL can be
understood as a family of related software products (i.e., programs) that relies on a
common code base [Sch+22; Thü+14]. This code base comprises two parts: (1) a
common core reflecting the functionality shared by all software products derivable
from the SPL [Aba+17] and (2) a set of variable features representing increments in
user-visible functionality [Ape+11; Cas+21; SRS13], whose selection distinguishes
the individual products of the SPL [Ape+13b; Thü+14]. The problem that arises
from this implementation lies in the fact that most off-the-shelf Q-SAST tools are
variability-oblivious and hence cannot cope with the variability introduced by the
set of features [Lie+13; Pat+22; Pat23]. The simple C function in Listing 1.1
exemplifies the underlying problem on a smaller scale and will serve as a running
example in the following chapters. The function follows common practice in many
industrial SPLs [Aba+17; AK09; Bra+13; DBW19] and implements variability by
use of conditional compilation via C preprocessor conditionals (#ifdefs). By itself,
it can thus be seen as an example of a tiny SPL comprising two possible products:
one with the feature PROCESS_INPUT2 enabled and one with it disabled.

1According to Rice’s theorem [Ric53], the identification of non-trivial program properties, such
as vulnerabilities [Yam15], is undecidable and thus requires approximations in practice [Aba+17;
ACB16; CM04].

2We follow the naming convention used in the Linux kernel [Aba+17; ABW14; Kra19; Tar+12]
and prefix preprocessor macros relating to features of the SPL with CONFIG_.

1.1. Problem Statement 5

1 void foo() {
2 int x = source(); // Potentially attacker−controlled.
3 if(x < MAX){ // Does not enforce x >= 0.
4 int y = 0;
5 #ifdef CONFIG_PROCESS_INPUT
6 y = 2 * x;
7 #endif
8 sink(y); // Security−sensitive operation.
9 }

10 }

Listing 1.1: A variable C function inspired by the example provided by Yamaguchi
et al. [Yam+14] that exhibits a Variability-Induced Vulnerability (VIV)

Applying conventional Q-SAST tools to the tiny SPL of Listing 1.1 in search of
vulnerabilities poses a number of challenges. These challenges are based on the
fact that formally preprocessor annotations (such as the ones found in lines 5 and 7
of Listing 1.1) function as a metalanguage, adding lightweight metaprogramming
capabilities to C [Ape+13a; KGO11; Lie+10; Tar+12]. As a result, they are not part
of the C language itself [Mor+19]. From a technical perspective, this means that
unpreprocessed source code does not conform to the formal C grammar [GJ03] and
thus cannot be parsed by standard parsers. For conventional Q-SAST tools, which
typically operate on abstract source code representations such as Abstract Syntax
Trees (ASTs) [Lie+13; von+18], the construction of which requires parsing, this
constitutes a major problem. Accordingly, many tools either settle for the analysis
of a default product by stripping variable code of all variability (e.g., by applying
the preprocessor leaving all configuration-related preprocessor macros undefined)
or refuse to operate on unpreprocessed code altogether. Evidently, both of these
solutions prove insufficient, since only a tiny portion of the SPL is analyzed, if at all.

The foo function of Listing 1.1 illustrates the fatal consequences the aforementioned
solutions can have. Even if a default product, where the PROCESS_INPUT feature
is left unselected, is analyzed, the foo function will never be considered with the
assignment of line 6 in place. Crucially, it is this line of code that completes a
taint-style vulnerability [Yam+15], allowing user-controlled (i.e., tainted) data from
a potentially attacker-controlled source (line 2) to reach a security-sensitive sink
operation (line 8) without previously undergoing proper sanitization (line 3). Failing
to identify this vulnerability could allow an attacker to exploit it to detrimental effect.
For instance, assuming that the sink uses the tainted data as the number of bytes to
copy between two buffers via a call to memcpy, a negative integer would be interpreted
as unsigned.3 This, in turn, would lead to a large copy operation that may exceed the
size of either buffer. Evidently, this could cause the program to crash. Even worse, it
could allow arbitrary access to the program’s heap memory, as was the root problem
in the case of the well-known Heartbleed vulnerability [Yam+15]. Consequently,
relying solely on conventional SAST tools proves inadequate, especially when modern
SPLs boast an enormous number of products, each having the possibility to contain
vulnerabilities not found in any other product.

3Passing a signed integer to memcpy will lead to an implicit conversion to an unsigned integer,
as the function expects the number of bytes to copy between buffers to be unsigned.

6 1. Introduction

In general, vulnerabilities and bugs that only manifest in certain products and
result from particular feature configurations of an SPL (cf. Listing 1.1) are not a
merely theoretical problem. In fact, they have been investigated in the context of
multiple real-world SPLs [Aba+17; ABW14; Mor+19]. Corresponding bugs are often
referred to as variability bugs [Aba+17; ABW14; Mor+19]. Inspired by this term, we
refer to vulnerabilities only present in certain feature configurations as Variability-
Induced Vulnerabilitys (VIVs). A prominent example of a VIV is the aforementioned
Heartbleed vulnerability that was identified in the OpenSSL4 cryptography library
in 2014. This vulnerability only manifested if a certain feature of the library was
enabled [von+16] and allowed attackers to compromise sensitive user data [24n].

For the systematic identification of VIVs, one solution is to resolve the variability
of the SPL by deriving every possible product and analyzing each one individually
with a standard Q-SAST tool (i.e., following an exhaustive product-based strat-
egy [Thü+14]). However, given that the number of products derivable from an SPL
can grow exponentially with the number of features [Lie+13; Thü+14; von+18],
this approach is impractical for many real-world SPLs, often containing hundreds to
thousands of features [Ape+13b; Pet+19]. Considering SPLs of this magnitude, even
sampling and analyzing just a representative subset of the possible products (i.e.,
following an optimized product-based strategy [Thü+14]) can be challenging. Deter-
mining a minimal sample with regard to popular coverage criteria often constitutes
an NP-complete problem [Lie+13; von+18] and can yet result in large sample sizes.
Thus, it is hardly surprising that sampling algorithms often face scalability issues
when faced with large SPLs [Pet+19]. Additionally, since the optimized product-
based strategy does not consider every product of an SPL in the analysis, there is
once again a risk of missing many VIVs.

Unfortunately, as instances like the Heartbleed vulnerability showed, missing VIVs
until they are released to customers is not uncommon in practice. Additionally, given
the vast size of modern SPLs, developers themselves may not always be fully aware
of the impact a certain feature or interplay thereof can have on products [ABW14].
For instance, in 2012 Apple accidentally shipped a version of its operating system
Mac OS X with logging functionality enabled, not noticing that this led to users’
passwords being stored in clear text [Sch+22]. Both aspects underscore the benefits
a family-based analysis strategy provides. In this regard, the goal of a family-based
strategy is to operate on an entire SPL at once rather than analyzing the generated
software products individually [Ape+13b; Ios+17; Lie+13]. This is usually achieved
by using dedicated techniques for the analysis of source code still containing variability
information [DBW19; Lie+13]. Besides avoiding the redundant computations for
parts shared between multiple products [Ape+13b; Lie+13; Thü+14], this approach
allows the entirety of an SPL to be analyzed without incurring prohibitive costs,
identifying VIVs and other structures of interest more reliably. While there are family-
based analyses for various objectives, the work on family-based analyses dedicated
to vulnerability discovery has been limited and currently there is no approach that
leverages the benefits of Q-SAST. This leads to the main research question (MRQ)
of this thesis shown below.

4https://www.openssl.org/.

https://www.openssl.org/

1.2. Scope 7

MRQ :
How can a Q-SAST tool be lifted to the domain of SPLs, i.e., be employed
for a family-based analysis that is both effective and efficient?

To answer the main research question, we focus on adapting the operation of an
existing Q-SAST tool, allowing it to work on SPLs (i.e., lifting), instead of creating
novel tooling from scratch. This is due to the enormous effort associated with
engineering an analysis for a fully-fledged programming language from the ground
up. Additionally, considering the vast amount of work and expertise that went into
improving many off-the-shelf tools, often over the duration of multiple decades [Pat23],
achieving a similar level of quality would be beyond the reach of this thesis.

1.2 Scope

Software Product Lines and Preprocessor Usage

For the scope of this thesis, we focus on the analysis of SPLs implemented in C.
We focus on C since it is widely used for the implementation of SPLs, representing
some of the largest and most configurable systems found in practice [GS20; GW19].
Furthermore, a rich collection of open-source C SPLs is available, ranging from
a few to millions of lines of code [Lie+10]. Considering that C is an inherently
unsafe programming language [Aho+07; GG12; Li+24; Wag+00; Yam15], we also
believe that mechanisms for detecting vulnerabilities in corresponding systems can be
particularly helpful. Despite its popularity in the SPL domain, the C language itself
lacks the support for software variability required for implementing SPLs [GW19].
Thus, developers typically resort to using conditional compilation via the C pre-
processor [Ape+13a; Lie+10; Sch+22]. This practice is generally criticized for its
error-prone nature and adverse effect on the ease with which software can be compre-
hended, debugged, and maintained [Ape+13a; GW19]. However, given its lightweight,
easy-to-learn, and easy-to-adopt nature [Ape+13a], it remains a popular implementa-
tion technique used among many industrial SPLs [Aba+17; AK09; Bra+13; DBW19;
Lie+13]. Accordingly, to provide a meaningful analysis of C SPLs, our approach
focuses on the analysis of source code containing preprocessor annotations. In this
regard, two types of preprocessor usage can be distinguished [Ape+13a; LKA11].
Disciplined preprocessor annotations respect the structure of the embedding (i.e.,
host) language and wrap entire language constructs, such as entire statements or
functions [Ape+13a; LKA11]. Undisciplined annotations, on the other hand, wrap
an arbitrary number of consecutive tokens without respecting the syntax of the
host language [LKA11]. Limiting the analysis to source code using only disciplined
annotations would simplify essential tasks, such as parsing, since disciplined anno-
tations can be mapped directly to entire subtrees in a program’s AST [Ape+13a].
However, considering that undisciplined annotations represent a considerable share
of all preprocessor annotations in many software projects [LKA11], this would pose a
major threat to the effectiveness of our approach on real-world SPLs. Consequently,
we do not limit ourselves to a particular preprocessor usage pattern and aim to
support both disciplined and undisciplined annotations.

Static Source Code Analysis

While numerous off-the-shelf SAST tools are available today, especially sophisticated
taint-style vulnerabilities can be modeled comprehensively using Q-SAST tools. To

8 1. Introduction

add to their benefits, Q-SAST tools facilitate knowledge sharing, enable systematic
reuse, and were found to outperform NQ-SAST (i.e., non query-based) tools in terms
of vulnerabilities detected [Li+24]. Moreover, they enable timely combat of diverse
and emerging vulnerabilities, considering that not only developers and maintainers
but also the community can contribute queries [Li+24]. Consequently, for our
objective of providing a family-based analysis approach for vulnerability discovery,
we focus on lifting a Q-SAST tool to the domain of SPLs. Q-SAST tools typically
center around a query-friendly source code representation, on which queries can be
executed. Code Property Graphs (CPGs) represent one such representation of source
code that can be efficiently queried for patterns, such as ones modeling sophisticated
vulnerabilities, using graph traversals. The idea of a CPG is to combine three classic
source code representations, commonly found in the compiler domain [Aho+07],
into one joint structure. To this end, a program’s CPG combines its AST, Control
Flow Graph (CFG), and Program Dependence Graph (PDG) into a single graph
with appropriately labeled edges [Yam+14]. Given its expressive nature, numerous
studies [BD23; Cao+24; Du+20; GS19; GS20; Hao+21; JDL19; Shi+22; Zho+21]
have adopted this representation. We follow this trend and focus on a tool built
around CPGs. Specifically, we choose Joern [24h], a versatile and well-established
Q-SAST tool originally introduced by Yamaguchi et al. [Yam+14] in 2014. As
opposed to many other popular Q-SAST tools [Li+24], Joern’s implementation
is entirely open-source. For the design of our family-based analysis approach, this
enables us to explore even lifting strategies that would otherwise be restricted by
limited access to the tool’s internals. As an added benefit, Joern already supports
the analysis of multiple popular programming languages besides C [24h]. It therefore
allows our analysis approach to be expanded to other programming languages in the
future.

2. Background

In this chapter, we provide an overview of fundamental concepts relating to three
fields. First, Section 2.1 describes the concept of SPLs, including the associated
terminology, advantages, implementation strategies, and analysis. Second, Section 2.2
outlines the idea behind conditional compilation as realized through preprocessors
like the C preprocessor cpp. Lastly, Section 2.3 describes query-based vulnerability
discovery based on the concept of CPGs as one form of static source code analysis.

2.1 Software Product Lines

An SPL is a family of related software products (also referred to as variants [Lie+10])
that rely on a common code base and are distinguished by the features (i.e., end-
user-visible behavior [Ape+11; Cas+21; SRS13]) they provide [Ape+13b; Sch+22;
Thü+14]. Accordingly, the implementation of an SPL comprises two parts. The
common core encapsulates the functionality shared by all products [Aba+17]. Addi-
tionally, a set of features encapsulates the individual increments in functionality that
are visible to stakeholders [SRS13] and specific to certain products. Selecting a set of
features creates a configuration [Aba+17; Bra+12; Pet+19; Thü+14], which can be
seen as a specification of a potential product [Cla+10]. The size of the configuration
space (i.e., set of possible configurations) may be exponential in the number of
features [Ape+13b; DBW19; Thü+14]. However, usually not all configurations in
this space specify meaningful and desired products [Ape+13a; Thü+12; Thü+14].
For instance, features relating to the target platform of a product can be mutually
exclusive, meaning that only a single platform (such as Windows or Linux) can be
selected simultaneously [Thü+12]. Thus, a variability model typically introduces con-
straints over the features of an SPL, defining the set of valid configurations [Aba+17;
Thü+14; von+16] and, consequently, the actual products of the SPL [Ape+13a;
Pet+19]. Variability models can be expressed in various forms. Most popular are fea-
ture models that document the features of an SPL and their relationships [Ape+13a].
Feature models are frequently represented graphically using feature diagrams [KA08;
Kui+22; Pet+23]. As an example, Figure 2.1 illustrates the feature diagram of a
small SPL formed around the foo function of our running example (cf. Listing 1.1).
It shows the optional PROCESS_INPUT feature of the foo function, together with two

10 2. Background

mutually exclusive features (WINDOWS and LINUX) for the specification of the target
platform and another optional feature (INCLUDE_CHECK). Feature models are not
bound to graphical representations and can also be represented textually, such as
in the form of a Kconfig model [ABW14; Oh+19]. In this regard, Kconfig is a
tool for managing the variability of an SPL [Oh+21]. It was originally developed for
the Linux kernel [24o] but has since also been adopted by other systems [Aba+17;
Lie+13; Oh+19; Oh+21].

System

PROCESS_INPUT Platform

WINDOWS LINUX

INCLUDE_CHECK

Abstract Feature

Concrete Feature

Mandatory

Optional

Alternative Group

Figure 2.1: An example of a feature diagram specifying the variability model of a
small SPL

Advantages

In general, SPLs serve the trend towards mass customization in the modern econ-
omy [Ape+13a; DBW19] and have become commonplace in many fields ranging from
system-level software to web solutions [DBW19]. Although the upfront engineering
effort required for the creation of an SPL is higher than for the creation of just a single
software product, the effort for deriving products from the SPL is comparatively
small [Ape+13a]. If many similar products need to be created (e.g., by tailoring
products towards individual customers), this can result in significant cost savings
compared to designing and developing each product from the ground up [Ape+13a;
Cla+10; Mar+13]. Additionally, due to the systematic reuse of the common core and
shared features, SPLs can reduce the time to market and allow for quick reactions to
changing market conditions [Ape+13a; Mar+13; SRS13].

Implementation Strategies

Considering the implementation of SPLs in practice, three distinct strategies can
be distinguished [SRS13]. Annotative approaches (such as conditional compilation
using a preprocessor) merge the code of all features into a coherent code base and
annotate sections belonging to certain features or combinations thereof [Ape+13a;
KAK08]. For product derivation, code not required for the specific feature selection is
either discarded during compile-time or ignored during run-time [Ape+13a; Cas+21].
Compositional approaches (such as feature-oriented programming) separate the code
of features or feature combinations into dedicated files, containers, or modules, which
can then be composed to form concrete products [AK09; Ape+13a; Cas+21; SRS13].
Lastly, transformational approaches (such as delta-oriented programming) rely on
base assets and a set of transformations on these base assets [Ape+13a; Cas+21].
Concrete products are derived by applying transformations modifying the base assets
in a step-wise manner [Ape+13a; SRS13].

2.2. Preprocessor-Based Conditional Compilation 11

Analysis

As empirical evidence shows [Aba+17; ABW14; Mor+19], SPLs, just like any
other software system, are prone to programming errors. However, since their
implementation describes not one but a wide range of different software products,
errors can be confined to select configurations. These errors are commonly referred to
as variability bugs [Aba+17; ABW14; Mor+19]. Similarly, there can be vulnerabilities
only present under certain feature configurations. We refer to such vulnerabilities
as VIVs. Since the number of products derivable from an SPL may be exponential
in the number of features [Ape+13b; DBW19; Thü+14], automated analysis for
variability bugs and VIVs represents a challenging task. In this regard, two general
analysis strategies are often distinguished. A product-based analysis derives individual
products from an SPL and analyzes them individually using conventional analysis
techniques [Thü+14]. This can involve all products derivable from the SPL (exhaustive
product-based) or only a representative subset (optimized product-based) [Thü+14].
A family-based analysis, on the other hand, does not analyze individual products
of an SPL. Instead, it tries to analyze an SPL’s implementation still containing
variability through dedicated analysis techniques [Ape+13b; Ios+17; Lie+13].

2.2 Preprocessor-Based Conditional Compilation

The central idea behind conditional compilation is to selectively remove certain
source code fragments before compilation [Ape+13a]. This allows a single code base
to be transformed into a wide range of programs, making conditional compilation a
common mechanism for implementing variable software (cf. Section 2.1) [Ape+13a].
With programming languages like C or C++, this mechanism is typically realized
using annotations of the C preprocessor cpp. cpp is a stand-alone tool that adds
lightweight metaprogramming capabilities to C, allowing source code to be manip-
ulated before compilation [Ape+13a; Lie+10; LKA11; Tar+12]. Besides enabling
conditional compilation, cpp also provides file inclusion and textual (i.e., macro)
substitution capabilities [Ape+13a; KR88; LKA11; Pat+22]. Focusing on the use
case of conditional compilation, developers can annotate (i.e., wrap) sections of
source code with dedicated directives, often simply referred to as #ifdefs [Ape+13a;
LKA11]. These directives are associated with a condition in the form of a compile-
time expression, whose evaluation by the preprocessor decides upon the inclusion of
the annotated code fragment [Ape+13a; KR88; LKA11]. The condition is therefore
often referred to as the presence condition of the annotated code [GG12; Ken+10].

Preprocessor Discipline

From a technical perspective, the preprocessor cpp is token-based, meaning that it op-
erates only on individual tokens and is oblivious to the structure of the enclosing (i.e.,
host) programming language [Ape+13a; GG12; LKA11]. Accordingly, preprocessor
conditionals are not part of the syntax of the host language [Mor+19], which allows
them to enclose arbitrary tokens of the source code [GG12; KR88]. Two types of
preprocessor usage can thus be distinguished based on their alignment with regard to
the code structure of the host language [Ape+13a; LKA11]. Disciplined preprocessor
annotations align with the syntax of the host language and span entire language
constructs, such as entire statements, functions, type definitions, or elements within

12 2. Background

type definitions [Ape+13a; LKA11]. As a result, disciplined annotations can be
mapped to subtrees of a program’s AST [Ape+13a]. Undisciplined preprocessor
annotations, on the other hand, disregard the syntax of the host language and span
only a number of arbitrary consecutive tokens [Käs+11; LKA11].

Listing 2.1 illustrates the difference between disciplined and undisciplined preprocessor
annotations. The disciplined annotations shown in Listing 2.1a span entire statements,
while the undisciplined annotations shown in Listing 2.1b span only select tokens.
Since undisciplined annotations can wrap arbitrary source code regions, they allow
for fine-grained variability, avoiding redundancy among non-variable code fragments.
For instance, the undisciplined annotations in Listing 2.1b can wrap only the code
segments relating to the variable if-statement, while the disciplined annotations in
Listing 2.1a are forced to repeat the assignments to variables x and y in order to
wrap complete statements.

1 #ifdef CONFIG_INCLUDE_CHECK
2 if(A){
3 x = readX();
4 y = readY();
5 }
6 #else
7 x = readX();
8 y = readY();
9 #endif

(a) Disciplined preprocessor annotations

1 #ifdef CONFIG_INCLUDE_CHECK
2 if(A){
3 #endif
4 x = readX();
5 y = readY();
6 #ifdef CONFIG_INCLUDE_CHECK
7 }
8 #endif

(b) Undisciplined preprocessor annotations

Listing 2.1: Examples for disciplined and undisciplined preprocessor annotations

Although undisciplined annotations lead to more compact code, they quickly com-
plicate comprehension and maintainability of the program [Ape+13a]. In addition,
annotations at token-level are prone to introduce subtle, hard-to-find syntax errors
and complicate many tasks, such as parsing or refactoring unprocessed code [Ape+13a;
LKA11]. As a result, the use of undisciplined annotations is generally discouraged and
even restricted in certain projects, such as the Linux kernel [Ape+13a]. Nonetheless,
as Liebig et al. [LKA11] found out during their analysis of 40 C projects, undisci-
plined annotations remain common in many projects and, on average, account for
approximately 16% of all preprocessor annotations. Except for ill-formed annotations
(i.e., annotations that can cause syntax errors or have mismatching numbers of
opening and closing directives), all undisciplined annotations can be transformed
into disciplined form [GJ03; Ken+10; LKA11]. This can be achieved by expanding
annotations until they wrap entire host language constructs [GJ03; LKA11] (cf.
Listing 2.1). However, when encountering nested annotations, in the worst case, this
can lead to an exponential number of code clones [Ken+10; LKA11].

2.3 Static Source Code Analysis

Complementing the field of dynamic testing, static testing allows artifacts to be
tested without execution [Fel+16]. For source code, this enables a proactive ap-
proach, identifying flaws prior to execution, thereby minimizing both costs and
impact [Bra+13; LL05; Sha+01]. Among the most prominent examples of such

2.3. Static Source Code Analysis 13

static testing approaches are static analysis and manual reviews [Fel+16]. Although
manual reviews can be a powerful tool for identifying conceptual faults that cannot
be detected automatically, they are usually time-consuming and associated with high
costs [EL02; LL05; Shi+22]. In addition, the quality of manual reviews strongly
depends on the expertise of the reviewers [EL02; LL05]. In contrast, static analysis
provides an automated way of leveraging expert knowledge codified in dedicated
tools and thus represents a valuable aid for large projects [EL02].

The field of static source code analysis is extensive, as it comprises various approaches
with different objectives. For taint-style vulnerabilities in particular, query-based
analysis approaches provide comprehensive and extensible means for modeling and
detecting vulnerabilities [Li+24; Yam+14]. Query-based approaches typically involve
parsing source code into query-friendly representations and enabling the community
to contribute and exchange queries on these representations [Li+24]. Concrete
implementations of this idea are referred to as so-called Q-SAST tools [Li+24]. In
the following sections, we describe taint-style vulnerabilities (Section 2.3.1), introduce
CPGs as one popular query-friendly source code representation (Section 2.3.2), and
demonstrate how taint-style vulnerabilities can be identified in a CPG using graph
traversal-based queries (Section 2.3.3). The foo function (cf. Listing 1.1) is used as
a running example throughout these sections. Since conventional source code analysis
takes place on concrete products rather than on SPLs, we assume that the product
incorporating feature PROCESS_INPUT is selected for analysis (e.g., through favorable
sampling). Listing 2.2 shows the code of this product, derived from the SPL by
preprocessing the foo function with the CONFIG_PROCESS_INPUT macro defined.

1 void foo() {
2 int x = source();
3 if(x < MAX){
4 int y = 0;
5 y = 2 * x;
6 sink(y);
7 }
8 }

Listing 2.2: The foo function of the run-
ning example (cf. Listing 1.1) preprocessed
with the CONFIG_PROCESS_INPUT macro
defined

2.3.1 Taint-Style Vulnerabilities

Taint-style vulnerabilities refer to software flaws regarding the propagation of data
through a program as identified by taint analysis [Yam+15]. One objective of taint
analysis is to identify data flows exhibiting the following three characteristics [Li+24;
Yam+15]: (1) data is read from a potentially attacker-controlled source, (2) the
data read from the source is not sanitized, and (3) the unsanitized data is passed
to a sensitive sink. Data flows exhibiting these characteristics indicate a taint-style
vulnerability. As an example, consider the foo function (cf. Listing 2.2). Let us
assume the source function reads data from a potentially user-controlled source
(e.g., command line parameters, UI input fields, or network). Let us furthermore
assume that the internals of the sink function use the passed argument y as part of
a sensitive operation (e.g., as the number of bytes to copy between buffers or the
row in a database). If the user-controlled (i.e., tainted) data is less than MAX, it is
possible to track a data flow from its respective source through variable x, to variable
y, and lastly to the sensitive sink. Since this flow only sanitizes the data with regard

14 2. Background

to values greater than or equal to MAX, malicious data (e.g., negative values) can
still reach the sensitive sink function. Thus, all three characteristics outlined above
are fulfilled, indicating that the foo function contains a taint-style vulnerability.
Depending on the implementation of the sink function and the program’s memory
layout, a malicious user could exploit this vulnerability to crash the program or read
arbitrary values from its memory.

Although not all vulnerabilities can be represented using a taint-style description of
sources, sanitizers, and sinks [Li+24], a plethora of common flaws can be described in
this manner [Yam+15]. These include buffer overflows, SQL injections, and missing
authorization checks, among others [Yam+14; Yam+15]. Besides only manifesting
itself for certain feature configurations, the well-known Heartbleed vulnerability of
the OpenSSL cryptography library constituted a taint-style vulnerability [Yam+15].
Similar to the example involving the foo function, the Heartbleed vulnerability
was caused by a function reading data from a potentially user-controlled source (a
network stream) and passing it on to a sensitive sink (the memcpy function) without
sanitization [Yam+15]. In practice, this allowed attackers to gain access to sensitive
regions of heap memory, leaking information such as secret keys for certificates, login
credentials, and emails [24n; Yam+15].

2.3.2 Code Property Graphs

Fundamentally, a CPG is a graph-based representation of source code, capturing both
structural and behavioral properties. The main idea behind this representation is to
combine the unique views provided by three classic program representations, com-
monly known from the compiler domain [Aho+07], into a joint structure [Yam+14].
To this end, a CPG captures a program’s static structure as expressed through
an AST, the underlying control-flow semantics as expressed through a CFG, and
the exhibited control and data dependencies as expressed through a PDG. In the
following, we describe the three program representations of AST, CFG, and PDG in
more detail and discuss how they are integrated into a joint CPG. To exemplify the
different representations, we use the foo function (cf. Listing 2.2).

Abstract Syntax Trees (ASTs)

In technical terms, an AST is a tree data structure that is typically generated
by a parser during syntax analysis [Aho+07]. It captures the syntactic structure
of a program [Aho+07] and exposes its composition through elements such as
definitions, declarations, statements, and expressions [Shi+22; Yam+14]. Nodes
of the tree represent constructs in the source program (e.g., operations) while the
children of a node represent the components of a construct (e.g., operands of an
operation) [Aho+07; Du+20; Yam+14]. In addition, the tree is ordered [Yam+14] to
preserve the ordering of program elements with respect to the original program. As
an example, Figure 2.2, shows the AST for the foo function (cf. Listing 2.2). What
differentiates ASTs from parse trees (i.e., concrete syntax trees) is that they do not
represent the concrete syntax of the program as derived from a grammar [Aho+07;
Yam+14]. Considering an if-statement such as the one extending from line 3 to line
7 of Listing 2.2, a corresponding parse tree would contain child nodes for the if-
keyword, the opening and closing parenthesis, the guarding predicate, and the guarded
statement. An AST, on the other hand, would omit details of program formulation,

2.3. Static Source Code Analysis 15

such as the child nodes for the keyword and the parentheses (cf. Figure 2.2), as they
have no effect on the semantics of the program [Yam15]. Besides playing an important
role in the front-end of a classic compiler architecture [Aho+07], ASTs serve as the
foundation for many static analyses and code representations alike [Lie+13; von+18;
Yam+14]. Their expressiveness is, however, limited given that control flow and data
dependencies are not made explicit [Shi+22; Yam+14].

FUNC

DECL

int =

x CALL

source

IF

PRED

<

x MAX

STMTS

DECL

int =

y 0

ASSIGN

y *

2 x

CALL

sink ARG

y

Figure 2.2: The AST for the preprocessed foo function (cf. Listing 2.2)

Control Flow Graphs (CFGs)

A CFG is a graph data structure that can be derived from a program’s AST [Yam+14]
and describes the possible flow of control through the program [Aho+07]. More
specifically, a CFG is a directed graph over a program’s statements and the conditions
deciding upon their execution [Yam+14]. Accordingly, individual statements and
predicates represent the nodes of the graph, while the possible control flow is
represented by directed edges [Bra+13; DBW19; Yam+14]. Given that nodes can
possess multiple outgoing edges due to branching control flow, each edge is assigned
a label of ϵ, true, or false [Yam+14]. Trivially, statement nodes each have one
outgoing edge labeled with ϵ [Yam+14], indicating that the control flow always
continues along the edge.1 Predicate nodes, on the other hand, possess two outgoing
edges labeled true and false, indicating the possible flows of control incurred by the
predicate evaluating to true and false, respectively [FOW87; Yam+14]. To define
a clear start and end to the flow of control, two nodes that do not correspond to
any source code regions are typically added to a CFG [Aho+07; FOW87; Muc97].
The Entry node is connected to the first executable node of the graph via an ϵ-edge.
Additionally, the Exit node receives outgoing edges from all nodes at which the
flow of control can terminate. To illustrate this code representation, Figure 2.3a
shows the CFG for the foo function (cf. Listing 2.2). In the compiler domain,
CFGs play a vital role in data-flow analyses, such as reaching definitions [Muc97].
However, information about a program’s possible control flow has also proven useful
in other fields, such as security [Yam+14]. Nonetheless, as CFGs do not provide
information about data dependencies, tracking user-controlled (i.e., tainted) data is
not straightforward [Yam+14].

Program Dependence Graphs (PDGs)

Similar to a CFG, a PDG is a directed graph data structure over a program’s
statements and predicates [FOW87]. The fundamental idea of this graph is to make

1In the compiler domain, nodes connected by ϵ-edges are typically collapsed to so-called basic
blocks [Aho+07; Muc97]. Although this simplifies the CFG, it complicates its mapping to the CPG.

16 2. Background

ENTRY

int x = source();

if(x < MAX)

int y = 0;

y = 2 * x;

sink(y);

EXIT

ϵ

ε

true

ϵ

ϵ

ϵ

false

(a) Control Flow Graph (CFG)

int x = source();

if(x < MAX)

int y = 0; y = 2 * x;

sink(y);

Ctrue

Dx

Ctrue Ctrue

Dx

Dy

(b) Program Dependence Graph (PDG)

Figure 2.3: The CFG and PDG for the preprocessed foo function (cf. Listing 2.2)

both the data and control dependencies of a program explicit [FOW87]. Accordingly,
a PDG contains two types of edges [FOW87; Yam+14] that can be derived from a
program’s CFG [Yam+14]. A data dependency edge between nodes signifies that the
operation of the receiving node depends on a data value computed by the originating
node [FOW87; Yam+14]. Conversely, a control dependency edge indicates that
the execution of the receiving node depends on the outcome of the originating
predicate [FOW87; Yam+14]. Figure 2.3b shows the PDG for the foo function (cf.
Listing 2.2). Data dependency edges are shown in brown and are labeled with Dx

to indicate a data dependency on the value of a variable x. Control dependency
edges are shown in purple and labeled Ctrue and Cfalse to indicate the cases in which
the predicate evaluates true and false, respectively. Historically, PDGs have been
utilized to speed up traditional code optimizations [FOW87]. Another context in
which PDGs are useful is program slicing [FOW87], i.e., determining the set of
statements that may influence a particular statement [Wei81].2 A program slice can
be obtained simply by traversing the PDG backwards from the statement of interest
and collecting the visited nodes [FOW87]. Even though a PDG makes dependencies
between statements and predicates explicit, it does not encode the order in which
statements are executed [Yam+14].

Code Property Graphs (CPGs)

As the name implies, CPGs are built on the formalism of property graphs [RN10].
A property graph G = (V,E, λ, µ) is defined as a 4-tuple characterizing a directed,
edge-labeled, and attributed multigraph [Ang18; RN10; Yam+14]. In this structure,
V represents the set of nodes and E ⊆ (V × V) represents the set of directed edges
between nodes. The edge labeling function λ : E → Σ assigns a label from an
alphabet Σ to each edge. Additionally, the function µ : (V ∪ E)×K → S assigns

2For brevity, the description refers only to backward slicing. PDGs can just as well be used
for forward slicing, i.e., determining the set of statements that may be influenced by a particular
statement.

2.3. Static Source Code Analysis 17

property values from S to nodes and edges under specific property keys from K. In
this regard, S represents an infinite set of property values, while K represents an
infinite set of property keys [Ang18]. Since a single property graph can model various
types of relationships using typed and labeled edges [RN10], the fundamental idea of
a CPG, as originally introduced by Yamaguchi et al. [Yam+14], is to integrate AST,
CFG, and PDG into a unified property graph with appropriately labeled edges. To
this end, the three representations are first represented as individual property graphs
and then merged into a joint CPG [Yam+14].

An AST can be represented as a property graph GAST = (VAST , EAST , λAST , µAST),
with VAST representing the nodes of the tree, EAST representing the edges of the tree,
and the function λAST labeling the edges in EAST as AST edges. Furthermore, the
function µAST assigns properties code and order to each node in VAST to indicate the
represented source code construct and order within the tree, respectively. Similarly,
a CFG can be represented as a property graph GCFG = (VCFG, ECFG, λCFG, ·)
with VCFG representing the nodes in the CFG (i.e., Entry, Exit, and the nodes
in VAST where code is set either to STMT or PRED representing statements and
predicates, respectively) and ECFG representing the edges in the CFG. Additionally,
λCFG assigns a label out of ΣCFG = {ε, true, false} to each edge in ECFG as in the
conventional CFG, while the function µCFG is not needed. Lastly, a PDG can be
represented as a property graph GPDG = (VCFG, EPDG, λPDG, µPDG). The set of
nodes in this property graph is identical to the one of GCFG, given that CFGs and
PDGs share the same nodes. EPDG contains all edges of the PDG and λPDG assigns
a label out of {D,C} to all edges in EPDG to indicate data dependency and control
dependency edges, respectively. The function µPDG assigns a property symbol to all
data dependency edges, indicating the relevant symbol, and a property condition to
all control dependency edges, indicating the relevant evaluation of the originating
predicate.

Drawing from the definition provided by Yamaguchi et al. [Yam+14], the three
property graphs GAST , GCFG, and GPDG can be combined into a corresponding CPG
G = (V,E, λ, µ) as defined below:

V = VAST ∪ {Entry, Exit} λ = λAST ∪ λCFG ∪ λPDG

E = EAST ∪ ECFG ∪ EPDG µ = µAST ∪ µPDG

In the context of this definition, the union of two functions (e.g., λAST ∪ λCFG)
denotes a new function operating over the merged domains of the initial functions.
Furthermore, for the sake of brevity, the definition focuses on intraprocedural CPGs,
i.e., CPGs spanning only the length of a single function. However, similar to other
program representations, CPGs can also cover multiple functions, making them
interprocedural. In its simplest form, this can be achieved by joining the CPGs
of individual functions through edges that connect the arguments of callers to the
parameters of their callees and return statements back to their call sites [Yam+15].

Figure 2.4 shows the CPG for the foo function (cf. Listing 2.2). Edge labels set
by the λ function are shown on the respective edge. Additionally, the properties
symbol and condition are shown as indices to the corresponding edge labels, while
the code property is shown inside the AST nodes. For clarity, the labels applied to
the AST edges by λAST are omitted. Furthermore, the order property set by µAST

is not explicitly shown but represented by the order of the AST children starting
from the left.

18 2. Background

FUNC

DECL

int =

x CALL

source

IF

PRED

<

x MAX

STMTS

DECL

int =

y 0

ASSIGN

y *

2 x

CALL

sink ARG

y

ENTRY

EXIT

AST edge

CFG edge

PDG edge (data dep.)

PDG edge (control dep.)

ε

ε

true

ε ε

ε

false

Dx
Dx

Dy

Ctrue

Ctrue

Ctrue

Figure 2.4: The CPG for the preprocessed foo function (cf. Listing 2.2)

2.3.3 Query-Based Vulnerability Discovery

The fundamental idea of query-based vulnerability analysis is to transform source code
into representations that enable convenient and efficient detection of vulnerability
patterns through queries [Li+24]. Property graphs (cf. Section 2.3.2), supported
by many popular graph databases [Ang18; Yam+14; Yam+15], serve as one such
representation. To extract information from property graphs, users typically interact
with graph databases via graph traversals that navigate through the graph based on
its labels and properties [RN10; Yam+14]. Using traversals, vulnerability patterns
can be codified in a comprehensive way. This not only facilitates knowledge sharing by
allowing experts to incorporate domain knowledge and historical data, but also enables
systematic reuse across different software systems [Li+24; Zho+21]. Graph traversals
are often specified using dedicated query languages like Gremlin.3 However, given
that these languages vary in their syntax and are not universally supported by all
graph databases alike, in the following we focus on a generic definition and syntax
introduced by Yamaguchi et al. [Yam+14]. Given a property graph G = (V,E, λ, µ), a
graph traversal is a function T : P(V) → P(V) that maps one set of nodes to another,
both represented as elements of the power set P(V) [Yam+14].4 To enable more
sophisticated traversals while maintaining comprehensibility, two traversals T0 and
T1 can be chained together to T0 ◦ T1 using conventional function composition [RN10;
Yam+14].

Using a CPG as the property graph, graph traversals make it possible to efficiently
query for many common vulnerabilities. Since a CPG contains all information of the
corresponding AST, CFG, and PDG, patterns with regard to syntax-related, control
flow-related, or data flow-related vulnerabilities can be modeled by considering only
the corresponding subgraphs. However, for modeling taint-style vulnerabilities (cf.
Section 2.3.1), all three subgraphs need to be considered. For instance, identifying
the vulnerability in the foo function (cf. Listing 2.2) involves considering the calls
to source and sink, the possible control flow executing the assignments to y and

3https://tinkerpop.apache.org/gremlin.html.
4If the sets of nodes should be allowed to contain duplicates (e.g., to weight or rank results),

traversals can be defined over power multisets instead of conventional power sets [RN10].

https://tinkerpop.apache.org/gremlin.html

2.3. Static Source Code Analysis 19

the call to source, as well as the data dependencies between x and y. Additionally,
the absence of proper sanitization of the data has to be considered. All this can be
achieved using the high-level graph traversal shown below:

Matchp ◦Unsanitized{Ts} ◦ARG1
sink

The ARG1
sink traversal first identifies nodes corresponding to the first arguments

passed to the sink function. Next, the Unsanitized{Ts} traversal collects all nodes
representing statements that produce data for these arguments. Additionally, the
traversal only keeps nodes whose produced data does not undergo proper sanitization
as described by the traversal Ts (i.e., comparisons for greater than or equal to zero
and less than MAX). Finally, Matchp gathers all child nodes of the data-producing
statements and selects those satisfying the predicate p, which returns true if a node
represents a call to the source function. For brevity, we omit the formal definitions
of the individual traversals used. A detailed description of the composition of
sophisticated traversals can be found in the publication of Yamaguchi et al. [Yam+14].

20 2. Background

3. Comparison of Common Lifting
Strategies

Conventional (i.e., variability-oblivious) SAST tools operate on single products and
cannot fully cope with the variability introduced into source code by preprocessor
annotations (cf. Section 1.1). To overcome this limitation, two general strategies for
lifting a conventional SAST tool to the domain of SPLs can be distinguished [Ios+17;
Pat23; Thü+12; von+16]:

(1) Lifting by Extension: Lift the entire SAST tool by extending its internals (e.g.,
parsing, data structures) to support immediate processing of an SPL in its
entirety rather than just its individual software products.

(2) Lifting by Simulation: Do not lift the SAST tool itself but the variability of
the SPL by means of a preprocessing step that transforms the compile-time
variability of the SPL into run-time variability. The SAST tool can then operate
on the transformed source code without the need for modification.

Since Q-SAST tools represent a special class of SAST tools, both strategies can be
applied towards our goal of lifting the off-the-shelf Q-SAST tool Joern. Accordingly,
Section 3.1 first outlines the general structure of a Q-SAST tool. Sections 3.2 and 3.3
then describe lifting by extension and lifting by simulation in more detail and outline
how the strategies can be applied in the context of a Q-SAST tool, such as Joern.
Lastly, Section 3.4 discusses the strengths and weaknesses of both strategies and
explains the rationale behind our choice.

3.1 Query-Based Static Application Security Testing

As described in Section 2.3, the fundamental concept of a Q-SAST tool revolves
around parsing source code into query-friendly representations and enabling the
community to contribute and exchange queries modeling issues (e.g., vulnerabilities)
within these representations. From a technical perspective, Q-SAST tools typically
comprise three distinct components [Li+24]: (1) a query-friendly source code repre-
sentation, along with its parsing infrastructure and database storage, (2) a query

22 3. Comparison of Common Lifting Strategies

Search
Engine

Parsing and DB Storage

(Fuzzy)
Parser

Database

Query Processing

Query
Compiler

Source
Code

Queries

Warnings

User-
Provided

Community
Effort

Figure 3.1: Typical structure of a Q-SAST tool as described by Li et al. [Li+24]

language with its compilation toolchain, and (3) a search engine. The structure
resulting from these three overarching components is illustrated in Figure 3.1.

As input, a Q-SAST tool accepts source code that a user wishes to analyze. Ad-
ditionally, it receives a number of queries that control the analysis. A common
strategy is to reuse and possibly adapt queries from a community-maintained query
database [Li+24]. For the analysis, the tool parses the provided source code into a
source code representation (e.g., a CPG in the case of Joern), which is typically
maintained in a dedicated database [Li+24]. To enable the analysis of code without a
working build environment (e.g., incomplete code), a Q-SAST tool may also employ
approximate (fuzzy) parsing [Li+24; Yam15]. In addition to the creation and storage
of the source code representation, the tool compiles the queries that should be used
for the analysis into a suitable format. The search engine then executes the compiled
queries on the source code representation stored in the database and reports the
found matches as warnings.

3.2 Lifting by Extension

An intuitive strategy for lifting a variability-oblivious Q-SAST tool is to extend its
internals to support processing of whole SPLs. We refer to this strategy as lifting
by extension. Extending a tool’s internals enables it to receive the preprocessor-
annotated code of an SPL as input and to produce vulnerability warnings relating to
specific configurations as output. While some of the tool’s components and inputs can
remain unmodified to achieve this functionality, others must be adjusted. Figure 3.2
depicts the general structure of a Q-SAST tool (cf. Figure 3.1), emphasizing the
extent to which the individual components and inputs require alterations. For a
more detailed discussion of the individual components, in the following, we focus
on the three overarching components of source code representation, query language,
and search engine identified by Li et al. [Li+24]. These components are indicated by
1 , 2 , and 3 in Figure 3.2, respectively. Specifically, we detail the roles of the
contained components, the challenges associated with accommodating variability,
and necessary alterations to overcome these challenges.

3.2.1 Source Code Representation

In general, the automated analysis of source code hinges on the availability of one
or more source code representations that expose certain properties of the analyzed

3.2. Lifting by Extension 23

Search
Engine

Parsing and DB Storage

(Fuzzy)
Parser

Database

Query Processing

Query
Compiler

Source
Code

Queries

Warnings

1 23

Does not require alterations Alterations optional

Alterations may be required Alterations required

Figure 3.2: Structure of the lifting by extension strategy

program [Yam15]. For a comprehensive analysis of an SPL, these representations
have to consider variability. This means that the properties of every product derivable
from the SPL have to be exposed by the representations [Lie+13; von+18]. Popular
source code representations, such as conventional ASTs, CFGs, PDGs, or CPGs, only
relate to the source code of a single product. Therefore, conventional representations
are insufficient and need to be made variability-aware, taking into account all possible
products of an SPL.

3.2.1.1 Variability-Aware Source Code Representation

Before variable source code can be parsed and stored in a corresponding database, a
variability-aware version of the conventional (i.e., variability-oblivious) source code
representation used needs to be developed. To this end, there are multiple ways
through which variability can be incorporated into a source code representation.
Evidently, these ways vary depending on the concrete form of source code represen-
tation considered. Given the query-friendly nature of graph-based representations
and the resulting popularity among prevalent Q-SAST tools [Li+24], in the following
we focus on incorporating variability into this form of representation. Additionally,
while others [Wal+14] considered variability-aware representations on a level close
to implementation, we focus on a conceptual examination. Specifically, we concen-
trate on the two common techniques of incorporating special choice nodes into the
representation and annotating edges with dedicated presence condition labels.

Choice Nodes

One solution for incorporating variability into a graph-based source code representa-
tion is to introduce dedicated nodes (typically referred to as choice nodes [Lie+13;
von+18]). In essence, these nodes correspond to preprocessor conditionals and
indicate variable sections of the representation through outgoing edges [von+18].
For instance, in the context of ASTs, choice nodes indicate choices between two
or more alternative subtrees [Lie+13; von+18]. This is illustrated in Figure 3.3a,
which shows the partial variability-aware AST for the foo function of the running
example (cf. Listing 1.1). Since inclusion of the second assignment to y is subject to
selection of the PROCESS_INPUT feature, a choice node selects between the assignment
(PROCESS_INPUT selected) and an empty statement (PROCESS_INPUT unselected).

24 3. Comparison of Common Lifting Strategies

· · ·

STMTS

· · · · · ·CHOICE

εASSIGN

y *

2 x

¬ PROCESS_INPUTPROCESS_INPUT

(a) Using a choice node

· · ·

STMTS

· · · · · ·ASSIGN

y *

2 x

true

true true
PROCESS_INPUT

true true

true true

(b) Using presence condition labels

Figure 3.3: Variability-aware AST subtrees for the body of the if statement of the
foo function (cf. Listing 1.1)

Presence Condition Labels

An alternative to the usage of choice nodes is to connect all variable sections to the
rest of the representation directly. This avoids the introduction of artificial nodes and
thus leads to a more compact representation. It does, however, necessitate labeling
each edge with its corresponding presence condition to indicate the configurations
under which the relationship is valid. For edges between nodes, whose associated
SPL fragments require their mutual inclusion, the presence condition is trivially true.
All remaining edges are labeled with the condition under which the relationship
(structural inclusion, control flow, etc.) is present in products derived from the SPL.
Figure 3.3b illustrates this solution for the AST of the foo function (cf. Listing 1.1).
Given that the assignment statement is only part of the compound statement if
the PROCESS_INPUT feature is selected, the corresponding edge receives the label
PROCESS_INPUT. All other edges are assigned the trivial presence condition, true,
since for all products of the SPL, inclusion of the parent node always implies inclusion
of the child node.

3.2.1.2 Parsing

Parsing aims at creating instances of a given source code representation. It thus
constitutes an indispensable component of most Q-SAST tools (cf. Figure 3.2).
However, parsing unpreprocessed source code into a variability-aware representa-
tion (cf. Section 3.2.1.1) is a non-trivial task that cannot be solved by standard
parsers [Käs+11; Ken+10; Lie+13]. In essence, the reason for this lies in the fact
that preprocessor annotations are not part of the C language [Mor+19]. As a result,
unpreprocessed C does not conform to the formal C grammar [GJ03] (cf. Section 1.1).
To address this challenge, the parsing performed by a Q-SAST tool needs to be
adjusted. In this regard, there are two general directions. Using a naive solution,
the existing parser can be reused. However, as a result, the resulting source code
representation quickly becomes impractically large. More advanced solutions solve
this problem. In return, they require profound changes to the existing parser. Both
alternatives are described in more detail below.

3.2. Lifting by Extension 25

Naive Variability-Aware Parsing

Targeting a representation using choice nodes (cf. Section 3.2.1.1), a trivial approach
involves reusing the existing parser employed by the Q-SAST tool to build the
variability-oblivious representation for every product of the SPL [GJ03]. In this
regard, every possible product is first derived from the SPL to eliminate variability and
subsequently parsed. The resulting representations can then be joined using a single
choice node that selects between the representations of the individual products based
on the associated feature configuration [Lie+13; von+18]. This solution is simple and
requires only minor adjustments to the parsing performed by a tool. However, it leads
to redundancies for all elements shared between multiple products. Consequently, the
variability-aware representation becomes unnecessarily large, rendering any analysis
performed on it inefficient. Moreover, given the theoretically exponential number
of products derivable from an SPL [Lie+13; Thü+14; von+18], creating a separate
representation for every product leads to prohibitive costs.

Advanced Variability-Aware Parsing Solutions

Besides the aforementioned trivial strategy, there are two advanced solutions that
were proposed as part of prior research on parsing unpreprocessed C [GG12; GJ03;
Ken+10]. The first solution is straightforward and involves extending the grammar
of the host language (i.e., C) with dedicated productions for preprocessor condition-
als [GJ03; Ken+10; LKA11]. Based on such a modified grammar, a new parser can
be generated by parser generators such as Bison.1 The generated parser can then
be used to build the corresponding variability-aware representation. An alternative
strategy to changing the host language’s grammar is to extend the parser of a tool
to a fork-merge parser [GG12]. Upon encountering a preprocessor conditional, a
fork-merge parser forks its state into subparsers that parse the code of the individual
branches of the conditional [GG12]. When all subparsers reach the end of their
branch, they are merged, and parsing continues as usual [GG12]. The source code
representations created by the subparsers can then be incorporated into the overall
representation by connecting them to choice nodes or using dedicated edges labeled
with the corresponding presence conditions. While both solutions try to avoid redun-
dancies and thus create more compact representations than the naive strategy, they
evidently require deeper changes to the parsing performed by a Q-SAST tool.

3.2.1.3 Requirements Imposed by Parsing Variable Source Code

Depending on the used parsing solution (cf. Section 3.2.1.2), the variable source
code of an SPL may need to conform to a number of requirements before it can
be parsed into a variability-aware representation. Establishing any property on the
input source code by hand can quickly become infeasible considering the size of
real-world software. As a result, required properties are typically enforced through a
preprocessing step of the variability-aware parser. This ensures that variable source
code can be used as input without it having to undergo alterations (cf. Figure 3.2).

The trivial parsing technique of using a single choice node to select between individual
variability-oblivious representations removes all variability prior to parsing. It does
therefore not impose any special requirements on an SPL’s source code. More

1https://www.gnu.org/software/bison/.

https://www.gnu.org/software/bison/

26 3. Comparison of Common Lifting Strategies

sophisticated solutions, such as an extended grammar or a fork-merge parser, often
impose two requirements [GG12; Ken+10]: (1) preprocessor conditionals must be in
disciplined form and (2) macro substitutions and file inclusions have to be already
resolved. Below, we describe these requirements in more detail.

Preprocessor Discipline

First, to enable a clear mapping from variational sections of source code to ele-
ments of the target representation, preprocessor conditionals must be in disciplined
form [Ken+10; LKA11]. In most software projects, the vast majority of preprocessor
annotations is already in disciplined form [LKA11]. The remaining annotations can
generally be transformed into disciplined form, albeit in the worst case resulting in an
exponential number of code clones [Ken+10; LKA11] (cf. Section 2.2). Alternatively,
to avoid transformation of the source code, it is possible to parse each configuration
of a structure containing an undisciplined annotation in isolation using dedicated
subparsers [GG12].

Macro Substitutions and File Inclusions

Second, to avoid false parse errors, macro substitutions and file inclusions have to
be resolved before parsing while keeping preprocessor conditionals (i.e., #ifdefs)
intact [GG12; Ken+10]. This is usually realized by a configuration-preserving
preprocessor (also referred to as a partial preprocessor [Ken+10]) [GG12]. Without
prior expansion of macros, code relying on macro substitution for syntactic correctness
can raise false syntax errors. Not expanding file inclusions can, additionally, withhold
information from the parser that is indispensable for the syntactic correctness of the
source file. Listing 3.1 exemplifies the need for these steps in the context of a small
C program. To successfully parse the program, the P macro defined in Listing 3.1b
has to be expanded. Without this expansion, Lines 4 and 5 in Listing 3.1a lack
a terminating semicolon, thus preventing them from being parsed as the intended
consecutive statements. Since the definition of the P macro is located in a separate
header file, expanding the corresponding file inclusion is vital. Otherwise, the
definition of the macro will remain unknown, making its substitution impossible.

1 #include "SimpleHeader . h"
2
3 void main() {
4 P(" He l lo \n")
5 P("World\n")
6 }

(a) The main program

1 // SimpleHeader.h
2 #include <stdio.h>
3
4 #define P(message) \
5 printf(message);

(b) The included header file

Listing 3.1: A simple C program inspired by the example of Kenner et al. [Ken+10]
that can only be parsed after header inclusion and macro substitution has been
completed

3.2.1.4 Database Persistency

Q-SAST tools typically maintain instances of their source code representations in
dedicated databases [Li+24]. In this regard, graph databases provide a convenient and

3.2. Lifting by Extension 27

efficient way to store and query graph-based representations. Most of these databases
support versatile graph data models, such as property graphs [Ang18]. Considering
that these representations allow various types of relationships and nodes to be
expressed within a single graph [RN10], storing a variability-aware representation
requires no changes to the database component (cf. Figure 3.2).

However, depending on whether earlier stages of the tool under consideration already
built and maintained the source code representation in a format supported by the
corresponding graph database, a transformation into a suitable format might need
to be established. For this purpose, the existing transformation for the variability-
oblivious representation can be extended to handle constructs such as presence
condition labels or choice nodes. Considering property graphs as the target format,
this represents a simple task. Adding presence condition labels only requires adding a
new property containing the presence condition to the corresponding edges. Similarly,
to distinguish between conventional nodes and choice nodes, a new property can be
added to nodes indicating their type.

3.2.2 Query Language

For the specification of queries, Q-SAST tools often make use of general-purpose
query languages supported by the utilized database solution. For instance, the
popular but partially closed-source Q-SAST tool CodeQL [24e] relies on queries
written in a Datalog variant [Li+24]. Joern, on the other hand, based its queries
on Gremlin but has since transitioned to the Scala-based Code Property Graph
Query Language (CPGQL) supported by the employed graph database flatgraph2

[24f; 24i; Yam+14]. Given their general-purpose nature, these query languages
typically merely act as interfaces for providing access to the utilized source code
representations. As a result, they generally do not pose limitations with regard to
modeling patterns in variability-aware representations. The query language and
associated compilation toolchain of a Q-SAST tool, therefore, require no modifications
to extend the tool’s applicability to the domain of SPLs (cf. Figure 3.2). Nonetheless,
the internal structure of a variability-aware representation can differ significantly
from representations based on single products. Therefore, the question arises to
what extent users must take variability into account when specifying a query. In this
respect, it is possible to distinguished between variability-oblivious and variability-
aware queries.

Variability-Oblivious Queries

Variability-oblivious queries do not take variability into account when modeling
specific source code patterns. As a result, their specification is simple, and they
remain effective for the analysis of programs employing alternative patterns of
variability. Although keeping queries oblivious to variability offers great benefits,
it carries a risk of missing a considerable number of valid matches. This risk is
exemplified by Figure 3.4. Assuming that the consecutive execution of statements
of types A and B introduces a vulnerability, a query matching simple instances of
this pattern can be formulated on ASTs. The query searches the AST for nodes
representing a statement list (denoted by STMTS) and checks the associated child

2https://github.com/joernio/flatgraph.

https://github.com/joernio/flatgraph

28 3. Comparison of Common Lifting Strategies

nodes for consecutive occurrences of statements of types A and B. The AST pattern
matched by this query is illustrated in Figure 3.4a. Considering a variability-aware
AST of an SPL, such as the one partially illustrated in Figure 3.4b, this query leads
to missed matches.3 Due to the presence of the variable statement C, the statements
of types A and B are not consecutive child nodes of the corresponding statement list.
Additionally, the statement of type B is variable itself and thus not a direct child of
the statement list. As a result, the query is unable to match an occurrence of the
pattern, despite the fact that the configuration ¬X ∧ Y would lead to a manifestation.
To detect this manifestation, the query needs to account for variability, i.e., it needs
to be variability-aware.

STMTS

STMT A· · · STMT B · · ·

(a) AST pattern matched by the query

STMTS

STMT A CHOICE

εSTMT C

CHOICE

εSTMT B

¬ XX ¬ YY

(b) Variability-aware AST

Figure 3.4: An AST pattern matched by a variability-oblivious query and a possible
variability-aware AST exhibiting the pattern

Variability-Aware Queries

Variability-aware queries take variable structures into account when modeling par-
ticular source code patterns. This allows patterns to be matched, even when being
affected by variability structures. For instance, using a variability-aware query, it is
possible to match the consecutive execution of statements of type A and B in the
variability-aware AST depicted in Figure 3.4b. To this end, the query has to allow
for an optional choice node in between the two statements. If this choice node is
present, the query must ensure that there is at least one path from this node to a
leaf node representing the empty statement ε. Additionally, the query cannot simply
rely on the two statements being direct child nodes of the statement list, as they
can both be subject to variability. The query therefore additionally has to allow for
choice nodes in between the statements and the statement list.

In general, variability-aware queries not only lead to high precision but also simplify
the task of the search engine, given that they closely describe the structures to be
searched within the source code representation. Nonetheless, they also require users
to be aware of the usage of variability in the analyzed code base when specifying
queries. For large programs encompassing millions of lines of code, this is obviously
challenging. Furthermore, making variability explicit requires queries to be in line
with the variability patterns of a given code base. This, in turn, can reduce the
effectiveness of reusing queries for the analysis of other programs.

3For brevity, we focus on a variability-aware AST realized using choice nodes. The same effect
can, however, also be observed for variability-aware ASTs realized using presence condition labels
on its edges.

3.2. Lifting by Extension 29

Practical Considerations

As previously described, variability-oblivious queries can result in missing obvious
matches to the modeled source code patterns. Variability-aware queries are not a
perfect solution either. Not only are they harder to specify, but they cannot easily be
reused in the context of other systems. Therefore, in practice, the correct form has to
be chosen depending on the modeled pattern. Queries modeling source code patterns
that are not affected by variability (e.g., the presence of a call to a specific function)
can be kept variability-oblivious. Queries that model patterns prone to variability
interactions (cf. Figure 3.4) should, on the other hand, be specified variability-aware
to provide meaningful results. When trying to reuse existing queries specified for the
analysis of non-variable software, this means that queries need to be inspected and
adjusted accordingly (cf. Figure 3.2).

3.2.3 Search Engine

The search engine of a Q-SAST tool is responsible for scanning the constructed source
code representation for matches to the vulnerability patterns modeled by the provided
queries [Li+24]. While the database containing the source code representation usually
does not have to be rebuilt in between queries of an analysis run [Li+24], the search
engine is executed for every query. The performance of a Q-SAST tool therefore
heavily depends on its search engine. As a result, it is not surprising that tools, such
as Joern, rely on the built-in solution of the database technology used [24i]. While
this presents a way that is less labor-intensive than implementing a dedicated search
engine from scratch, it makes the internals difficult to access and modify.

Fortunately, in the context of popular graph-based representations and corresponding
graph databases, introducing variability into the search engine does not necessarily
require changes to its internals. The query languages used by popular Q-SAST tools
are typically expressive enough to capture variability within their queries, if needed
(cf. Section 3.2.2). Accordingly, the query language itself does not require changes
and the underlying structure of the queries passed on to the search engine remains
unchanged. A similar pattern can be observed for incorporating variability into the
used source code representation. While the representation itself requires changes (e.g.,
in the form of choice nodes or dedicated edges with presence condition labels), the
data models used by graph databases are typically expressive enough to incorporate
changes without the need for adjustment (cf. Sections 3.2.1.1 and 3.2.1.4). As the
underlying structure of the data contained within the database remains unchanged,
the search engine is able to operate on variability-aware representations without the
need for modifications.

Optional Improvements

As described above, changes to the search engine can be difficult to realize and are not
necessarily required to support the analysis of SPLs. However, they would offer an
opportunity to address certain problems arising from the use of variability-oblivious
queries on variability-aware representations (cf. Section 3.2.2).

By leaving the search engine unchanged, it is the user’s responsibility to ensure that
queries whose pattern can be affected by variability incorporate the right degree
of variability-awareness. If a user is unaware of this, matches for a query can be

30 3. Comparison of Common Lifting Strategies

missed (cf. Figure 3.4), leaving potential vulnerabilities undiscovered. To counteract
simple instances of this problem, the internals of the search engine could be altered.
Focusing on an implementation using choice nodes for the sake of brevity, this could
look as follows: If a choice node is encountered during the matching process, the
search engine automatically descends from the choice node, searching for either
an ε node or the next structure expected by the query. Once an ε node or the
next expected structure is found, the search engine ascends again and continues
matching as before. Otherwise, the matching process at the current position is
aborted. To exemplify this strategy, consider the example in Figure 3.5, where the
goal is again to identify a consecutive execution of statements of types A and B.
After matching the node of statement A, the search engine would descend into the
choice node parenting statement C. Since this leads to the discovery of an ε node,
the search engine would ascend again and follow the same procedure for the choice
node parenting statement B. Upon discovering the node of statement B, the searched
pattern would be completed and the match returned.

STMTS

STMT A CHOICE

εSTMT C

CHOICE

εSTMT B

¬ XX ¬ XX

Figure 3.5: An adjusted version of
the variability-aware AST of Fig-
ure 3.4, where statement A is di-
rectly succeeded by statement B
only in an invalid product

The simple strategy outlined above can help prevent missed matches to a query.
However, its disregard for the presence conditions associated with the matched
structures can lead to matches relating to invalid products of the SPL. This is
again exemplified in Figure 3.5. While the strategy would report a match to a query
modeling the consecutive execution of statements A and B, this match would relate
to the configuration ¬X ∧X. This configuration constitutes a logical contradiction
and thus describes an invalid product of the SPL. Matches relating to invalid
products can be filtered out after the analysis. As a more efficient solution, it is also
possible to employ satisfiability checks within the search engine to detect invalid
feature configurations at an early stage. For this purpose, the presence condition
encountered when traversing a new choice node can be joined with the ones collected
earlier during the matching attempt via a logical conjunction. The resulting formula
can then be passed on to a corresponding solver. If the formula is not satisfiable, the
current (partial) match relates to an invalid product. In this case, the search engine
would need to either discard the match entirely or backtrack, removing corresponding
parts from the formula until it is satisfiable again. For the example in Figure 3.5,
this would mean that upon encountering the node of statement B, the formula would
become ¬X ∧X. As this formula is not satisfiable, the search engine would be forced
to ignore the match.

3.3 Lifting by Simulation

Another strategy for lifting a variability-oblivious Q-SAST tool to the domain of
SPLs is to transform problematic (i.e., variable) input into a form with which the
tool can operate. Figure 3.6 depicts the structure of this strategy, which we refer
to as lifting by simulation. Contrary to lifting by extension, the goal is not to

3.3. Lifting by Simulation 31

consider the internals of the chosen Q-SAST tool (cf. Section 3.1) but to treat
it as a black box that can be used without requiring alterations. To achieve this
goal, two components are introduced as additional pre- and post-processing steps
surrounding the tool. The variability encoding component builds on the identically
named concept [Ape+11; von+16] and is responsible for transforming variable source
code into a so-called product simulator (i.e., non-variable C) before its analysis
by the Q-SAST tool. While variability encoding enables an off-the-shelf Q-SAST
tool to operate on SPLs [Ios+17; von+16], it can severely change the structure of
the analyzed source code [Pat+22]. In addition, as a variability-oblivious tool is
used for the analysis of the transformed code, reported warnings do not retain any
variability information [Pat23]. The warning mapping component addresses these
challenges. It maps the location of a warning reported by the Q-SAST tool (i.e., a
raw warning) back to its corresponding position in the unpreprocessed source code.
Furthermore, it associates a presence condition indicating the configurations under
which the warning manifests. The resulting mapped warnings are then reported to
the user. In the following, we describe the two components of variability encoding
and result mapping in more detail. We omit a detailed description of the utilized
Q-SAST tool, considering that a standard Q-SAST tool (cf. Section 3.1) can be used
without modifications to its internals. However, since variability encoding can lead
to severe changes in the analyzed code (and hence the source code representation),
it is important to point out that the queries of the Q-SAST tool might need to be
adjusted to account for these changes (cf. Section 3.2.2).

Variability Encoding

Parser

Transformation

Variability-aware AST

Standard
Q-SAST tool

Warning
MappingSimulator

Raw
Warnings

SPL

Queries

Mapped

Warnings

Figure 3.6: Structure of the lifting by simulation strategy

3.3.1 Variability Encoding

Before a standard Q-SAST tool can operate on variable code, the code must be
transformed into plain host code. Formally, this process is referred to as variability
encoding [Ape+11; von+16]. It is based on the concept of configuration lifting
initially proposed by Post and Sinz [PS08] and aims at enabling an efficient and
comprehensive analysis of SPLs [Ape+11]. To achieve this, variability encoding
tries to avoid having to consider every derivable product individually by creating a
so-called product simulator [Ape+11]. A product simulator (also known as variant
simulator [von+16], metaproduct [Thü+12], or metaprogram [PS08]) is a single
program incorporating the behavior of all products derivable from an SPL [Ape+13b;
Ios+17; Thü+12; von+16]. Considering that the simulator contains only source code
of the host language (i.e., C), it can be analyzed using off-the-shelf Q-SAST tools,
which do not support unpreprocessed source code out of the box [Ios+17; Pat+22;
von+16]. In general, transforming a variable program into a corresponding product

32 3. Comparison of Common Lifting Strategies

simulator represents a challenging task. Below, we therefore describe the fundamental
process, its typical implementation, and some of the associated challenges in more
detail.

3.3.1.1 General Concept

From a technical perspective, for the construction of a product simulator, variabil-
ity encoding transforms compile-time variability into run-time variability [Ios+17;
Pat+22]. This means that preprocessor conditionals, which are usually evaluated
during compile-time, are transformed into variability constructs of the host language
(e.g., if statements). These constructs are, in turn, evaluated during the run-time
of the program. While the concrete transformations used for realizing variability
encoding differ depending on the host language and implementation strategy of
the SPL considered, the underlying concept remains the same. Each feature is
represented as a global boolean feature variable that models the presence or absence
of the associated feature [Ape+11].4 To ensure that all feature configurations remain
feasible and are considered during analysis, feature variables are not assigned a fixed
value [Ape+11]. Instead, they are either declared as externally defined or initialized
non-deterministically [Ape+11; Ios+17]. This ensures that an analysis tool applied
to the product simulator cannot assume that certain execution paths are never taken
by applying optimizations, such as constant propagation [Aho+07; Ape+11]. Source
code that is included under certain feature configurations (i.e., code that is not part
of the common core of the SPL) is then encapsulated in a conditional block guarded
by a boolean formula over the corresponding feature variables [Ape+11].

1 void foo() {
2 int x = source();
3 if(x < MAX){
4 int y = 0;
5 #ifdef CONFIG_PROCESS_INPUT
6 y = 2 * x;
7 #endif
8 sink(y);
9 }

10 }

(a) Before variability encoding

1 extern bool PROCESS_INPUT;
2 void foo() {
3 int x = source();
4 if(x < MAX){
5 int y = 0;
6 if(PROCESS_INPUT){
7 y = 2 * x;
8 }
9 sink(y);
10 }
11 }

(b) After variability encoding

Listing 3.2: The foo function (cf. Listing 1.1) before and after variability encoding

The general concept outlined above is exemplified by the foo function in Listing 3.2.
Line 6 of the unpreprocessed function (Listing 3.2a) is only incorporated into a
product if the PROCESS_INPUT feature is selected. Accordingly, in the corresponding
product simulator (Listing 3.2b) the line needs to be enclosed in an if statement
(lines 6-8). The guard of this if statement is a newly introduced PROCESS_INPUT

feature variable (line 1) that corresponds to the selection of the identically named
feature. Based on the value assigned to this variable, the product simulator is able
to simulate the behavior of both products derivable from the variable foo function
at run-time.

4For dealing with numerical features, features could be represented as numerical variables or
transformed into sets of logical features representing the selection of specific feature values.

3.3. Lifting by Simulation 33

3.3.1.2 Variability Encoding Strategies

Based on the general concept of variability encoding described in Section 3.3.1.1, two
strategies for constructing a product simulator can be differentiated. These strategies
are outlined below.

Naive Variability Encoding

In general, the source code of an SPL can always be transformed into a corresponding
product simulator [von+16]. In this regard, similar to parsing variable code into a
variability-aware source code representation (cf. Section 3.2.1.2), the trivial approach
is to derive every possible product from the SPL. An additional wrapper can
then dispatch between the different products at program start depending on the
values assigned to the feature variables via run-time parameters [von+16]. For
instance, in the context of the foo function (cf. Listing 3.2a), an additional function
could dispatch between both products derivable from foo based on the value of a
PROCESS_INPUT feature variable. Since the number of products derivable from an
SPL may be exponential in the number of its features [DBW19], the naive strategy
results in product simulators of impractical size. Within a simulator, it leads to
redundancies for every fragment of source code shared between products. Such
redundancies not only lead to an inefficient analysis but also defeat the purpose of a
family-based strategy, aimed at exploiting the similarities between products [von+16].

Compact Variability Encoding

A more compact and thus practical product simulator can be constructed by trans-
forming each point of variability within the unpreprocessed code in isolation. This
allows individual variability patterns to be handled differently. In fact, it is the
strategy that was applied for the introductory example shown in Listing 3.2. Since
the preprocessor conditional used within the foo function is found at statement level
(i.e., within a function body) and specified in disciplined form, it could be substituted
with a conventional if statement. The guard (i.e., condition) of this if statement was
a newly introduced feature variable corresponding to the CONFIG_PROCESS_INPUT

macro found in the original code. Compared to the naive strategy outlined above, the
local transformation of the preprocessor conditional avoids having to include both
variants derivable from the variable foo function in the product simulator. While
certain preprocessor conditionals, such as the one found in the foo function, can
be handled easily, others demand a more sophisticated transformation. As a last
resort, it is always possible to deal with problematic preprocessor conditionals by
applying the naive strategy at a finer granularity. However, for certain variability
patterns, there are also more advanced solutions [Ios+17; von16] that aim at reducing
the resulting code duplication while preserving the behavior of all products in the
simulator.

3.3.1.3 Variability Encoding in Practice

So far, we described the concept behind variability encoding and two strategies
how a product simulator can be constructed. In general, variability encoding is
not a novel concept and has seen considerable research [Gar17; Ios+17; Pat+22;
PS08; von+16; von16]. In this section, we thus focus on how variability encoding

34 3. Comparison of Common Lifting Strategies

is commonly realized in practice. In this regard, we first outline how a compact
product simulator can be created from variable source code. In addition, we briefly
discuss how variability bugs found during the transformation can be incorporated in
the product simulator, further preserving the overall behavior of the SPL.

Simulator Construction

From a technical perspective, transforming the code of an SPL into a corresponding
product simulator typically involves two steps (cf. Figure 3.6) [Gar17; Ios+17;
von+16]. First, the source code of the SPL is parsed into a variability-aware AST.
As we have discussed in the context of lifting by extension, in itself, this represents a
non-trivial task whose efficient implementation requires sophisticated concepts like a
custom grammar or a fork-merge parser (cf. Section 3.2.1.2). In addition, in the case
of preprocessor-annotated C code, a configuration-preserving preprocessor [GG12]
has to be applied to resolve macro substitutions and file inclusions. Without this
step, syntactical structures might be incomplete or identifiers might not be resolved
(cf. Section 3.2.1.3).

As a second step, transformations tailored to specific variability patterns can be
applied to variable subtrees of the constructed AST to create the product simulator.
In this regard, it is possible to transform the source code represented by a subtree into
a corresponding part of the product simulator directly [Gar17; von16]. Alternatively, a
variability-oblivious AST can be created using tree transformations as an intermediary
step [Ios+17]. As a third alternative, the two steps of parsing and transformation
can be interwoven by executing special semantic actions5 during parsing [Pat+22].
This has the benefit that the transformation can take place during parsing, avoiding
the computational effort of building a full AST beforehand.

Preserving Variability Bugs

Not every product of an SPL is guaranteed to be type-safe or even syntactically
sound [Bra+12; Pat+22]. Therefore, to fully preserve the behavior of the SPL,
variability bugs that can be identified during parsing of the variable code, such
as type and syntactic errors, need to be incorporated into the product simulator.
Even though these kinds of errors can typically be easily detected by the front ends
of modern compilers, recall that the potentially exponential number of products
derivable from an SPL often prohibits an exhaustive analysis [Aba+17; Pat23]. Thus,
in practice, compiling every product individually is not feasible. As a result, it is not
uncommon that some products of an SPL exhibit obvious errors [Aba+17], which
can even prevent them from compiling [Bra+12; Pat+22]. One way of incorporating
these errors into a product simulator is to transform compile-time errors into run-
time errors [Pat+22]. To achieve this, upon encountering an error during parsing,
an additional statement can be introduced into the corresponding location within
the simulator. The statement then indicates the error at run-time by throwing an
exception, ultimately aborting the execution of the simulator.

5In the context of a syntax-directed translation scheme, semantic actions refer to program
fragments that are associated with the productions of a grammar and executed upon a successful
match [Aho+07].

3.3. Lifting by Simulation 35

3.3.1.4 Prominent Challenges

As mentioned in Section 3.3.1.2, not every variability pattern can be translated
into simulator code by replacing the associated preprocessor annotation with an if
statement. In this section, we give a brief overview of two general patterns that an
implementation aiming for the construction of a compact product simulator needs to
address. For general-purpose programming languages like C, there are, however, many
other variability patterns whose behavior-preserving transformation into a compact
product simulator poses a challenge. As empirical evidence shows, these patterns can
generally be encoded using a form of code duplication and renaming [Ios+17; von+16].
For the sake of brevity, we omit a detailed discussion of how this can be achieved
and refer the interested reader to the publications of von Rhein et al. [von+16],
Iosif-Lazar et al. [Ios+17], and Patterson et al. [Pat+22].

Undisciplined Preprocessor Conditionals

Undisciplined conditionals do not surround entire host language constructs but only
an arbitrary sequence of tokens (cf. Section 2.2). Translating them into corresponding
host language variability, which naturally can only wrap entire constructs, is therefore
not possible. They also severely complicate the parsing of variable source code,
which typically forms the first step of a variability encoding implementation (cf.
Section 3.3.1.3). A straightforward solution to this problem is to transform the
conditionals into disciplined form before trying to translate them into host language
constructs. With the exception of ill-formed conditionals, this can automatically be
achieved for all undisciplined conditionals [GJ03; Ken+10; LKA11] (cf. Section 2.2).
However, in the worst-case scenario, it may result in an exponential number of code
clones [Ken+10; LKA11].

Preprocessor Conditionals on Unsupported Scopes

A serious challenge for transforming unpreprocessed C into a corresponding product
simulator is the presence of preprocessor conditionals situated at levels other than
statement level. Conditionals of this kind are not uncommon and represent a typical
way to realize portable code [von+16]. Programming languages like C do, however,
not support variability at levels other than statement level (i.e., inside function
bodies) [Pat+22; von16]. To address this limitation, it may be necessary to introduce
a certain degree of code duplication during variability encoding [Ios+17; Pat+22;
von+16]. This is illustrated in Listing 3.3.

Listing 3.3a shows an example of portable code that uses variability to choose
the correct data type in a struct based on the target system architecture. Since
the variability is found at the level of field declarations, simply substituting the
preprocessor conditionals for if statements is not possible. While it would be possible
to follow the naive strategy (cf. Section 3.3.1.2), this would lead to a near identical
duplicate for both the C struct and the baz function. Listing 3.3b shows a possible
improvement that only duplicates the struct while applying identifier renaming and
host code variability to the baz function.6

6A detailed discussion of the improvement and the reason why it does not suffice to only duplicate
the variable field inside the struct can be found in Appendix A.1.

36 3. Comparison of Common Lifting Strategies

1 // #include ...
2 struct C {
3 char* x;
4 #ifdef CONFIG_64BIT
5 int64_t y;
6 #else
7 int32_t y;
8 #endif
9 } C;
10
11 double baz() {
12 struct C c = {"A", 1};
13 int sY = sizeof(c.y);
14 int sC = sizeof(c);
15 return (double) sY / sC;
16 }

(a) Before variability encoding

1 // #include ...
2 extern bool CONFIG_64BIT;
3
4 struct C_64BIT {
5 char* x;
6 int64_t y;
7 } C_64BIT;
8
9 struct C_No_64BIT {

10 char* x;
11 int32_t y;
12 } C_No_64BIT;
13
14 double baz() {
15 struct C_No_64BIT c1 = {"A", 1};
16 struct C_64BIT c2 = {"A", 1};
17
18 int sY = CONFIG_64BIT ?
19 sizeof(c2.y) : sizeof(c1.y);
20 int sC = CONFIG_64BIT ?
21 sizeof(c2) : sizeof(c1);
22 return (double) sY / sC;
23 }

(b) After variability encoding

Listing 3.3: Portable C code inspired by the example of von Rhein et al. [von+16],
before and after variability encoding

In general, applying local code duplication and renaming to transform variability
(cf. Listing 3.3b) can, in the worst case, degenerate to the naive strategy. As a
result, it may cause the transformed program to exhibit exponential growth in the
number of features involved in a particular variability pattern [Ios+17; von+16].
However, as empirical evidence shows [Ios+17; von+16; von16], the resulting blowup
can mostly be kept local. The majority of code shared between products is therefore
incorporated into the product simulator only once.

3.3.2 Warning Mapping

As a product simulator comprises only host code, it effectively enables off-the-shelf
Q-SAST tools to operate on an SPL [Ios+17; Pat+22; von+16]. However, two
problems are typically associated with the vulnerability warnings raised on a product
simulator [Pat23]:

(1) Warnings relate to locations within the product simulator rather than the
unpreprocessed SPL source code.

(2) Warnings are not assigned a presence condition indicating under which configu-
rations of the SPL they manifest.

To provide meaningful information about potential vulnerabilities in an SPLs, these
problems need to be addressed. This is the task of the warning mapping component.
Accordingly, in Sections 3.3.2.1 and 3.3.2.2 we provide more context on the two
problems and explore possible options how they can be addressed.

3.3. Lifting by Simulation 37

3.3.2.1 Mapping Warning’s Locations

Transforming an SPL into a corresponding product simulator is a challenging task
that involves careful consideration of many possible variability patterns (cf. Sec-
tion 3.3.1). Furthermore, to ensure behavior preservation, extensive code duplication
and renaming may be required [von+16]. Listing 3.3 illustrated the effect this can
have on the structure of source code. Not only can source code increase in length,
but the locations of the structures contained within can change. For large source
files containing thousands of lines of code, this can mean that the layout of the file
changes drastically. Accordingly, when applying a Q-SAST tool to a product simula-
tor, reported warnings may relate to completely different lines of code, compared
to the location in the original SPL source code from which they originated [Pat23].
This is not desirable since changes addressing the reported warnings are made to
the source code of the SPL and not to individual products or the product simulator.
Consequently, warnings need to be mapped back to the locations in the SPL that
caused them. For smaller SPLs, whose source files are of limited size, it might
be feasible to do this manually. However, for larger systems, a Q-SAST tool may
report numerous warnings. Mapping these warnings by hand would represent a
very labor-intensive task, taking up valuable time better spent investigating and
fixing the underlying causes. Accordingly, to ensure viability of lifting by simulation
in practice, it is crucial that an automated process mapping warnings reported on
variability-encoded source code to the corresponding location within the SPL is
provided.

Employing Inverse Transformations

In theory, it would be possible to automatically determine the location of a warning in
the unpreprocessed SPL source code by inverting the transformations applied during
variability encoding. The lines of code to which a particular warning relates could
then be tracked through the inverse transformations and their final location reported
to the user. Evidently, this represents a complicated solution. Not only can it be
very labor-intensive to specify inverse transformations for every transformation used
for variability encoding, but operations of the partial preprocessor applied during
parsing (cf. Section 3.2.1.3) have to be inverted as well. In addition, depending on its
implementation, variability encoding may produce similar output for different inputs
(e.g., because certain variability patterns are handled identically). Guaranteeing
that an inverse transformation recreates the exact structure of the unpreprocessed
source code can therefore be challenging. However, if the resulting mapping is not
precise enough, interpreting warnings can be even harder than before. Lastly, since
variability encoding can be computationally demanding [Pat+22; Sch+22], executing
the same transformations in reverse would cause a noticeable performance overhead.

Expanding the Role of Variability Encoding

To avoid the drawbacks of employing inverse transformations, an alternative is to
follow the solution proposed by Patterson et al. [Pat+22; Pat23]. This solution
involves moving the responsibility of establishing a mapping between the unprepro-
cessed code and the code of the product simulator to the transformation that takes
place during variability encoding. For this purpose, the variability encoding tooling
keeps track of where unpreprocessed lines of code end up during the transformation.

38 3. Comparison of Common Lifting Strategies

Special comments are added after each line of code in the simulator, indicating
the corresponding line numbers in the unpreprocessed code [Pat+22]. The task of
mapping the locations of warnings then becomes trivial. For every warning, the
involved lines of code in the simulator are scanned for special comments inserted
during variability encoding. The original line numbers can then be read from the
comments and associated with a particular warning.

3.3.2.2 Associating Presence Conditions

Another issue that arises from applying a Q-SAST tool to a product simulator is
that warnings are not associated with presence conditions (i.e., formulas specifying
the configuration options required for their manifestation). This results from the
fact that lifting by simulation employs a variability-oblivious tool for the analysis of
what is effectively variable source code. To the tool, there is no difference between
conventional if statements and the ones introduced during variability encoding to
codify the (un)selection of one or more features. Consequently, the alarms raised
retain no variability information [Pat23] and do not indicate the configurations of
the SPL to which they apply. For developers, knowing which configuration options
(i.e., features) are involved in a warning can, however, be a valuable aid in the
interpretation and classification of a warning. Let us consider a scenario where a
warning indicating a severe vulnerability requires the selection of a developer feature
dedicated to enabling easier debugging. Such a vulnerability probably poses only
a minor threat, if any at all. It is created intentionally to aid developers during
development and will never manifest in products shipped to customers.7

The simplest solution to this problem is to require users to identify presence conditions
to the reported warnings by hand, examining the surrounding code regions in either
the simulator or the SPL source code. As with establishing a mapping of warnings’
locations, this can be very labor-intensive. Alternatively, the internals of the employed
Q-SAST tool can be altered in a way such that it emits presence conditions for the
warnings raised. However, this contradicts the idea of using off-the-shelf variability-
oblivious tools for the analysis, which is central to lifting by simulation. Not only
would the overall maintenance effort be increased but changing a particular Q-SAST
tool for another would require additional effort. Lastly, the idea of moving large parts
of the task to the variability encoding component as proposed for mapping warnings’
locations can be applied. To this end, guards of if statements introduced by variability
encoding can be specified in a fixed format (e.g., as calls to artificial functions returning
boolean values [Pat23]) such that they can easily be differentiated from conventional
if statements. As an additional improvement, guards of outer configuration-related
if statements can be integrated into the guards of inner configuration-related if
statements through conjunction [Pat23]. This avoids having to ascend through all
enclosing scopes to identify a complete presence condition. Instead, the guard of the
first if statement encountered when ascending though the conditionals introduced by
variability encoding already reflects the complete presence condition.

7Evidently, this hinges on the assumption that strict checks of the selected features are performed
before shipping code out to customers. An assumption that, as illustrated by Apple’s FileVault
vulnerability in 2012 [Sch+22], does not always hold in practice.

3.4. Discussion 39

3.4 Discussion

The strategies of lifting by extension and lifting by simulation both exhibit certain
strengths and weaknesses. Since these aspects often mirror each other, deciding
between the two strategies is not simple. The individual strengths and weaknesses
need to be carefully judged and prioritized with regard to the context in which the
strategy should be applied. In the following, we consider the criteria of precision, per-
formance, maintenance, extensibility, and required implementation effort. Table 3.1
shows a high-level comparison of the two strategies with regard to these criteria.
This comparison is discussed in more detail in Sections 3.4.1 to 3.4.5. Lastly, with
focus on the scope of this thesis, Section 3.4.6 elaborates on the rationale behind our
choice, which is in favor of lifting by simulation.

Criterion Lifting by Extension Lifting by Simulation

Precision
Avoids imprecision due to
analysis of altered source
code

Analysis of altered source
code can introduce
imprecision [Pat23]

Performance
Immediate analysis of vari-
able code

Additional pre- and post-
processing

Maintainability
High maintenance
effort [GW19]

Moderate maintenance effort

Extensibility
Heavily dependent on the
tool to be lifted

Nearly independent of the
tool to be lifted

Implementation
Effort

Idea applied only conceptu-
ally

Applied in the context of
conventional SAST tools

Table 3.1: A high-level comparison of lifting by extension and lifting by simulation,
focusing on the criteria of precision, performance, maintainability, extensibility, and
implementation effort

3.4.1 Precision

While any static analysis approach dedicated to the identification of complex vulnera-
bilities is limited to providing approximate results,8 overall precision can vary between
different analysis approaches. The ultimate goal is to be as precise as possible. Since
an increase in precision is typically traded with a decrease in performance, a more
realistic goal is to be as precise as possible while maintaining adequate performance.
In the context of this thesis, we aim to leverage the capabilities and performance
of Q-SAST for the analysis of variable code by lifting an off-the-shelf Q-SAST tool
to the domain of SPLs. It is not the goal to reengineer the fundamentals of the
approach employed by the analysis tool to improve its overall precision. As a result,
imprecision introduced by the analysis tool and its analysis approach are inevitable
for both strategies. However, apart from this imprecision, there can be a difference
between employing lifting by extension and lifting by simulation.

Lifting by Extension

Using lifting by extension, the Q-SAST tool operates directly on a variability-aware
source code representation. Such a representation allows the source code of an

8Recall that this a direct consequence of Rice’s theorem [Ric53].

40 3. Comparison of Common Lifting Strategies

entire SPL to be captured in a compact structure, relying only on lightweight
constructs such as choice nodes or presence condition labels for encoding variability
(cf. Section 3.2.1.1). Therefore, assuming that insufficient variability-awareness of
queries is not a problem (cf. Section 3.2.2), the matching process performed by the
tool’s search engine should remain as precise as for non-variable code. Nonetheless,
a variability-aware source code representation is typically larger in size than its
variability-oblivious counterpart. Limitations of internal components of the analysis
tool can therefore surface, negatively affecting precision. As the goal of lifting by
extension is to extend the capabilities of the tool by altering its internals, these
limitations could be addressed by adapting the corresponding component to suit the
new conditions. Lastly, the use of variability-oblivious queries for modeling patterns
that can be affected by variability can lead to missed matches (cf. Section 3.2.2).
As demonstrated in Section 3.2.3, simple instances of this problem can, however, be
addressed by adjusting the search engine.

Lifting by Simulation

The idea of lifting by simulation is to use an off-the-shelf Q-SAST tool for the analysis
of a product simulator. While this allows the analysis tool to be reused without
requiring alterations to its internals, analysis of a product simulator can introduce a
certain amount of imprecision [Ios+17]. To emulate the behavior of the whole SPL,
the product simulator encompasses additional host language conditionals, effectively
introducing new execution paths into the code to be analyzed (cf. Section 3.3). Since
the newly added paths encapsulate feature-specific code not contained in the SPL’s
common core, their guards (i.e., presence conditions) can be complex, involving
numerous feature variables. Therefore, for analysis tools it can be challenging to
reliably identify mutually exclusive paths, leading to false vulnerability warnings once
accidentally ignored [Pat23]. Moreover, to preserve the behavior of the individual
products of an SPL, the product simulator often has to rely on code duplication and
renaming of identifiers (cf. Section 3.3). In practice, this can cause the source code
to expand to a multiple of its original, unpreprocessed size [Ios+17; Pat+22], a fact
reflected in the source code representation of the utilized analysis tool. Limitations
of internal components can therefore quickly surface. Addressing these limitations
would require alterations to the analysis tool’s internals. However, not only would
this contradict the idea of lifting by simulation, but it would also eliminate one of
its main benefits in being nearly independent of the analysis tool used. A similar
limitation can be observed for the use of queries that do not account for structural
changes in the product simulator. While simple instances of this problem could be
addressed by adjusting the search engine (cf. Section 3.2.3), for lifting by simulation
this is not an option. Consequently, an additional translation component responsible
for translating queries would need to be introduced.

Summary

While both lifting strategies inherit the imprecision of the chosen Q-SAST tool
and its analysis approach, lifting by extension promises higher precision. It avoids
imprecision resulting from analyzing variability-encoded source code, which tends
to incorporate many redundancies, and allows limitations relating to internal
components and queries to be addressed directly.

3.4. Discussion 41

3.4.2 Performance

Large real-world SPLs tend to receive many commits per day and thus continuously
evolve [Pet+23]. As a result, receiving warnings about potential vulnerabilities days
or even weeks after the analysis was started is anything but ideal. By then, the
SPL’s code might have significantly changed, making the warnings of an analysis
tool hard to interpret or even obsolete. Performance is therefore crucial to the
viability of an analysis approach in practice. Considering that typically not all parts
of an SPL’s code base can be integrated into a single product (e.g., due to mutual
exclusive features or feature model constraints) [ABW14; Gar17], analyzing an SPL
using a family-based strategy (i.e., as a whole) is generally more resource demanding
than analyzing any single product by itself. As with precision, the degree to which
additional overhead is introduced can vary depending on the lifting strategy.

Lifting by Extension

With lifting by extension, variable source code is parsed into a variability-aware source
code representation that is immediately analyzed for matches to a user’s queries.
As the source code representation is constructed directly from an SPL’s variable
source code, it contains only limited redundancies that could make finding matches
to queries more computationally demanding (e.g., those required for transforming
undisciplined annotations into a disciplined form). Additionally, the analysis does not
require separate pre- or post-processing steps, as all associated tasks can be carried
out within the tool during the analysis through extensions of the corresponding
components. For instance, presence conditions can be assigned to vulnerability
warnings by considering the choice nodes or presence condition labels involved in the
matched parts of the source code representation. In this regard, it would even be
possible to construct presence conditions during the matching process by tracking
the traversed choice nodes or encountered presence condition labels. Similarly, a
mapping between elements in the variability-aware source code representation and
regions in the unpreprocessed source code can already be established during parsing.

Lifting by Simulation

Lifting by simulations aims at the analysis of a previously created product simulator
with conventional Q-SAST tooling. Similar to lifting by extension, this process
involves parsing variable code into a variability-aware representation (often an
AST [Gar17; Ios+17; von+16]). However, this represents only one part of variability
encoding. To generate the product simulator, extensive transformations typically
need to be executed on the representation (cf. Section 3.3.1.3). The analysis tool
then takes the simulator as input and parses it into its own source code representation
(e.g., CPGs in the context of Joern). Parsing is thus effectively performed twice.
In addition, a product simulator may contain many redundancies with the aim
of preserving the behavior of all products of the SPL (cf. Section 3.3.1). Since
redundancies are reflected in the source code representation of the analysis tool,
identifying matches to a user’s queries can become even more computationally
demanding [Thü+12]. Lastly, with lifting by simulation, the necessary tasks of
mapping warnings to their original location and assigning them presence conditions
can only be performed after the analysis tool finished its execution. Otherwise,
alterations to the tool would be required, which would contradict the idea of lifting
by simulation.

42 3. Comparison of Common Lifting Strategies

Summary

In essence, lifting by extension promises greater performance than lifting by sim-
ulation. Not only is parsing performed only once, but the analysis takes place
on a compact variability-aware source code representation that does not contain
unnecessary redundancies. Furthermore, computationally demanding pre- and
post-processing steps are not required.

3.4.3 Maintainability

As emphasized by Lehman’s first law of software evolution [Leh80], to remain relevant
in practice, a software system that is used and that reflects some real-world activity
needs to be continuously improved and maintained. This insight also applies to static
analysis approaches, given that they are frequently used to automate the analysis of
ever-evolving software systems during their associated development and evolution
activities. Considering maintainability in the context of lifting by extension and lifting
by simulation, two aspects can be compared. First, popular Q-SAST tools, such as
Joern or CodeQL, are themselves continuously improved and maintained. It is
therefore of interest how well updates to the chosen analysis tool can be incorporated
into the analysis approach using the two lifting strategies. Second, on a broader
scale, it is relevant how easily the overall approach resulting from an implementation
of the strategies can be maintained.

Lifting by Extension

Since lifting by extension aims to alter the internals of the chosen Q-SAST tool,
updates to its original (i.e., unaltered) version cannot always be simply integrated.
If an update relates only to unchanged sections of the tool’s source code and does
not alter newly introduced dependencies, the updated code can simply be merged.
However, if an update relates to sections of the tool’s code for which alterations
were necessary, resulting conflicts have to be manually resolved. This can not only
be labor-intensive but also error-prone. Furthermore, with lifting by extension, all
aspects of the analysis are performed within the lifted analysis tool. While Q-SAST
tools are typically structured into distinct components (cf. Section 3.1), their internal
complexity can nonetheless be high. Performing maintenance activities can thus be
challenging.

Lifting by Simulation

Using lifting by simulation, the chosen Q-SAST tool is treated as a black box that
does not necessitate any changes to its internals. Incorporating updates to the
analysis tool is therefore simple and limited to replacing the old version with the
new one and adjusting corresponding calls in case the call semantics of the tool
have changed. In addition, considering the overall maintainability of the resulting
analysis approach, lifting by simulation establishes a clear separation into the three
distinct components of variability encoding, Q-SAST tool, and warning mapping (cf.
Figure 3.6). Since these components are executed in sequence and act as individual
processing steps, the overall structure bears resemblance to the classic pipes and
filters architectural pattern [Bus+96]. This not only allows individual components
to be exchanged and reused [Bus+96] but also eases maintenance given that each
component represents a self-contained step in the analysis process.

3.4. Discussion 43

Summary

Lifting by simulation offers distinct benefits over lifting by extension in terms of
maintainability. Through its pipes and filters architecture, maintainability tasks can
be performed more easily than on lifting by extension’s tightly integrated structure.
Furthermore, since the chosen Q-SAST tool is treated as a black box, updates can
be seamlessly incorporated without the need to manually resolve conflicts between
versions.

3.4.4 Extensibility

Another factor worth considering is that there are multiple Q-SAST tools that enjoy
widespread adoption in industry [Li+24]. As these tools typically possess unique
strengths, there is no single Q-SAST tool that suits all situations. It is therefore
of interest how seamlessly an implementation of lifting by extension and lifting by
simulation can integrate with other Q-SAST tools.

Lifting by Extension

While the alterations made to a Q-SAST tool’s internals trough lifting by extension
enable for variability to be handled as it is most suitable in that context, they are
likely to be highly specialized to the internals of the chosen tool. Since other tools
may be implemented in a different programming language or realized differently,
reusing the alterations necessary for lifting one Q-SAST tool in the context of another
can be difficult. Consequently, expanding to other tools with lifting by extension
is generally labor-intensive and entails applying the strategy anew. In addition,
as the strategy involves alterations to a tool’s internals, it may only be applied to
Q-SAST tools that are either open-source or provide access to sufficient parts of
their implementation.

Lifting by Simulation

As lifting by simulation does not necessitate any changes to the chosen Q-SAST tool,
another tool can simply be substituted. In this regard, most parts of the existing
variability encoding and warning mapping components can be reused. Notably, only
two minor adjustments might be necessary. First, if the call semantics of the new tool
differ from those of the previously used tool, the parts issuing calls to the Q-SAST
tool need to be adjusted. Additionally, the warning mapping component may need
to be adjusted in case the new tool uses a different format to encode warnings (e.g.,
JavaScript Object Notation (JSON) vs. Extensible Markup Language (XML)). This
near-independence from the chosen analysis tool provides the added benefit that
even closed-source Q-SAST tools can be lifted using lifting by simulation.

Conclusion

Considering their expansion capabilities, lifting by simulation clearly outperforms
lifting by extension. Through its near independence of the chosen Q-SAST tool,
lifting by simulation offers simple expansion to other tools and enables even closed-
source solutions to be lifted. Lifting by extension, on the other hand, applies
extensive alterations to the chosen Q-SAST tool that make an expansion to other
analysis tools labor-intensive and require extensive access to a tool’s internals.

44 3. Comparison of Common Lifting Strategies

3.4.5 Implementation Effort

Lifting an off-the-shelf Q-SAST tool to the domain of SPLs represents a complex task
that demands a significant amount of effort. Evidently, this effort plays a key role in
the selection of a lifting strategy. In this regard, the effort needed for implementing
lifting by extension and lifting by simulation differs.

Lifting by Extension

In essence, for its implementation, lifting by extension requires inspecting the internals
of the chosen Q-SAST tool and making adjustments for accommodating variability.
These adjustments mostly focus on the utilized source code representation and
its associated parsing infrastructure (cf. Section 3.2). While altering a complex
component of an analysis tool, such as the employed parser, can be a difficult task, the
tool does provide a solid base to expand upon. For instance, altering the operation
of the existing parser used in a Q-SAST tool is generally less labor-intensive than
engineering a new parser from the ground up.

While there are solutions of prior research relating to the general idea of lifting by
extension, these solutions follow a more conceptional approach and aim at lifting
classic data-flow analyses specified via a CFG, lattice and transfer functions [Bra+12;
Bra+13] or the IFDS framework [Bod+13]. For lifting an off-the-shelf tool, they are
therefore not suitable and cannot be reused [Pat23]. In addition, while there are
established solutions dedicated to creating variability-aware data structures [Wal+14]
and ASTs [GG12; Ken+10], work on creating variability-aware variants of advanced
source code representations, such as CFGs, PDGs, or CPGs, has been limited.
Consequently, for extending a tool’s parsing infrastructure, it might be necessary to
create either a new variability-aware parser for the desired representation or establish
a transformation starting from a variability-aware AST.

Lifting by Simulation

Contrary to lifting by extension, lifting by simulation does not provide a foundation
to build upon and requires separate implementations for the variability encoding
and warning mapping components. Especially the implementation of the variability
encoding component can represent a serious undertaking (cf. Section 3.3.1). Not
only does it typically require a variability-aware parser but also a set of behavior-
preserving transformations that can handle most variability patterns encountered in
real-world C.

From an objective point of view, lifting by simulation appears very labor demanding
to implement. This is misleading, considering that there are practical solutions from
previous work that can be reused for this purpose. For creating variability-aware ASTs
from unpreprocessed C source code, there are tools such as TypeChef [Ken+10]
or SuperC [GG12]. Built on these tools there are solutions like Hercules [Gar17;
von+16], C Reconfigurator [Ios+17], and SugarC [Pat+22] that realize vari-
ability encoding. With Sugarlyzer [Pat23], there even exists a framework that
augments SugarC’s variability encoding with a warning mapping component and
allows generic SAST tools to be utilized for an analysis via corresponding interfaces.
For the implementation of the variability encoding and warning mapping components,
it is therefore possible to draw from a number of existing solutions. This, in return,
avoids having to implement both components from scratch, greatly reducing the
overall effort required for implementing lifting by simulation.

3.4. Discussion 45

Summary

When comparing the implementation of the two strategies, lifting by simulation with
its requirements for dedicated variability encoding and warning mapping components
appears to involve more effort than the alterations performed by lifting by extension.
However, taking into account the results of previous work in this field, for lifting
by simulation there are already practical solutions for both additional components.
On the other hand, previous work relating to lifting by extension focuses on lifting
general data-flow analyses and is not suitable for lifting an off-the-shelf tool. In
addition, the work on the creation of variability-aware variants of source code
representations popular among analysis tools has been limited. Consequently, when
taking the potential reuse of existing solutions into account, the implementation of
lifting by simulation generally requires less effort.

3.4.6 Our Choice

For the scope of this thesis, we aim to lift the off-the-shelf Q-SAST tool Joern
to the domain of SPLs. In this regard, we concentrate on SPLs implemented in C
via an annotative implementation strategy by use of the C preprocessor cpp (cf.
Section 1.2). In pursuit of this goal, our choice fell on the strategy of lifting by
simulation. While lifting by extension promises greater precision and performance
(cf. Sections 3.4.1 and 3.4.2), its drawbacks in terms of maintainability, extensibility,
and implementation effort (cf. Sections 3.4.3 to 3.4.5) are particularly important in
the context of this thesis.

Since Joern is a tool that is still actively maintained and improved, being able to
easily incorporate updates is an important factor for ensuring the long-term viability
of our approach. Similarly, it is crucial to be able to easily maintain our overall
approach in the future, considering that we do not have the same capacities as a
commercially developed tool with dedicated developers and maintainers. In view
of the lack of existing solutions, our aim is instead to provide a first concept for
family-based vulnerability discovery leveraging the benefits of Q-SAST that can
be continuously improved and expanded. This is also the main reason why we are
prepared to compromise on the general precision and performance of the approach.

Additionally, while Joern represents an established and powerful Q-SAST tool,
other Q-SAST tools, such as CodeQL [24e] or SonarQube [24m], are widespread
and possess unique advantages [Li+24]. As there subsequently is no single Q-SAST
tool that suits every situation, it is important to maintain the option to expand to
other tools in the future. Given that many popular Q-SAST tools are not completely
open-source [Li+24], being able to expand to even closed-source solutions provides
an added benefit.

Lastly, considering the size and complexity of Joern,9 implementing lifting by
extension represents a daring task that can only be supported to a limited extent by
reusing existing solutions (cf. Section 3.4.5). Most existing work focuses on general
data-flow analyses and hence cannot be used to lift a concrete tool. Additionally,

9As of August 2024, Joern consists of more than 180,000 lines of Scala code. Additionally, it
relies on the open-source in-memory graph database flatgraph, which itself adds Scala code in
excess of 15,000 lines.

46 3. Comparison of Common Lifting Strategies

while Gerling and Schmid [GS19] introduced the concept of variability-aware CPGs
to enable semantic slicing on SPLs, crucially, their solution cannot accurately handle
undisciplined annotations [Kra19]. Since we set out to support both disciplined and
undisciplined annotations (cf. Section 1.2), reusing Gerling and Schmid’s solution
would thus require non-trivial adjustments. Overall, implementing lifting by extension
therefore represents a task whose extent exceeds the scope of this thesis.

4. Design

In the last chapter, we have described two strategies for lifting a variability-oblivious
Q-SAST tool to the domain of SPLs: lifting by extension (cf. Section 3.2) and lifting
by simulation (cf. Section 3.3). Taking into account the benefits and drawbacks of
both strategies, for our goal of lifting the off-the-shelf tool Joern, we decided to
pursue lifting by simulation. In this chapter, we now describe the design we chose
for the implementation of the strategy.

4.1 Initial Considerations

Recall that the fundamental idea of lifting by simulation is to rewrite variable
source code into plain host code before analysis, in a process known as variability
encoding. In the context of this thesis, this means that unpreprocessed C (i.e., C code
still containing preprocessor annotations) has to be transformed into plain C. This
transformation can severely change the structure of the source code being analyzed.
Thus, to provide useful insights, the vulnerability warnings reported by the analysis
tool need to be mapped back to their original location within the unpreprocessed
source code. Additionally, warnings need to be assigned a presence condition (i.e., a
propositional formula over feature variables) describing the configurations of the SPL
in which they manifest. The structure resulting from this approach was described in
detail in Section 3.3. This structure is illustrated again in Figure 4.1, highlighting
the components and inputs that can remain unchanged, those that may require
alterations, and those that are newly introduced when aiming for the analysis of an
SPL with a variability-oblivious Q-SAST tool and a set of queries. In the following
sections, we describe our design for variability encoding (Section 4.2) and warning
mapping (Section 4.3) in more detail since they represent newly required components.
Moreover, we explain the source of the queries used by our approach and detail the
extent to which these queries need to be adjusted (Section 4.4). We do not elaborate
on the implementation of the Q-SAST tool because lifting by simulation theoretically
enables any variability-oblivious tool to operate on an SPL’s source code without
requiring alterations to its internals. However, for the scope of this thesis, we chose
the analysis tool Joern (cf. Section 1.2) as it not only allows us to leverage the
benefits of Q-SAST but also provides extensive capabilities for detecting real-world

48 4. Design

vulnerabilities (cf. Section 2.3). Lastly, we also do not separately consider the
SPLs that should be analyzed. In this regard, transforming their preprocessor-based
variability theoretically allows any C-based SPL to be analyzed without requiring
changes to its code base.

Variability Encoding

Parser

Transformation

Variability-aware AST

Standard
Q-SAST tool

Warning
MappingSimulator

Raw
Warnings

SPL

Queries

Mapped

Warnings

Does not require changes May require changes Newly introduced

Figure 4.1: Categories of components in the lifting by simulation strategy

4.2 Variability Encoding

As we have described in Section 3.3, variability encoding is typically realized using a
variability-aware parser in conjunction with a set of behavior-preserving transforma-
tions applied either during or after parsing. Furthermore, during variability encoding,
it is possible to incorporate a mapping to presence conditions and unpreprocessed
source code regions into corresponding sections of the simulator. Without this in-
formation, the warning mapping component would need to rely on applying inverse
variability encoding to derive the necessary information (cf. Section 3.3). Overall,
implementing variability encoding from scratch can thus be very labor-intensive.
For our design, we thus aim to reuse an existing solution. In this regard, to the
best of our knowledge, there are three existing solutions that form the state of the
art in variability encoding of unpreprocessed C. These solutions are outlined below,
together with the reasoning behind our choice.

Hercules

First, there is Hercules [Gar17; von16]. Hercules represents an extension to
the variability-aware parser TypeChef [Ken+10] and aims at using variability
encoding for the performance measurement of SPLs [Gar17]. Since this underlying
objective differs from ours, certain changes toHercules’ internals would be necessary.
By default, Hercules does not incorporate easily accessible information on line
mappings and presence conditions into the product simulator. To avoid having to
implement an inverse variability encoding inside the warning mapping component,
this functionality would thus need to be added. Additionally, in accordance with
its goal, Hercules introduces performance measuring functions into the product
simulator [Gar17]. These additions to the simulator have the potential to raise false
warnings during an analysis and might need to be removed for the purpose of our
approach. Yet, with Hercules and TypeChef exhibiting an extended period
without any maintenance to their source code (the most recent commits to their

4.2. Variability Encoding 49

repositories1 were issued in 2017 and 2021, respectively), implementing changes
may face additional difficulties. Another drawback of Hercules is that by using
TypeChef, it is only able to transform variable source code once it can be successfully
parsed into a variability-aware AST without any type errors [Gar17; Pat23]. However,
considering past observations in the context of large real-world SPLs [Aba+17], this
is not always the case. Thus, using Hercules, it is questionable whether any real-
world SPL could be analyzed without ensuring type correctness for every product
beforehand. Lastly, the transformations applied are only informally described and
do not cover many variability patterns found inside real-world C [Pat23].

C Reconfigurator

Another existing solution is C Reconfigurator [Ios+17]. Contrary to Hercules,
C Reconfigurator builds on the variability-aware parser SuperC [GG12; Ios+17].
It was developed with the aim of enabling the identification of variability bugs in
SPLs using variability-oblivious analysis tools [Ios+17]. While the underlying goal
is thus closely related to ours,2 the tool carries some of the same drawbacks as
Hercules. First, the solution does not emit explicit information indicating line
mappings or presence conditions into the product simulator. In addition, since C
Reconfigurator is considered a prototype tool, its transformations are specified
and proven on the idealized language IMP, which only represents a subset of C [Ios+17].
Moreover, variable source code can only be transformed into a corresponding product
simulator if it does not exhibit any syntax errors [Pat+22]. Lastly, as with Hercules,
development and maintenance on the tool have stalled. In fact, the most recent
commit to C Reconfigurator’s repository3 dates back to 2017.

SugarC

The most recent solution for variability encoding of unpreprocessed C is Sug-
arC [Pat+22]. Similar to C Reconfigurator, SugarC builds on SuperC as
the underlying parsing framework and aims at enabling the application of variability-
oblivious analysis tools to SPLs [Pat23]. However, contrary to C Reconfigurator,
the resulting product simulator incorporates information on both line mappings and
presence conditions in a form that can easily be accessed by a warning mapping
component. For instance, to establish a mapping between line numbers, specially
formatted C comments containing the original line ranges are appended to the
simulator’s lines of code [Pat+22]. In addition, SugarC is capable of handling
syntax and type errors and preserves them in the product simulator as run-time
errors [Pat+22]. While the applied transformations are not complete and their
correctness is not formally proven, SugarC claims to support many complex cases
found inside real-world C [Pat+22]. From a technical perspective, it is integrated
into the repository of SuperC,4 which saw frequent commits up until 2022.

Our Choice

Taking into account the three solutions for variability encoding outlined above, for our
design, we chose SugarC. Not only does it represent the latest development dedicated

1https://github.com/joliebig/Hercules, https://github.com/ckaestne/TypeChef.
2Recall that we concentrate on the identification of VIVs using Q-SAST tools.
3https://github.com/itu-square/c-reconfigurator.
4https://github.com/appleseedlab/superc.

https://github.com/joliebig/Hercules
https://github.com/ckaestne/TypeChef
https://github.com/itu-square/c-reconfigurator
https://github.com/appleseedlab/superc

50 4. Design

to variability encoding of unpreprocessed C but it exhibits the shortest period without
regular maintenance to its source code. In addition, it is the only solution among the
three that directly embeds information on line mappings and presence conditions into
the product simulator. However, most crucially, comparing the tools head-to-head in
terms of their ability to handle constructs found in unpreprocessed C code, Patterson
et al. [Pat+22] demonstrated that SugarC outperforms both Hercules and C
Reconfigurator. To this end, all three tools were applied to DesugarBench, a
benchmark for variability encoding consisting of 108 small but variable programs
spread across 12 categories [Pat+22]. While no tool was able to handle all 108
programs contained in the benchmark, SugarC passed 97 [Pat+22]. In comparison,
Hercules passed 73 of the programs and C Reconfigurator, as a prototype
tool, passed only 32 [Pat+22].

4.3 Warning Mapping

Since SugarC adds readily accessible information on line mappings and presence
conditions to the product simulator, implementing a corresponding warning map-
ping component becomes straightforward. Accordingly, Patterson [Pat23] already
provided an implementation as part of his Sugarlyzer5 framework. In principle,
Sugarlyzer can be seen as a framework facilitating the implementation of the lifting
by simulation strategy (cf. Figure 4.1). To this end, it uses SugarC for variability
encoding and provides dedicated interfaces for incorporating variability-oblivious
SAST tools for the analysis of the resulting product simulator. Warnings reported
by the analysis tool are passed to the warning mapping component, which, in turn,
leverages the information embedded into the simulator by SugarC. Moreover, the
warning mapping component already performs advanced postprocessing tasks. For
instance, warnings relating to the same issue found within the unpreprocessed code
(e.g., caused by local code duplication as often required for handling undisciplined
annotations and ensuring behavior preservation) are deduplicated and their presence
conditions joined by disjunction. In addition, the presence conditions tied to the
reported warnings are checked for their satisfiability. Warnings whose presence
condition constitutes a contradiction (e.g., because the code segments involved would
require a simultaneous selection and deselection of a feature) can subsequently be
pruned as they can never manifest in real products of the SPL.

Considering that Sugarlyzer already provides a capable warning mapping compo-
nent tailored to SugarC for variability encoding, we decided to reuse this implemen-
tation for our design. In this respect, it would have been possible to reuse just the
implementation of the warning mapping component. However, beyond variability en-
coding and warning mapping, the Sugarlyzer framework also provides fundamental
abstractions required for the implementation of lifting by simulation. For instance,
Sugarlyzer already provides classes for the warnings issued by a SAST tool or the
subject systems to be analyzed. Accordingly, to benefit from the existing abstractions,
we based our overall design on Sugarlyzer. This noticeably reduces the effort
required for the implementation of our approach. Since Sugarlyzer supports the
integration of other tools through corresponding interfaces, it additionally opens the
door for an extension of our analysis approach to other Q-SAST tools.

5https://github.com/UTD-FAST-Lab/Sugarlyzer.

https://github.com/UTD-FAST-Lab/Sugarlyzer

4.4. Queries 51

4.4 Queries

One of the main characteristics of lifting by simulation using a Q-SAST tool is that
the analysis can be controlled through the provided set of queries (cf. Figure 4.1).
To this end, Section 4.4.1 describes the source of the queries used for our design.
Furthermore, as we have described in Section 3.3, existing queries might have to be
adjusted to accommodate variability. Therefore, Section 4.4.2 describes the extent
to which the used queries have to be adjusted.

4.4.1 Source and Integration

While the customizability enabled by using user-provided queries offers great benefits
(cf. Section 2.3), for a transparent evaluation of the capabilities of our analysis
approach, using a known set of representative queries is vital. Additionally, while
Sugarlyzer theoretically allows any variability-oblivious SAST tool to be used for
the analysis, its design is clearly based on classic NQ-SAST tools. By default, it does
therefore not allow the user to provide inputs to the analysis tool and expects the
execution of a fixed analysis. Taking both aspects into account, for our design, we
depart slightly from the structure imposed by lifting by simulation (cf. Figure 4.1)
and limit the analysis to a fixed set of queries. To this end, we make use of queries
taken from the Joern query database [24j]. This community-maintained database
provides a collection of 27 queries modeling common issues found in C code as
traversals on a CPG. More specifically, we focus on the 16 queries with the default
tag. This represents the set of queries executed when using Joern in NQ-SAST
fashion, relying on the default query set without the ability to customize the analysis.
Limiting the analysis to a fixed set of queries certainly restricts the capabilities of our
analysis approach and eliminates many benefits of using a Q-SAST tool. However, it
not only makes an evaluation of the approach more transparent but also decreases the
overall implementation effort as the structure of Sugarlyzer does not have to be
altered to allow user-provided queries to be passed to the analysis tool. Nonetheless,
it is worth noting that there are no technical limitations that would prevent us from
extending Sugarlyzer with such a functionality in the future.

4.4.2 Need for Adjustments

Variability encoding can severely alter the structure of the analyzed source code
and thus the CPG used by Joern. Consequently, queries that strictly match on
particular structures inside a CPG have to be relaxed to provide useful results on a
product simulator (cf. Section 3.3). As described above, for our design, we rely on
the default query set for C taken from the Joern query database [24j]. To determine
whether these queries would need to be adjusted as part of our implementation, we
reviewed the individual queries by hand and identified two categories: (1) queries
whose scope is limited to a single statement and its substatement level and (2) queries
whose scope exceeds a single statement.

Queries with a Limited Scope

For queries of category (1) (i.e., those with a limited scope), it is important to
observe that variability encoding does not alter the internal structure of individual
statements. Therefore, the effectiveness of such queries is not affected. In the worst

52 4. Design

case scenario, where a statement contains undisciplined preprocessor annotations,
the statement will merely be duplicated for all its variants. These variants are
subsequently incorporated into the CPG of the product simulator and correspond to
the variants found in the individual products of the SPL. Since the query will thus be
able to find the modeled pattern within the product simulator, it will remain just as
effective as on conventional (i.e., non variability-encoded) source code. Adjustment
to queries of category (1) are therefore not necessary.

Queries with an Unlimited Scope

Considering queries of category (2) (i.e., those with an unlimited scope), the situation
is slightly more complex. Queries whose scope exceeds a single statement are
particularly important for the discovery of complex vulnerabilities, as they allow
patterns spread across vast regions of a program to be matched. However, with
the transformations applied during variability encoding drastically changing the
overall code structure, their effectiveness can be decreased. For instance, a query
might not expect an extra conditional (e.g., an if statement) surrounding one of
the modeled source code regions. The queries of the Joern query database [24j]
circumvent this problem by avoiding describing the expected patterns solely by their
syntactical structure. Instead, queries leverage the expressiveness of the CPG and
use semantic traversals to establish relationships between program constructs. These
often-predefined traversals, such as dominatedBy or reachableBy, follow semantic
relationships, such as control flow domination or data flow, codified in the CPG.
Since the goal of variability encoding is to preserve the behavior (i.e., the semantics)
of the unpreprocessed program, these relationships should not be affected by the
structural changes to the program (and hence the CPG). Adjustment to queries of
category (2) are therefore not necessary either.

Conclusion

In summary, the changes to the source code and the associated source code repre-
sentation incurred by variability encoding should have no effect on the effectiveness
of the queries considered for our implementation. We can thus reuse the queries of
the Joern query database without requiring alterations to their specification. In
this regard, we want to emphasize that this is not universally the case. Accordingly,
when incorporating newer versions of the query database or using different queries
altogether, the queries have to be reevaluated.

4.5 Final Design

All the choices outlined in the previous sections culminate in the overall design
of our analysis approach. This design is illustrated in Figure 4.2. Note that the
Sugarlyzer framework operates on individual source files rather than the entire
SPL at once. Source files are desugared and analyzed in isolation before the reported
warnings of all files are collected just before warning mapping. Since the involved tools
(i.e., SuperC, SugarC, and Joern) are hence repeatedly restarted, this approach
can introduce additional overhead. However, it also allows for more flexibility. Since
files are desugared and analyzed individually, several source files can be processed
simultaneously, introducing a simple form of parallelism into the analysis approach.

4.5. Final Design 53

Implementing a rudimentary caching functionality also becomes straightforward, as
there are separate intermediary results for every file. Considering that Sugarlyzer
already implements these improvements, we decided against changing this internal
behavior. In this regard, it is important to highlight that it would also have been
possible to alter the internals of Sugarlyzer to enable the analysis of an entire SPL
at once. Furthermore, from a technical perspective, SugarC is part of SuperC
and realized through special semantic actions executed during the parse process.
As a result, the transformation into a product simulator takes place during parsing
and is not performed afterward on a fully-built variability-aware AST. Given that
there is still a clear distinction between the activities of parsing source code (i.e.,
matching productions of a grammar) and transforming it into a product simulator
(i.e., executing semantic actions), we illustrate SuperC and SugarC as separate
components of our design.

Sugarlyzer [Pat23]

Variability Encoding

SuperC
[GG12]

SugarC
[Pat+22]

Joern
[Yam+14]

Joern
Query DB [24j]

Warning
Mapping

Queries

Simulators

Raw
Warnings

SPL
Source
File

Mapped

Warnings

Does not require changes

Figure 4.2: Design of our implementation of lifting by simulation

While implementing lifting by simulation from the ground up is very labor-intensive
and certainly out of the scope of this thesis, by reusing existing solutions, we
can reduce the implementation effort to a minimum. As shown by Figure 4.2, no
components remain to be newly developed. Thus, for implementing our design, the
main task focuses on adding support for Joern to the Sugarlyzer framework.

54 4. Design

5. Implementation

Among the two lifting strategies outlined in Chapter 3, for the scope of this thesis,
we chose to implement the strategy of lifting by simulation. To this end, Chapter 4
detailed our design that resolves around the Sugarlyzer framework of Patter-
son [Pat23]. In this chapter, we describe the concrete implementation of this design.
The aim of the implementation is to integrate our family-based analysis approach
into Vari-Joern,1 an existing platform, allowing for an optimized product-based
analysis of SPLs for vulnerabilities using Joern. The result should be a platform
offering simple access to both the product- and family-based analysis strategy.

5.1 Vari-Joern

Vari-Joern is an existing analysis platform that employs an optimized product-
based analysis strategy for the discovery of vulnerabilities in SPLs. It does therefore
not analyze an SPL as a whole but uses different sampling strategies to derive a
representative subset of products (cf. Section 2.1). This set of products is analyzed
using Joern. Therefore, while the methods may vary, the fundamental objective
of utilizing the off-the-shelf Q-SAST tool Joern for the analysis of SPLs remains
identical to our approach. From a technical perspective, Vari-Joern is realized as
a Java application combining five distinct components. This application ships with
its own Dockerfile and is intended to be run in a corresponding Docker2 container.
This not only ensures consistency across different execution environments, but also
guarantees that Vari-Joern’s external dependencies can be resolved. The resulting
structure is illustrated in simplified form in Figure 5.1.

For an analysis, the five components are executed in sequence. First, Vari-Joern
employs a feature model reader to extract the feature model of the provided SPL.
This feature model is passed to a sampler that selects a representative subset of
products according to a certain sampling strategy. A composer receives the provided
SPL, together with the sample chosen by the sampler, and derives the corresponding
products. These products are analyzed with Joern using queries from the Joern

1https://github.com/KIT-TVA/Vari-Joern.
2https://www.docker.com/.

https://github.com/KIT-TVA/Vari-Joern
https://www.docker.com/

56 5. Implementation

<<execution environment>>

Docker Container

Feature Model Reader

Torte/Kmax

FeatureIDE

. . .

Sampler

Fixed

t-wise

Uniform

. . .

Feature

Model

Composer

Kbuild

. . .

Sample

Joern
Products

Joern
Query DB

Queries

Deduplication

Warnings

SPL

Report

Figure 5.1: Initial structure of Vari-Joern

query database. Finally, the resulting warnings are deduplicated and reported
to the user. Through the use of appropriate abstractions, Vari-Joern allows for
multiple different implementations of the feature model reader, sampler, and composer
components (cf. Figure 5.1). The analysis can thereby be tailored to certain subject
systems and objectives. For instance, it is possible to read the feature model of a
Kconfig-based system using the existing feature model reader built on Torte3

and Kmax [Gaz17]. If another subject system employing the XML format used by
FeatureIDE4 to encode its feature model should be analyzed instead, the utilized
feature model reader can simply be switched to the corresponding FeatureIDE
implementation. Beyond the already available implementations of the components
shown in Figure 5.1, a user can also add their own. Technically, this configurability
of the approach extends to the analysis tool. However, as the name of the platform
indicates, in this regard, Vari-Joern currently centers around Joern.

5.2 Sugarlyzer and its Integration into Vari-Joern

Integrating our design into Vari-Joern, the objective is to add the family-based
strategy alongside the existing product-based strategy. As our design resolves around
the Sugarlyzer framework of Patterson [Pat23], this requires a closer consideration
of the framework’s implementation.

The Sugarlyzer Framework

Sugarlyzer is implemented in Python and relies on Docker to maintain repro-
ducibility across different execution environments [Pat23]. In summary, an analysis
using Sugarlyzer is structured as follows: To start the analysis, the user interacts
with a dispatcher that builds a dedicated Docker image for the user-specified SAST

3https://github.com/ekuiter/torte.
4https://featureide.github.io/.

https://github.com/ekuiter/torte
https://featureide.github.io/

5.2. Sugarlyzer and its Integration into Vari-Joern 57

tool (e.g., Infer [24g], or Clang Static Analyzer[24d]). This image not only
contains a working installation of the SAST tool but also a full copy of Sugarlyzer.
For the actual analysis, the dispatcher then starts a corresponding Docker container
and forwards the user-specified analysis parameters to the Sugarlyzer installation
contained within. Inside the container, the execution closely follows the idea of lifting
by simulation. For variability encoding, SuperC and SugarC are applied to every C
source file found within the system under analysis. The resulting variability-encoded
source files are then analyzed using the chosen SAST tool and the output parsed into
corresponding warnings. Lastly, these warnings are mapped back to their original
location, assigned a presence condition, post-processed (e.g., to eliminate duplicates),
and reported to the user as a single JSON report file.

Architectural Changes to Sugarlyzer

Since Sugarlyzer is implemented in Python, it cannot be integrated directly
into Vari-Joern’s existing Java implementation. With more than 2,000 lines of
code [Pat23], rewriting the framework in Java also involves considerable engineering
effort. Consequently, we decided to add the code of Sugarlyzer alongside the
existing Java implementation. As described above, by default, this code creates
its own Docker container for the analysis. Considering this behavior, integrating
Sugarlyzer into Vari-Joern would require the creation of an additional sibling
container. Since this can add additional overhead and complexity, we decided to
slightly alter the structure of Sugarlyzer. Instead of interacting with the dispatcher,
the analysis is now started by executing the main entry point of Sugarlyzer’ analysis
directly. While this small alteration eliminates the need for a sibling container, it
places additional responsibility on Vari-Joern. Before, the dispatcher always
ensured a working installation of the chosen analysis tool within the used container.
Since we bypass this functionality, this responsibility is now placed on the Dockerfile
used by Vari-Joern. However, given that Vari-Joern already relies on Joern, for
the scope of this thesis, this does not necessitate any changes. Nevertheless, if other
analysis tools should be supported by either of Vari-Joern’s analysis strategies in
the future, their installation has to be ensured in the Dockerfile.

Integration into Vari-Joern

While the implementations of the two analysis strategies could be used separately from
one another, for the user of the analysis platform, it would unnecessarily complicate
the operation. Thus, to provide uniform and convenient access to both analysis
approaches, we integrated support for Sugarlyzer and its family-based analysis
into the command-line interface and configuration file used by Vari-Joern’s existing
Java implementation. To achieve this, we reorganized the configuration file used for
customizing the analysis, which was previously limited to the product-based strategy.
Parameters specifying information on the subject system that is relevant to both
analysis strategies (e.g., the path to the system’s root directory) have been moved to
a dedicated section of the file. In addition, for parameters that apply solely to one
of the strategies, we established corresponding sections. To switch between the two
strategies, we extended the command-line interface with a new mandatory argument.
Selecting the product-based strategy through this argument, the remaining parts of
the Java implementation are executed. Selecting the family-based strategy, on the

58 5. Implementation

<<execution environment>>

Docker Container

Product-Based

F.M.-Reader

Sampler

Composer

Deduplication
Feature Model

Sample

Family-Based
(Sugarlyzer [Pat23])

Variability Encoding

SuperC
[GG12]

SugarC
[Pat+22]

Warning
Mapping

Joern
[Yam+14]

Joern
Query DB

[24j]

Queries

Products

Simulators

Raw
Warnings

1

2

ReportSPL

Warnings

Mapped

Warnings

Product-based strategy Family-based strategy Used for both strategies

Figure 5.2: Updated structure of Vari-Joern

other hand, invokes Sugarlyzer with the information extracted from the relevant
sections of the configuration file. The overall structure of Vari-Joern resulting from
the integration of our family-based strategy is illustrated in Figure 5.2. As intended,
this updated version of Vari-Joern provides convenient access to both analysis
strategies, even though they are implemented in different programming languages.

5.3 Adding Support for Joern to Sugarlyzer

So far, we have detailed how we integrated our design, centered around the Sug-
arlyzer framework, into the existing analysis platform Vari-Joern. Since the
Sugarlyzer framework currently only offers built-in support for the three popular
NQ-SAST tools Clang Static Analyzer [24d], Infer [24g], and PhASAR5 [24l;
SHB19], another vital activity of our implementation focuses on adding support for
Joern. Considering the implementation of the Sugarlyzer framework outlined in
Section 5.2, adding Joern to the set of supported analysis tools involves two main
activities6 [Pat23]:

(1) A connector, connecting Sugarlyzer to Joern and allowing it to initiate an
analysis on a variability-encoded source file, has to be supplied.

(2) A reader, responsible for parsing the output of Joern into corresponding
objects, has to be provided.

5While PhASAR allows users to specify their own data-flow problems, this process is rather
involved and requires implementing predefined interfaces [SHB19]. As this does not reflect the idea
of Q-SAST as described by Li et al. [Li+24], we consider PhASAR a NQ-SAST tool.

6In the case of the unaltered Sugarlyzer framework, a Dockerfile specifying the container
image used for the analysis with the new tool would also need to be added.

https://github.com/UTD-FAST-Lab/Sugarlyzer

5.4. Further Adjustments 59

These activities directly correspond to establishing the edges highlighted with 1

and 2 in Figure 5.2. For both activities, the implementations already available in
Sugarlyzer for the three supported NQ-SAST tools served as valuable inspiration.

Initiating an Analysis with Joern

We addressed (1) by introducing a new connector for Joern. This connector takes a
variability-encoded source file as input and calls the joern-parse utility of Joern
on the file to construct a corresponding CPG. The resulting CPG is passed to Joern,
together with a short Scala script specifying the operations the Joern shell should
perform in non-interactive mode. In this regard, Joern is instructed to import the
CPG, run the queries of the local query database, and emit the resulting warnings
as a JSON file. This two-stepped approach could also be realized using a single
command by invoking Joern’s built-in code scanner joern-scan [24i]. However,
providing a custom execution script allows us to extract more information from a
warning. While joern-scan outputs the most important information on a warning
following a fixed format, our script is executed by the Joern shell and thus has direct
access to the objects representing the findings. As a result, we can emit additional
important information, such as the description of the matching query, to the JSON
file.

Parsing the Output of Joern

Addressing (2) is equally straightforward. We introduced a new reader that is re-
sponsible for parsing the output of Joern into corresponding vulnerability warning
objects that can then be used for further processing. For this purpose, our imple-
mentation parses one of the JSON files created by Joern, extracts the identified
warnings, and creates corresponding instances capturing their information. Since
the general data type used by Sugarlyzer to represent variability warnings only
encapsulates generic information on a warning, we additionally derived a new subtype.
This subtype allows us to create warning instances that capture Joern-specific infor-
mation, such as the score (i.e., the severity) of the query that produced a particular
warning.

5.4 Further Adjustments

Using the implementation outlined in Sections 5.2 and 5.3, we were able to obtain
first results confirming the fundamental viability of our approach. Simultaneously,
this implementation revealed a number of limitations of the Sugarlyzer framework
and its associated tools. These limitations would need to be addressed to provide an
effective and efficient analysis approach. Accordingly, in the following, we now present
a brief overview of some of the most important limitations and the adjustments
implemented to address them.

Retaining Identifiers

In unpreprocessed C, a single identifier can be used in multiple declarations [Pat+22].
As an example, recall that a variable or struct field can be declared with different
types depending on the configuration of the program to ensure compatibility with

60 5. Implementation

different system architectures (cf. Section 3.3.1.4). Accordingly, for variability
encoding, SugarC maintains a symbol table with entries for all variants [Pat+22].
To differentiate between multiple declarations of the same identifier, the symbol
table stores a renaming of the identifiers [Pat+22]. This renaming is carried into the
product simulator, where each identifier is renamed according to the fixed pattern
__identifier_numeric [Pat+22]. In this regard, identifier refers to the original
identifier, whereas numeric represents a unique integer.

Listing 5.1 exemplifies the renaming of identifiers in the context of the foo function
(cf. Listing 1.1). While renaming ensures that symbols do not unintentionally
interact within the product simulator, it means that static analyses relying on specific
identifiers (e.g., the names of called functions) will miss obvious problems. For
instance, in the context of Listing 5.1, a Joern query incorporating a search for calls
to the sink function will never report any matches considering that the function was
renamed to __sink_3. This problem has already been identified when Patterson et
al. [Pat+22] applied the popular NQ-SAST tool Clang Static Analyzer [24d]
to the product simulator produced by SugarC. Accordingly, a later improvement
to SugarC saw the addition of a new keep-mem option that enabled identifiers
of certain memory-related functions, such as malloc or free, to be retained in
function calls [Pat23]. However, SugarC does not provide any means to whitelist
other identifiers. This is suboptimal, considering that the Joern query database
contains many queries relying on specific function identifiers not contained in the
fixed whitelist used for keep-mem.

1 // #include ...
2 // ...
3 __static_condition_renaming("__static_condit ion_default_7",
4 " (de f ined CONFIG_PROCESS_INPUT)");
5 __static_condition_renaming("__static_condit ion_default_8",
6 " ! (de f ined CONFIG_PROCESS_INPUT)");
7 // ...
8 void (__foo_4) () //M:L9:L18
9 { // L9

10 int __x_5 = __source_1(); // L10
11 if (__x_5 < __MAX_0) // L11
12 { // L11
13 int __y_6 = 0; // L12
14 if (__static_condition_default_7()) {
15 __y_6 = 2 * __x_5; // L14
16 }
17 if (__static_condition_default_8()) {
18 __sink_3(__y_6); // L16
19 }
20 if (__static_condition_default_7()) {
21 __sink_3(__y_6); // L16
22 }
23 } // L17
24 } // L18

Listing 5.1: A simplified extract of the output produced by SugarC for the foo

function (cf. Listing 1.1)

5.4. Further Adjustments 61

As a solution to the aforementioned problem, we introduced a new renaming-

whitelist option to the SugarC version used by Vari-Joern.7 This new option
works analogously to keep-mem but allows an arbitrary function identifier to be
excluded from renaming. We leverage this functionality in Sugarlyzer by declaring
an array of whitelisted function identifiers inside the connector responsible for
initiating analyses with Joern. This array was manually populated with the
function identifiers referenced in queries of the Joern query database. The entries
are then excluded from renaming using the new renaming-whitelist option of
SugarC. While this approach represents a simple solution to the problem, it carries
certain limitations that need to be considered. First, the array of whitelisted function
identifiers is tailored to the specific version of the Joern query database used for our
implementation.8 For other versions of the database (or user-provided queries), it
thus may not whitelist every referenced identifier. In addition, renaming-whitelist
can only be used with identifiers of functions defined outside the analyzed file (e.g.,
external library functions). Since the option only retains the original identifier for
function calls, corresponding function definitions found within the same file are
still renamed. If used incorrectly, the option can thus lead to mismatches between
function calls and their definitions, which would nullify any previous attempt at
behavior preservation of the product simulator. Furthermore, for an analysis tool, it
would make it impossible to connect the affected function calls to their definitions.

Approximating Line Mappings

For lifting by simulation to be viable in practice, warnings reported on a product
simulator need to be mapped back to their originating location within the unprepro-
cessed code (cf. Section 3.3.2.1). To simplify this process, SugarC appends specially
formatted comments to the end of each relevant line of code in the simulator. This is
exemplified by Listing 5.1. Lines that originate within the unpreprocessed C source
code receive a comment indicating the original line number. All remaining lines
(e.g., the ones added by SugarC to simulate variability) do not have an associated
line within the unpreprocessed C code and thus do not receive a mapping. This
works well for simple examples like the code shown in Listing 5.1. However, for large
and complex source files that include many headers, we noticed deviations from the
intended behavior. For instance, a for loop encapsulating a single statement in the
same line as its condition is transformed to a loop spanning multiple lines if the
statement contains complex macro substitutions. Crucially, the lines inside the loop
do not receive individual mappings. Instead, the mapping is added to the closing
bracket of one of the scopes introduced by SugarC to surround the now expanded
loop. A similar behavior can be observed for other complex constructs spanning just
a single line of code, such as the combined declaration and initialization of an array.

If the analysis tool reports a warning for a line whose associated line mapping is
situated further down in the simulator, by default, Sugarlyzer is not capable of
identifying the mapping and assigns an error tag to the corresponding field of the
warning. A naive solution to this problem is to discard all warnings issued by the
analysis tool for lines within the simulator that do not contain an explicit mapping.
Since this can lead to warnings for dangerous vulnerabilities being discarded, it is

7https://github.com/KIT-TVA/superc.
8We used version 4.0.48.

https://github.com/KIT-TVA/superc

62 5. Implementation

certainly not ideal. As a result, we implemented an improved solution that searches
subsequent lines for the presence of a line mapping. In summary, this solution works
as follows: If a warning is associated with a line that does not contain a mapping,
we check whether the line is contained within a function. This avoids searching for
line mappings for warnings raised at a global level. Warnings at this level relate
to structures, such as global variable definitions, structs, or typedefs. While these
structures also frequently face inconsistent line mappings, we observed that simply
searching subsequent lines proves insufficient on the global level. We then iterate over
the subsequent lines, keeping track of opening and closing scopes (i.e., curly braces).
Upon encountering a line mapping in a scope not opened after the line associated
with the warning, the encoded line range is returned. In the worst case, where even
subsequent lines do not expose a mapping for the line of interest, this can lead to
the selection of a mapping related to another structure contained in the same or a
parenting scope (e.g., a subsequent statement). Thus, a flag inside the line range
object is set, indicating that the line mapping might only represent an approximated
range within the unpreprocessed code. Our solution is therefore not perfect; it tries
to address the effects rather than solving the problem at its source. It does, however,
represent a distinct improvement to the status quo in which warnings whose mapping
could not be established were simply assigned an error tag for their original line
range. Moreover, improving the transformations performed inside SugarC such
that line mappings are applied more consistently represents a challenging task that
is beyond the scope of this thesis.

Expanding Automation

A central step during variability encoding is parsing (cf. Section 3.3.1.3). In general,
for parsing to succeed, macro substitutions and header inclusions must be resolved
beforehand (cf. Section 3.2.1.3). To this end, SugarC provides dedicated arguments
that allow users to define paths for resolving and including headers, as well as specific
macro definitions to use. Using Sugarlyzer, this information can be specified on
a per-file basis in a JSON file tied to the system to be analyzed. Adding a new
system thus entails creating a new JSON file for the chosen system and adding the
information by hand. This can be a tedious process, considering that large systems
have many source files, each potentially with a distinct set of required includes and
macro definitions. However, as a demo script in the original Sugarlyzer’s resources
directory9 demonstrates, most of the information can be automatically derived from
the output of running Make10 on the system to be analyzed. Inspired by this
script, we aimed to ease the integration of new subject systems into the framework.
Accordingly, we introduced two new methods into the abstract base class of every
subject system:

(1) run_make is responsible for configuring the system to be analyzed with a
fixed selection of features, for which the associated build process will include
most of the source files. For this purpose, most systems provide a predefined
configuration selecting most, if not all, available features (e.g., allyesconfig
for the Linux kernel [Aba+17]). The function is also responsible for building

9resources/programs/axtls/axtlsFileBuilding.py.
10https://www.gnu.org/software/make/.

https://github.com/UTD-FAST-Lab/Sugarlyzer/blob/afb42bdcbeabaf92b90d1503e6a198cdf4342abb/resources/programs/axtls/axtlsFileBuilding.py
https://www.gnu.org/software/make/

5.4. Further Adjustments 63

this configuration with Make and writing the resulting output containing the
concrete compile calls to a dedicated file.11

(2) parse_make_output is then responsible for identifying compile calls in the
output produced by Make and associating the includes contained within with
the respective source file.

Information that could not be extracted from running make (e.g., includes of files not
compiled in the chosen configuration) can then, as before, be added to the JSON file
associated with the system. Even though establishing and building a configuration
of a system incurs additional performance overhead, based on our experience, this
overhead is negligible compared to variability encoding and the actual analysis. In
addition, in the case of certain systems, establishing a configuration creates additional
directories and files (such as headers) required for parsing. Therefore, it may even
be infeasible to omit the step.

Another key factor during variability encoding is to prevent the expansion (i.e.,
consideration) of every macro found within the unpreprocessed code. Otherwise, even
execution paths tied to invalid products (i.e., products whose construction is prevented
by the build system) will be incorporated in the product simulator [Pat23]. Although
SugarC provides a restrictConfigToPrefix option that allows expansion to be
limited to macros exhibiting a certain prefix, this functionality does not allow the
constraints introduced by an SPL’s feature model to be captured. Furthermore,
it does not provide a way to handle feature-related macros of non-boolean type.
Sugarlyzer addresses these issues by incorporating a custom header file into the
subject system before analysis. This header takes the place of the header generated
by Make when establishing a new configuration (usually config.h). By default,
the header generated by make contains the macro definitions resulting from the
particular feature selection and is included in all source files making use of feature-
controlled conditional compilation. Sugarlyzer changes the role of the header
and wraps all configuration-related macros of the system in newly created boolean
preprocessor conditionals respecting the constraints of the associated feature model.
Since these new conditionals rely on macros sharing a common prefix, SugarC’s
expansion can be restricted accordingly using its restrictConfigToPrefix option.

For the creation of the header, Sugarlyzer provides kgenerate [Pat23]. kgen-
erate is a tool that leverages Gazillo et al.’s [Gaz17] kmax tool suite to parse the
analyzed system’s Kconfig files, extracting information on configuration variables,
their constraints, and default values [Pat23]. kgenerate uses this information,
together with a user-provided format file, to generate a corresponding header. Addi-
tionally, it emits a JSON file mapping the newly introduced macros to their original
counterpart and the represented value. Although kgenerate automates the creation
of the custom header and its associated mapping, for the analysis of a new subject
system, Sugarlyzer requires manual execution of the tool. The same applies to
updates to a system’s feature model. To reflect the changes in the feature model in
the header and its mapping, kgenerate has to be invoked manually after each mod-
ification. Therefore, to ease the handling of feature model updates and integration of
other systems, we aimed to further automate the overall process. For this purpose,
we incorporated a call to kgenerate into Sugarlyzer. Using the information on

11Depending on the system, it may suffice to echo the recipes of the build process using Make’s
--just-print option instead of executing them.

64 5. Implementation

the configuration header’s location specified in the JSON file tied to the analyzed
system, this enables us to automatically insert the header created by kgenerate.

Extended Caching

By default, Sugarlyzer provides caching for the variability encoding process. This
means that before calling SugarC, Sugarlyzer checks whether there exists a
variability-encoded source file in the cache directory that was created using the same
unpreprocessed source file and options. If this is the case, variability encoding is
skipped and the cached source file is loaded for further analysis by the chosen analysis
tool. For large SPLs containing multiple hundreds to thousands of large source files,
this avoids repeating variability encoding for all files, even if just a single file changed
between analyses. While this can drastically cut down on the resources required for
consecutive executions of the analysis approach, our first implementation indicated
that the actual analysis by the chosen analysis tool can be just as resource demanding
as variability encoding. Accordingly, we extended the caching of Sugarlyzer to the
output created by the analysis tool. Analogously to the existing caching functionality,
before invoking the analysis tool, we check whether the caching directory contains
a report file for the considered variability encoded source file. If this is the case,
the cached report is loaded and passed directly to the corresponding reader without
having to invoke the analysis tool.

6. Evaluation

For the practical viability of the presented family-based vulnerability discovery
approach, two aspects are of particular interest. First, the analysis approach should
be effective, meaning that its results should expose vulnerabilities across the code
of real-world SPLs. If this is not the case, the analysis adds no value to the overall
development effort, effectively rendering it superfluous. Second, the approach should
be efficient, meaning that its resource demand should be manageable in practice.
In this regard, even a highly effective approach loses its viability once its execution
becomes too costly. Considering these aspects, we formulate the two research
questions RQ-1 and RQ-2 shown below:

RQ-1 :
How effective is our family-based analysis in finding potential occurrences
of common vulnerability types across an SPL?

RQ-2 :
How efficient is our family-based analysis with regard to execution time
and storage demand?

The goal of this chapter is to answer these research questions. In pursuit of this goal,
we first describe our experimental setup (Section 6.1). We then present the results
obtained using this setup (Section 6.2) and discuss their implications (Section 6.3).
Lastly, we give an overview of the threats to the validity of our analysis and its
evaluation (Section 6.4).

6.1 Experimental Setup

For the evaluation of the proposed analysis approach with regard to RQ-1 and
RQ-2 , three aspects need to be considered. First, a baseline that acts as a reference
point for the effectiveness of the approach needs to be established (Section 6.1.1).
Furthermore, subject systems on which the approach is going to be evaluated need to
be selected (Section 6.1.2). Finally, a method for interpreting and comparing results
on the subject systems is required to derive meaningful insights (Section 6.1.3). Our
setup for each of these aspects is outlined below.

66 6. Evaluation

6.1.1 Baseline

In the context of vulnerability discovery, there are two common alternatives for
establishing a baseline. First, a code base containing a known set of vulnerabilities
can be employed. Alternatively, the results of another established analysis approach
can be used. In the following, we briefly describe both alternatives and discuss our
choice.

Code Bases with Known Vulnerabilities

A straightforward way to establish a baseline is to consider a code base where either
all vulnerabilities or a selected subset thereof are known. In this regard, identifying
earlier versions of real-world systems still containing unpatched vulnerabilities can be
difficult and involve a considerable amount of manual work. To ease this process, there
are prefabricated benchmarks containing manifestations of various vulnerabilities.
While these benchmarks can be very extensive,1 their main weakness is that the
contained programs generally represent artificial examples instead of real-world
programs. Another problem specific to the domain of SPLs is that there is no
benchmark dedicated to VIVs. To the best of our knowledge, the only effort in this
direction has been undertaken by Abal et al. [Aba+17; ABW14] and Mordahl et
al. [Mor+19]. However, their benchmarks have both not been updated in the last
five years and are limited in scope, comprising only 98 and 77 examples, respectively.
Furthermore, both benchmarks do not explicitly focus on VIVs but contain examples
of general variability bugs.

Results of Alternative Approaches

Another way through which a baseline can be established is to consider results of
an alternative analysis approach. This has the advantage that the baseline can
be established on any real-world system compatible with the alternative analysis
approach, thereby avoiding the consideration of artificial examples. Additionally,
it allows the resource demand for the construction of the baseline to be captured.
Contrary to a code base containing a known set of vulnerabilities, the efficiency of
an analysis can therefore also be judged. It is, however, important to remember
that static analysis is generally limited to providing approximate results [CM04].
A baseline constructed from an alternative approach will therefore be subject to
imprecision. Depending on the concrete extent of this imprecision, evaluating another
analysis approach may be difficult.

Our Choice

For the purpose of this thesis, we decided to pursue the option of using the results
of another analysis approach as the baseline. This choice allows us to avoid hav-
ing to identify earlier versions of the considered subject systems still containing
unpatched vulnerabilities. In the context of SPL research, it is common to use
results of product-based approaches as baselines for the evaluation of a family-based
approach [Ape+13b; Bra+12; von+18]. To this end, the simplest strategy would be
to use the results of an exhaustive product-based strategy, analyzing each product

1The popular Juliet test suite [24k] comprises more than 64,000 test cases.

6.1. Experimental Setup 67

in isolation. However, since we aim to evaluate our approach on real-world systems
exhibiting large configuration spaces, this would represent an infeasible task.2 In-
stead, we focus on results produced by optimized product-based strategies. These
strategies make use of sampling to reduce the number of products to analyze (cf.
Section 2.1). Since the goal of this thesis is not to compare the capabilities of modern
Q-SAST tools, it is vital that any baseline approach used for our evaluation leverages
Joern. In this regard, Vari-Joern already provides us with a product-based
analysis approach built around Joern. Consequently, we chose this approach for
the creation of our baseline. Specifically, we chose the uniform sampling strategy
that samples products uniformly across an SPL’s feature model.

6.1.2 Subject Systems

Using an alternative analysis approach as a baseline allows us to utilize real-world
systems for the evaluation. However, there are a number of criteria a particular
system must fulfill:

(C1) Variable. Our focus is on the analysis of variable software (i.e., SPLs). Non-
variable systems encompass just a single software product and can be analyzed
using conventional Q-SAST tools. Their analysis does subsequently not face
the same issues as the analysis of SPLs and is beyond the scope of this thesis.

(C2) Open-Source. Analyzing an SPL in its entirety requires access to the source
code of all products, as well as its variability model. Therefore, having access to
only a select number of source files or a precompiled binary proves insufficient.

(C3) Mostly Implemented in C. For the scope of this thesis, we focus on the analysis
of SPLs implemented in C (cf. Section 1.2). Subject systems implemented in
other programming languages do therefore not benefit from our approach.

(C4) Moderate to Large Size. We avoid small SPLs, considering that their limited
complexity prevents us from gaining conclusive insights into the capabilities of
our approach. On the other end, we avoid very large SPLs, considering that
our solution represents a first prototype that may still face scalability issues.

(C5) Practical Relevance. Subject systems should exhibit a certain degree of
practical relevance. Otherwise, results may not reflect real-world performance
and thus become irrelevant. To this end, we consider systems that were used
as subject systems in recent SPL studies conducted by other researchers.

(C6) Configuration Management via Kconfig. Sugarlyzer makes use of kgen-
erate to create a custom header limiting the macro expansion performed by
SugarC according to a system’s feature model (Chapter 5). kgenerate is
realized using the kmax tool suite [Gaz17] and therefore expects a Kcon-
fig-based system as input. Non-Kconfig-based systems are therefore not
supported by our approach.

Selected Subject Systems

Table 6.1 shows a characterization of the subject systems selected based on the
aforementioned criteria. For all three systems, we selected the latest stable release
available as of September 2024. C lines of code (column C-LoC) were measured using

2Recall that the number of products derivable from an SPL may be exponential in the number
of features [Lie+13; Thü+14; von+18] (cf. Section 2.1).

68 6. Evaluation

cloc3 version 1.98, considering only the count for C code lines. For approximating
the number of features, we followed an approach similar to Abal et al. [Aba+17]
and considered the number of unique configuration options codified in the systems’
Kconfig files. We extracted this number by counting the corresponding entries in
the output produced by the Kconfig parser kextract, which is part of Kmax
(version 4.7.3) [Gaz17]. To gain insights into the scalability of our approach, we
selected a small (axTLS), a moderate (Toybox), and a large (BusyBox) SPL
as subject systems. In this regard, the size of the systems, measured by C lines of
code and the number of features, nearly triples from axTLS to Toybox. A similar
relationship can be observed between Toybox and BusyBox. Lastly, all systems
have been used in at least three recent studies in the field of SPL research.

System Type Version C-LoC Features Academic Use

axTLS
[24a]

Client/server
TLS library

2.1.5
(2019)

17, 556 95
[Mor+19;
Oh+19; Pat+22]

Toybox
[24p]

Collection of
Linux command
line utilities

0.8.11
(2024)

58, 127 355
[Mor+19;
Oh+19; Pat+22]

BusyBox
[24b]

Collection of
UNIX utilities

1.36.1
(2023)

182, 966 1, 079
[Ios+17; Mor+19;
Oh+19; Pat+22;
Pet+23; von+18]

Table 6.1: Characteristics of the selected subject systems

6.1.3 Methodology

Using the aforementioned baseline and subject systems, the methodology applied to
evaluate our family-based analysis approach is illustrated in Figure 6.1. In essence,
it consists of two steps that are performed on a per-subject system basis.

Subject
System

Our Approach

(cf. Figure 4.2)

Â

õ

Baseline
Approach Filter A

ggregate

Warnings by Query

Warnings by File

A
ggregate

Warnings by File

Warnings by Query

Total Warnings

Total Warnings

Var.-encoded

source files

10×
10×

RQ-1

RQ-2

First step Second step

Figure 6.1: Overview of the methodology employed for the evaluation

3https://github.com/AlDanial/cloc.

https://github.com/AlDanial/cloc

6.2. Results 69

Step 1: Data Collection

As a first step, we run our analysis approach on the subject system (cf. Table 6.1)
and collect metrics relating to its effectiveness and efficiency. In this regard, we
execute Vari-Joern within its provided Docker container, which uses an image
based on Ubuntu 24.04.1. The container is, in turn, executed on a virtualized
server equipped with a 16-core AMD EPYC processor and 32GB of RAM, running
Ubuntu 22.04 LTS. To prevent a potential bias in our findings, we clear the caches
of all intermediary results, such as variability-encoded source files, before execution.

For judging the effectiveness of our approach (RQ-1), we consider the total number
of reported vulnerability warnings. To this end, we collect the number of entries
contained in the final JSON report file produced for the analyzed subject system.
This number represents the total number of warnings reported across the whole
SPL. To allow for more fine-grained insights, we additionally aggregate the warnings
extracted from the report on a per-file and per-query basis.

For the evaluation of our approach’s efficiency (RQ-2), we assess its performance
with regard to total execution time and overall storage demand. We measure the
execution time of our approach using GNU Time.4 For this purpose, we use the
maximum number of concurrent workers for SugarC and Joern possible without
exceeding the main memory available in our execution environment. As the total
execution time is a measure that is typically subject to variability due to factors
like the operating system’s scheduling policy, we repeat the measurement across ten
consecutive executions and report the resulting arithmetic mean. For the storage
demand, we consider the maximum demand involving all files created as part of our
analysis approach. To this end, we measure the increase in the Docker container’s
file system usage using the df utility of the GNU Coreutils5 utility collection.
As logging files can artificially increase our approach’s storage demand, we disable
the creation of corresponding files. Furthermore, since temporary files created by
the operating system or other processes can lead to additional storage demand, we
once again repeat the measurement across ten consecutive executions and report the
arithmetic mean.

Step 2: Comparison with the Baseline

In a second step, we then compare the collected metrics relating to effectiveness
with results produced by Vari-Joern’s product-based strategy, which serves as our
baseline (Section 6.1.1). Results for the baseline are generously provided to us by
other researchers and were collected using an execution environment identical to
ours. As with our approach, we aggregate individual warnings of the baseline on a
per-query and per-file level. To allow for a fair evaluation of the results, we filter
out warnings on files that could not be successfully variability encoded by SugarC
before this aggregation takes place. This then allows us to judge our approach’s
effectiveness in total, on a per query, and on a per-file level.

6.2 Results

In this section, we report the results of our evaluation. As we have described in
Section 6.1.3, our evaluation consists of two steps. First, we execute our family-

4https://www.gnu.org/software/time/.
5https://www.gnu.org/software/coreutils/.

https://www.gnu.org/software/time/
https://www.gnu.org/software/coreutils/

70 6. Evaluation

based analysis approach on the three selected subject systems and collect the chosen
metrics. The results of this step are described in Section 6.2.1. The second step
of the evaluation then involves relating the data gathered for our approach to the
data obtained for the optimized product-based strategy serving as our baseline. The
results of this step are described in Section 6.2.2.

6.2.1 Results for the Selected Subject Systems

For all three subject systems, Table 6.2 summarizes the metrics collected for a full
analysis using our family-based approach. The |F | column lists the total number
of C source files contained in the system, whereas the |Fsim| column indicates the
number of source files for which SugarC was able to produce a product simulator.
|Fsim| therefore excludes all files for which variability encoding either outright failed
or exceeded the ten minute timeout issued for calls to SugarC by Sugarlyzer.
The |Wraw| column shows the number of individual warnings reported by Joern
across all product simulator files in Fsim. The number of warnings that remain after
warning mapping are shown in the |Wmapped| column. This number is smaller than
|Wraw| since Sugarlyzer’s warning mapping component already performs advanced
post-processing of warnings. For instance, warnings relating to the same issue of the
unpreprocessed code are merged into a single warning with an extended presence
condition. As warning mapping constitutes the last step of the analysis, |Wmapped|
also represents the number of alarms in the final report file. In this regard, the |Q|
column reflects the number of queries from the Joern query database exhibiting at
least one match in the final report. Considering the resource demand of our approach,
texec describes the total execution time, whereas smax describes the maximum storage
demand. For both measures, we report the arithmetic mean across ten executions (cf.
Section 6.1.3). In this regard, we always used five concurrent workers for all three
systems.

System |F | |Fsim| |Wraw| |Wmapped| |Q| texec smax

axTLS 45 36 181 119 9 400 s 105 MB
Toybox 291 278 784 494 10 4,265 s 1,530 MB
BusyBox 685 619 5334 670 9 8,513 s 3,494 MB

Table 6.2: Results of the proposed family-based analysis approach on axTLS, Toy-
box, and BusyBox (|F | = #C source files, |Fsim| = #variability-encoded C source files,
|Wraw| = #total warnings by Joern, |Wmapped| = #warnings after warning mapping, |Q| =
#matched queries, texec = average execution time, smax = average storage demand)

6.2.2 Results in Relation to the Baseline

Comparing the results of the two analysis strategies offered by Vari-Joern, for
our family-based approach, we use the data presented in Section 6.2.1. For the
optimized product-based approach, we use data for the uniform sampling strategy
made available to us by other researchers. While we set out to compare the results
on all three of our selected subject systems, limited support for Toybox in Vari-
Joern’s product-based analysis approach restricted the available baseline data to
axTLS and BusyBox. In the following, we thus concentrate on a comparison of
the results produced on these two subject systems. Detailed results for the analysis
of Toybox using our approach can be found in Appendix A.2.

6.2. Results 71

Baseline Results

Table 6.3 summarizes the baseline results made available to us. Since an optimized
product-based analysis strategy considers only a subset of all products derivable
from an SPL (cf. Section 2.1), the |S| column indicates the sample size used. This
measure directly reflects the number of individual products considered during the
analysis. |W | describes the total number of vulnerability warnings found in the
final report and |Q| the number of queries with at least one match. The |Wsim| and
|Qsim| columns repeat these measures, considering only warnings on C source files
for which SugarC of the family-based approach was able to produce a product
simulator. For the evaluation of our approach’s effectiveness, we use |Wsim| and
|Qsim|. Since |W | and |Q| consider warnings on source files for which variability
encoding failed, the results would otherwise not allow for a fair comparison of the
approaches’ vulnerability discovery capabilities.

System |S| |W | |Q| |Wsim| |Qsim|
axTLS 1,000 95 8 95 8

BusyBox 1,000 1,356 11 971 11

Table 6.3: Results of Vari-Joern’s product-based analysis approach using uni-
form random sampling that serves as our baseline (|S| = sample size, |W | = #warnings,
|Q| = #matched queries, |Wsim| = #warnings on variability-encoded source files, |Qsim| =
#matched queries on variability-encoded source files)

Vulnerability Warnings by Query

Using the aforementioned data on the two analysis approaches, we are able to compare
their capabilities on axTLS and BusyBox. To this end, Figure 6.2 visualizes the
approaches’ ability to identify matches to the queries of the Joern query database
within the subject systems. Specifically, Figure 6.2 illustrates the number of reported
vulnerability warnings aggregated by query. Queries with at least one match in
the results of either analysis approach are shown on the y-axis. To improve clarity,
queries without any matches are omitted. Each query on the y-axis is depicted by its
name and associated numerical score, as specified in the Joern query database. In
this regard, the score is intended to provide a coarse estimate of the severity of the
issue modeled by a query. The x-axis then shows the absolute number of warnings
associated with a particular query for both analysis approaches and subject systems.

Overall, depending on the subject system and query, the number of vulnerability
warnings varies. For the free-field-no-reassign and constant-array-access-no-check
queries, our approach was not able to identify any matches. In contrast, the product-
based approach on BusyBox identified one match for free-field-no-reassign and eight
matches for constant-array-access-no-check. Conversely, on axTLS, the family-based
approach identified one match for the malloc-memcpy-int-overflow query, for which
the baseline did not discover any matches. For the remaining queries, both analysis
approaches were able to identify manifestations. While the family-based approach
identified more matches on axTLS, the product-based approach detected a greater
number of matches on BusyBox.

72 6. Evaluation

0 50 100 150 200 250 300 350

socket-send (2)

setuid-without-setgid (2)

setgid-without-setgroups (2)

strlen-truncation (2)

signed-left-shift (2)

copy-loop (2)

constant-array-access-no-check (3)

unchecked-read-recv-malloc (3)

file-operation-race (3)

malloc-memcpy-int-overflow (4)

format-controlled-printf (4)

free-field-no-reassign (5)

1

2

2

69

97

215

0

21

138

0

125

0

1

2

2

70

280

278

8

3

157

0

184

1

0

1

1

9

6

60

0

34

3

1

4

0

0

1

1

9

6

56

0

18

2

0

2

0

Number of warnings

Q
u
er
ie
s
an

d
as
so
ci
at
ed

sc
or
es

axTLS - Baseline
axTLS - Family-Based
BusyBox - Baseline
BusyBox - Family-Based

Figure 6.2: Warnings reported on axTLS and BusyBox aggregated by query

6.2. Results 73

Vulnerability Warnings by Source File

In Figure 6.3 we show the distribution of vulnerability warnings across the individual
source files of the subject systems. On axTLS, the family-based approach statistically
reports more warnings per source file as indicated by the average and median, as
well as the lower and upper quartiles. While the two approaches share the same
median on BusyBox, the averages, upper quartiles and maxima suggest that the
product-based approach is capable of identifying more matches per source file on this
subject system.

0 5 10 15 20 25 30 35 40 45

BusyBox

axTLS

Number of warnings per source file

Baseline
Family-Based

Figure 6.3: Distribution of vulnerability warnings across the source files of axTLS
and BusyBox

Providing more detail on the aforementioned distribution, Figure 6.4 illustrates a
fine-grained comparison of the number of vulnerability warnings per source file. To
this end, Figure 6.4a shows the results for axTLS, while Figure 6.4b shows the
results for BusyBox. For both figures, the x-axis depicts all source files on which
either of the approaches reported at least one vulnerability warning. To establish a
clear trend line for the warnings reported by the baseline approach, the source files
on the x-axis are sorted in descending order by the number of warnings reported
by the product-based approach. Since axTLS contains only 25 C source files for
which either approach reported warnings, the x-axis of Figure 6.4a is labeled with the
relative paths of the corresponding files. For BusyBox, there are over 200 source
files with at least one warning. Therefore, to improve clarity, we omit the names of
individual source files in Figure 6.4b. Lastly, the y-axis of both figures shows the
total number of all warnings reported on a particular source file by the two analysis
approaches.

Considering the results for axTLS (Figure 6.4a), except for ssl/loader.c, the
family-based approach is always able to match the number of vulnerability warnings
reported by the baseline. Notably, for 11 source files, the family-based approach is
able to exceed the number of warnings reported by the baseline approach. In the
case of BusyBox (Figure 6.4b), results were significantly more mixed. Out of a
total of 213 files with at least one warning, 26 files saw the family-based approach
exceed the numbers of warnings reported by the product-based approach. On 97 files,
both strategies reported the same number of warnings. Crucially, on the remaining
90 files, the baseline reported a higher number of warnings.

74 6. Evaluation

cr
yp

to
/a

es
.c

cr
yp

to
/b

igi
nt
.c

ssl
/t
ls1

.c

cr
yp

to
/h

mac
.c

cr
yp

to
/s
ha

1.c

ssl
/a

sn
1.c

cr
yp

to
/m

d5
.c

ht
tp

d/
pr

oc
.c

ssl
/p

12
.c

ssl
/g

en
ce
rt.

c

ssl
/lo

ad
er
.c

cr
yp

to
/c

ry
pt

o
misc

.c

cr
yp

to
/r
c4

.c

cr
yp

to
/s
ha

51
2.c

ht
tp

d/
ax

ht
tp

d.
c

sa
mpl

es
/c

/a
xs
sl.

c

ssl
/o

pe
ns

sl.
c

ssl
/x

50
9.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

co
nf
.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

ex
pr

.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

lex
.zc

on
f.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

lxd
ial

og
/m

sg
bo

x.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

mco
nf
.c

co
nfi

g/
sc
rip

ts/
co

nfi
g/

men
u.
c

ssl
/t
es
t/
ssl

te
st.

c
0

5

10

15

20

Variability-encoded source files sorted by baseline warning count

N
u
m
b
er

of
w
ar
n
in
gs

Baseline
Family-Based

(a) Results for axTLS

0

5

10

15

20

40

Variability-encoded source files sorted by baseline warning count

N
u
m
b
er

of
w
ar
n
in
gs

Baseline
Family-Based

(b) Results for BusyBox

Figure 6.4: Reported warnings on axTLS and BusyBox aggregated by source file

6.3 Discussion

In this section, we discuss the results presented in Section 6.2. We start with
a consideration of our vulnerability discovery approach’s effectiveness, ultimately
addressing RQ-1 (Section 6.3.1). Finally, we consider our approach’s efficiency to
answer RQ-2 (Section 6.3.2).

6.3.1 Effectiveness (RQ-1)

To assess the effectiveness of our family-based approach, we consider the number
of raised vulnerability warnings. In general, as shown in Table 6.2, our approach
is capable of identifying vulnerability warnings for all three subject systems. Com-
paring the total numbers between our approach and the product-based baseline
(cf. Table 6.3), we observe that the family-based approach identifies more potential
vulnerabilities on axTLS (119 vs. 95). Conversely, on BusyBox, the family-based
approach falls short and raises significantly fewer warnings than the baseline (670 vs.

6.3. Discussion 75

971). Both observations are supported by the distribution of vulnerability warnings
per file shown in Figure 6.3. Considering the matches to queries of the Joern query
database, we observe that our approach matches one additional query on axTLS (9
vs. 8), while it matches two queries less on BusyBox (9 vs. 11). In the following,
we go into more detail and discuss potential reasons for these findings.

6.3.1.1 Matched Queries on axTLS

On axTLS, both analysis approaches are able to detect matches to eight queries of
the Joern query database. However, as mentioned above, the family-based approach
also identifies a match to one additional query. As indicated by the distribution of
warnings per query illustrated in Figure 6.2, this is the malloc-memcpy-int-overflow
query. This query checks whether a copy operation into a newly heap-allocated buffer
might not fill the entire buffer, leaving uninitialized data that could be exploited by an
attacker. It therefore constitutes a rather serious vulnerability pattern, as evidenced
by its score of 4. The particular manifestation of the pattern identified by the family-
based approach is contained in a function wrapped in a preprocessor conditional. It
is therefore not part of every product of the SPL, effectively constituting a potential
VIV. While the uniform sample of the baseline manages to sample multiple products
for which the function is included, to our surprise, Joern was not able to detect the
match on any of these products. While the concrete reasons for this behavior are
still unknown to us, it appears to be caused by a bug in Joern triggered by the full
analysis of specific products of axTLS. This would explain why the family-based
approach, which calls Joern not for entire products but for product simulators of
individual source files, is able to reliably identify the match.

6.3.1.2 Vulnerability Warnings on axTLS

Overall, on axTLS, the family-based approach issued a greater number of vulnera-
bility warnings compared to the baseline. This is reflected in the number of warnings
reported per query, where for all queries, the family-based approach matches or
exceeds the number set by the baseline (cf. Figure 6.2). Additionally, as the distribu-
tion of warnings per source file illustrated in Figure 6.3 indicates, the family-based
approach statistically issues more warnings per source file. These observation can
best be explained by considering the number of warnings per source file as shown in
Figure 6.4a.

Files not Considered by the Baseline

It is striking that the family-based approach reported vulnerability warnings for
seven files, for which the product-based approach did not issue any warnings. This
is due to a limitation of the product-based approach. While it aims at an analysis
of all source files, it decides on the files to incorporate into a sampled product by
analyzing the compile calls issued for the concrete configuration by Make. Given that
these calls do not involve source files relating to test cases or the system’s Kconfig
infrastructure, corresponding files are not added to individual products and thus evade
analysis. As these files are still analyzed by the family-based approach, we see an
increase in warnings relating to four queries: unchecked-read-recv-malloc (16 matches),
format-controlled-printf (2 matches), copy-loop (1 match), and strlen-truncation (1
match).

76 6. Evaluation

Joern and its Queries

Beyond the seven source files related to tests and Kconfig, there are other files on
which the family-based approach reports a greater number of vulnerability warnings
(cf. Figure 6.4a). The additional warning on ssl/x509.c represents the match
to the malloc-memcpy-int-overflow query described earlier during our discussion
of the matched queries on axTLS. Recall that this manifestation is likely missed
by the product-based approach due to a bug in Joern. The additional match on
httpd/proc.c can, on the other hand, be attributed to the file-operation-race query.
This query checks for the presence of two file operations on the same file path. As
such a pattern can lead to a race condition that may be exploitable by an attacker,
it constitutes a potential vulnerability. At first glance, the query does not appear to
model a particular syntactical structure of a program that might be changed during
variability encoding. As a result, it did not stand out during our examination of
the queries in the Joern query database (cf. Section 4.4.2). However, in essence,
it merely searches function bodies for two calls to file operations sharing the same
argument for the file path. Thus, since no semantic relationship between the two
calls is considered, the query is susceptible to changes introduced during variability
encoding. In the case of httpd/proc.c, the code duplication introduced into the
product simulator by SugarC duplicated a code region containing a call to a file
operation. The duplicated call then resulted in a false match for the query.

Line Mapping Deficiencies

The family-based approach issued additional warnings relating to the copy-loop
query on crypto/bigint.c and ssl/tls1.c. A closer inspection revealed that
the two additional matches on crypto/bigint.c constituted duplicates. Due to
inconsistencies in the comments emitted into a product simulator by SugarC (cf.
Listing 5.1), these duplicates received slightly different line mappings and thus slipped
through Sugarlyzer’s deduplication. The remaining match on ssl/tls1.c was
raised on source code resulting from the substitution of an externally defined macro.
Since this code was not present in the unpreprocessed source code, the warning
received an invalid line mapping. However, as the referenced code region actually
contained an array access typical of a copy loop, the sanity check we have added to
Sugarlyzer was not able to prune the warning.

Insufficient Variability Encoding

Due to the aforementioned reasons, the family-based approach reported a greater
total number of vulnerability warnings than the product-based approach. However,
it is worth noting that it fell below the baseline on a single source file. In this regard,
on ssl/loader.c, the approach missed an obvious instance of the strlen-truncation
query. A closer examination of the variability-encoded file produced by SugarC
revealed that variability-encoding of the corresponding code region was unsuccessful.
Instead of transforming the region into corresponding simulator code, SugarC
inserted an artificial function call indicating a presumed type error in the enclosing
if statement during parsing. As a result, the vulnerability pattern was not present in
the product simulator and could thus not be detected by Joern.

6.3. Discussion 77

6.3.1.3 Matched Queries on BusyBox

On BusyBox, both analysis approaches are able to detect matches to nine queries.
Crucially, beyond these nine queries, the product-based approach identified one
match to the free-field-no-reassign and eight matches to the constant-array-access-
no-check query. For these queries, our family-based approach yielded no warnings
(cf. Figure 6.2). On closer inspection, we found that both queries rely on the name
property of certain CPG nodes. Further, we noticed that the parentheses added
around all identifiers in a product simulator by SugarC caused this property to
always be an empty string. As a result, corresponding parts of the queries resulted
in string comparisons with an empty string, eliminating any potential matches early.
We reported this behavior to the Joern developers, who confirmed it as a bug. This
bug has since been fixed and merged into Joern’s main code line.6 Consequently,
using newer releases of Joern for the analysis, our approach should be able to
identify matches for the free-field-no-reassign and constant-array-access-no-check
queries.

6.3.1.4 Vulnerability Warnings on BusyBox

On BusyBox, the family-based approach issued significantly less vulnerability
warnings, totaling just above two thirds of the warnings identified by the product-
based baseline (cf. Tables 6.2 and 6.3). As indicated by the distribution shown in
Figure 6.3, a similar trend can be observed with regard to the number of warnings
raised on individual source files. Furthermore, on six of the nine queries matched by
both approaches, the product-based approach issued more warnings (cf. Figure 6.2).
Due to the large number of source files of BusyBox and the large discrepancies
exhibited by the two strategies, we are not able to analyze every instance where the
two strategies deviate by hand. However, based on our experience and a manual
examination of a select number of instances, we found that many of the deviations
can be attributed to the same classes of problems identified for axTLS.

Files not Considered by the Baseline

The family-based approach issues a total of 40 warnings on files related to BusyBox’s
Kconfig infrastructure. As described during our discussion of the vulnerability
warnings on axTLS, these files are not incorporated into concrete software products
and thus not analyzed by the product-based approach. They therefore explain most
of the deviations in the number of warnings exhibited by the rightmost files of
Figure 6.4b. Another interesting insight is that warnings on Kconfig files are the
main reason why the family-based approach issues a significantly larger number
of warnings for the unchecked-read-recv-malloc query than the baseline. Of the 18
additional matches reported, 15 stem from Kconfig-related files. The remaining 25
warnings on Kconfig files contribute matches to four queries: file-operation-race
(10 matches), format-controlled-printf (9 matches), strlen-truncation (5 matches),
and copy-loop (1 match).

Joern

As mentioned during our discussion of the matched queries on BusyBox, the deficits
relating to the free-field-no-reassign and constant-array-access-no-check queries (cf.

6https://github.com/joernio/joern/pull/4996.

https://github.com/joernio/joern/pull/4996

78 6. Evaluation

Figure 6.2) are caused by a bug in Joern. This bug prevents the family-based
approach from identifying any matches for the two queries. We found the same
bug to also affect certain manifestations of the unchecked-read-recv-malloc query.
However, in this case, it does not prevent but rather introduces artificial matches.
The cause for this lies in the fact that the query demands a check of the return value
of certain functions within the caller. While it allows this check to take place on a
variable assigned the return value of the called function, the bug prevents this check
to be correctly associated with the variable. As a result, even instances where an
obvious check is present are flagged with a warning.

Line Mapping Deficiencies

We observed that many manifestations of the signed-left-shift query are attributable
to the contents of global struct or enum definitions. For these definitions, SugarC
often does not emit comments indicating the original line numbers into the product
simulator. Since we prune warnings without a corresponding line mapping, this leads
to a significant reduction in the number of vulnerability warnings. A similar problem
can be observed for occurrences of the copy-loop query. Although loops and their
enclosed statements typically receive a line mapping within the product simulator, we
noticed that this mapping can become very imprecise. Depending on the complexity
of the loop, the mapping may even refer to a completely different code region. If
this region does not contain a structure typical of the matched query, an additional
sanity check added to Sugarlyzer fails and the corresponding warning is removed
from the report.

Insufficient Variability Encoding

A particularly severe issue affecting all queries is the fact that on BusyBox, SugarC
often does not correctly variability encode crucial parts of individual source files.
Similar to the missed strlen-truncation manifestation on axTLS’ ssl/loader.c
mentioned earlier, this leads to whole code regions not being correctly represented in
the product simulator. As a result, potential vulnerabilities in these code regions
cannot be detected by Joern and are thus not reported by the approach. We believe
that this is the main reason for the large discrepancies between the results of the
family-based approach and the baseline. It also explains the large spread in warnings
per file shown by Figure 6.4b. While the family-based approach frequently matches
the number of warnings of the baseline for files with two and fewer warnings, the
files with more warnings show far more unreliable results.

6.3.1.5 Conclusion

Taking into account the aspects discussed above, we draw the following conclusion
with regard to RQ-1 :

RQ-1 :
How effective is our family-based analysis in finding potential occurrences
of common vulnerability types across an SPL?

Our family-based analysis demonstrates promising effectiveness in identifying
potential vulnerabilities across an SPL. On axTLS, it matches or exceeds the
baseline on all but a single source file, while also detecting a match for an additional
query. Although limitations of the utilized Q-SAST and variability encoding tooling
impair effectiveness on BusyBox, our approach is still able to match or exceed
the baseline on the majority of source files.

6.3. Discussion 79

6.3.2 Efficiency (RQ-2)

6.3.2.1 Execution Time

Across all three subject systems, the total execution time of the family-base approach
remained reasonable, consistently staying below three hours (cf. Table 6.2). On the
smallest subject system, axTLS, we repeatedly observed execution times below the
10-minute mark. In the case of smaller subject systems, the approach could therefore
be applied frequently during the system’s development and maintenance lifecycle. For
instance, depending on the frequency with which changes are committed to a system’s
repository, the analysis could be run after every commit. For larger systems like
Toybox and BusyBox, where the total execution time always exceeded one hour,
performing a full analysis in such a fashion can quickly become infeasible. Instead,
to save on resources, a full analysis of a system could be limited to a mandatory
check executed before changes to the code base are incorporated into the main code
line. If this check raises any vulnerability warnings that need to be addressed, the
caching functionality of our approach would enable quick feedback for the modified
source files.

6.3.2.2 Storage Demand

The total storage demand of our analysis ranged from an additional 105 MB
on axTLS to an additional 3,494 MB on BusyBox (cf. Table 6.2). While it
therefore vastly exceeded the sizes of the individual subject systems,7 it always
remained on a reasonable level. As expected, the variability-encoded source files
used for the analysis exhibited a significantly larger size than their unpreprocessed
counterparts across all subject systems. In this regard, most variability-encoded
source files remained below 10 MB, with only five files from BusyBox exhibiting
a larger size. Notably, the product simulator created by SugarC for BusyBox’s
archival/libarchive/init_handle.c, a source file containing a mere 17 line of C
code, exceeded a staggering 470 MB in size. Considering the output produced by
Joern, we observed that all CPG binaries remained below 6 MB, while all JSON
report files consistently remained below 100 KB.

6.3.2.3 Conclusion

Taking into account the performance of our family-based approach with regard to
execution time and storage demand, we draw the following conclusion for RQ-2 :

RQ-2 :
How efficient is our family-based analysis with regard to execution time
and storage demand?

Our family-based analysis achieves a high level of efficiency, making it fit for
practical use. Across all considered subject systems, it maintained a very reasonable
execution time, always staying below 3 hours for a complete analysis. Furthermore,
it exhibits a practical storage demand, requiring less than 3.5 GB on the largest
subject system.

7All subject systems do not exceed a total size of 20 MB.

80 6. Evaluation

6.4 Threats to Validity

In this section, we discuss aspects threatening the validity of our approach and the
associated evaluation. In general, threats can relate to four major classes of validity:
conclusion, internal, construct, and external validity [Woh+24]. In the following,
we focus on threats relating to internal (Section 6.4.1), construct (Section 6.4.2),
and external validity (Section 6.4.3). We omit a separate discussion of the threats
to the conclusion validity as this validity class is predominantly concerned with
statistical relationships [Woh+24]. However, for our evaluation, we did not conduct
any statistical tests establishing such relationships. Furthermore, in applied research,
such as ours, conclusion validity usually holds the least significance among the
different validity types [Woh+24].

6.4.1 Internal Validity

In essence, internal validity is concerned with two aspects: ”the validity of the given
environment and the reliability of the results” [Woh+24]. As Vari-Joern is meant
to be executed in a corresponding Docker container, there are no environmental
changes that may threaten internal validity. However, there are a number of factors
that may threaten the reliability of our results. These threats are described below:

Variability Encoding

As indicated by our results (cf. Table 6.2), not all source files found within the
considered subject systems could be variability encoded. Consequently, as stated
in Section 6.2.2, this led us to consider only warnings on files for which a product
simulator could be created. While this ensured a fair assessment of our approach’s
vulnerability discovery capabilities on the remaining source files, it led to a reduction
in the overall warnings considered for the baseline. As a result, our results relating
to the approaches’ effectiveness may be biased towards the family-based approach.
However, we argue that the extent of this bias should be limited. Across all three
selected subject systems, SugarC was always capable of variability encoding at
least 80% of all source files. The number of files excluded from consideration is
therefore limited. In addition, while excluding certain source files from the report of
the product-based approach decreased the total number of warnings on BusyBox,
the number of warnings on axTLS remained unchanged (cf. Table 6.3). Moreover,
the number of matched queries remained unaffected for both BusyBox and axTLS.
Lastly, from a practical viewpoint, many of the source files for which variability
encoding failed are not part of the actual source code of the subject systems. Rather,
they represent auxiliary files associated with aspects like the systems’ configuration or
build process. Thus, the vulnerability warnings removed from consideration arguably
only have a limited relevance for a system’s overall security.

Line Mappings

In the context of the Sugarlyzer framework, the correct operation of the warning
mapping component heavily relies on the source line mappings incorporated into
a product simulator by SugarC. As we have outlined in Section 5.4, these line
mappings are not always reliable. While we tried to mitigate this problem by
searching for a plausible line mapping in the neighborhood of a warning, this strategy

6.4. Threats to Validity 81

is not perfect. Thus, the analysis may still yield warnings without a mapping to
a location in the SPL’s code. In this regard, we prune all warnings without a line
mapping. Similarly, we employ a sanity check that filters out warnings referring to
code regions within the unpreprocessed source code that do not contain structures
typical of the matched query. Evidently, these steps introduce a risk of discarding
valid vulnerability warnings. However, they also improve the overall meaningfulness
of the report created by our approach. Retaining warnings with questionable line
mappings would otherwise artificially inflate the report with warnings that are either
invalid or originate in another source file, effectively constituting duplicates. We thus
argue that the benefit of pruning warnings with an invalid line mapping outweighs
the potential loss of valid vulnerability warnings.

Joern

A central piece of our analysis approach, as well as the product-based baseline used for
the evaluation, is the Q-SAST tool Joern. While Joern represents an established
tool that has seen more than ten years of continuous development [Yam+14], it
evidently still contains a number of serious bugs. As described in Section 6.3.1, we
identified a bug that caused certain queries to produce none or false warnings on a
product simulator. Additionally, on certain products of axTLS, another bug caused
the baseline approach to miss an obvious match to a simple query. It thus remains
questionable whether the vulnerability warnings collected for the two considered
analysis approaches represent the true set of vulnerability patterns identifiable in the
corresponding CPGs. To this end, a bug triggered by only one of the two approaches
could have unknowingly introduced a strong bias into our results. Mitigating this
problem would have required adding support for another Q-SAST tool to our family-
based analysis and expanding the associated evaluation. However, this exceeded the
scope of this thesis.

6.4.2 Construct Validity

Besides the threats to the internal validity outlined above, there are also factors
that threaten the fundamental connection between our collected metrics and the
overarching goals of effectiveness and efficiency. These factors represent threats to
the construct validity [Woh+24] and are detailed below:

Consideration of Aggregated Alarms

For assessing our approach’s effectiveness, we considered the number of vulnerability
warnings. To this end, we not only analyzed the total numbers of warnings but
also the numbers of warnings aggregated by query and by source file. Using these
aggregated numbers, for axTLS, we analyzed individual cases where we observed
deviations between our family-based and the baseline strategy. For BusyBox,
we limited the analysis to identifying general patterns causing deviations due to
the large number of source files and warnings. Given that we thus not analyzed
every vulnerability warning in isolation, there is a risk that individual warnings for
particular source files or queries might not relate to the same problem between our
and the baseline strategy. For instance, even though both strategies might report
similar numbers for a particular source file or query, internally, the warnings might
relate to completely different issues. While the granularity of the comparison could
be refined to account for this problem, this would have increased the extent of the
evaluation to a level beyond the scope of this thesis.

82 6. Evaluation

Baseline Approach

As our baseline, we employed results produced by Vari-Joern’s product-based
approach using the uniform sampling strategy. We chose a product-based strategy
using sampling as it represents a popular method for the analysis of SPLs in prac-
tice [Lie+13]. Furthermore, the chosen uniform sampling strategy is simple and can
freely be scaled to arbitrary sample sizes, making it an ideal baseline. However, in
practice, there exist far more complex sampling strategies that have the potential to
outperform a uniform strategy in both effectiveness and efficiency. Therefore, while
our approach demonstrated promising results compared to the uniform sampling
strategy, this might not reflect its capabilities in comparison to state-of-the-art sam-
pling strategies. To provide a clear understanding of our approach’s true effectiveness
and efficiency, a comparison with other sampling algorithms would thus be necessary.
However, this would have exceeded the scope of this thesis.

6.4.3 External Validity

Lastly, external validity is concerned with the generalizability of the findings to other
settings [Woh+24]. In this regard, we have identified the following threats:

Limited Number of Subject Systems

An obvious threat to the external validity of our approach lies in the fact that our
evaluation focused on a small set of only three subject systems. Furthermore, with
both Toybox and BusyBox representing utility collections, the diversity exhibited
by our selection is limited. As a result, it remains questionable whether our findings
generalize to other systems. We tried to address this issue by selecting representative
systems used frequently in the field of SPL research. Furthermore, to avoid overfitting
towards a specific system size, we selected three systems of different sizes, ranging
from a moderate size of around 17,000 lines of code to over 180,000 (cf. Table 6.1).

Limited Number of Utilized Queries

For our evaluation, we relied on the default query set for C contained in the Joern
query database. While this set models a number of common vulnerability patterns,
its overall size of 16 queries is relatively small. In comparison, for the popular
Q-SAST tool CodeQL, there are more than 500 queries tailored to C/C++ [Li+24].
As a result, generalizing the effectiveness of our approach with regard to its vulnera-
bility discovery capabilities to other vulnerability patterns might be difficult. This
problem is further exacerbated by the fact that the complexity of most queries in
the Joern query database is limited. Therefore, our results may also be subject
to simplicity bias [Aba+17], potentially deviating for more complex vulnerability
patterns. Addressing these problems would require two steps. First, a larger number
of subject systems would need to be considered. Given that the available data of
the product-based approach serving as our baseline only considered axTLS and
BusyBox, for the scope of this thesis, this was not possible. Second, a larger set of
queries would need to be considered. While we could have expanded to the whole 27
queries of the Joern query database dedicated to C, the baseline data was collected
using the default set. Therefore, for the additional queries, we would have missed
baseline data, making an assessment of our approach’s effectiveness on these queries
difficult.

7. Related Work

In Chapter 4, we have described the core contribution of this thesis: a family-based
analysis approach aimed at the identification of VIVs in real-world SPLs. The
structure of this approach is shown again in Figure 7.1, highlighting three aspects
covered by existing solutions or prior research. In this chapter, we aim to explore
the related work on these aspects in more detail. From a technical perspective, our
approach builds on advancements in the fields of variability encoding and Q-SAST (cf.
1 and 2 in Figure 7.1). In Sections 7.1 and 7.2, we therefore give an overview of
prominent solutions in these two fields. Furthermore, while our approach is the first
to leverage the benefits of Q-SAST for the analysis of SPLs, previous research has
explored the broader goal of applying off-the-shelf SAST tools to SPLs (indicated by
3 in Figure 7.1). Therefore, we additionally provide a summary of key publications
that relate to this goal (Section 7.3).

Sugarlyzer [Pat23]

Variability Encoding

SuperC
[GG12]

SugarC
[Pat+22]

Joern
[Yam+14]

Joern
Query DB [24j]

Warning
Mapping

Queries

Simulator

Raw
Warnings

SPL
Source
File

Mapped

Warnings
1

2

3

Does not require changes May require changes

Figure 7.1: Aspects of our approach covered by previous research or existing solutions

7.1 Variability Encoding

As we detailed in Section 3.3, transforming unpreprocessed source code into a
corresponding product simulator usually encompasses two tasks (cf. Figure 7.1).

84 7. Related Work

First, to recognize its syntactical structure, the source code has to be parsed. We
give an overview of publications relating to this step in Section 7.1.1. Either during
or after parsing, behavior-preserving transformations can then be applied to rewrite
compile-time variability into run-time variability, ultimately resulting in a product
simulator. Publications relating to this step are described in Section 7.1.2.

7.1.1 Variability-Aware Parsing

Parsing unpreprocessed C represents a challenging task [Ken+10], even believed
impossible by some without the use of heuristics [Käs+11; Pad09; SL98]. This has
sparked interest in the research community, leading to the development of two parsers
that form the state of the art for parsing unpreprocessed C of real-world SPLs.

TypeChef

First, Kenner et al. [Ken+10] introduced TypeChef. As the name of their tool
suggests, TypeChef not only aims at parsing unpreprocessed C but also performs
type checking to detect type errors within an SPL. For parsing, TypeChef first
employs a configuration-preserving preprocessor for resolving file inclusions and
macro substitutions [KGO11]. It then uses a parser generated from a custom C
grammar extended with dedicated productions for preprocessor conditionals to build
a variability-aware AST [Ken+10]. This AST expresses variability by annotating
edges with their corresponding presence condition [GS20] and can be used to type
check all products of an SPL at once [Ken+10]. While TypeChef was continuously
improved from its initial release (e.g., to add support for most cases of undisciplined
preprocessor annotations [Käs+11]), development on the TypeChef project1 has
stopped in late 2021.

SuperC

To address limitations exhibited by TypeChef, Gazzillo et al. [GG12] introduced Su-
perC. Similar to TypeChef, their tool follows a two-phase approach. First, SuperC
resolves file inclusions and macro substitutions through the use of a configuration-
preserving preprocessor [GG12]. It then employs a fork-merge parser to build a
variability-aware AST [GG12]. This AST expresses variability through dedicated
choice nodes [GG12; GS20]. Although SuperC was introduced more than a decade
ago, its associated project2 still receives occasional updates. It is also employed by the
Sugarlyzer framework [Pat23] used as the foundation of our approach. SuperC
therefore represents the parsing solution utilized by our approach (cf. Figure 7.1).

7.1.2 Behavior-Preserving Transformation

While it is always possible to transform variable source code into a corresponding
product simulator, minimizing code duplication and maintaining behavior preserva-
tion during this process represent challenging tasks [von16]. This is exacerbated for
source code written in C, where a significant portion of preprocessor annotations can
be undisciplined [LKA11]. To this end, a number of studies proposed methods for
transforming parsed unpreprocessed C code into a product simulator.

1https://github.com/ckaestne/TypeChef.
2https://github.com/appleseedlab/superc/.

https://github.com/ckaestne/TypeChef
https://github.com/appleseedlab/superc/

7.1. Variability Encoding 85

Hercules

Building on the initial considerations of von Rhein et al. [von+16], von Rhein [von16]
and Garbe [Gar17] proposed Hercules. Their tool takes a variability-aware AST
produced by Typechef [Ken+10] (cf. Section 7.1.1) as input and aims at enabling an
efficient performance measurement of the represented SPLs [Gar17]. In pursuit of this
goal, the tool applies tree transformations to the variability-aware AST, turning it into
a corresponding product simulator [Gar17]. To enable performance measurements
for individual configurations, Hercules additionally injects the product simulator
with artificial performance measuring functions [Gar17]. Building on TypeChef,
Hercules is only able to variability-encode source code that previously passed
TypeChef’s type checking [Gar17; Pat+22]. Furthermore, the transformations
applied are only informally described and do not cover all variability patterns found
inside real-world C [Pat23].

C Reconfigurator

Following a more formal approach, Iosif-Lazar et al. [Ios+17] presented a number of
general program transformations, whose correctness was demonstrated for the small
imperative language IMP. Applying these transformations to C, Iosif-Lazar et al.
introduced the tool C Reconfigurator [Ios+17]. Their tool uses SuperC [GG12]
(cf. Section 7.1.1) for the creation of a variability-aware AST [Ios+17]. On such an
AST, the tool then applies the presented transformations as tree transformations
realized in Xtend3 [Ios+17]. The resulting ordinary AST is subsequently translated
into C, representing the corresponding product simulator [Ios+17]. Since C Recon-
figurator’s transformations are based on IMP, which only represents a subset of
C, it does not support many constructs found in real-world C programs [Ios+17;
Pat+22]. Moreover, C Reconfigurator cannot handle type errors found within a
variability-aware AST and relies on SuperC for detecting syntax errors [Pat+22].

SugarC

Addressing some of the limitations exhibited by Hercules [Gar17; von16] and
C Reconfigurator [Ios+17], Patterson et al. [Pat+22] proposed SugarC. It
not only represents the latest solution in the field of behavior-preserving variability
transformations for C but is also the tooling employed by our approach. To this
end, SugarC serves as a central component of the Sugarlyzer framework [Pat23],
which forms the foundation of our approach (cf. Figure 7.1). Instead of operating
on a fully-built variability-aware AST, SugarC is realized as semantic actions that
transform source code constructs directly after they have been parsed [Pat+22].
Evidently, this approach requires tight coupling between the utilized parser and
SugarC. To this end, SugarC has been integrated into the variability-aware parser
SuperC (cf. Section 7.1.1). SugarC is capable of handling syntax and type
errors and preserves them in the product simulator as run-time errors [Pat+22].
Additionally, special comments are incorporated into the simulator to enable lines
to be traced back to their location in the unpreprocessed source code [Pat+22].
Although the applied transformations are not complete and their correctness has not
been formally proven, SugarC claims to support many complex cases found inside
real-world C [Pat+22]. Additionally, it has been shown to outperform Hercules
and C Reconfigurator [Pat+22], establishing it as the current state of the art.

3https://eclipse.dev/Xtext/xtend/.

https://eclipse.dev/Xtext/xtend/

86 7. Related Work

7.2 Query-Based Static Application Security Testing

With our approach, we aim to leverage the benefits of Q-SAST for the analysis of
SPLs. To this end, we employ the analysis tool Joern (cf. Figure 7.1), originally
introduced by Yamaguchi et al. [Yam+14]. We chose Joern as it leverages the
expressive source code representation of CPGs, which allows even complicated taint-
style vulnerabilities to be modeled. Furthermore, with its implementation being open
source, it allowed us to consider both lifting by extension and lifting by simulation
for our approach. Even though Q-SAST tools provide numerous distinct benefits
compared to NQ-SAST tools [Li+24], they remain less common. Besides Joern,
there are three Q-SAST tools that enjoy widespread use for the analysis of C in
practice [Li+24].

SonarQube

A commercial Q-SAST tool that enjoys widespread use in practice is Sonar-
Qube.4 Contrary to Joern, not all parts of SonarQube’s implementation are
open source [Li+24]. Additionally, compared to the small database of existing
queries for Joern, it boats a large collection of more than 850 queries (referred to
as rules) [Li+24]. These queries are designed to identify various issues in C/C++
code, ranging from bugs and code smells to security vulnerabilities [Li+24]. As
characteristic of a Q-SAST tool, users can incorporate their own queries by deriving
custom rules from existing templates [Li+24; Shi+22].

CodeQL

Another widely used Q-SAST tool is CodeQL.5 Similar to SonarQube, the im-
plementation of CodeQL is not entirely open-source [Li+24]. For its analysis, the
tool is not limited to syntactical considerations. Besides using a program’s AST,
CodeQL also considers the associated CFG and the data flow graph [Li+24]. For
C/C++ alone, there are more than 550 existing queries leveraging access to these
data structures [Li+24], vastly exceeding the 27 queries available for C inside the
Joern query database. These queries are written in a dedicated query language
based on Datalog [Li+24].

Semgrep

Contrary to SonarQube and CodeQL, Semgrep6 represents an open-source
Q-SAST tool [Li+24]. It offers more than 80 existing queries for C/C++, specified
in a syntax resembling regular expressions [Li+24]. While these queries are targeted
towards different types of issues, their expressiveness is generally limited. From
a technical standpoint, Semgrep converts queries into AST patterns that are
subsequently searched within the analyzed program’s AST [Li+24]. Compared to
other Q-SAST tools like Joern, which leverage additional source code representations
besides a program’s AST, the tool therefore has limited capabilities.

4http://sonarqube.org/.
5https://codeql.github.com/.
6https://semgrep.dev/.

http://sonarqube.org/
https://codeql.github.com/
https://semgrep.dev/

7.3. Analysis of SPLs with SAST Tools 87

7.3 Analysis of SPLs with SAST Tools

The analysis of SPLs represents a challenging task that has been the subject of
extensive research [Mei+14; Thü+14]. While engineering novel analysis approaches
constitutes a valid option, this task demands considerable engineering effort [Ios+17;
Pat23]. Therefore, many studies instead aim to adapt and reuse methods known
from the analysis of non-variable software. For our approach, we followed this idea
and aimed to employ an off-the-shelf Q-SAST tool for the analysis of SPLs for
vulnerabilities. To the best of our knowledge, there is no existing solution that relates
to our approach directly and applies a conventional Q-SAST tool to SPLs. However,
considering the broader field of SAST tools, a small set of studies aimed to apply
NQ-SAST tools to SPLs. These are the studies that are most closely related to ours.

Mordahl et al. [Mor+19] allowed Q-SAST tools to be applied to SPLs by following
an optimized product-based approach [Thü+14]. To this end, they sampled products
from the three SPLs of axTLS, Toybox, and BusyBox using Oh et al.’s [Oh+19]
uniform random sampling tool Smarch. The sampled products were then analyzed
using the four popular SAST tools CBMC, Clang Static Analyzer, Cppcheck,
and Infer. Lastly, post-processing was applied to the raised warnings to perform
deduplication and to deduce the causing features. While they followed a goal similar
to ours, their approach adopted a product-based strategy. This strategy is easy
and therefore popular in practice [Lie+13; Thü+14]. However, it incurs redundant
computations for all parts shared between the sampled products (e.g., the common
core) [Sah+16; Thü+14]. Our approach avoids this problem by pursuing a family-
based strategy, analyzing an SPL directly instead of individual products [Ape+13b;
DBW19; Ios+17].

Schubert et al. [Sch+22] presented a family-based approach that leveraged variability
encoding for applying the data-flow analysis framework PhASAR [SHB19] to SPLs.
Their implementation, VarAlyzer, first variability-encoded unpreprocessed C with a
precursor to SugarC [Pat+22] (cf. Section 7.1.2). It then applied PhASAR [SHB19]
to the resulting product simulator for solving the data-flow problem specified by
the user. Since PhASAR [SHB19] can solve data-flow analyses specified in the
IFDS [RHS95] and IDE [SRH96] frameworks, this allowed Schubert et al. [Sch+22]
to apply conventional data-flow analyses to SPLs. Overall, their approach follows
the same idea of applying a variability-oblivious analysis tool to a product simulator
as ours. However, in contrast to our approach, it focuses on PhASAR [SHB19] and
thus data-flow analyses. While certain vulnerabilities may be detected by considering
a program’s data flow in isolation, complex vulnerabilities can require a consideration
of additional aspects, such as a program’s structure of data flow. To this end, besides
a program’s data flow, our approach, may also consider a program’s syntactical
structure as well as its control flow by leveraging CPGs.

Lastly, the study that comes closest to ours is that of Patterson [Pat23]. In his
study, Patterson proposed the Sugarlyzer framework with the aim of enabling
scalable and precise variability bug detection for SPLs through the use of conventional
SAST tools. In essence, Sugarlyzer uses SuperC [GG12] (cf. Section 7.1.1) and
SugarC [Pat+22] (cf. Section 7.1.2) for variability encoding and allows any SAST
tool to be applied to the resulting product simulator through appropriate interfaces.
Similar to the solution of Mordahl et al. [Mor+19], post-processing is applied to the

88 7. Related Work

raised warnings. While our approach is built around the Sugarlyzer framework
(cf. Figure 7.1), we focus on the identification of VIVs rather than general variability
bugs. Since Q-SAST tools provide expressive means to model VIVs, we subsequently
added support for the off-the-shelf Q-SAST tool Joern [Yam+14] to the framework.
Furthermore, we incorporated Sugarlyzer into the existing analysis platform
Vari-Joern instead of treating it as its own standalone solution.

8. Conclusion and Outlook

Since the exploitation of even a single vulnerability can lead to disastrous conse-
quences, the identification and subsequent removal of corresponding patterns in a
software system represents a crucial task. For SPLs, which give rise to a plethora
of different software products, this task substantially increases in complexity. This
complexity arises from the presence of VIVs, vulnerabilities that are only present in
specific software products of an SPL. The inherent challenge of using conventional
(i.e., variability-oblivious) analysis tooling for the discovery of problematic patterns
within an SPL has been the subject of earlier research [Mor+19; Pat23; Sch+22].
However, there has been no approach that follows a family-based strategy while also
leveraging the unique advantages of Q-SAST.

Responding to this gap, in this thesis, we proposed a family-based analysis approach
for SPLs leveraging the benefits of Q-SAST for the identification of VIVs. In this
regard, we first examined two strategies through which an off-the-shelf Q-SAST
tool can be lifted to the domain of SPLs and thus used for a family-based analysis.
The strategy of lifting by extension aims at extending the internals of a tool to
accommodate variability, thereby enabling the tool to operate on an SPL directly.
Lifting by simulation, on the other hand, aims at transforming the variability of
an SPL into a form on which an analysis tool can operate without the need for
modification. Comparing the two aforementioned strategies, we found lifting by
extension to promise greater precision and performance, while lifting by simulation
promises benefits with regard to maintainability, expansion, and implementation
effort.

Based on the comparison of the two lifting strategies, we decided to implement
lifting by simulation. To limit the required implementation effort, the design of our
approach revolved around reusing existing solutions whenever possible. Accordingly,
we based our approach on the Sugarlyzer framework of Patterson [Pat23]. While
this framework provided us with implementations for all components required by
lifting by simulation, it did not support our chosen Q-SAST tool, Joern, out of the
box. Accordingly, our implementation focused on adding support for Joern [24h] to
Sugarlyzer. Moreover, we addressed a number of limitations of the framework

90 8. Conclusion and Outlook

exposed by this process and integrated the resulting implementation into the existing
analysis platform Vari-Joern.

For the evaluation of the proposed approach, we considered the effectiveness and
efficiency of its implementation on the three subject systems of axTLS [24a],
Toybox [24p], and BusyBox [24b]. As a baseline for this evaluation, we used
results for axTLS and BusyBox produced by the product-based approach available
in Vari-Joern. Overall, our findings confirm the effectiveness of the approach in
identifying potential vulnerabilities. For axTLS, it matched or exceeded the baseline
on all but a single source file. Furthermore, while limitations of the tools employed
by our approach severely impaired effectiveness on BusyBox, our approach was still
able to match or exceed the baseline on the majority of source files. Considering the
efficiency of the approach, our findings confirm a very reasonable resource demand.
Even for the largest subject system of BusyBox, execution time consistently stayed
below 3 hours for a full analysis. Furthermore, the maximum storage demand of our
approach remained modest, not surpassing 3.5 GB. Taking into account the results of
our evaluation, we argue that the proposed approach not only demonstrates promising
effectiveness but also efficiency fit for practical use. Accordingly, we formulate the
following conclusion for the MRQ (cf. Section 1.1):

MRQ :
How can a Q-SAST tool be lifted to the domain of SPLs, i.e., be employed
for a family-based analysis that is both effective and efficient?

Conclusion. A Q-SAST tool can be lifted to the domain of SPLs by extending
its internals (lifting by extension) or by rewriting the variability of the analyzed
SPL (lifting by simulation). While lifting by extension promises greater precision
and performance, lifting by simulation offers distinct benefits with regard to main-
tainability, extensibility, and implementation effort. Although lifting by simulation
is therefore at a disadvantage in terms of precision and performance, the proposed
analysis approach demonstrates that it can still achieve promising effectiveness
and efficiency fit for practical use. As a result, lifting by simulation represents a
viable solution for lifting an off-the-shelf Q-SAST tool to the domain of SPLs.

Future Work

This thesis laid the foundation for lifting off-the-shelf Q-SAST tools to the domain of
SPLs by highlighting two common lifting strategies and demonstrating the practical
viability of the strategy of lifting by simulation. While this yielded valuable insights
into the vulnerability discovery possibilities for SPLs, there are still a number of
areas that could benefit from improvements and continued research. These areas are
outlined below:

• Enabling Custom Queries: While the analysis approach proposed in this
thesis aimed to leverage the advantages of Q-SAST, to provide a transparent
evaluation of its effectiveness and efficiency, we used Joern in NQ-SAST
mode (i.e., with a fixed set of queries). To benefit from all the advantages
of Q-SAST, it is however necessary to allow users to control the analysis by
providing their own queries. Only then can queries modeling newly discovered
vulnerabilities be incorporated or existing ones adjusted to reflect the specifics
of a particular system. Extending the proposed approach (and hence the

91

Sugarlyzer framework on which it is built) with this functionality would
therefore constitute a valuable improvement.

• Improving Variability Encoding Solutions: The evaluation of the proposed
analysis approach revealed that the variability encoding tooling used by the
Sugarlyzer framework (i.e., SuperC and SugarC) still exhibits major
limitations. On certain source files and code regions, the tooling outright
fails to produce a corresponding product simulator. Additionally, the line
mapping information inserted into a product simulator can be imprecise or even
absent. As the proposed approach hinges on the presence of a product simulator
containing precise line mapping information, addressing these limitations would
significantly improve its overall effectiveness.

• Extending the Evaluation: For the evaluation of the proposed analysis approach,
we focused on three subject systems. As a baseline, we used results produced
by Vari-Joern’s product-based analysis strategy using the uniform random
sampling strategy (cf. Section 6.1). Furthermore, the approach currently relies
on the 16 queries for C with the default tag of the Joern query database
(cf. Section 4.4.1). While this setup allowed us to gain first insights into the
effectiveness and efficiency of the proposed approach, its limited extent makes
a generalization of the findings difficult. Extending the evaluation to include
additional systems and queries, as well as using multiple advanced sampling
strategies as baselines, could provide valuable insights into the generalizability
of our findings.

• Selective Variability-Awareness: As indicated by our evaluation (cf. Sec-
tion 6.3.2), the analysis approach proposed in this thesis exhibits high efficiency
for real-world SPLs of small to large size. However, especially in view of the
analysis of very large SPLs, this aspect could be further improved. In this
regard, selective variability awareness, as explored by Dimovski et al. [DBW19],
would be an interesting area for future research. Depending on the degree of
variability exhibited by a source file or a code region, variability encoding could
be omitted and the corresponding source code analyzed as if it belonged to a
non-configurable system. This would reduce the overhead for sections of an
SPL that do not benefit from a variability-aware analysis (e.g., the common
core).

• Implementing Lifting by Extension: A key finding of this thesis is that lifting
by simulation represents a viable strategy for lifting an off-the-shelf Q-SAST
tool to the domain of SPLs. However, from a theoretical perspective, this
strategy is at a disadvantage in terms of precision and performance when
compared to lifting by extension (cf. Section 3.4). Applying the strategy of
lifting by extension therefore represents an intriguing avenue for future research.
A corresponding implementation using Joern could then be compared with
the analysis approach proposed in this thesis. The extent to which lifting by
extension enables better precision and performance for the analysis of SPLs
could then be judged.

92 8. Conclusion and Outlook

Bibliography

[24a] axTLS Embedded SSL. Website. May 2024. url: https://axtls.sourceforge.
net/ (visited on 05/09/2024).

[24b] BusyBox. Website. May 2024. url: https://busybox.net/ (visited on
05/09/2024).

[24c] CBMC: Bounded Model Checking for Software. Website. May 2024. url:
https://www.cprover.org/cbmc/ (visited on 05/09/2024).

[24d] Clang Static Analyzer. Website. May 2024. url: https://clang-analyzer.
llvm.org/ (visited on 05/09/2024).

[24e] CodeQL. Website. May 2024. url: https://codeql.github.com/ (visited
on 05/09/2024).

[24f] GitHub - Joernio/Joern: Open-source Code Analysis Platform for C
/ C++ / Java / Binary / Javascript / Python / Kotlin Based on
Code Property Graphs. Source Code Repository. 2024. url: https :
//github.com/joernio/joern (visited on 09/13/2024).

[24g] Infer Static Analyzer. Website. May 2024. url: https://fbinfer.com/
(visited on 05/09/2024).

[24h] Joern - The Bug Hunter’s Workbench. Website. June 2024. url: https:
//joern.io/ (visited on 06/02/2024).

[24i] Joern Documentation. Documentation. 2024. url: https://docs.joern.io/
(visited on 07/16/2024).

[24j] Joern Query Database. Website. 2024. url: https://queries.joern.io/
(visited on 09/12/2024).

[24k] NIST Software Assurance Reference Dataset. Website. Nov. 2024. url:
https://samate.nist.gov/SARD/test-suites/ (visited on 11/26/2024).

[24l] PhASAR. Website. June 2024. url: https://phasar.org/ (visited on
06/02/2024).

[24m] SonarQube. Website. Nov. 2024. url: https://www.sonarsource.com/
products/sonarqube/ (visited on 11/22/2024).

[24n] The Heartbleed Bug. July 2024. url: https://heartbleed.com/ (visited
on 07/01/2024).

[24o] The Linux Kernel Archives. Website. May 2024. url: https://www.
kernel.org/ (visited on 05/09/2024).

[24p] Toybox. Website. May 2024. url: https://www.landley.net/toybox/
(visited on 05/09/2024).

https://axtls.sourceforge.net/
https://axtls.sourceforge.net/
https://busybox.net/
https://www.cprover.org/cbmc/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://codeql.github.com/
https://github.com/joernio/joern
https://github.com/joernio/joern
https://fbinfer.com/
https://joern.io/
https://joern.io/
https://docs.joern.io/
https://queries.joern.io/
https://samate.nist.gov/SARD/test-suites/
https://phasar.org/
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/
https://heartbleed.com/
https://www.kernel.org/
https://www.kernel.org/
https://www.landley.net/toybox/

94 Bibliography

[Aba+17] Iago Abal et al. “Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis”. In: ACM Transactions on Software Engineering
and Methodology 26.3 (July 2017), pp. 1–34. issn: 1049-331X, 1557-7392.
doi: 10.1145/3149119. url: https://dl.acm.org/doi/10.1145/3149119
(visited on 05/15/2024).

[ABW14] Iago Abal, Claus Brabrand, and Andrzej Wasowski. “42 Variability
Bugs in the Linux Kernel: A Qualitative Analysis”. In: Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering. Vasteras Sweden: ACM, Sept. 2014, pp. 421–432. isbn:
978-1-4503-3013-8. doi: 10.1145/2642937.2642990. url: https://dl.acm.
org/doi/10.1145/2642937.2642990 (visited on 05/20/2024).

[ACB16] Marcelo Arroyo, Francisco Chiotta, and Francisco Bavera. “An User
Configurable Clang Static Analyzer Taint Checker”. In: 2016 35th Inter-
national Conference of the Chilean Computer Science Society (SCCC).
Valparáıso, Chile: IEEE, Oct. 2016, pp. 1–12. isbn: 978-1-5090-3339-3.
doi: 10.1109/SCCC.2016.7835996. url: http://ieeexplore.ieee.org/
document/7835996/ (visited on 05/08/2024).

[Aho+07] Alfred V. Aho et al. Compilers: Principles, Techniques, & Tools. 2nd
Edition. Boston: Pearson/Addison Wesley, 2007. isbn: 978-0-321-48681-
3.

[AK09] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented
Software Development.” In: The Journal of Object Technology 8.5 (2009),
p. 49. issn: 1660-1769. doi: 10 . 5381/ jot . 2009 . 8 . 5 . c5. url: http :
//www.jot . fm/contents/issue 2009 07/column5.html (visited on
04/22/2024).

[Ang18] Renzo Angles.“The Property Graph Database Model”. In: Proceedings of
the 12th Alberto Mendelzon International Workshop on Foundations of
Data Management. Ed. by Dan Olteanu and Barbara Poblete. Vol. 2100.
CEUR Workshop Proceedings. Cali, Colombia: CEUR-WS.org, May
2018. url: https://ceur-ws.org/Vol-2100/paper26.pdf.

[Ape+11] Sven Apel et al. “Detection of Feature Interactions Using Feature-Aware
Verification”. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). Lawrence, KS, USA:
IEEE, Nov. 2011, pp. 372–375. isbn: 978-1-4577-1639-3. doi: 10.1109/
ASE.2011.6100075. url: http://ieeexplore.ieee.org/document/6100075/
(visited on 05/05/2024).

[Ape+13a] Sven Apel et al. Feature-Oriented Software Product Lines: Concepts
and Implementation. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013. isbn: 978-3-642-37520-0. doi: 10.1007/978-3-642-37521-7. url:
https://link.springer.com/10.1007/978-3-642-37521-7 (visited on
04/17/2024).

[Ape+13b] Sven Apel et al. “Strategies for Product-Line Verification: Case Studies
and Experiments”. In: 2013 35th International Conference on Software
Engineering (ICSE). San Francisco, CA, USA: IEEE, May 2013, pp. 482–
491. isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606594. url:
http://ieeexplore.ieee.org/document/6606594/ (visited on 04/25/2024).

https://doi.org/10.1145/3149119
https://dl.acm.org/doi/10.1145/3149119
https://doi.org/10.1145/2642937.2642990
https://dl.acm.org/doi/10.1145/2642937.2642990
https://dl.acm.org/doi/10.1145/2642937.2642990
https://doi.org/10.1109/SCCC.2016.7835996
http://ieeexplore.ieee.org/document/7835996/
http://ieeexplore.ieee.org/document/7835996/
https://doi.org/10.5381/jot.2009.8.5.c5
http://www.jot.fm/contents/issue_2009_07/column5.html
http://www.jot.fm/contents/issue_2009_07/column5.html
https://ceur-ws.org/Vol-2100/paper26.pdf
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
http://ieeexplore.ieee.org/document/6100075/
https://doi.org/10.1007/978-3-642-37521-7
https://link.springer.com/10.1007/978-3-642-37521-7
https://doi.org/10.1109/ICSE.2013.6606594
http://ieeexplore.ieee.org/document/6606594/

Bibliography 95

[BD23] Van-Cong Bui and Xuan-Cho Do. “Detecting Software Vulnerabilities
Based on Source Code Analysis Using GCN Transformer”. In: 2023
RIVF International Conference on Computing and Communication
Technologies (RIVF). Hanoi, Vietnam: IEEE, Dec. 2023, pp. 112–117.
isbn: 979-8-3503-1584-4. doi: 10 . 1109/RIVF60135 .2023 .10471834.
url: https://ieeexplore. ieee .org/document/10471834/ (visited on
04/29/2024).

[Bod+13] Eric Bodden et al. “SPL LIFT: Statically Analyzing Software Product
Lines in Minutes Instead of Years”. In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. Seattle Washington USA: ACM, June 2013, pp. 355–364.
isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2491976. url: https:
//dl.acm.org/doi/10.1145/2491956.2491976 (visited on 04/19/2024).

[Bra+12] Claus Brabrand et al. “Intraprocedural Dataflow Analysis for Soft-
ware Product Lines”. In: Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development. AOSD ’12. New
York, NY, USA: Association for Computing Machinery, Mar. 2012,
pp. 13–24. isbn: 978-1-4503-1092-5. doi: 10.1145/2162049.2162052.
url: https://dl.acm.org/doi/10.1145/2162049.2162052 (visited on
04/15/2024).

[Bra+13] Claus Brabrand et al. “Intraprocedural Dataflow Analysis for Software
Product Lines”. In: Transactions on Aspect-Oriented Software Develop-
ment X. Ed. by David Hutchison et al. Vol. 7800. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 73–108. isbn: 978-3-642-36963-6
978-3-642-36964-3. doi: 10.1007/978-3- 642-36964-3 3. url: http:
/ / link . springer . com/10 . 1007/978 - 3 - 642 - 36964 - 3 3 (visited on
04/22/2024).

[Bus+96] Frank Buschmann et al. Pattern-Oriented Software Architecture Volume
1: A System of Patterns. Vol. 1. Chichester, England: Wiley, Aug. 1996.
isbn: 978-0-471-95869-7.

[Cao+24] Sicong Cao et al. “EXVUL: Towards Effective and Explainable Vulnera-
bility Detection for IoT Devices”. In: IEEE Internet of Things Journal
(2024), pp. 1–14. issn: 2327-4662, 2372-2541. doi: 10.1109/JIOT.2024.
3381641. url: https://ieeexplore.ieee.org/document/10479158/ (visited
on 04/16/2024).

[Cas+21] Thiago Castro et al. “A Formal Framework of Software Product Line
Analyses”. In: ACM Transactions on Software Engineering and Method-
ology 30.3 (July 2021), pp. 1–37. issn: 1049-331X, 1557-7392. doi:
10.1145/3442389. url: https://dl.acm.org/doi/10.1145/3442389
(visited on 04/22/2024).

[Cla+10] Andreas Classen et al. “Model Checking Lots of Systems: Efficient
Verification of Temporal Properties in Software Product Lines”. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1. Cape Town South Africa: ACM, May 2010,
pp. 335–344. isbn: 978-1-60558-719-6. doi: 10.1145/1806799.1806850.
url: https://dl.acm.org/doi/10.1145/1806799.1806850 (visited on
05/24/2024).

https://doi.org/10.1109/RIVF60135.2023.10471834
https://ieeexplore.ieee.org/document/10471834/
https://doi.org/10.1145/2491956.2491976
https://dl.acm.org/doi/10.1145/2491956.2491976
https://dl.acm.org/doi/10.1145/2491956.2491976
https://doi.org/10.1145/2162049.2162052
https://dl.acm.org/doi/10.1145/2162049.2162052
https://doi.org/10.1007/978-3-642-36964-3_3
http://link.springer.com/10.1007/978-3-642-36964-3_3
http://link.springer.com/10.1007/978-3-642-36964-3_3
https://doi.org/10.1109/JIOT.2024.3381641
https://doi.org/10.1109/JIOT.2024.3381641
https://ieeexplore.ieee.org/document/10479158/
https://doi.org/10.1145/3442389
https://dl.acm.org/doi/10.1145/3442389
https://doi.org/10.1145/1806799.1806850
https://dl.acm.org/doi/10.1145/1806799.1806850

96 Bibliography

[CM04] B. Chess and G. McGraw. “Static Analysis for Security”. In: IEEE
Security and Privacy Magazine 2.6 (Nov. 2004), pp. 76–79. issn: 1540-
7993. doi: 10.1109/MSP.2004.111. url: http://ieeexplore.ieee.org/
document/1366126/ (visited on 04/23/2024).

[DBW19] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej W ↪asowski. “Find-
ing Suitable Variability Abstractions for Lifted Analysis”. In: Formal
Aspects of Computing 31.2 (Apr. 2019), pp. 231–259. issn: 0934-5043,
1433-299X. doi: 10.1007/s00165-019-00479-y. url: https://dl.acm.org/
doi/10.1007/s00165-019-00479-y (visited on 04/22/2024).

[Du+20] Xiang Du et al. “Vulnerability Analysis through Interface-based Checker
Design”. In: 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security Companion (QRS-C). Macau, China:
IEEE, Dec. 2020, pp. 46–52. isbn: 978-1-72818-915-4. doi: 10.1109/QRS-
C51114 . 2020 . 00019. url: https : // ieeexplore . ieee . org/document/
9282714/ (visited on 04/16/2024).

[EL02] D. Evans and D. Larochelle. “Improving Security Using Extensible
Lightweight Static Analysis”. In: IEEE Software 19.1 (Aug. 2002),
pp. 42–51. issn: 07407459. doi: 10 .1109/52 .976940. url: http ://
ieeexplore.ieee.org/document/976940/ (visited on 04/28/2024).

[Fel+16] Michael Felderer et al. “Chapter One - Security Testing: A Survey”.
In: Advances in Computers. Vol. 101. Elsevier, 2016, pp. 1–51. isbn:
978-0-12-805158-0. doi: 10.1016/bs.adcom.2015.11.003. url: https:
//linkinghub.elsevier.com/retrieve/pii/S0065245815000649 (visited on
05/08/2024).

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program
Dependence Graph and Its Use in Optimization”. In: ACM Transactions
on Programming Languages and Systems 9.3 (July 1987), pp. 319–349.
issn: 0164-0925, 1558-4593. doi: 10.1145/24039.24041. url: https:
//dl.acm.org/doi/10.1145/24039.24041 (visited on 06/05/2024).

[Gar17] Florian Garbe.“Performance Measurement of C Software Product Lines”.
MA thesis. Passau: University of Passau, 2017. url: https://www.se.cs.
uni-saarland.de/theses/FlorianGarbeMA.pdf.

[Gaz17] Paul Gazzillo. “Kmax: Finding All Configurations of Kbuild Makefiles
Statically”. In: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering. Paderborn Germany: ACM, Aug. 2017,
pp. 279–290. isbn: 978-1-4503-5105-8. doi: 10.1145/3106237.3106283.
url: https://dl.acm.org/doi/10.1145/3106237.3106283 (visited on
05/11/2024).

[GG12] Paul Gazzillo and Robert Grimm. “SuperC: Parsing All of C by Taming
the Preprocessor”. In: Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. Beijing
China: ACM, June 2012, pp. 323–334. isbn: 978-1-4503-1205-9. doi:
10.1145/2254064.2254103. url: https://dl.acm.org/doi/10.1145/
2254064.2254103 (visited on 04/19/2024).

https://doi.org/10.1109/MSP.2004.111
http://ieeexplore.ieee.org/document/1366126/
http://ieeexplore.ieee.org/document/1366126/
https://doi.org/10.1007/s00165-019-00479-y
https://dl.acm.org/doi/10.1007/s00165-019-00479-y
https://dl.acm.org/doi/10.1007/s00165-019-00479-y
https://doi.org/10.1109/QRS-C51114.2020.00019
https://doi.org/10.1109/QRS-C51114.2020.00019
https://ieeexplore.ieee.org/document/9282714/
https://ieeexplore.ieee.org/document/9282714/
https://doi.org/10.1109/52.976940
http://ieeexplore.ieee.org/document/976940/
http://ieeexplore.ieee.org/document/976940/
https://doi.org/10.1016/bs.adcom.2015.11.003
https://linkinghub.elsevier.com/retrieve/pii/S0065245815000649
https://linkinghub.elsevier.com/retrieve/pii/S0065245815000649
https://doi.org/10.1145/24039.24041
https://dl.acm.org/doi/10.1145/24039.24041
https://dl.acm.org/doi/10.1145/24039.24041
https://www.se.cs.uni-saarland.de/theses/FlorianGarbeMA.pdf
https://www.se.cs.uni-saarland.de/theses/FlorianGarbeMA.pdf
https://doi.org/10.1145/3106237.3106283
https://dl.acm.org/doi/10.1145/3106237.3106283
https://doi.org/10.1145/2254064.2254103
https://dl.acm.org/doi/10.1145/2254064.2254103
https://dl.acm.org/doi/10.1145/2254064.2254103

Bibliography 97

[GJ03] A. Garrido and R. Johnson. “Refactoring C with Conditional Compila-
tion”. In: 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. Montreal, Que., Canada: IEEE Comput.
Soc, 2003, pp. 323–326. isbn: 978-0-7695-2035-3. doi: 10.1109/ASE.
2003.1240330. url: http://ieeexplore.ieee.org/document/1240330/
(visited on 07/29/2024).

[GS19] Lea Gerling and Klaus Schmid. “Variability-Aware Semantic Slicing
Using Code Property Graphs”. In: Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume A. Paris
France: ACM, Sept. 2019, pp. 65–71. isbn: 978-1-4503-7138-4. doi:
10.1145/3336294.3336312. url: https://dl.acm.org/doi/10.1145/
3336294.3336312 (visited on 04/15/2024).

[GS20] Lea Gerling and Klaus Schmid. “Syntax-Preserving Slicing of C-based
Software Product Lines: An Experience Report”. In: Proceedings of
the 14th International Working Conference on Variability Modelling of
Software-Intensive Systems. Magdeburg Germany: ACM, Feb. 2020,
pp. 1–5. isbn: 978-1-4503-7501-6. doi: 10 . 1145 / 3377024 . 3377029.
url: https : //dl . acm.org/doi/10 . 1145/3377024 .3377029 (visited
on 04/16/2024).

[GW19] Paul Gazzillo and Shiyi Wei. “Conditional Compilation Is Dead, Long
Live Conditional Compilation!” In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). Montreal, QC, Canada: IEEE, May 2019, pp. 105–108.
isbn: 978-1-72811-758-4. doi: 10.1109/ICSE-NIER.2019.00035. url:
https://ieeexplore.ieee.org/document/8805666/ (visited on 06/10/2024).

[Hao+21] Zhang Haojie et al.“Vulmg: A Static Detection Solution For Source Code
Vulnerabilities Based On Code Property Graph and Graph Attention
Network”. In: 2021 18th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP).
Chengdu, China: IEEE, Dec. 2021, pp. 250–255. isbn: 978-1-66541-
364-0. doi: 10.1109/ICCWAMTIP53232.2021.9674145. url: https:
//ieeexplore.ieee.org/document/9674145/ (visited on 04/29/2024).

[Ios+17] Alexandru Florin Iosif-Lazar et al. “Effective Analysis of C Programs
by Rewriting Variability”. In: The Art, Science, and Engineering of
Programming 1.1 (Jan. 2017), p. 1. issn: 2473-7321. doi: 10.22152/
programming - journal . org /2017/1/1. url: http : / /programming -
journal.org/2017/1/1 (visited on 04/19/2024).

[ISO18] ISO/IEC. Information Technology - Security Techniques - Information
Security Management Systems - Overview and Vocabulary. Geneva,
Switzerland, Feb. 2018.

[JDL19] Liyuan Jia, Wei Dong, and Bailin Lu. “Bug Finder Evaluation Guided
Program Analysis Improvement”. In: 2019 IEEE 7th International
Conference on Computer Science and Network Technology (ICCSNT).
Dalian, China: IEEE, Oct. 2019, pp. 122–125. isbn: 978-1-72813-299-0.
doi: 10.1109/ICCSNT47585.2019.8962414. url: https://ieeexplore.ieee.
org/document/8962414/ (visited on 04/17/2024).

https://doi.org/10.1109/ASE.2003.1240330
https://doi.org/10.1109/ASE.2003.1240330
http://ieeexplore.ieee.org/document/1240330/
https://doi.org/10.1145/3336294.3336312
https://dl.acm.org/doi/10.1145/3336294.3336312
https://dl.acm.org/doi/10.1145/3336294.3336312
https://doi.org/10.1145/3377024.3377029
https://dl.acm.org/doi/10.1145/3377024.3377029
https://doi.org/10.1109/ICSE-NIER.2019.00035
https://ieeexplore.ieee.org/document/8805666/
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674145
https://ieeexplore.ieee.org/document/9674145/
https://ieeexplore.ieee.org/document/9674145/
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
http://programming-journal.org/2017/1/1
http://programming-journal.org/2017/1/1
https://doi.org/10.1109/ICCSNT47585.2019.8962414
https://ieeexplore.ieee.org/document/8962414/
https://ieeexplore.ieee.org/document/8962414/

98 Bibliography

[KA08] Christian Kastner and Sven Apel. “Type-Checking Software Product
Lines - A Formal Approach”. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. L’Aquila, Italy: IEEE,
Sept. 2008, pp. 258–267. isbn: 978-1-4244-2187-9. doi: 10.1109/ASE.
2008.36. url: http://ieeexplore.ieee.org/document/4639329/ (visited
on 04/18/2024).

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. “Granularity
in Software Product Lines”. In: Proceedings of the 13th International
Conference on Software Engineering - ICSE ’08. Leipzig, Germany: ACM
Press, 2008, p. 311. isbn: 978-1-60558-079-1. doi: 10.1145/1368088.
1368131. url: http://portal.acm.org/citation.cfm?doid=1368088.
1368131 (visited on 04/25/2024).

[Käs+11] Christian Kästner et al. “Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation”. In: ACM SIGPLAN
Notices 46.10 (Oct. 2011), pp. 805–824. issn: 0362-1340, 1558-1160.
doi: 10.1145/2076021.2048128. url: https://dl.acm.org/doi/10.1145/
2076021.2048128 (visited on 04/22/2024).

[Ken+10] Andy Kenner et al.“TypeChef: Toward Type Checking #ifdef Variability
in C”. In: Proceedings of the 2nd International Workshop on Feature-
Oriented Software Development. Eindhoven The Netherlands: ACM, Oct.
2010, pp. 25–32. isbn: 978-1-4503-0208-1. doi: 10.1145/1868688.1868693.
url: https://dl.acm.org/doi/10.1145/1868688.1868693 (visited on
04/16/2024).

[KGO11] Christian Kästner, Paolo G. Giarrusso, and Klaus Ostermann. “Partial
Preprocessing C Code for Variability Analysis”. In: Proceedings of the
5th Workshop on Variability Modeling of Software-Intensive Systems.
Namur Belgium: ACM, Jan. 2011, pp. 127–136. isbn: 978-1-4503-0570-9.
doi: 10.1145/1944892.1944908. url: https://dl.acm.org/doi/10.1145/
1944892.1944908 (visited on 05/03/2024).

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. 2nd ed. Englewood Cliffs, N.J: Prentice Hall, 1988. isbn:
978-0-13-110370-2 978-0-13-110362-7.

[Kra19] Adam Krafczyk. “Variability-Aware Analysis of C Source Code”. MA
thesis. Hildesheim: University of Hildesheim, Nov. 2019. url: https:
//sse .uni - hildesheim.de/media/fb4/informatik/AG SSE/Adam
Krafczyk.pdf.

[Kui+22] Elias Kuiter et al. “Tseitin or Not Tseitin? The Impact of CNF Trans-
formations on Feature-Model Analyses”. In: Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing. Rochester MI USA: ACM, Oct. 2022, pp. 1–13. isbn: 978-1-4503-
9475-8. doi: 10.1145/3551349.3556938. url: https://dl.acm.org/doi/10.
1145/3551349.3556938 (visited on 05/11/2024).

[Leh80] M.M. Lehman. “Programs, Life Cycles, and Laws of Software Evolution”.
In: Proceedings of the IEEE 68.9 (1980), pp. 1060–1076. issn: 0018-9219.
doi: 10.1109/PROC.1980.11805. url: http://ieeexplore.ieee.org/
document/1456074/ (visited on 11/22/2024).

https://doi.org/10.1109/ASE.2008.36
https://doi.org/10.1109/ASE.2008.36
http://ieeexplore.ieee.org/document/4639329/
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/1368088.1368131
http://portal.acm.org/citation.cfm?doid=1368088.1368131
http://portal.acm.org/citation.cfm?doid=1368088.1368131
https://doi.org/10.1145/2076021.2048128
https://dl.acm.org/doi/10.1145/2076021.2048128
https://dl.acm.org/doi/10.1145/2076021.2048128
https://doi.org/10.1145/1868688.1868693
https://dl.acm.org/doi/10.1145/1868688.1868693
https://doi.org/10.1145/1944892.1944908
https://dl.acm.org/doi/10.1145/1944892.1944908
https://dl.acm.org/doi/10.1145/1944892.1944908
https://sse.uni-hildesheim.de/media/fb4/informatik/AG_SSE/Adam_Krafczyk.pdf
https://sse.uni-hildesheim.de/media/fb4/informatik/AG_SSE/Adam_Krafczyk.pdf
https://sse.uni-hildesheim.de/media/fb4/informatik/AG_SSE/Adam_Krafczyk.pdf
https://doi.org/10.1145/3551349.3556938
https://dl.acm.org/doi/10.1145/3551349.3556938
https://dl.acm.org/doi/10.1145/3551349.3556938
https://doi.org/10.1109/PROC.1980.11805
http://ieeexplore.ieee.org/document/1456074/
http://ieeexplore.ieee.org/document/1456074/

Bibliography 99

[Li+24] Zongjie Li et al. “Evaluating C/C++ Vulnerability Detectability of
Query-Based Static Application Security Testing Tools”. In: IEEE Trans-
actions on Dependable and Secure Computing (2024), pp. 1–18. issn:
1545-5971, 1941-0018, 2160-9209. doi: 10.1109/TDSC.2024.3354789.
url: https://ieeexplore. ieee .org/document/10400834/ (visited on
05/08/2024).

[Lie+10] Jörg Liebig et al. “An Analysis of the Variability in Forty Preprocessor-
Based Software Product Lines”. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1. Cape
Town South Africa: ACM, May 2010, pp. 105–114. isbn: 978-1-60558-
719-6. doi: 10.1145/1806799.1806819. url: https://dl.acm.org/doi/10.
1145/1806799.1806819 (visited on 04/18/2024).

[Lie+13] Jörg Liebig et al. “Scalable Analysis of Variable Software”. In: Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. Saint Petersburg Russia: ACM, Aug. 2013, pp. 81–91.
isbn: 978-1-4503-2237-9. doi: 10.1145/2491411.2491437. url: https:
//dl.acm.org/doi/10.1145/2491411.2491437 (visited on 04/28/2024).

[LKA11] Jörg Liebig, Christian Kästner, and Sven Apel. “Analyzing the Disci-
pline of Preprocessor Annotations in 30 Million Lines of C Code”. In:
Proceedings of the Tenth International Conference on Aspect-oriented
Software Development. Porto de Galinhas Brazil: ACM, Mar. 2011,
pp. 191–202. isbn: 978-1-4503-0605-8. doi: 10.1145/1960275.1960299.
url: https://dl.acm.org/doi/10.1145/1960275.1960299 (visited on
04/17/2024).

[LL05] V Benjamin Livshits and Monica S Lam. “Finding Security Vulnerabili-
ties in Java Applications with Static Analysis”. In: USENIX Association
14 (July 2005), p. 18. url: https://dl.acm.org/doi/10.5555/1251398.
1251416.

[Mar+13] Dusica Marijan et al. “Practical Pairwise Testing for Software Product
Lines”. In: Proceedings of the 17th International Software Product Line
Conference. Tokyo Japan: ACM, Aug. 2013, pp. 227–235. isbn: 978-1-
4503-1968-3. doi: 10.1145/2491627.2491646. url: https://dl.acm.org/
doi/10.1145/2491627.2491646 (visited on 11/02/2024).

[Mei+14] Jens Meinicke et al. “An Overview on Analysis Tools for Software Prod-
uct Lines”. In: Proceedings of the 18th International Software Product
Line Conference: Companion Volume for Workshops, Demonstrations
and Tools - Volume 2. Florence Italy: ACM, Sept. 2014, pp. 94–101.
isbn: 978-1-4503-2739-8. doi: 10.1145/2647908.2655972. url: https:
//dl.acm.org/doi/10.1145/2647908.2655972 (visited on 04/25/2024).

[Mor+19] Austin Mordahl et al. “An Empirical Study of Real-World Variability
Bugs Detected by Variability-Oblivious Tools”. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering.
Tallinn Estonia: ACM, Aug. 2019, pp. 50–61. isbn: 978-1-4503-5572-8.
doi: 10.1145/3338906.3338967. url: https://dl.acm.org/doi/10.1145/
3338906.3338967 (visited on 04/15/2024).

https://doi.org/10.1109/TDSC.2024.3354789
https://ieeexplore.ieee.org/document/10400834/
https://doi.org/10.1145/1806799.1806819
https://dl.acm.org/doi/10.1145/1806799.1806819
https://dl.acm.org/doi/10.1145/1806799.1806819
https://doi.org/10.1145/2491411.2491437
https://dl.acm.org/doi/10.1145/2491411.2491437
https://dl.acm.org/doi/10.1145/2491411.2491437
https://doi.org/10.1145/1960275.1960299
https://dl.acm.org/doi/10.1145/1960275.1960299
https://dl.acm.org/doi/10.5555/1251398.1251416
https://dl.acm.org/doi/10.5555/1251398.1251416
https://doi.org/10.1145/2491627.2491646
https://dl.acm.org/doi/10.1145/2491627.2491646
https://dl.acm.org/doi/10.1145/2491627.2491646
https://doi.org/10.1145/2647908.2655972
https://dl.acm.org/doi/10.1145/2647908.2655972
https://dl.acm.org/doi/10.1145/2647908.2655972
https://doi.org/10.1145/3338906.3338967
https://dl.acm.org/doi/10.1145/3338906.3338967
https://dl.acm.org/doi/10.1145/3338906.3338967

100 Bibliography

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
San Francisco, Calif: Morgan Kaufmann Publishers, 1997. isbn: 978-1-
55860-320-2.

[Oh+19] Jeho Oh et al. Uniform Sampling from Kconfig Feature Models. Tech-
nical Report 19. Austin, Texas: The University of Texas at Austin,
Department of Computer Science, Sept. 2019, p. 12.

[Oh+21] Jeho Oh et al. “Finding Broken Linux Configuration Specifications
by Statically Analyzing the Kconfig Language”. In: Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. Athens
Greece: ACM, Aug. 2021, pp. 893–905. isbn: 978-1-4503-8562-6. doi:
10.1145/3468264.3468578. url: https://dl.acm.org/doi/10.1145/
3468264.3468578 (visited on 05/11/2024).

[Pad09] Yoann Padioleau. “Parsing C/C++ Code without Pre-processing”. In:
Compiler Construction. Ed. by Oege De Moor and Michael I. Schwartz-
bach. Vol. 5501. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 109–125. isbn: 978-3-642-00722-4. doi: 10.1007/978-3-642-00722-
4 9. url: http://link.springer.com/10.1007/978-3-642-00722-4 9
(visited on 11/09/2024).

[Pat+22] Zachary Patterson et al. “SugarC: Scalable Desugaring of Real-World
Preprocessor Usage into Pure C”. In: Proceedings of the 44th Inter-
national Conference on Software Engineering. Pittsburgh Pennsylva-
nia: ACM, May 2022, pp. 2056–2067. isbn: 978-1-4503-9221-1. doi:
10.1145/3510003.3512763. url: https://dl.acm.org/doi/10.1145/
3510003.3512763 (visited on 05/15/2024).

[Pat23] Zachary J. Patterson. “Toward Applying Variability-Oblivious Static
Analyses to Software Product Lines”. PhD thesis. Dallas: The University
of Texas at Dallas, Dec. 2023. url: https://utd- ir .tdl.org/items/
1623bed4-684c-44e7-94c2-f20cfeb7c976.

[Pet+19] Tobias Pett et al. “Product Sampling for Product Lines: The Scalability
Challenge”. In: Proceedings of the 23rd International Systems and Soft-
ware Product Line Conference - Volume A. Paris France: ACM, Sept.
2019, pp. 78–83. isbn: 978-1-4503-7138-4. doi: 10.1145/3336294.3336322.
url: https://dl.acm.org/doi/10.1145/3336294.3336322 (visited on
08/05/2024).

[Pet+23] Tobias Pett et al. “Continuous T-Wise Coverage”. In: Proceedings of the
27th ACM International Systems and Software Product Line Conference
- Volume A. Tokyo Japan: ACM, Aug. 2023, pp. 87–98. isbn: 979-8-
4007-0091-0. doi: 10.1145/3579027.3608980. url: https://dl.acm.org/
doi/10.1145/3579027.3608980 (visited on 05/03/2024).

[PS08] Hendrik Post and Carsten Sinz. “Configuration Lifting: Verification
Meets Software Configuration”. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. L’Aquila, Italy: IEEE,
Sept. 2008, pp. 347–350. isbn: 978-1-4244-2187-9. doi: 10.1109/ASE.
2008.45. url: http://ieeexplore.ieee.org/document/4639338/ (visited
on 05/05/2024).

https://doi.org/10.1145/3468264.3468578
https://dl.acm.org/doi/10.1145/3468264.3468578
https://dl.acm.org/doi/10.1145/3468264.3468578
https://doi.org/10.1007/978-3-642-00722-4_9
https://doi.org/10.1007/978-3-642-00722-4_9
http://link.springer.com/10.1007/978-3-642-00722-4_9
https://doi.org/10.1145/3510003.3512763
https://dl.acm.org/doi/10.1145/3510003.3512763
https://dl.acm.org/doi/10.1145/3510003.3512763
https://utd-ir.tdl.org/items/1623bed4-684c-44e7-94c2-f20cfeb7c976
https://utd-ir.tdl.org/items/1623bed4-684c-44e7-94c2-f20cfeb7c976
https://doi.org/10.1145/3336294.3336322
https://dl.acm.org/doi/10.1145/3336294.3336322
https://doi.org/10.1145/3579027.3608980
https://dl.acm.org/doi/10.1145/3579027.3608980
https://dl.acm.org/doi/10.1145/3579027.3608980
https://doi.org/10.1109/ASE.2008.45
https://doi.org/10.1109/ASE.2008.45
http://ieeexplore.ieee.org/document/4639338/

Bibliography 101

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv.“Precise Interprocedural
Dataflow Analysis via Graph Reachability”. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL ’95. San Francisco, California, United States: ACM
Press, 1995, pp. 49–61. isbn: 978-0-89791-692-9. doi: 10.1145/199448.
199462. url: http://portal.acm.org/citation.cfm?doid=199448.199462
(visited on 05/08/2024).

[Ric53] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2
(1953), pp. 358–366. issn: 0002-9947, 1088-6850. doi: 10.1090/S0002-
9947-1953-0053041-6. url: https://www.ams.org/tran/1953-074-
02/S0002-9947-1953-0053041-6/ (visited on 06/24/2024).

[RN10] Marko A. Rodriguez and Peter Neubauer. “The Graph Traversal Pat-
tern”. In: (2010). doi: 10.48550/ARXIV.1004.1001. url: https://arxiv.
org/abs/1004.1001 (visited on 06/16/2024).

[Sah+16] Mohd Zanes Sahid et al. “Combinatorial Interaction Testing of Software
Product Lines: A Mapping Study”. In: Journal of Computer Science 12.8
(Aug. 2016), pp. 379–398. issn: 1549-3636. doi: 10.3844/jcssp.2016.379.
398. url: http://thescipub.com/abstract/10.3844/jcssp.2016.379.398
(visited on 11/02/2024).

[Sch+22] Philipp Dominik Schubert et al. “Static Data-Flow Analysis for Software
Product Lines in C: Revoking the Preprocessor’s Special Role”. In:
Automated Software Engineering 29.1 (May 2022), p. 35. issn: 0928-
8910, 1573-7535. doi: 10.1007/s10515-022-00333-1. url: https://link.
springer.com/10.1007/s10515-022-00333-1 (visited on 04/18/2024).

[Sha+01] Umesh Shankar et al. “Detecting Format String Vulnerabilities with
Type Qualifiers”. In: USENIX Association 10 (Aug. 2001), p. 16.

[SHB19] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. “PhASAR:
An Inter-procedural Static Analysis Framework for C/C++”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by
Tomáš Vojnar and Lijun Zhang. Vol. 11428. Cham: Springer Inter-
national Publishing, 2019, pp. 393–410. isbn: 978-3-030-17465-1. doi:
10.1007/978-3-030-17465-1 22. url: http://link.springer.com/10.1007/
978-3-030-17465-1 22 (visited on 05/18/2024).

[Shi+22] Haoxiang Shi et al. “A Software Defect Location Method Based on Static
Analysis Results”. In: 2022 9th International Conference on Dependable
Systems and Their Applications (DSA). Wulumuqi, China: IEEE, Aug.
2022, pp. 876–886. isbn: 978-1-66548-877-8. doi: 10.1109/DSA56465.
2022.00124. url: https :// ieeexplore . ieee .org/document/9914475/
(visited on 04/29/2024).

[SL98] S.S. Some and T.C. Lethbridge.“Parsing Minimization When Extracting
Information from Code in the Presence of Conditional Compilation”. In:
Proceedings. 6th International Workshop on Program Comprehension.
IWPC’98 (Cat. No.98TB100242). Ischia, Italy: IEEE Comput. Soc,
1998, pp. 118–125. isbn: 978-0-8186-8560-6. doi: 10.1109/WPC.1998.

https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
http://portal.acm.org/citation.cfm?doid=199448.199462
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://doi.org/10.1090/S0002-9947-1953-0053041-6
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://www.ams.org/tran/1953-074-02/S0002-9947-1953-0053041-6/
https://doi.org/10.48550/ARXIV.1004.1001
https://arxiv.org/abs/1004.1001
https://arxiv.org/abs/1004.1001
https://doi.org/10.3844/jcssp.2016.379.398
https://doi.org/10.3844/jcssp.2016.379.398
http://thescipub.com/abstract/10.3844/jcssp.2016.379.398
https://doi.org/10.1007/s10515-022-00333-1
https://link.springer.com/10.1007/s10515-022-00333-1
https://link.springer.com/10.1007/s10515-022-00333-1
https://doi.org/10.1007/978-3-030-17465-1_22
http://link.springer.com/10.1007/978-3-030-17465-1_22
http://link.springer.com/10.1007/978-3-030-17465-1_22
https://doi.org/10.1109/DSA56465.2022.00124
https://doi.org/10.1109/DSA56465.2022.00124
https://ieeexplore.ieee.org/document/9914475/
https://doi.org/10.1109/WPC.1998.693328
https://doi.org/10.1109/WPC.1998.693328

102 Bibliography

693328. url: http://ieeexplore.ieee.org/document/693328/ (visited on
11/09/2024).

[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. “Precise Interpro-
cedural Dataflow Analysis with Applications to Constant Propaga-
tion”. In: Theoretical Computer Science 167.1-2 (1996), pp. 131–170.
issn: 03043975. doi: 10 . 1016/0304 - 3975(96)00072 - 2. url: https :
//linkinghub.elsevier.com/retrieve/pii/0304397596000722 (visited on
11/04/2024).

[SRS13] Sandro Schulze, Oliver Richers, and Ina Schaefer. “Refactoring Delta-
Oriented Software Product Lines”. In: Proceedings of the 12th Annual
International Conference on Aspect-oriented Software Development.
Fukuoka Japan: ACM, Mar. 2013, pp. 73–84. isbn: 978-1-4503-1766-5.
doi: 10.1145/2451436.2451446. url: https://dl.acm.org/doi/10.1145/
2451436.2451446 (visited on 04/22/2024).

[Tar+12] Reinhard Tartler et al. “Configuration Coverage in the Analysis of Large-
Scale System Software”. In: ACM SIGOPS Operating Systems Review
45.3 (Jan. 2012), pp. 10–14. issn: 0163-5980. doi: 10.1145/2094091.
2094095. url: https://dl.acm.org/doi/10.1145/2094091.2094095 (visited
on 04/28/2024).

[Thü+12] Thomas Thüm et al. “Family-Based Deductive Verification of Soft-
ware Product Lines”. In: Proceedings of the 11th International Confer-
ence on Generative Programming and Component Engineering. Dresden
Germany: ACM, Sept. 2012, pp. 11–20. isbn: 978-1-4503-1129-8. doi:
10.1145/2371401.2371404. url: https://dl.acm.org/doi/10.1145/
2371401.2371404 (visited on 06/10/2024).

[Thü+14] Thomas Thüm et al. “A Classification and Survey of Analysis Strategies
for Software Product Lines”. In: ACM Computing Surveys 47.1 (July
2014), pp. 1–45. issn: 0360-0300, 1557-7341. doi: 10.1145/2580950. url:
https://dl.acm.org/doi/10.1145/2580950 (visited on 04/16/2024).

[Tol+24] Rafael F. Toledo et al. “(Neo4j)ˆ Browser: Visualizing Variable-Aware
Analysis Results”. In: Proceedings of the 2024 IEEE/ACM 46th Inter-
national Conference on Software Engineering: Companion Proceedings.
Lisbon Portugal: ACM, Apr. 2024, pp. 69–73. isbn: 979-8-4007-0502-1.
doi: 10.1145/3639478.3640046. url: https://dl.acm.org/doi/10.1145/
3639478.3640046 (visited on 06/10/2024).

[von+16] Alexander von Rhein et al. “Variability Encoding: From Compile-Time
to Load-Time Variability”. In: Journal of Logical and Algebraic Methods
in Programming 85.1 (Jan. 2016), pp. 125–145. issn: 23522208. doi:
10.1016/j.jlamp.2015.06.007. url: https://linkinghub.elsevier.com/
retrieve/pii/S2352220815000577 (visited on 04/25/2024).

[von+18] Alexander von Rhein et al. “Variability-Aware Static Analysis at Scale:
An Empirical Study”. In: ACM Transactions on Software Engineering
and Methodology 27.4 (Oct. 2018), pp. 1–33. issn: 1049-331X, 1557-7392.
doi: 10.1145/3280986. url: https://dl.acm.org/doi/10.1145/3280986
(visited on 04/15/2024).

https://doi.org/10.1109/WPC.1998.693328
https://doi.org/10.1109/WPC.1998.693328
https://doi.org/10.1109/WPC.1998.693328
http://ieeexplore.ieee.org/document/693328/
https://doi.org/10.1016/0304-3975(96)00072-2
https://linkinghub.elsevier.com/retrieve/pii/0304397596000722
https://linkinghub.elsevier.com/retrieve/pii/0304397596000722
https://doi.org/10.1145/2451436.2451446
https://dl.acm.org/doi/10.1145/2451436.2451446
https://dl.acm.org/doi/10.1145/2451436.2451446
https://doi.org/10.1145/2094091.2094095
https://doi.org/10.1145/2094091.2094095
https://dl.acm.org/doi/10.1145/2094091.2094095
https://doi.org/10.1145/2371401.2371404
https://dl.acm.org/doi/10.1145/2371401.2371404
https://dl.acm.org/doi/10.1145/2371401.2371404
https://doi.org/10.1145/2580950
https://dl.acm.org/doi/10.1145/2580950
https://doi.org/10.1145/3639478.3640046
https://dl.acm.org/doi/10.1145/3639478.3640046
https://dl.acm.org/doi/10.1145/3639478.3640046
https://doi.org/10.1016/j.jlamp.2015.06.007
https://linkinghub.elsevier.com/retrieve/pii/S2352220815000577
https://linkinghub.elsevier.com/retrieve/pii/S2352220815000577
https://doi.org/10.1145/3280986
https://dl.acm.org/doi/10.1145/3280986

Bibliography 103

[von16] Alexander von Rhein. “Analysis Strategies for Configurable Systems”.
PhD thesis. Passau: University of Passau, June 2016. url: https://
opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/368
(visited on 09/02/2024).

[Wag+00] David Wagner et al. “A First Step Towards Automated Detection
of Buffer Overrun Vulnerabilities”. In: Proceedings of Network and
Distributed Systems Security (NDSS 2000) (2000), p. 15.

[Wal+14] Eric Walkingshaw et al. “Variational Data Structures: Exploring Trade-
offs in Computing with Variability”. In: Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software. Portland Oregon USA: ACM, Oct. 2014,
pp. 213–226. isbn: 978-1-4503-3210-1. doi: 10.1145/2661136.2661143.
url: https://dl.acm.org/doi/10.1145/2661136.2661143 (visited on
06/02/2024).

[Wei81] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th International
Conference on Software Engineering. ICSE ’81. San Diego, California,
USA: IEEE Press, 1981, pp. 439–449. isbn: 0-89791-146-6.

[Woh+24] Claes Wohlin et al. Experimentation in Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2024. isbn: 978-3-662-69305-
6 978-3-662-69306-3. doi: 10.1007/978-3-662-69306-3. url: https:
//link.springer.com/10.1007/978-3-662-69306-3 (visited on 10/28/2024).

[Yam+14] Fabian Yamaguchi et al. “Modeling and Discovering Vulnerabilities with
Code Property Graphs”. In: 2014 IEEE Symposium on Security and
Privacy. San Jose, CA: IEEE, May 2014, pp. 590–604. isbn: 978-1-4799-
4686-0. doi: 10.1109/SP.2014.44. url: http://ieeexplore.ieee.org/
document/6956589/ (visited on 04/15/2024).

[Yam+15] Fabian Yamaguchi et al. “Automatic Inference of Search Patterns for
Taint-Style Vulnerabilities”. In: 2015 IEEE Symposium on Security and
Privacy. San Jose, CA: IEEE, May 2015, pp. 797–812. isbn: 978-1-4673-
6949-7. doi: 10.1109/SP.2015.54. url: https://ieeexplore.ieee.org/
document/7163061/ (visited on 04/29/2024).

[Yam15] Fabian Yamaguchi. “Pattern-Based Vulnerability Discovery”. PhD thesis.
Georg-August-University Göttingen, 2015. doi: 10.53846/goediss-5356.
url: https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-
9682-0 (visited on 04/17/2024).

[Zho+21] Li Zhou et al. “GraphEye: A Novel Solution for Detecting Vulnerable
Functions Based on Graph Attention Network”. In: 2021 IEEE Sixth
International Conference on Data Science in Cyberspace (DSC). Shen-
zhen, China: IEEE, Oct. 2021, pp. 381–388. isbn: 978-1-66541-815-7.
doi: 10.1109/DSC53577.2021.00060. url: https://ieeexplore.ieee.org/
document/9750460/ (visited on 04/29/2024).

https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/368
https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/368
https://doi.org/10.1145/2661136.2661143
https://dl.acm.org/doi/10.1145/2661136.2661143
https://doi.org/10.1007/978-3-662-69306-3
https://link.springer.com/10.1007/978-3-662-69306-3
https://link.springer.com/10.1007/978-3-662-69306-3
https://doi.org/10.1109/SP.2014.44
http://ieeexplore.ieee.org/document/6956589/
http://ieeexplore.ieee.org/document/6956589/
https://doi.org/10.1109/SP.2015.54
https://ieeexplore.ieee.org/document/7163061/
https://ieeexplore.ieee.org/document/7163061/
https://doi.org/10.53846/goediss-5356
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-9682-0
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0023-9682-0
https://doi.org/10.1109/DSC53577.2021.00060
https://ieeexplore.ieee.org/document/9750460/
https://ieeexplore.ieee.org/document/9750460/

104 Bibliography

A. Appendix

A.1 Compact Variability Encoding for the Example in

Listing 3.3

A straightforward solution for handling the variability in the struct in Listing 3.3a is to
duplicate the declaration of y with the corresponding data types and to apply unique
identifiers to the resulting variants. Calls to y can then be resolved to the correct
variant of the field via an if statement checking for the presence of the 64BIT feature.
However, this leads to incorrect behavior of the call to sizeof found in line 13 of
Listing 3.3a. Instead of reporting the size of the struct as 16 bytes, the size is reported
as 24 bytes.1 This is because both the int64_t and int32_t variants of y reside in
the struct regardless of the selection of the 64BIT feature. As a result, the size of
the struct is artificially increased, which could lead to different program behavior
and hence additional imprecisions in the findings reported by an analysis tool. To
avoid this undesired effect, code duplication has to be applied more coarse-grained,
duplicating not only the field but the struct in its entirety.2 Each instantiation of the
struct then has to be duplicated as well, creating an instance for every struct variant.
Accesses to fields or the struct itself (e.g., via sizeof) must, in turn, be resolved
to the correct instance via if statements or ternary operators. This is illustrated in
Listing 3.3b, which shows an improved variability encoded version of the code of
Listing 3.3a. By using two variants of the struct (lines 4-7 and 9-12) whose internal
structure resembles the structure found within the corresponding product, the size
of the struct is not artificially increased. However, this necessitates the creation of
an instance for each of the struct variants (lines 15-16). Additionally, corresponding
calls have to be delegated to the correct instance based on the selection of the 64BIT

1Assuming that the size of a pointer is 8 bytes and the size of a struct must be a multiple of the
alignment of its largest member. In conjunction, these assumptions explain why the size of the
struct in the original code is always reported as 16 bytes, regardless of the selection of the 64BIT
feature.

2An alternative solution is to transform calls to problematic system functions, such as sizeof
directly [von+16]. For instance, the naive solution could be corrected by transforming the call to
sizeof found in line 13 to sizeof(char*) + (64BIT ? sizeof(int64_t) : sizeof(int32_t)).
However, this solution results in highly case-specific and complex transformations.

106 A. Appendix

feature (lines 18-21). While this improved solution preserves the behavior of the
original SPL source code (cf. Listing 3.3a), it reintroduces redundancies of sections
shared between products and can therefore noticeably increase the length of the
variability-encoded code.

A.2 Detailed Results for Toybox

Figures A.1 to A.3 show detailed results of our proposed analysis approach on
Toybox [24p] (version 0.8.11). As described in Section 6.2.2 on page 70, limited
support for Toybox in Vari-Joern’s product-based analysis approach meant that no
baseline was available for this subject system.

25 50 75 100 125 150 175

socket-send (2)

setgid-without-setgroups (2)

setuid-without-setgid (2)

strlen-truncation (2)

signed-left-shift (2)

copy-loop (2)

unchecked-read-recv-malloc (3)

file-operation-race (3)

call-to-strtok (4)

format-controlled-printf (4)

1

2

2

58

98

145

23

100

13

52

Number of warnings

Q
u
er
ie
s
an

d
as
so
ci
at
ed

sc
or
es

Toybox - Family-Based

Figure A.1: Warnings reported by our family-based analysis on Toybox aggregated
by query

0 5 10 15 20 25

Toybox

Number of warnings per source file

Family-Based

Figure A.2: Distribution of the number of warnings reported by our family-based
analysis on Toybox’s source files

A.2. Detailed Results for Toybox 107

0

10

20

Variability-encoded source files sorted by family-based warning count

N
u
m
b
er

of
w
ar
n
in
gs

Family-Based

Figure A.3: Warnings reported by our family-based analysis on Toybox aggregated
by source file

	Contents
	Listings
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Scope

	2 Background
	2.1 Software Product Lines
	2.2 Preprocessor-Based Conditional Compilation
	2.3 Static Source Code Analysis
	2.3.1 Taint-Style Vulnerabilities
	2.3.2 Code Property Graphs
	2.3.3 Query-Based Vulnerability Discovery

	3 Comparison of Common Lifting Strategies
	3.1 Query-Based Static Application Security Testing
	3.2 Lifting by Extension
	3.2.1 Source Code Representation
	3.2.2 Query Language
	3.2.3 Search Engine

	3.3 Lifting by Simulation
	3.3.1 Variability Encoding
	3.3.2 Warning Mapping

	3.4 Discussion
	3.4.1 Precision
	3.4.2 Performance
	3.4.3 Maintainability
	3.4.4 Extensibility
	3.4.5 Implementation Effort
	3.4.6 Our Choice

	4 Design
	4.1 Initial Considerations
	4.2 Variability Encoding
	4.3 Warning Mapping
	4.4 Queries
	4.4.1 Source and Integration
	4.4.2 Need for Adjustments

	4.5 Final Design

	5 Implementation
	5.1 Vari-Joern
	5.2 Sugarlyzer and its Integration into Vari-Joern
	5.3 Adding Support for Joern to Sugarlyzer
	5.4 Further Adjustments

	6 Evaluation
	6.1 Experimental Setup
	6.1.1 Baseline
	6.1.2 Subject Systems
	6.1.3 Methodology

	6.2 Results
	6.2.1 Results for the Selected Subject Systems
	6.2.2 Results in Relation to the Baseline

	6.3 Discussion
	6.3.1 Effectiveness
	6.3.2 Efficiency

	6.4 Threats to Validity
	6.4.1 Internal Validity
	6.4.2 Construct Validity
	6.4.3 External Validity

	7 Related Work
	7.1 Variability Encoding
	7.1.1 Variability-Aware Parsing
	7.1.2 Behavior-Preserving Transformation

	7.2 Query-Based Static Application Security Testing
	7.3 Analysis of SPLs with SAST Tools

	8 Conclusion and Outlook
	Bibliography
	A Appendix
	A.1 Compact Variability Encoding for the Example in Listing 3.3
	A.2 Detailed Results for Toybox

