
Lightweight Neural Networks for Human Activity

Recognition

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M.Sc. Yexu Zhou

__
__

Tag der mündlichen Prüfung: 25. November 2024

1. Referent: Prof. Dr. Michael Beigl

2. Referent: Prof. Dr. Kristof Van Laerhoven

This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Acknowledgements

I would like to express my deepest and most sincere gratitude to my primary

advisor, Prof. Dr. Michael Beigl. His unwavering support, insightful guidance,

and patient mentorship have been the cornerstones of my journey through this

dissertation. From the very beginning, he listened attentively to my ideas, pro-

viding direction when I needed it most, yet always granting me the freedom to

explore my own path. His trust in my abilities allowed me to grow not only

as a researcher but also as an individual. I cannot imagine having had a better

mentor and advisor during my PhD journey, and for that, I am forever grateful.

My heartfelt thanks also go to my second advisor, Prof. Dr. Kristof van

Laerhoven of Siegen University, for his steady companionship throughout this

process. His research insights sparked countless ideas that inspired the direc-

tion of my work.

I owe special thanks to Dr. Till Riedel, whose intellectual curiosity and

vibrant discussions fueled much of my scientific exploration. It has been a

privilege to work alongside him on numerous projects, where I not only honed

my research skills but also gained invaluable insights into practical applications

that extend beyond academia.

I am equally grateful to my colleagues at KIT – Dr. Haibin Zhao, Yi-

ran Huang, Dr. Tobias Röddiger, Chaofan Li, Dr. Michael Hefenbrock, Dr.

Matthias Budde, Tobias King, Alexander Studt, Yunus Bulut, and Dr. Paul

Tremper. Our collaborations, thoughtful discussions, and moments of shared

work and rest made my time at TECO truly unforgettable. The friendships and

experiences we built together will always remain close to my heart.

To Melissa Alpman, Zina Tsiouma, Denise Hillmann, and Helga Scherer,

thank you for your tireless support in all administrative matters. Your assis-

tance has been invaluable and greatly appreciated.

I would also like to extend my gratitude to Dr. Markus Scholz, Vincent

I

Schnitzbauer, Sascha Rudolph, and Adnan Khan for the opportunity to work

together on an exciting vision-based project. The journey was both enriching

and rewarding, and I am thankful for our collaboration.

Lastly, and most importantly, I want to thank my beloved wife, Mengting Lu,

and my parents, Shijie Zhou and Heli Ye. Their boundless love, unwavering

support, and unshakable belief in me have carried me through every challenge

and triumph. Without their constant encouragement, none of this would have

been possible. To my wife, who stood by me through every late night and every

moment of doubt – words cannot express how much your presence has meant

to me.

II

Abstract

Wearable Human Activity Recognition (HAR) offers numerous advantages,

such as real-time functionality, enhanced data privacy, and reduced dependency

on environmental infrastructure. With the rapid advancement of sensor tech-

nology, various sensors—including accelerometers, gyroscopes, magnetome-

ters, oxygen saturation sensors, heart rate monitors, and electrooculography

(EOG)—have been integrated into devices like smartphones, earphones, and

smart glasses. These technological developments have significantly expanded

the applications of wearable HAR systems, including healthcare monitoring,

fitness coaching, gaming, gesture control, and more.

The core of a wearable HAR system is the machine learning model that

classifies activity based on sensor data. The performance of such systems is

heavily reliant on the quality of these models. While deep learning models have

demonstrated superior performance in HAR tasks, they are often characterized

by large memory footprints and high computational demands, making them

unsuitable for real-time deployment on resource-constrained devices. As of

2021, research on lightweight deep learning models for HAR remains limited,

and many wearable applications struggle to deploy advanced models on edge

devices. Some efforts have aimed to reduce model size but frequently at the

cost of classification performance.

Motivated by these challenges, this dissertation focuses on developing light-

weight neural network models for wearable HAR systems, aiming to bridge the

gap between high-performance models and practical deployment on edge de-

vices such as micro-controller units (MCUs), without sacrificing performance

or with minimal degradation.

The development of a wearable HAR system, from data collection to model

deployment, typically follows four key stages: data preparation, model de-

sign, model optimization, and quantization for deployment. After analyzing the

III

challenges and characteristics of HAR tasks, as well as the limitations of neu-

ral networks—particularly in capturing frequency-domain information—this

dissertation explores various methods to reduce model size while maintaining

high performance.

In the data preparation stage, we addressed challenges related to inter-class

similarity, intra-class variability, and the multi-modal nature of HAR tasks.

Data augmentation techniques were employed to enrich the dataset, improv-

ing model generalization and mitigating the performance degradation typically

associated with smaller models. Additionally, we experimented with trans-

forming time-series data into frequency-domain representations. To manage

the additional hyper-parameters and computational complexity introduced by

this approach, we proposed a learnable wavelet layer combined with pruning

techniques, improving the model’s ability to capture frequency-domain fea-

tures while reducing its size.

In the model design stage, we established five key principles for designing

lightweight HAR models based on the characteristics of HAR tasks and neu-

ral network operators. Following these principles, we developed TinyHAR,

a landmark model. Recognizing the difficulty of neural networks in captur-

ing high-frequency information, we further proposed a dual-branch model,

Cross-Atten, which leverages both time-series and spectrogram representa-

tions. While both models achieved state-of-the-art (SOTA) performance with

lightweight architectures, they did not fully address real-time requirements and

hardware constraints for edge devices. To overcome these limitations, we de-

veloped a fully connected layer-based model, MLP-HAR, which achieved ex-

cellent classification performance, fast inference times, and minimal memory

consumption, positioning it as one of the most efficient lightweight HAR mod-

els to date.

Manual model design requires significant expert knowledge, posing a barrier

for non-expert users in optimizing models for specific application scenarios.

To address this, we integrated automated machine learning (AutoML) tech-

niques into the model optimization process with the MicroNAS framework.

This framework optimizes not only the classification performance but also ac-

counts for hardware constraints and real-time inference requirements. Addi-

IV

tionally, we introduced a novel framework, NAS meets Pruning (SFTNAS),
which not only optimizes model structure but also automatically selects the

most critical sensor channels. SFTNAS has demonstrated remarkable ability

in reducing model complexity while offering valuable insights into the design

of manually constructed models.

Through extensive experimentation on benchmark datasets, the proposed

methods consistently yielded HAR models that achieved SOTA performance

while maintaining low memory usage and fast inference times, making them

suitable for real-time applications. These models were successfully deployed

on micro-controllers and smartwatches, where they exhibited both SOTA clas-

sification accuracy and fast inference capabilities.

In summary, this dissertation addresses the critical challenge of developing

lightweight yet high-performance neural network models for wearable HAR

systems. By thoroughly examining the unique characteristics of HAR tasks

and the limitations of current deep learning models, we propose a series of

innovations. Our work demonstrates that it is possible to significantly reduce

model size without sacrificing classification accuracy by employing techniques

such as automated data augmentation, frequency-domain transformations, and

novel architectures like TinyHAR, Cross-Atten, and MLP-HAR. Further-

more, by introducing AutoML techniques, we automate the search for opti-

mal architectures while considering hardware constraints and real-time perfor-

mance requirements. This dissertation advances the field of wearable HAR,

offering practical solutions for deploying efficient, high-performance models

on resource-constrained devices.

V

Zusammenfassung

Tragbare Human Activity Recognition (HAR) bietet zahlreiche Vorteile, wie

z.B. Echtzeit-Funktionalität, verbesserten Datenschutz und eine geringere Ab-

hängigkeit von der Infrastruktur der Umgebung. Mit dem raschen Fortschritt in

der Sensortechnologie wurden verschiedene Sensoren – darunter Beschleuni-

gungsmesser, Gyroskope, Magnetometer, Sauerstoffsättigungssensoren, Herz-

frequenzmonitore und Elektrookulografie (EOG) – in Geräte wie Smartphones,

Ohrhörer und Smart Glasses integriert. Diese technologischen Entwicklungen

haben die Anwendungsbereiche von tragbaren HAR-Systemen erheblich er-

weitert, einschließlich Gesundheitsüberwachung, Fitness-Coaching, Gaming,

Gestensteuerung und mehr.

Das Herzstück eines tragbaren HAR-Systems ist das maschinelle Lernmod-

ell, das Aktivitäten basierend auf Sensordaten klassifiziert. Die Leistungs-

fähigkeit solcher Systeme hängt stark von der Qualität dieser Modelle ab. Ob-

wohl Deep-Learning-Modelle bei HAR-Aufgaben überlegene Leistungen ge-

zeigt haben, zeichnen sie sich oft durch einen großen Speicherbedarf und hohe

Rechenanforderungen aus, was sie für den Echtzeit-Einsatz auf ressourcen-

beschränkten Geräten ungeeignet macht. Seit 2021 ist die Forschung zu le-

ichtgewichtigen Deep-Learning-Modellen für HAR begrenzt, und viele trag-

bare Anwendungen kämpfen mit der Implementierung fortschrittlicher Mod-

elle auf Edge-Geräten. Einige Ansätze zielen darauf ab, die Modellgröße zu

reduzieren, jedoch häufig auf Kosten der Klassifikationsgenauigkeit.

Angesichts dieser Herausforderungen konzentriert sich diese Dissertation

auf die Entwicklung leichtgewichtiger neuronaler Netzmodelle für tragbare

HAR-Systeme, mit dem Ziel, die Lücke zwischen leistungsstarken Modellen

und deren praktischer Implementierung auf Edge-Geräten wie Mikrocontrollern

(MCUs) zu schließen, ohne dabei auf Leistung zu verzichten oder mit mini-

maler Leistungseinbuße.

VII

Die Entwicklung eines tragbaren HAR-Systems, von der Datenerfassung

bis zur Modellimplementierung, folgt typischerweise vier Schlüsselschritten:

Datenaufbereitung, Modellentwurf, Modelloptimierung und Quantisierung zur

Implementierung. Nach der Analyse der Herausforderungen und Eigenschaften

von HAR-Aufgaben sowie der Einschränkungen neuronaler Netze – insbeson-

dere bei der Erfassung von Frequenzbereichsinformationen – untersucht diese

Dissertation verschiedene Methoden zur Reduzierung der Modellgröße bei gle-

ichbleibend hoher Leistung.

Im Datenaufbereitungsprozess haben wir uns mit Herausforderungen wie

interklassenähnlichkeit, intraklassenvariabilität und der multimodalen Natur

von HAR-Aufgaben auseinandergesetzt. Zur Verbesserung der Generalisierun-

gsfähigkeit des Modells und zur Minderung der typischen Leistungsverschlech-

terung bei kleineren Modellen wurden Datenaugmentationstechniken einge-

setzt. Darüber hinaus experimentierten wir mit der Transformation von Zeitrei-

hendaten in Frequenzbereichsdarstellungen. Um die durch diesen Ansatz einge-

führte zusätzliche Hyperparameter- und Rechenkomplexität zu bewältigen, ha-

ben wir eine lernbare Wavelet-Schicht in Kombination mit Pruning-Techniken

vorgeschlagen, die die Fähigkeit des Modells, Frequenzbereichsmerkmale zu

erfassen, verbessert und gleichzeitig die Größe des Modells reduziert.

Im Modellentwurfsprozess haben wir fünf Schlüsselprinzipien für den En-

twurf leichtgewichtiger HAR-Modelle auf der Grundlage der Eigenschaften

von HAR-Aufgaben und neuronalen Netzoperatoren festgelegt. Nach diesen

Prinzipien entwickelten wir TinyHAR, ein wegweisendes Modell. Angesichts

der Schwierigkeit neuronaler Netze, Hochfrequenzinformationen zu erfassen,

schlugen wir zusätzlich ein Dual-Branch-Modell, Cross-Atten, vor, das sowohl

Zeitreihen- als auch Spektrogramm-Darstellungen nutzt. Während beide Mod-

elle mit leichtgewichtigen Architekturen eine State-of-the-Art (SOTA)-Leistung

erzielten, erfüllten sie nicht vollständig die Echtzeitanforderungen und Hard-

wareeinschränkungen für Edge-Geräte. Um diese Einschränkungen zu über-

winden, entwickelten wir ein Modell auf Basis vollständig vernetzter Schichten,

MLP-HAR, das ausgezeichnete Klassifikationsleistungen, schnelle Inferenz-

zeiten und einen minimalen Speicherverbrauch erzielte und somit als eines der

effizientesten leichtgewichtigen HAR-Modelle gilt.

VIII

Das manuelle Design von Modellen erfordert erhebliche Fachkenntnisse und

stellt eine Hürde für nicht-experten bei der Optimierung von Modellen für

spezifische Anwendungsfälle dar. Um dem entgegenzuwirken, haben wir au-

tomatisierte maschinelle Lerntechniken (AutoML) in den Modelloptimierungs-

prozess integriert, insbesondere mit dem MicroNAS-Framework. Dieses Frame-

work optimiert nicht nur die Klassifikationsleistung, sondern berücksichtigt

auch Hardwareeinschränkungen und Echtzeitanforderungen. Zusätzlich führten

wir ein neuartiges Framework, NAS meets Pruning (SFTNAS), ein, das nicht

nur die Modellstruktur optimiert, sondern auch automatisch die kritischsten

Sensor-Kanäle auswählt. SFTNAS hat eine bemerkenswerte Fähigkeit zur Re-

duzierung der Modellkomplexität gezeigt und gleichzeitig wertvolle Einblicke

in das Design manuell konstruierter Modelle geliefert.

Durch umfangreiche Experimente an Benchmark-Datensätzen zeigten die

vorgeschlagenen Methoden durchweg HAR-Modelle, die SOTA-Leistung erziel-

ten, während sie gleichzeitig einen geringen Speicherverbrauch und schnelle

Inferenzzeiten aufwiesen, was sie für Echtzeitanwendungen geeignet macht.

Diese Modelle wurden erfolgreich auf Mikrocontrollern und Smartwatches im-

plementiert, wo sie sowohl SOTA-Klassifikationsgenauigkeit als auch schnelle

Inferenzfähigkeiten zeigten.

Zusammenfassend behandelt diese Dissertation die entscheidende Heraus-

forderung, leichtgewichtige und dennoch leistungsstarke neuronale Netzmod-

elle für tragbare HAR-Systeme zu entwickeln. Durch die gründliche Unter-

suchung der einzigartigen Eigenschaften von HAR-Aufgaben und der Ein-

schränkungen aktueller Deep-Learning-Modelle schlagen wir eine Reihe von

Innovationen vor. Unsere Arbeit zeigt, dass es möglich ist, die Modellgröße

erheblich zu reduzieren, ohne die Klassifikationsgenauigkeit zu beeinträchti-

gen, indem Techniken wie automatisierte Datenaugmentation, Frequenzbere-

ichstransformationen und neuartige Architekturen wie TinyHAR, Cross-Atten
und MLP-HAR eingesetzt werden. Darüber hinaus automatisieren wir durch

die Einführung von AutoML-Techniken die Suche nach optimalen Architek-

turen unter Berücksichtigung von Hardwareeinschränkungen und Echtzeitleis-

tungsanforderungen. Diese Dissertation trägt zur Weiterentwicklung des trag-

baren HAR bei und bietet praktische Lösungen zur Implementierung effizien-

IX

ter, leistungsstarker Modelle auf ressourcenbeschränkten Geräten.

X

Contents

1 Introduction 1
1.1 Background . 1

1.2 Problem and Motivation . 2

1.3 Aim and Objectives . 3

1.4 Research Hypothesis and Contributions 4

1.4.1 HAR Data Preparation 4

1.4.2 HAR Network Architecture Design 6

1.4.3 Automatically Network Architecture Optimization . . 7

1.4.4 Hardware-Aware Model Optimization 7

1.5 Structure of This Thesis . 8

1.6 List of Publications . 11

2 Fundamentals 15
2.1 Problem Definition . 15

2.2 Challenges and Characteristics of HAR Task 16

2.2.1 Challenges . 16

2.2.2 Characteristics . 17

2.2.3 Discussion . 18

2.3 Taxonomy of Human Activity Recognition Models 19

2.3.1 Convolutional Neural Networks 19

2.3.2 Recurrent Neural Networks 21

2.3.3 Attention-based Networks 22

2.3.4 Hybrid Networks . 23

2.3.5 Lightweight HAR Models 24

2.3.6 Discussion . 25

2.4 Experimental Setup . 25

2.4.1 Datasets . 25

XI

2.4.2 Evaluation Protocol 29

2.4.3 Training Procedures 31

3 Data Preparation 33
3.1 Related Works . 33

3.1.1 Data Augmentation 34

3.1.1.1 Traditional Approaches 35

3.1.1.2 Advanced Approaches 36

3.1.1.3 Challenges 37

3.1.2 Data Transformation 38

3.1.2.1 Short-Time Fourier Transform 39

3.1.2.2 Wavelet Transformation 40

3.1.2.3 Challenges 42

3.2 Data Augmentation AutoAugHAR 43

3.2.1 Preliminaries . 43

3.2.1.1 Background 43

3.2.1.2 Naive Approach 44

3.2.1.3 Data Augmentation Optimization 44

3.2.2 Methodology . 45

3.2.2.1 Overview of AutoAugHAR 45

3.2.2.2 Gradient Based Optimization 49

3.2.2.3 Candidate Operations And Search Space . . 53

3.2.3 Experiments and Discussions 58

3.2.3.1 Experiment Setup 58

3.2.3.2 Comparison to State-of-the-art 60

3.2.3.3 Model Compression 65

3.2.3.4 Ablation Study 66

3.2.3.5 Training Overhead 70

3.2.4 Discussion . 71

3.3 Learnable Data Transformation 72

3.3.1 Methodology . 73

3.3.1.1 Wavelet Filters 73

3.3.1.2 Learnable Wavelets 76

3.3.1.3 Filter Pruning 77

XII

3.3.2 Experiments and Discussions 78

3.3.2.1 Experiment Setup 78

3.3.2.2 Comparison to State-of-the-art 78

3.3.3 Discussion . 80

3.4 Summary . 81

4 Model Architecture Design 83
4.1 Related Work . 83

4.2 TinyHAR . 85

4.2.1 Practical Guidelines for Efficient HAR Model Design . 85

4.2.2 Methodology . 87

4.2.2.1 Individual Convolutional Subnet 87

4.2.2.2 Cross-Channel Info Interaction 87

4.2.2.3 Cross-Channel Info Fusion 89

4.2.2.4 Global Temporal Info Extraction 90

4.2.2.5 Global Temporal Info Enhancement 91

4.2.3 Experiments and Discussions 92

4.2.3.1 Experiment Setup 92

4.2.3.2 Comparison to State-of-the-art 92

4.2.4 Discussion . 95

4.3 Cross-Attention with Multi-Representation 96

4.3.1 Methodology . 96

4.3.1.1 Data Transformation 98

4.3.1.2 Individual Embedding Module 98

4.3.1.3 Attention Module 99

4.3.1.4 Prediction Module 101

4.3.2 Experiments and Discussions 102

4.3.2.1 Experimental Setup 102

4.3.2.2 Comparison to State-of-the-art 103

4.3.2.3 Ablation Study 108

4.3.2.4 Generalization Performance on UEA Datasets 110

4.3.3 Discussion . 111

XIII

4.4 MLP-HAR . 111

4.4.1 Methodology . 112

4.4.1.1 Data Embedding Module 112

4.4.1.2 Mixer Module 114

4.4.1.3 Prediction Module 115

4.4.2 Experiments and Discussions 115

4.4.2.1 Experiment Setup 115

4.4.2.2 Comparison to State-of-the-art 117

4.4.2.3 Post-Processing Experiment 120

4.4.2.4 Ablation Study and Parameter Analysis . . . 121

4.4.2.5 Deployment on Hardware 123

4.4.3 Discussion . 125

4.5 Summary . 125

5 Model Architecture Optimization 127
5.1 Related Work . 127

5.2 AutoML Framework : ECLSTM 128

5.2.1 Methodology . 128

5.2.1.1 Embedded Convolutional LSTM 128

5.2.1.2 Automatic Prediction Framework 133

5.2.1.3 Temporal Feature Extraction Stage 134

5.2.1.4 Prediction Stage 134

5.2.1.5 Hyper-parameter Optimization 135

5.2.2 Experiments and Discussions 135

5.2.2.1 Experiment Setup 135

5.2.2.2 Comparison to State-of-the-art 136

5.3 Summary . 137

6 Hardware-aware Model Architecture Optimization 139
6.1 Related Works . 140

6.1.1 Neural Architecture Search 140

6.1.2 Hardware-aware Neural Architecture Search 141

6.1.3 Neural Architecture Search for HAR 142

XIV

6.2 MicroNAS . 143

6.2.1 Methodology . 143

6.2.1.1 Search Space 144

6.2.1.2 Dynamic Convolutions 148

6.2.1.3 Latency & Peak Memory Estimation 149

6.2.1.4 Optimization 151

6.2.2 Experiments and Discussions 153

6.2.2.1 Experiment Setup 153

6.2.2.2 Latency Prediction Experiment 154

6.2.2.3 Latency vs. Performance 155

6.2.2.4 Peak Memory vs. Performance 156

6.2.2.5 Comparison to Random Search 158

6.2.3 Discussion . 159

6.3 NAS Meets Pruning . 160

6.3.1 HAR Model Complexity and Size 160

6.3.2 Methodology . 164

6.3.2.1 Sensor and Convolutional Channel Pruning . 164

6.3.2.2 Search Space 165

6.3.2.3 Optimization 167

6.3.3 Experiments and Discussions 168

6.3.3.1 Experiment Setup 168

6.3.3.2 Comparison to State-of-the-art 169

6.3.3.3 Performance on Hardware 170

6.3.4 Discussion . 172

6.4 Summary . 173

7 Conclusion 175

XV

List of Figures

1.1 An illustration of sensor-based HAR system. 2

1.2 Structure of the dissertation focusing on lightweight neural net-

works for HAR tasks, with Chapter 1 (Introduction) excluded.

Abbreviations: AutoAugHAR refers to an automated augmen-

tation framework for HAR; MLP-HAR stands for Multi-Layer

Perceptron for HAR; AutoML denotes automated machine learn-

ing; ECLSTM represents Embedded Convolutional Long Short-

Term Memory; NAS stands for Neural Architecture Search. . . 9

2.1 This figure provides an overview of wearable HAR systems,

with a focus on designing lightweight deep learning models

for HAR tasks. 16

2.2 1D convolution vs 2D convolution 19

2.3 This figure illustrates various CNN-based fusion strategies. The

differently colored branches represent distinct weights, indicat-

ing that there is no weight sharing between them. 21

2.4 This figure shows the sensor placement locations for each dataset.

In this case, sensor modality is categorized by placement. The

body is divided into four regions: head, torso, upper limbs, and

lower limbs, each represented by a different color. 30

3.1 New signal channels are generated using the Differencing Time

Series (DTS) method and the Separating Movement and Grav-

ity Components (SMGC) method. 34

XVII

3.2 Data augmentation is a process that generates additional data

points in alignment with the original training data distribution.

However, in HAR datasets, a significant train-test distribution

discrepancy often exists. Therefore, it is crucial to identify

augmentation policies that generate data points more represen-

tative of both (train and test) data distribution, thereby improv-

ing the model’s generalization ability. 38

3.3 The diagram illustrates the time and frequency resolutions of

different representations. 39

3.4 STFT with different interval length τ 40

3.5 This figure illustrates six different representative mother wavelet

functions. The results of transforming the same sensor read-

ings using these mother wavelet functions are visualized to the

right of each corresponding wavelet. It is evident that the re-

sulting representations vary significantly. 41

3.6 Categorical distribution of 10 augmentation sub-policies. Red

bars indicate sub-policies with a negative influence, while green

bars represent those with a positive impact. 44

3.7 An overview of the proposed AutoAugHARbasic. Every chan-

nel across all modalities undergoes the same augmentation sub-

policy. During the data propagation phase, only one augmen-

tation sub-policy is chosen and applied. The selection of this

sub-policy depends on the probability pi associated with each

path. The objective of the optimization is to ensure that sub-

policies which improve performance have a higher probability

compared to those that affect performance. 46

3.8 Overview of the proposed AutoAugHAR framework. Differ-

ent colors represent data from various modalities. In the first

stage, data from all modalities are transformed using the same

selected operator. In the second stage, data from each modality

is individually transformed by different operators and subse-

quently integrated. 48

XVIII

3.9 Examples of candidate augmentation operators on the HAPT

dataset. 55

3.10 Comparison of the classification performance between the pro-

posed AutoAugHAR and other SOTA augmentation methods

across five datasets, each containing multiple modalities. . . . 61

3.11 Comparison of the classification performance between the pro-

posed AutoAugHAR and other SOTA augmentation methods

across three datasets, each containing only a single modality. . 62

3.12 Comparison of the classification performance between the pro-

posed AutoAugHAR and several of its variants across five multi-

modal datasets. This comparison validates the contributions of

AutoAugHAR’s design. 67

3.13 Evolution of augmentation sub-policy probabilities over train-

ing epochs during the AutoAugHAR training process. These

examples are derived from training the Attend model. 69

3.14 The training time for one iteration of the LOSO-CV process. . 70

3.15 Raw signals from the accelerometer’s x-axis (middle column)

are convolved with Symlets wavelets at different scales (left

column). 74

3.16 Raw signals from the accelerometer’s x-axis (middle column)

are convolved with Coiflet wavelets at different scales (left

column). 74

3.17 This figure shows the six mother wavelet functions represent-

ing the cluster centroids from the k-means clustering. 75

3.18 Overview of the proposed learnable sparse wavelet layer, which

can be integrated into any HAR model. Figure (a) represents

the training process, where the learnable layer learns which

wavelet filters are important. Figure (b) shows the deployment

process, where unimportant wavelet filters are pruned. C =

number of channels, L = length of sliding window, F = number

of initially selected filters, F ′ = number of filters after pruning. 76

XIX

3.19 Result of the experiment. Different colors indicate different

HAR models (green for DeepConvLSTM, purple for SA-HAR,

and blue for MCNN). Different linetypes denote the macro F1-

scores from different setups (dash lines for baselines, solid

lines for learnable sparse wavelet layers, and dot lines for

learnable wavelet layers without pruning). The bars with dif-

ferent intensities refer to the number of floating point opera-

tions required by different setups, namely light colors for base-

lines, normal colors for learnable sparse wavelet layers, and

dark colors show learnable wavelets without pruning. 79

4.1 Overview of the proposed TinyHAR model. 86

4.2 Architecture of transformer block. 88

4.3 The self-attention is employed to facilitate cross-channel inter-

actions, enabling each channel to dynamically integrate infor-

mation from all other channels. 89

4.4 Attention-based fusion (a) vs fully-connected layer-based fu-

sion (b). 90

4.5 LOSO-CV performance comparison between TinyHAR and

the DCL model with varying model sizes. For each dataset,

the averaged F1M , the corresponding model size (number of

trainable parameters) and number of FLOPs are shown sepa-

rately. 93

4.6 An overview of the proposed model, Cross-Atten, which con-

sists of two branches. The branches are color-coded: blue for

the time-series branch and green for the spectrogram branch.

The notation of the feature map and the parameters within each

branch are denoted by different symbols, hat and bar, respec-

tively. 97

4.7 Cross-attention block for two branches. Each feature vector

serves as a query to interact with all feature vectors from the

opposite branch. Both branches adhere to the same procedure. 100

4.8 Performance comparison on four HAR datasets between the

proposed Cross-Atten model and other SOTA HAR models (I). 105

XX

4.9 Performance comparison on four HAR datasets between the

proposed Cross-Atten model and other SOTA HAR models (II). 106

4.10 Performance comparison on four HAR datasets between the

proposed Cross-Atten model and other SOTA HAR models (III).107

4.11 Performance comparison on six HAR datasets between the re-

duced Cross-Atten model and the IF-Conv model (I). 108

4.12 Performance comparison on six HAR datasets between the re-

duced Cross-Atten model and the IF-Conv model (II). 109

4.13 This figure presents an overview of the architecture of the pro-

posed MLP-HAR model. 112

4.14 Figure (a) shows the specific structure of the data embedding

module. Figure (b) shows the specific structure of the mixer

module. Different colors in the figure represent readings of dif-

ferent sensor channels, and different shades of the same color

represent different intervals. Mixed color shows fused infor-

mation from FC layer. 113

4.15 Performance comparison on three HAR benchmark datasets

be- tween the MLP-HAR model and other SOTA HAR model

(I). 117

4.16 Performance comparison on three HAR benchmark datasets

be- tween the MLP-HAR model and other SOTA HAR model

(II). 118

4.17 (a) Ablation study validating the contributions of different rep-

resentations and skip connections, along with an impact analy-

sis of parameter N in the MLP-HAR model. (b) Impact analy-

sis of parameters f and N in the MLP-HAR model. 122

4.18 Comparison of inference time between the MLP-HAR and Tiny-

HAR models on two devices. The Y-axis is logarithmically

scaled (base 10). 124

5.1 Sensor values at each time step or within an interval are se-

quentially fed into the LSTM. 129

XXI

5.2 Multiple features (represented as shapes) at various sampling

times (represented as colors) within a single interval must be

flattened into a 1D vector for LSTM input, disrupting the nat-

ural sequence. Alternatively, a convolutional kernel can be ap-

plied to aggregate local information while preserving the orig-

inal structure. 130

5.3 (a) In hybrid fusion convolution, the kernel height remains 1,

but the kernel slides in two directions: along both the tempo-

ral axis and the sensor channel axis. Thanks to weight shar-

ing, this approach significantly reduces the number of parame-

ters. (b) In late fusion convolution, the kernel height is set to 1,

with each sensor channel assigned its own convolution kernel,

which also slides along the temporal axis. (c) In early fusion

convolution, the kernel height is fixed to match the number of

sensor channels, and the convolution kernel slides along the

temporal axis. 132

5.4 Overview of the search space for the ECLSTM framework. . . 134

6.1 Illustration of manual network design and optimization based

on neural architecture search. 140

6.2 Before using the MicroNAS framework, the user needs to spec-

ify the dataset to be used, the target micro-controller (MCUt),

and the maximum allowable hardware utilization in terms of

execution latency (Latt) and peak memory consumption (Memt).

The output of the system is a corresponding neural network in

the TF-Lite format. 144

6.3 High-level overview of the search space for MicroNAS frame-

work. 145

6.4 (a) Search space of Time-Reduce cell. It contains two deci-

sion groups. α to choose a convolution operator and αch to

search for the number of filters for each operator. (b) Dynamic

convolution with searchable filter masks. 145

XXII

6.5 Search space of Sensor-Fusion cell. It contains six decision

groups. Each decision group is denoted as α in dashed box.

Five of them are for the five pathways and one for the filter

masks. 147

6.6 Execution latency of whole architectures from our search space.

Left: Our lookup-table latency approach. MAE: 1.59 ms, R2:

99.97 %. Right: Flops based estimate: MAE: 15.57 ms, R2:

96.78 %. 155

6.7 Correlation between predicted execution latency and actual ex-

ecution latency for several architectures from the search space. 156

6.8 Classification performance and latency trade-offs on the UCI-

HAR dataset. Left: Accuracy, Right: F1-Score (Macro). . . . 157

6.9 Classification performance and latency trade-offs on the Sko-

daR dataset. Left: Accuracy, Right: F1-Score (Macro). 157

6.10 Trade-off between peak memory consumption and Accuracy /

F1-Score (Macro). Comparison on the SkodaR dataset. 157

6.11 MicroNAS compared against random search on the UCI-HAR

dataset with the Nucleo-L552ZE-Q. 158

6.12 MicroNAS compared against random search on the SkodaR

dataset with the Nucleo-L552ZE-Q. 159

6.13 Overview of the architecture design of HAR models. 161

6.14 Impact of the number of sensor channels on model complexity

(a) and on number of trainable parameters (b). 162

6.15 DSC layer for the input layer and convolutional layer. 164

6.16 Search space of each layer for SFTNAS framework. 166

6.17 (a) Trade-off between inference time and performance from

SFTNAS framework. (b) Distribution of optimized filter num-

bers from SFTNAS framework. 173

XXIII

List of Tables

2.1 Statistical Summary of Selected Datasets. 26

3.1 Candidate operators and the settings of hyper-parameters. . . . 53

3.2 Comparison between TinyHAR without AutoAugHAR and the

compressed TinyHAR model with AutoAugHAR. 66

4.1 Parameters related to FFT transformation for each dataset. . . 102

4.2 The structure for the time-series branch. 104

4.3 The structure for the spectrogram branch. 104

4.4 Ablation study on seven datasets 110

4.5 Performance on 10 datasets from the UEA multivariate time

series classification archive. 110

4.6 Hyper-parameters related to the Short-Time Fourier Transform

for each dataset. 116

4.7 Average ranking of all models across six datasets. The smaller

the rank, the better the performance. 119

4.8 Comparison of performance before and after post-processing.

The model name + P stands for post-processing. 121

5.1 Comparison of classification performance based on averaged

F1-scores on holdout test sequences between the ECLSTM

model and other HAR models. 136

6.1 Performance comparison between the SFTNAS framework and

other pruning methods on the MotionSense dataset. 170

6.2 Performance comparison between the SFTNAS framework and

other pruning methods on the Skoda(r) dataset. 171

XXV

6.3 Performance comparison between the SFTNAS framework and

other pruning methods on the UCI-HAR dataset. 172

XXVI

1 Introduction

1.1 Background

Human Activity Recognition (HAR) utilizes sensor technology and data analy-

sis to detect and monitor the physical activities of individuals [24]. By collect-

ing data from various sensors, HAR systems can identify a range of activities,

such as walking, running, or sitting [33], as well as physiological states like

sleep patterns and stress levels [50]. These insights are crucial for understand-

ing human behavior and health, and they serve as a driving force for the ap-

plication of HAR systems across various fields. These fields include gaming,

human-robot interaction, e-commerce, security, rehabilitation, sign language

recognition, sports, health monitoring, smart homes, and advanced manufac-

turing [165].

HAR systems are generally categorized into two types: video-based and

sensor-based [66; 165]. Video-based systems use cameras to capture visual

data for behavior recognition, while sensor-based systems rely on wearable

sensors to track and log activity. Compared to video-based HAR systems,

wearable sensor-based systems offer several distinct advantages:

• Outdoor Usability: These systems can operate effectively in outdoor

environments without the need for special camara equipment installa-

tion.

• Enhanced Privacy and Ubiquity: Given the privacy concerns asso-

ciated with camera use in personal spaces, sensor-based systems are

preferable for daily activity monitoring. Additionally, sensors are widely

available and can be easily integrated into everyday environments.

• On-device Processing: HAR systems can be implemented directly on

1

the device, allowing for on-site activity classification without the need

to transmit data to external cloud servers.

• Comprehensive Data Collection: Sensor-based systems provide more

comprehensive data, including metrics such as blood oxygen levels, heart

rate, and body temperature, which are beyond the capabilities of camera-

based systems.

Sensor Readings

Sliding Window

Model in
Edge Device

Walking

Running

Swimming

Jumping

Riding

0.92

0.01

0.02

0.02

0.03

Predict

Lightweight
DL Model M

𝑋

Signal
Segment

Feature
Engineering

Activity
Signal Classic Machine

Learning Model

Neural Network Model

Time domain
Frequency domain
Signal Processing

Decision Tree
Naïve Bayes
Support Vector Machine

MLP/ CNN / RNN / Attention

4 J. Wang et al. / Pattern Recognition Letters 119 (2019) 3–11

Fig. 1. An illustration of sensor-based activity recognition using conventional pattern recognition approaches.
The rest of this paper is organized as follows. In Section 2 , we

briefly introduce sensor-based activity recognition and explain why
deep learning can improve its performance. In Sections 3, 4 and 5 ,
we review recent advance of deep learning based HAR from three
aspects: sensor modality, deep model, and application, respectively.
We also introduce several benchmark datasets. Section 6 presents
summary and insights on existing work. In Section 7 , we discuss
some grand challenges and feasible solutions. Finally, this paper is
concluded in Section 8 .
2. Background
2.1. Sensor-based activity recognition

HAR aims to understand human behaviors which enable the
computing systems to proactively assist users based on their re-
quirement [7] . Formally speaking, suppose a user is performing
some kinds of activities belonging to a predefined activity set A :
A = { A i } m

i =1 (1)
where m denotes the number of activity types. There is a sequence
of sensor reading that captures the activity information
s = { d 1 , d 2 , · · · , d t , · · · d n } (2)
where d t denotes the sensor reading at time t .

We need to build a model F to predict the activity sequence
based on sensor reading s
ˆ A = { ̂ A j } n j=1 = F(s) , ˆ A j ∈ A (3)
while the true activity sequence (ground truth) is denoted as
A ∗ = { A ∗j } n j=1 , A ∗j ∈ A (4)
where n denotes the length of sequence and n ≥ m .

The goal of HAR is to learn the model F by minimizing the dis-
crepancy between predicted activity ˆ A and the ground truth activ-
ity A ∗. Typically, a positive loss function L (F(s) , A ∗) is constructed
to reflect their discrepancy. F usually does not directly take s as
input, and it usually assumes that there is a projection function !
that projects the sensor reading data d i ∈ s to a d -dimensional fea-
ture vector !(d i) ∈ R d . To that end, the goal turns into minimizing
the loss function L (F(!(d i)) , A ∗) .

Fig. 1 presents a typical flowchart of HAR using conventional
PR approaches. First, raw signal inputs are obtained from several

types of sensors (smartphones, watches, Wi-Fi, Bluetooth, sound
etc.). Second, features are manually extracted from those readings
based on human knowledge [4] , such as the mean, variance, DC ,
and amplitude in traditional machine learning approaches [25] . Fi-
nally, those features serve as inputs to train a PR model to make
activity inference in real HAR tasks.
2.2. Why deep learning?

Conventional PR approaches have made tremendous progress in
HAR [7] . However, there are several drawbacks to conventional PR
methods.

Firstly, the features are always extracted via a heuristic and
hand-crafted way, which heavily relies on human experience or
domain knowledge. This human knowledge may help in certain
task-specific settings, but for more general environments and tasks,
this will result in a lower chance and longer time to build a suc-
cessful activity recognition system.

Secondly, only shallow features can be learned according to hu-
man expertise [66] . Those shallow features often refer to some sta-
tistical information including mean, variance, frequency and am-
plitude etc. They can only be used to recognize low-level activities
like walking or running , and hard to infer high-level or context-
aware activities [67] . For instance, having coffee is more complex
and nearly impossible to be recognized by using only shallow fea-
tures.

Thirdly, conventional PR approaches often require a large
amount of well-labeled data to train the model. However, most
of the activity data are remaining unlabeled in real applica-
tions. Thus, these models’ performance is undermined in unsuper-
vised learning tasks [5] . In contrast, existing deep generative net-
works [24] are able to exploit the unlabeled samples for model
training.

Moreover, most existing PR models mainly focus on learning
from static data; while activity data in real life are coming in
stream, requiring robust online and incremental learning.

Deep learning tends to overcome those limitations. Fig. 2 shows
how deep learning works for HAR with different types of networks.
Compared to Fig. 1 , the feature extraction and model building pro-
cedures are often performed simultaneously in the deep learning
models. The features can be learned automatically through the net-
work instead of being manually designed. Besides, the deep neural
network can also extract high-level representation in deep layer,
which makes it more suitable for complex activity recognition

Upstaris

Running

Riding

Have Coffee

Watching TV

Inference

Inference

Figure 1.1: An illustration of sensor-based HAR system.

Therefore, this dissertation focuses on wearable HAR systems. The pri-

mary task of a wearable HAR system is to classify user activities based on

segments of data collected from wearable sensors, typically utilizing Machine

Learning (ML) or Deep Learning (DL) algorithms. As illustrated in Figure 1.1,

a standard HAR process involves segmenting the collected sensor signals into

fixed-size windows, which are then input into a classifier model. For real-time

monitoring and immediate feedback on the user’s state, the classifier should be

deployed on edge devices such as smartphones or smartwatches. To minimize

costs, more lightweight devices like smart bands or Micro-controller Units

(MCUs) may also be considered for deployment.

1.2 Problem and Motivation

However, implementing wearable HAR systems on-device presents significant

challenges. The classifier must be lightweight and efficient enough to oper-

ate within the stringent memory constraints and relatively low clock speeds of

2

ultra-low-power computational platforms, such as MCUs. Due to these limi-

tations, most current on-device HAR systems employ simple, traditional ML

algorithms, particularly tree-based models like Decision Trees (DTs) and Ran-

dom Forests (RFs) [32]. These models are favored for their low inference com-

plexity and ease of software implementation, enabling real-time classification

with minimal memory usage.

Nevertheless, traditional ML approaches for HAR require the careful design

and selection of relevant features [54; 24], a process that demands substantial

human intervention and expert knowledge. Simplistic features may fail to de-

liver optimal performance, while complex features, although potentially more

effective, can significantly burden computational resources.

Over the past decade, neural network models have undergone rapid devel-

opment and have demonstrated exceptional performance in HAR tasks. Unlike

traditional ML algorithms, neural networks excel by automatically learning

features that are highly relevant to the target task, eliminating the need for man-

ual feature design and selection [184]. To further improve the performance of

neural network models in HAR, various advanced network architectures have

been proposed, as discussed in Section 2.3. Although these studies highlight

the effectiveness of neural networks models in achieving superior classification

results for HAR, their deployment on-device remains limited. This limitation

is primarily due to the substantial memory requirements and the large com-

putational overhead needed for inference. There remains a significant gap
between research on HAR neural network models and their practical de-
ployment on lightweight devices.

1.3 Aim and Objectives

The primary aim of this research is to bridge the gap between the development

of HAR neural networks models and their practical deployment on edge de-

vices by creating lightweight neural networks models. A "lightweight model"

is defined as one that possesses fewer parameters, simpler structures, and lower

overall complexity, which in turn enables faster inference on devices with lim-

ited computational resources. To achieve this aim, the dissertation aims to

overcome the current limitations of existing HAR systems through the follow-

3

ing key objectives:

1. Thorough Literature Review: Conduct an in-depth review of existing

deep learning models for HAR to thoroughly understand their challenges and

limitations.

2. Identification of Novel Opportunities: Identify and explore novel op-

portunities and under-explored areas in the development of lightweight HAR

models.

3. Design and Implementation of Innovative Algorithms: Design and im-

plement new algorithms that address the identified opportunities, specifically

optimizing them for deployment on edge devices.

4. Comprehensive Evaluation: Perform a rigorous evaluation of the devel-

oped solutions in terms of their performance, model size, complexity, and in-

ference time on lightweight devices. This evaluation will be based on extensive

experiments using diverse open-source datasets to ensure the generalizability

of the models’ performance.

By achieving these objectives, this dissertation aims to advance the field

of DL-based HAR systems, making a significant contribution to the develop-

ment of efficient, high-performance models that are feasible for deployment on

lightweight edge devices.

1.4 Research Hypothesis and Contributions

Aligned with the aims and objectives, this dissertation presents a series of con-

tributions that provide solutions on designing lightweight DL models for wear-

able HAR systems.

1.4.1 HAR Data Preparation

HAR presents several unique challenges. First, the amount of labeled data is

typically limited, and the data often originates from a small number of subjects,

which leads to poor representativeness and informativeness [188]. Addition-

ally, HAR data exhibits significant intra-class variability and inter-class simi-

larity [24; 1], further complicating the classification task. Moreover, signals ac-

quired through wearable sensors often display multi-frequency, non-periodic,

4

and fluctuating characteristics. Frequency features are critical for distinguish-

ing between different human activities. While frequency information can be

implicitly modeled within DL HAR models using time-series representations,

these models often struggle to optimally learn and generalize high-frequency

data. Consequently, researchers frequently resort to using larger or more com-

plex models due to their enhanced feature extraction capabilities.

Question 1: How can HAR data be optimally pre-processed to improve

its quality, better highlight generalizable patterns, and reduce the com-

plexity of extracting intricate time-series information, allowing models

with fewer parameters or simpler structures to maintain SOTA perfor-

mance?

To address this question, we implemented two approaches: data augmenta-

tion and data transformation, with the latter involving the conversion of time-

series data into alternative representations, such as spectral representations.

Both methods face a common challenge: the need for method and hyperpa-

rameter optimization. Given the diverse scenarios in HAR tasks, different data

augmentation techniques or representation transformations can yield varying

results, sometimes positive and other times negative. Our innovation lies in

leveraging the characteristics of HAR tasks in combination with automated

machine learning techniques. When applying these methods, both the tech-

niques and hyperparameters are automatically optimized and trained alongside

the model weights according to the specific task.

Contributions: Extensive experiments have validated our approach. By

properly preparing the data, we can enhance the performance of SOTA

HAR models without increasing their size. Additionally, it is feasible to

reduce the size of existing models using shrinking strategies [142] (e.g.,

depth and width scaling factors) while still maintaining SOTA perfor-

mance. Moreover, the training overhead does not significantly increase

and remains comparable to that of previous methods.

5

1.4.2 HAR Network Architecture Design

Another factor contributing to the large and complex nature of HAR models is

the necessity to extract a diverse range of information from sensor data to accu-

rately predict human activities. This includes extracting local context informa-

tion, capturing long-term temporal dependencies, distinguishing the contribu-

tions of different modalities, and understanding the cooperative relationships

between these modalities. The design of neural networks model architectures

is essentially a process of information extraction. Simply increasing the model

size without considering the characteristics of HAR data does not effectively

extract the critical information needed for accurate predictions.

Question 2: How can we design a model that effectively considers the

various types of information required for HAR tasks, enabling the model

to maintain strong information extraction capabilities despite having a

small size, and thereby achieving high classification performance?

Taking these considerations into account, we established five key principles

for constructing lightweight HAR models. Based on these principles, we ini-

tially developed the TinyHAR model by carefully selecting deep learning oper-

ators to efficiently extract the necessary information. Building upon the foun-

dation of the TinyHAR structure, we extended it to create a cross-attention

HAR model with hybrid representations, incorporating the data preparation

techniques discussed earlier. Finally, drawing inspiration from both the Tiny-

HAR and cross-attention models, and considering the specific constraints of

MCU hardware, we designed the MLP-HAR model, which leverages fully con-

nected layers exclusively to achieve efficient performance.

Contribution 2: Through extensive experiments, we demonstrated that

the proposed models, despite having fewer parameters, can achieve and

even surpass the performance of existing SOTA HAR models. Further-

more, we successfully deployed these models on several edge devices,

where they exhibited significantly faster inference times compared to

other HAR models, enabling real-time monitoring.

6

1.4.3 Automatically Network Architecture Optimization

In addition to designing the overall network architecture, defining parameters

such as the number of layers, kernel sizes, and the number of filters is cru-

cial. In most current HAR models, these parameters are predefined, which can

lead to either oversized models or suboptimal performance due to the risk of

overfitting. For instance, in one study, reducing the number of LSTM layers in

the benchmark model DeepConvLSTM improved its performance. However,

optimizing these structural parameters is a labor-intensive and time-consuming

process.

Question 3: Is it possible to quickly and automatically optimize these

model parameters, thereby reducing the difficulty of manual parameter

tuning and resulting in a more compact model?

To address this challenge, we propose leveraging automated machine learn-

ing (AutoML) techniques and model pruning methods. Building on the five

design principles for HAR models discussed earlier, we define the search space

for HAR model architecture. Through techniques such as gradient descent or

Bayesian optimization, we simultaneously optimize the model structure during

the training process.

Contribution 3: By employing AutoML and neural architecture search

(NAS) techniques, we achieved further improvements in HAR model

performance without the need for manual parameter tuning.

1.4.4 Hardware-Aware Model Optimization

In real-world deployment, models must not only be compact but also meet spe-

cific task-related requirements, such as inference speed. For instance, in fall

detection scenarios, a model’s response time must be extremely fast to trig-

ger protective mechanisms in time to prevent injury. Therefore, optimizing

lightweight models with hardware constraints in mind is crucial to ensure effi-

cient and effective deployment.

7

However, the inference time needed for different tasks can vary significantly.

Additionally, different hardware platforms support various operators to differ-

ing degrees and have varying memory capacities and computational efficien-

cies. As a result, a model with the same architecture may exhibit different infer-

ence times across different hardware platforms. This highlights the importance

of considering hardware constraints when selecting models and designing net-

work architectures for deployment. The process of designing within these

multi-dimensional constraints is challenging, complex, and time-consuming,

as it requires balancing trade-offs between performance, memory usage, and

computational efficiency.

Question 4: How can we incorporate hardware constraints into the net-

work architecture optimization process to automatically generate mod-

els that maintain SOTA performance while also meeting deployment re-

quirements?

To address this challenge, we first conduct a detailed profiling of the target

hardware to understand its memory capacity, computational capabilities, and

supported operators. This information guides the design of the search space.

Next, we incorporate hardware constraints, such as memory consumption and

inference time, into the loss function. By employing NAS techniques, it aim to

balance model performance with computational efficiency and memory size.

Contribution 4: We successfully automated the optimization of models

based on specific task requirements, such as setting a target inference

time on the selected MCU. These optimized models not only meet the

specified conditions but also maintain SOTA-level classification perfor-

mance.

1.5 Structure of This Thesis

The dissertation is organized into seven logically structured sections that delve

into various research aspects related to the development of lightweight neural

networks models for HAR. Figure 1.2 illustrates the structure of the thesis,

8

Chapter 4
Model Architecture

Design
How to manually

design architecture of
HAR DL models?

Chapter 3
Data Preparation

How to optimally
preprocess HAR data

for HAR model?

Chapter 5
Model Architecture

Optimization
How to automatically
optimize HAR model

architecture?

Chapter 6
Hardware-aware

Model Optimization
How to incorporate

hardware constraints
into the optimization?

Chapter 2 Fundamentals
Problem definition/ Challenge Summary/ Taxonomy of HAR models / Evaluation Setup

Section 4.1
Related works

Section 4.2
TinyHAR

Section 4.3
Cross-Attention

with Multi-
Representation

Section 4.4
MLP-HAR

Section 4.5
Discussion

Section 3.1
Related works

Section 3.2
Data Augmentation

AutoAugHAR

Section 3.3
 Learnable Data
Transformation

Section 3.4
Discussion

Section 5.1
Related works

Section 5.2
AutoML Framework:

ECLSTM

Section 5.4
Discussion

Section 6.1
Related works

Section 6.2
MicroNAS

Section 6.3
NAS Meets Pruning

Section 6.4
Discussion

Pr
op

os
ed

 S
ol

ut
io

ns

Chapter 7 Conclusion

Figure 1.2: Structure of the dissertation focusing on lightweight neural net-
works for HAR tasks, with Chapter 1 (Introduction) excluded. Ab-
breviations: AutoAugHAR refers to an automated augmentation
framework for HAR; MLP-HAR stands for Multi-Layer Perceptron
for HAR; AutoML denotes automated machine learning; ECLSTM
represents Embedded Convolutional Long Short-Term Memory;
NAS stands for Neural Architecture Search.

9

providing an overview of the relationships between the different sections and

subsections. Figure 1.2 allows readers to quickly understand how the various

parts of the dissertation are interconnected and how they collectively contribute

to the overarching goal of designing lightweight neural networks models for

HAR tasks.

Chapter 2 provides a comprehensive review and summary of the current

SOTA HAR models, critically assessing their strengths and limitations with a

particular emphasis on their architectures and how these relate to the unique

characteristics and challenges of HAR data. The insights derived from this

analysis form the foundation for the methodologies and approaches developed

in subsequent chapters. Additionally, this chapter details the experimental

setup used throughout the dissertation, helping to avoid redundancy in later

discussions, as most experiments follow a consistent configuration. Any devi-

ations from this setup are explicitly noted in the corresponding chapters. The

experimental setup description includes details on the datasets, data preparation

methods, model training configurations, and evaluation metrics used through-

out the dissertation.

Chapters 3 to 6 follow the typical workflow of a ML project—data prepa-

ration, model design, model training, and model deployment. Each chapter

focuses on specific methods aimed at achieving model lightweighting at vari-

ous critical stages of this process.

Chapter 3 explores strategies for making existing DL HAR models more

lightweight through data preparation techniques. Two approaches are pro-

posed: a modality-aware automated data augmentation framework and a learn-

able wavelet layer.

Chapter 4 focuses on the design of neural networks architectures that

combine strong feature extraction capabilities with a lightweight structure. We

propose five guiding principles and introduce three models based on these prin-

ciples: TinyHAR, Cross-Attention with Multi-Representation, and Multi-layer

Perceptron HAR (MLP-HAR).

10

Chapter 5 addresses the automated optimization of model structural pa-
rameters. This chapter defines the search space specific to HAR models and

introduces AutoML Framework ECLSTM designed to optimize models for

HAR tasks.

Chapter 6 builds upon the concepts introduced in Chapter 6 by exploring

how hardware constraints and task-specific requirements can be incorpo-

rated into the optimization process. This chapter focuses on optimizing models

to meet practical deployment needs, such as inference time and memory usage.

Chapter 7 concludes the dissertation by summarizing the key findings and

discussing future directions for the development of lightweight neural networks

models for HAR.

1.6 List of Publications

The following list gives an comprehensive overview of all scientific papers

published by the author that are relevant for this dissertation. Significant parts

of this dissertation (across all chapters) were copied from the relevant earable

papers listed below and assembled into a coherent monograph structure.

Yexu Zhou, Michael Hefenbrock, Yiran Huang, Till Riedel and Michael

Beigl. "Automatic remaining useful life estimation framework with embedded

convolutional LSTM as the backbone". In: Joint European Conference on

Machine Learning and Knowledge Discovery in Databases (ECML PKDD).

September 14–18, 2020, Proceedings, Part IV.

Yexu Zhou, Haibin Zhao, Yiran Huang, Till Riedel, Michael Hefenbrock

and Michael Beigl. "Tinyhar: A lightweight deep learning model designed for

human activity recognition". In: Proceedings of the 2022 ACM International

Symposium on Wearable Computers. 2022, pages 89-93.

Yexu Zhou, Haibin Zhao, Till Riedel, Michael Hefenbrock and Michael

Beigl. "Improving Human Activity Recognition Models by Learnable Sparse

11

Wavelet Layer". In: Proceedings of the 2022 ACM International Symposium

on Wearable Computers. 2022, pages 84-88.

Nils Schwabe, Yexu Zhou, Leon Hielscher, Tobias Röddiger, Till Riedel

and Sebastian Reiter. "Tools and methods for Edge-AI-systems". In: at Au-

tomatisierungstechnik. 2022, pages 767-776.

Tobias King, Yexu Zhou, Tobias Röddiger and Michael Beigl. "MicroNAS:

Memory and Latency Constrained Hardware-Aware Neural Architecture Search

for Time Series Classification on Microcontrollers". In: arXiv preprint arXiv:

2310.18384. 2023.

Yiran Huang, Yexu Zhou, Michael Hefenbrock, Till Riedel, Likun Fang,

Michael Beigl. "Automatic feature engineering through Monte Carlo tree search".

In: Joint European Conference on Machine Learning and Knowledge Discov-

ery in Databases (ECML PKDD). 2023, pages 581-598.

Yexu Zhou, Haibin Zhao, Yiran Huang, Tobias Röddiger, Till Riedel and

Michael Beigl. "Cross-Attention Transformer with Multi-Representation for

Human Activity Recognition Using Wearable Sensors". In: KITOPEN. 2023.

Yexu Zhou, Haibin Zhao, Michael Hefenbrock, Siyan Li, Yiran Huang and

Michael Beigl. "Deep Neural Network Pruning with Progressive Regularizer".

In: IEEE International Joint Conference on Neural Network (IJCNN). July

2024.

Yexu Zhou, Tobias King, Yiran Huang, Haibin Zhao, Till Riedel, Tobias

Röddiger and Michael Beigl. "Enhancing Efficiency in HAR Models: NAS

Meets Pruning". In: IEEE International Conference on Pervasive Computing

and Communications Workshops. 2024, pages 33-38.

Yiran Huang, Yexu Zhou, Haibin Zhao, Till Riedel and Michael Beigl. "Op-

timizing AutoML for Tiny Edge Systems: A Baldwin-effect Inspired Genetic

Algorithm". In: IEEE International Conference on Pervasive Computing and

Communications Workshops. 2024, pages 160-165.

12

Yexu Zhou, Haibin Zhao, Yiran Huang, Tobias Röddiger, Murat Kurnaz,

Till Riedel and Michael Beigl. "AutoAugHAR: Automated Data Augmen-

tation for Sensor-based Human Activity Recognition". In: Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT).

2024, pages 1-27.

Yexu Zhou, Tobias King, Haibin Zhao, Yiran Huang, Till Riedel and Michael

Beigl. "MLP-HAR: Boosting Performance and Efficiency of HAR Models on

Edge Devices with Purely Fully Connected Layers". In: Proceedings of the

2024 ACM International Symposium on Wearable Computers. 2024.

13

2 Fundamentals

This chapter provides the foundational knowledge and background informa-

tion necessary for the research presented in this dissertation. In Section 2.1,

we define the problem of wearable HAR, establishing the core focus and ob-

jectives of this study. Section 2.2 then elaborates on the characteristics and

challenges inherent in HAR tasks, which are critical considerations for the de-

sign and training of effective models. In Section 2.3, we conduct a systematic

and comprehensive review of the current SOTA HAR models, analyzing their

strengths and weaknesses to guide the research direction of this work. Finally,

Section 2.4 presents the experimental setup employed throughout this disser-

tation, detailing data processing methods, model training configurations, and

evaluation metrics to ensure the consistency and reproducibility of the results.

2.1 Problem Definition

This dissertation focuses on sensor-based HAR. Devices equipped with Iner-

tial Measurement Units (IMUs) are placed on the human body and synchro-

nized to collect data. An IMU typically consists of built-in sensors such as

accelerometers, gyroscopes, and magnetometers, each capable of generating

a signal vector along the x-axis, y-axis, and z-axis simultaneously. The data

collected over time from these sensors can be represented as a multi-channel

time series [x1, . . . ,xt , . . .] , where xt = [xt1,xt2, . . . ,xtC]. Here, xtC denotes the

sensing value from the C-th sensor channel at time t, and C is the total number

of sensor channels used.

Given a recorded multi-channel signal recordings, the task is to detect a se-

ries of human activities (e.g., walking, running, biking) over a specific duration.

Specifically, long signal recordings is segmented into segments X ∈ RL×C us-

ing a sliding window method. Each segment X = [x1,x2, . . . ,xL] is represented

15

Sensor Readings

Sliding Window

Model in
Edge Device

Walking

Running

Swimming

Jumping

Riding

0.92

0.01

0.02

0.02

0.03

Predict

Lightweight
Model M

𝑋

Figure 2.1: This figure provides an overview of wearable HAR systems, with
a focus on designing lightweight deep learning models for HAR
tasks.

as a 2D matrix, where L denotes the window length. An activity label y is

assigned to each segment, forming a data sample (X,y). Subsequently, each

segments is fed into a classification model M, which maps the segment X to

a predefined activity label. The activity recognition problem can therefore be

formally described as follows, ỹ = M (X). The process described above is il-

lustrated in Figure 2.1.

This dissertation aims to develop models M that achieve high prediction ac-

curacy while also maintaining a compact size, fewer learnable parameters, and

faster inference times on edge devices.

2.2 Challenges and Characteristics of HAR Task

To ensure the effectiveness of a model, it is essential to first understand the

challenges and characteristics associated with the HAR task.

2.2.1 Challenges

This section outlines several challenges unique to sensor-based activity recog-

nition that the HAR research community must address:

Limited Annotated Dataset: Sensor-based HAR datasets are typically lim-

ited in size [1], primarily due to the challenges associated with data collection

and annotation, as well as the high costs involved in conducting user studies

and recruiting volunteers. These limitations reduce the representativeness and

16

informativeness of the data [188]. While DL models have shown promising re-

sults in HAR tasks, their ability to generalize across different subjects remains

a significant concern.

Inter-Class Similarity Challenge: HAR datasets often exhibit significant

similarities between different activities [71; 24]. For instance, activities such

as walking and running may share overlapping characteristics, making them

difficult to distinguish. Additionally, sensor data is inherently noisy due to the

imperfections of the sensors themselves, further complicating the extraction of

distinguishable features that uniquely represent each activity.

Intra-Class and Inter-Subject Variability Challenge: Activity patterns

are highly individual-dependent, leading to diverse activity styles among dif-

ferent users [24]. Moreover, the same individual’s activity patterns may vary

over time. Hardware-related factors, such as variations in sensor placement,

device tightness, and the use of different devices, also contribute to this vari-

ability. These factors create substantial variability within activity classes and

across different subjects, leading to discrepancies between the distributions of

training and test data. Addressing these distribution discrepancies is crucial for

improving model performance.

2.2.2 Characteristics

Below are some unique characteristics of HAR compared to fields like Natural

Language Processing (NLP) and computer vision:

Data Format: Unlike NLP, where data is represented as 1D sequential

words, HAR data consists of multivariate time series, with each modality con-

veying distinct information. In comparison to image data, where both dimen-

sions (height and width) hold similar significance, HAR data involves two fun-

damentally different dimensions: sensor channel dimension and temporal di-

mension. Moreover, the temporal dimension is often significantly larger than

the sensor channel dimension, and the interpretations of these two dimensions

differ greatly.

Local Context: A single timestamp in a sensor signal sequence provides

limited semantic information [1; 119; 155], unlike a word in a sentence. Most

activities are composite, consisting of a sequence of atomic actions. Therefore,

17

understanding the context surrounding each timestamp is crucial for accurately

predicting the overall activity.

Global Temporal Extraction: Certain timesteps within a sequence may ex-

hibit more salient patterns than others [102]. For accurate activity recognition,

it is essential for the model to capture global temporal dependencies throughout

the entire sequence.

Different Contribution Across Multi-Modality: Different sensor modali-

ties originate from various domains, and merging them without accounting for

their unique contributions can limit the model’s effectiveness [23]. For exam-

ple, accelerometer data might be more significant for distinguishing between

"walking" and "biking," whereas gyroscope data might be crucial for differenti-

ating between "turning left" and "turning right." Treating all modalities equally

could undermine the overall performance of activity classification.

Collective Interaction within Multi-Modality: Human activities often in-

volve the coordinated motions of multiple body parts. For instance, running

can be viewed as a combination of arm and leg movements. Therefore, it is im-

portant to consider the interactions between different modalities to accurately

represent and classify activities [1; 23].

2.2.3 Discussion

Unlike fields such as computer vision and NLP, where datasets are often more

structured and abundant, HAR presents distinct challenges that necessitate spe-

cific architectural considerations. Applying techniques directly from NLP or

computer vision while disregarding these unique challenges is likely to result

in suboptimal model performance. This highlights the need for specialized

approaches tailored to HAR tasks, which differ significantly from those used

in other fields. By addressing these unique challenges head-on, we can en-

hance the model’s learning capabilities, ultimately resulting in more efficient

and lightweight models optimized for HAR applications.

18

Se
ns

or
 1

Se
ns

or
 2

Se
ns

or
 1

Se
ns

or
 2

(a) 1-D Individual Convolution (b) Sensor-based 2-D kernel

Softmax

FC

Conv k×1

5×1 3×3

Conv k×1

Input
1×𝐿×𝐶

Conv k×𝐶

…

Softmax

FC

Conv k×1

Conv k×1

Sensor 1
1×𝐿×3

Conv k×3

… …

Conv k×1

Conv k×1

Sensor n
1×𝐿×3

Conv k×3

…

…

…

…

…

Softmax

FC

Conv k×1

Conv k×1

Channel 1
1×𝐿×1

Conv k×1

… …

Conv k×1

Conv k×1

Channel N
1×𝐿×1

Conv k×1

…

…

…

…

…

Softmax

FC

Conv k×1

Conv k×1

Input
1×𝐿×𝐶

Conv k×1

…

(a) Early Fusion (b) Sensor-based Late Fusion (c) Channel-based Late Fusion (d) Shared Filters
Hybrid Fusion

Figure 2.2: 1D convolution vs 2D convolution

2.3 Taxonomy of Human Activity Recognition Models

In line with the goal of designing lightweight DL models for HAR, Sections 2.3.1,

2.3.2, 2.3.3 and 2.3.4 will first review existing research on DL-based HAR

models, categorized by the types of operators they employ. Following this,

Section 2.3.5 will examine relevant work focused on lightweight HAR models.

Finally, in Section 2.3.6, we will discuss the key insights gained from these

reviews and how they can inform the design of more efficient and effective

models for HAR tasks.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are among the most widely used mod-

els for HAR tasks in the field of ubiquitous computing [55; 24], primarily due

to their exceptional ability to extract local dependencies [160] and their inher-

ent support for parallel processing [139].

The study in [166] demonstrated the potential of CNNs in HAR tasks by uti-

lizing individual convolutional kernels that traverse the temporal dimension, ef-

fectively extracting hierarchical temporal features. As illustrated in Figure 2.2

(a), these individual convolutions employ 1D kernels along the temporal axis,

allowing each channel to be processed separately, which accounts for the vary-

ing contributions of different modalities. However, this approach does not suf-

ficiently capture the dependencies between sensor channels.

Furthermore, CNNs typically utilize fixed kernel sizes, which restricts their

ability to capture fluctuations across different temporal ranges. To overcome

19

this limitation, the study in [88] adopted an inception-style [68] convolution

block, combining multiple CNN structures with varying kernel sizes to extract

temporal features across multiple time scales. However, the use of multiple

kernels increases computational complexity and rusults multi-branch structure,

which are not good for inference time, because it increases the memory access

cost [89].

Another challenge with CNNs is their inherently small receptive field, which

limits their ability to capture long-term temporal dependencies. One approach

to address this limitation is to insert pooling operations between CNN layers,

which can effectively reduce the length of the time series [24]. However, this

approach can lead to significant information loss [24]. An alternative approach

is to apply deep dilated CNNs [161]. While dilated convolutions avoid infor-

mation loss and do not introduce additional computational costs, this operator

is often not supported on many edge devices [84].

In addition to considering various temporal scales and long-term dependen-

cies, the different contributions of sensing modalities and their interactions are

also critical factors in HAR tasks. The aforementioned CNN models typically

treat different modalities uniformly, which can limit their effectiveness. To

address this limitation, the study in [58] introduced 2D kernels in the convolu-

tional layers to capture both local temporal dependencies and spatial dependen-

cies across sensors, as illustrated in Figure 2.2 (b). Despite this enhancement,

CNNs still struggle to explore correlations between non-adjacent modalities,

as they tend to focus primarily on neighboring modalities.

To effectively learn modality-specific features and efficiently fuse informa-

tion from different sensor modalities, several studies have proposed multi-

branch CNN architectures. These approaches explore various fusion mecha-

nisms, such as sensor-based late fusion [125; 57] and channel-based late fu-

sion [172; 40], as illustrated in the Figure 2.3. In these architectures, indepen-

dent CNN branches are assigned to each sensor modality or sensor channels,

and a cross-sensor fully connected layer integrates these branches to uncover

inter-modality information.

Overall, the strength of CNN models lies in their ability to extract local con-

text and their strong parallel processing capabilities, making them well-suited

20

Se
ns

or
 1

Se
ns

or
 2

Se
ns

or
 1

Se
ns

or
 2

(a) 1-D Individual Convolution (b) Sensor-based 2-D kernel

Softmax

FC

Conv k×1

5×1 3×3

Conv k×1

Input
1×𝐿×𝐶

Conv k×𝐶

…

Softmax

FC

Conv k×1

Conv k×1

Sensor 1
1×𝐿×3

Conv k×3

… …

Conv k×1

Conv k×1

Sensor n
1×𝐿×3

Conv k×3

…

…

…

…

…

Softmax

FC

Conv k×1

Conv k×1

Channel 1
1×𝐿×1

Conv k×1

… …

Conv k×1

Conv k×1

Channel N
1×𝐿×1

Conv k×1

…

…

…

…

…

Softmax

FC

Conv k×1

Conv k×1

Input
1×𝐿×𝐶

Conv k×1

…

(a) Early Fusion (b) Sensor-based Late Fusion (c) Channel-based Late Fusion (d) Shared Filters
Hybrid Fusion

Figure 2.3: This figure illustrates various CNN-based fusion strategies. The
differently colored branches represent distinct weights, indicating
that there is no weight sharing between them.

for hardware deployment. However, due to the characteristics of HAR tasks,

which require the extraction of diverse types of information, the capabilities

of CNNs may not be fully sufficient. Although various methods have been

proposed to mitigate these limitations, multi-branch CNN models compromise

memory utilization efficiency, as they require storing the outputs of each branch

until they are combined through addition or concatenation [89].

2.3.2 Recurrent Neural Networks

To better capture temporal dependencies, Long Short-Term Memory (LSTM) [25]

and Gated Recurrent Unit (GRU) [133] networks have been introduced into

HAR tasks. Beyond the basic LSTM network, ongoing research in the HAR

field has explored various RNN variants. For example, the study in [182] em-

ployed a Bidirectional LSTM (Bi-LSTM) architecture, which utilizes two con-

ventional LSTM layers to extract temporal dynamics from both forward and

backward directions. Additionally, some studies have attempted to design spe-

cific cell structures within RNNs [24]. However, some studies [53] have shown

that these alternative RNN cells do not provide notably superior performance

compared to conventional LSTM cells, and these custom RNN cells often lack

robust support on hardware platforms [84]. Furthermore, EnsembleLSTM [55]

advanced LSTM-based models by combining multiple sets of LSTM learners

and developing modified training procedures to address the challenge of unbal-

21

anced data. However, this approach, which requires the parallel execution of

multiple models, is impractical for deployment on edge devices.

Overall, LSTMs have demonstrated superior capability over CNNs in cap-

turing temporal information. However, similar to the development trajectory

observed with CNNs, the pursuit of more powerful feature extraction capa-

bilities has resulted in increasingly complex model architectures. Moreover,

RNN variants have following limitations. Their cells consist of different gated

branches, leading to complex multi-branch structures that increase memory

access costs [153; 89]. Furthermore, RNNs propagate information iteratively

along the time axis, which hinders parallel processing and slow down inference

time. Additionally, RNNs may entirely overlook the extraction of local context

and the differentiation and integration of modality-specific information [184].

These limitations contribute to the relatively infrequent use of pure RNN mod-

els in HAR applications.

2.3.3 Attention-based Networks

In recent years, self-attention-based models [183; 150] have demonstrated su-

perior performance over RNN-based models in capturing long-term temporal

dependencies, particularly in NLP tasks. The utility of this attention mecha-

nism for HAR has also been explored. For example, studies [104; 148] have

employed self-attention mechanisms in place of CNNs or LSTMs to extract

temporal information as well as information across channels, showcasing the

flexibility of self-attention. This flexibility allows for the exchange and pro-

cessing of information across various dimensions. Unlike RNNs, which require

input data points to maintain a sequential order, self-attention mechanisms do

not rely on such order constraints. Furthermore, self-attention enables efficient

operations on long sequence inputs, reducing the maximum length of network

signal paths to the theoretical minimum of O(1) and avoiding the limitations of

recurrent structures in RNN [183].

However, self-attention is highly memory-intensive, with memory consump-

tion growing quadratically with the input length [81; 15; 34]. Even when the

model size is relatively small, the memory demands can pose significant chal-

lenges during deployment. Moreover, experimental results have shown that

22

using self-attention alone may not yield optimal performance [178]. One key

issue is that the self-attention mechanism’s emphasis on global information ex-

change can result in the neglect of local context and the temporal sequence of

events [150].

2.3.4 Hybrid Networks

The three types of HAR models discussed earlier each have their own strengths

and weaknesses, leading to the natural idea of combining them to leverage their

respective advantages.

DeepConvLSTM [119] initially used a CNN subnet to extract local features

from different sensor modalities and then fed these features into a LSTM-based

block to capture long-term temporal dependencies. To further enhance infor-

mation extraction across different dimensions, self-attention mechanisms have

been integrated into HAR models due to their flexibility. For example, to ad-

dress the "forgetting" limitations of LSTMs [78], DeepConvLSTM-Attention

(DCL-A)[113] augments DeepConvLSTM with temporal attention, facilitating

global temporal information exchange in a single forward pass. Multi-agent

HAR[23] advances DeepConvLSTM with a spatio-temporal attention module

to intelligently select informative modalities. The Attend model [1] incorpo-

rates self-attention mechanisms to learn interactions between different sensor

channels. The ALAE-TAE model [3] is engineered with an attention encoder,

based on the squeeze and excitation method [62], with the objective of exploit-

ing relationships among latent features. The IF-ConvT model [178] designs a

CNN block that implements the function of the complementary filter [106] and

pre-concatenates this block to a CNN-self-attention hybrid model.

Additionally, some HAR models, considering the importance of frequency

information for classification [23], first transform data inputs into frequency

representations before feeding them into the model. For instance, DeepSense [167]

applies FFT transformation to input data and then processes it with a hybrid

multi-branch CNN-GRU architecture. GlobalFusion [99] builds on DeepSense

by adding two global self-attention modules to efficiently fuse features from

various locations and sensor modalities.

However, many of these efforts, while pushing for optimal performance,

23

have totally overlooked deployment efficiency and real-time processing capa-

bilities [32].

2.3.5 Lightweight HAR Models

Only a limited number of studies have focused on designing lightweight mod-

els specifically for HAR tasks. In January 2021, the Layer-Wise CNN [144]

proposed a lightweight CNN using "Lego" filters for HAR. These filters, which

are lower-dimensional, are stacked like Lego bricks to form conventional fil-

ters. The authors claim that this is the first paper to propose a lightweight

CNN for HAR in the ubiquitous and wearable computing arena. Following

this, Yves Luduvico Coelho et al. [28] combined decision trees with CNNs to

create a dynamic HAR system that can be deployed on MCUs. The Distributed

CNN [65] introduced a multi-branch structure that, during deployment, uses a

distributed set of computing nodes collocated with sensors in specific regions,

rather than centrally collecting and processing all sensor measurements with

a monolithic neural network. However, this approach not only requires nu-

merous hardware nodes but also faces performance risks due to potential data

asynchrony caused by communication delays between nodes. Quantized and

Adaptive DNN [32] utilized hyper-parameter optimization with sub-byte and

mixed-precision quantization to optimize 1-dimensional CNNs, aiming to find

a balance between classification accuracy and memory usage.

Overall, the aforementioned studies are all based on CNNs. The limita-

tions of CNN-based models have already been discussed in Section 2.3.1. This

is further evidenced by the experimental results from these lightweight CNN

models mentioned above, which fail to surpass earlier SOTA CNN models such

as [166; 58; 31]. Consequently, these models fall short of the performance lev-

els achieved by the more advanced hybrid HAR models discussed previously.

There have been a few attempts to create lightweight hybrid HAR models,

but these efforts have employed relatively simple methods. Their approach

involves manually simplifying the architectures of some SOTA HAR models.

For instance, [7] manually reduced the model depth and the number of filters to

make the model suitable for deployment on edge devices. Similarly, Improve-

DeepConvLSTM [19] merely reduced the number of LSTM layers.

24

2.3.6 Discussion

To date, research on lightweight neural network HAR models suitable for de-

ployment on edge devices remains scarce. Existing models often sacrifice per-

formance to achieve deployability. Consequently, the primary objective of this

dissertation is to develop HAR models that preserve SOTA performance while

being deployable on edge devices. Several methods exist for reducing model

complexity, including pruning [26], quantization [51], architecture design, and

neural architecture search [45]. Although these techniques have been widely

studied in other domains, their application in the HAR domain is still limited.

Therefore, we aim to explore the integration of these techniques to address

the specific challenges and characteristics of HAR tasks and seek to generalize

these techniques for optimizing lightweight HAR models.

2.4 Experimental Setup

As discussed earlier, this dissertation introduces several methods aimed at re-

ducing the size of neural network models. To evaluate the performance of these

models, extensive experiments were conducted using open-source datasets.

This section provides a detailed overview of the evaluation setup, including

the datasets utilized, the training procedures applied to HAR models, and the

evaluation metrics used to assess their performance.

2.4.1 Datasets

This section provides a detailed overview of the data utilized. Table 2.1 presents

a statistical summary of the data as an overview. Within the table, the col-

umn labeled "# classes" denotes the number of activity types, while "sen-

sor types" specifies the utilized sensor signal, using the abbreviations: "Acc"

for accelerometer, "Gry" for gyroscope, "Mag" for magnetometer, "Grav" for

gravimeter and "PRS" for piezoresistive sensor. The column "# subjects" indi-

cates the number of subjects involved in data collection. Each dataset is then

described individually in detail as follows.

Daphnet Gait (Daphnet) [11]: The Daphnet Gait dataset was specifically

25

Table
2.1:StatisticalSum

m
ary

ofSelected
D

atasets.

D
atasets

Sam
pling

Frequency
#

subjects
#

C
lasses

#
Sensor

C
hannels

Sensor
T
ype

Sliding
W

indow
Size

#
M

odalities

D
aphnet

[11]
64

H
z

10
2

9
A
cc

1s
2

PA
M

A
P
2

[127]
100

H
z

9
18

18
A
cc,

G
yro

2s
3

O
P
P
O

[21]
30

H
z

4
18

42
A
cc,

G
yro

1s
3

R
W

[141]
50

H
z

15
8

21
A
cc

2.56s
4

D
SA

D
S

[14]
25

H
z

8
19

30
A
cc,

G
yro

5s
3

W
ISD

M
[86]

20
H

z
36

6
3

A
cc

5.12s
1

H
A

P
T

[128]
50

H
z

30
12

6
A
cc,

G
yro

2.56s
1

G
esH

om
e

[115]
25

H
z

20
18

9
A
cc,

G
yro,M

ag
2s

1

M
health

[13]
50

H
z

10
12

12
A
cc,

G
yro

2.56s
2

M
otionSense

[107]
50

H
z

24
6

12
A
cc,

G
yro,M

ag,G
rav

2.56s
1

Skoda(r)
[170]

98
H

z
1

10
30

A
cc

2s
10

L-sign
[123]

25
H

z
16

36
16

A
cc,G

yro,P
R
S

3s
1

26

designed to serve as a benchmark for methods that automatically detect freez-

ing of gait using wearable accelerometers placed on the legs and pelvis. This is

a binary classification problem (i.e., freeze or no freeze). The dataset includes

accelerometer data from three body locations: the ankle, upper limb, and trunk.

Data were collected from 10 patients diagnosed with Parkinson’s disease, with

a sampling rate of 64 Hz. For model input, we selected 2-second segments of

this data.

PAMAP2 Physical Activity Monitoring Dataset (PAMAP2) [127]: The

PAMAP2 dataset comprises data collected from 9 subjects performing 18 dif-

ferent physical activities, such as walking, cycling, and playing soccer, using

three Inertial Measurement Units (IMUs). Each IMU captures readings from

a tri-axial accelerometer, gyroscope, and magnetometer. The sampling rate for

all sensors is 100 Hz. In our experiments, we utilized only the signals from

the tri-axial accelerometers and gyroscopes, resulting in a total of 18 sensor

channels. The data were segmented into 2-second intervals for analysis.

Opportunity Dataset(OPPO) [21]: The OPPO dataset was collected from

4 participants, each equipped with multiple wearable sensors while performing

natural kitchen activities. The activities included 17 sporadic gestures and one

null class. Signals from tri-axial accelerometers, gyroscopes, magnetometers,

and several other internal sensors were recorded at a constant rate of 30 Hz. In

our experiments, we utilized only the signals from the tri-axial accelerometers

and gyroscopes located on the participants’ back, arms, and shoes. These sig-

nals correspond to 7 different locations, resulting in 42 sensor channels. For

activity prediction, we used 1-second segments of the data.

RealWorld Human Activity Recognition (RW) [141]: The RealWorld-

HAR dataset includes data from 15 subjects performing 8 different activities,

such as climbing stairs, jumping, lying down, standing, sitting, running/jogging,

and walking. Data were collected using sensors placed at 7 different body lo-

cations, including accelerometers, GPS, light, magnetic field, and sound level

sensors. For our study, we only utilized accelerometer readings from all 7 body

locations (i.e., head, chest, forearm, waist, shin, thigh, and upper arm). GPS

and sound level readings were excluded due to their low sampling rates—0.08

Hz for GPS and 2 Hz for sound level—while the remaining sensors operated

27

at approximately 50 Hz. For prediction tasks, we used 2.56 seconds data seg-

ments.

Daily and Sports Activities Dataset (DSADS) [14]: The DSADS dataset

was collected from 8 participants (4 females and 4 males). Each participant

wore wearable devices at 5 different body locations while performing 19 types

of activities. Signals from tri-axial accelerometers, gyroscopes, and magne-

tometers were recorded at a constant rate of 25 Hz. In our experiments, we

utilized only the signals from the tri-axial accelerometers and gyroscopes, re-

sulting in a total of 30 sensor channels.

Wireless Sensor Data Mining Dataset (WISDM) [83]: The WISDM dataset

consists of data collected from 36 individuals who carried a cell phone while

performing 6 everyday activities: walking, jogging, sitting, standing, going

upstairs, and going downstairs. The accelerometer embedded in the cell phone

recorded tri-axial data (x, y, and z directions) at a sampling rate of 20 Hz. For

prediction tasks, the data were segmented into 5.12-second intervals.

Human Activities and Postural Transitions Dataset (HAPT) [128]: The

HAPT dataset was collected from 30 volunteers. Each participant wore a

smartphone on their waist while performing 12 daily activities, including 6

basic activities and 6 postural transitions. Signals from the tri-axial accelerom-

eter and gyroscope were recorded at a constant rate of 50 Hz. All sensor signals

were segmented using a sliding window containing 128 readings, correspond-

ing to a 2.56-second interval.

GesHome Dataset [115]: The GesHome dataset consists of 18 hand ges-

tures performed by 20 non-professional subjects of various ages and occupa-

tions. Each participant performed each gesture 50 times over a period of 5 days,

resulting in a total of 18,000 gesture samples. The data were recorded using

an embedded accelerometer, magnetometer, and gyroscope at a frequency of

25 Hz, resulting in a total of 9 sensor channels. The data have been segmented

into 2-second intervals for analysis.

Mobile HEALTH Dataset (MHEALTH) [13]: The MHEALTH dataset com-

prises body motion and vital signs recordings from 10 volunteers of diverse

profiles while performing 12 physical activities. Sensors, including accelerom-

eters, gyroscopes, and magnetometers, were placed on the subjects’ right wrist

28

and left ankle to measure motion, resulting in a total of 18 sensor channels.

Additionally, a sensor positioned on the chest provided 2-lead ECG measure-

ments, which were not used in the development of the recognition model. For

prediction tasks, the data were segmented into 2.56-second intervals.

Motion Sense Dataset: The Motion Sense dataset was collected from 24

volunteers. Each participant performed 6 daily activities across 15 trials under

consistent conditions, with a phone placed in the front pocket. Signals from a

tri-axial gravimeter, linear accelerometer, gyroscope, and magnetometer were

recorded at a sampling rate of 50 Hz. In our experiments, the sensor signals

were segmented using a sliding window of 128 readings, corresponding to 2.56

seconds.

Skoda Dataset [170]: The Skoda dataset addresses the problem of recogniz-

ing 10 manipulating gestures performed by assembly-line workers in a manu-

facturing scenario. Each worker’s left and right arms were equipped with 10

accelerometers, with data recorded at a sampling rate of 98 Hz. Following the

approach in [reference], we used the data collected from the right arm, result-

ing in a total of 30 sensor channels. The model is designed to classify the 10

manipulating gestures based on 2-second data segments. L-sign

Letters of Polish Sign Language Alphabet Dataset (L-sign) [123]: The

L-sign dataset contains data obtained by measuring hand movements while

performing the letters of the Polish Sign Language alphabet. The dataset in-

cludes data from 16 users, each performing all 36 letters ten times. Data col-

lection was conducted using 10-channel finger piezoresistive sensor readings,

a 3-channel gyroscope sensor, and a 3-channel accelerometer sensor, resulting

in a total of 16 channels. The sampling rate is 25 Hz. Each gesture execution is

recorded in 75 samples, meaning the data have been segmented into 3-second

intervals.

The sensor placement locations and modality counts for each dataset are

visualized in Figure 2.4.

2.4.2 Evaluation Protocol

The performance of all models is evaluated using the Leave-One-Subject-Out

(LOSO) Cross-Validation (CV) methodology. In each iteration of the CV pro-

29

OPPO

RW DSADS WISDM

DG

HAPT

Waist

Right
Upper
Arm

Right
lower
arm

Left
Upper
Arm

Left
lower
arm

Mid back

L-Shoe R-Shoe

Chest

Waist Forearm

Head

Thigh

Upperarm

Shin

left arm right armTorso

right legleft leg leg pocket

Trunk

Shank
Thigh

PAMAP2

Chest

Ankle

Hand

Smartwatch

GesHome

10x IMU

Skoda(r)

…

MotionSense

Front Pocket Left Ankle

MHealth

Hand
+

Finger

L-Sign

Right Wrist

Figure 2.4: This figure shows the sensor placement locations for each dataset.
In this case, sensor modality is categorized by placement. The body
is divided into four regions: head, torso, upper limbs, and lower
limbs, each represented by a different color.

30

cess, data from one subject is designated as the test set, while data from all

remaining subjects constitute the training/validation set. The model is trained

on the training set, and the validation set is used to identify the best-performing

model, which is then tested on the test set. A fixed 9:1 ratio is maintained be-

tween the training and validation sets. This CV process is repeated until data

from every subject has been utilized as test data.

For the segmentation of the training set, we employed a Semi-Non-Overlapping-

Window strategy [73]. Specifically, the training data were split using a sliding

window with a 50% overlap between adjacent windows. In contrast, for the

test data, the window was slid forward by one time step [185]. It is important

to note that before segmentation, the data from each channel were normalized

using the z-score method.

Given the imbalanced nature of the HAR datasets, the macro-average F1

score (F1M) is selected as the evaluation metric. At the conclusion of the

LOSO-CV process, the mean F1M is calculated across all subjects. This entire

LOSO-CV procedure is repeated five times for each dataset with random seeds

of 1, 2, 3, 4, and 5. The mean and standard deviation of the mean F1M across

these five repetitions are calculated and reported as the final performance.

An exception is the Skoda dataset, which contains data from only a single

subject. In this case, a hold-out evaluation is performed, following [3], where

the first 80% of the data is used for training, the next 10% for validation, and

the final 10% for testing.

2.4.3 Training Procedures

All models are implemented using PyTorch [121]. Training is conducted us-

ing the Adam optimizer [80], with its default parameters as defined in Py-

Torch 1.9.1, starting with a learning rate of ξ = 10−4. The learning rate is

reduced by a factor of 0.9 if the validation loss does not improve after a pa-

tience threshold of 10 epochs. The maximum number of training epochs is set

to epochmax = 200, with a fixed batch size of 256. All models were trained

on a single NVIDIA A100 40G GPU. Early stopping is employed, halting the

training if the validation loss does not improve for 15 consecutive epochs.

31

3 Data Preparation

In this chapter, we discuss how to achieve lightweight models through data pro-

cessing approaches. In Section 3.1, we review related work on HAR data pro-

cessing, highlighting the challenges associated with data processing in HAR

tasks. In Section 3.2, we introduce methods to enhance data quality through

data augmentation, demonstrating how, with the help of data augmentation, a

model can achieve SOTA performance even when it has a simple structure or its

size is manually reduced. In Section 3.3, we explore how data transformation

can be leveraged to develop lightweight models, proposing a learnable wavelet

layer as a key component. Finally, in Section 3.4, we provide a summary of

this chapter.

3.1 Related Works

In most studies, HAR data is typically standardized using z-score normaliza-

tion before being directly fed into the model. Additionally, some approaches

involve further processing steps [178]. Firstly, high-frequency noise is sup-

pressed by passing the original signal through a 3rd-order low-pass Butter-

worth filter [129] with a cutoff frequency of 20 Hz, which has been consid-

ered adequate for capturing human body motion [77]. Subsequently, addi-

tional signals are generated using two methods: the Differencing Time Se-

ries (DTS) method and the Separating Movement and Gravity Components

(SMGC) method [6]. Figure 3.1 presents an example of generating additional

signals from the raw x-axis accelerometer signal after applying both process-

ing methods. The DTS method involves calculating the differences between

two consecutive temporal observations, effectively eliminating stationary com-

ponents and accentuating temporal dependencies and fluctuations. This ap-

proach reduces bias and produces more informative features related to activity

33

Raw Acc x
2.00

0.50

1.50

1.00

0 20 40 60 80 100 120

-0.50

0.50

0.00

0 20 40 60 80 100 120 -0.50

0.50

0.00

0 20 40 60 80 100 120 0.80

1.20

1.00

0 20 40 60 80 100 120

Differenced Acc x Gravity part of Acc xBody Movement part of Acc x

DTS
SMGC

Figure 3.1: New signal channels are generated using the Differencing Time
Series (DTS) method and the Separating Movement and Gravity
Components (SMGC) method.

transitions and dynamic patterns. For acceleration signals captured by sen-

sors—which include both movement due to human activities and static accel-

eration due to gravity—the SMGC method is employed to separate these com-

ponents. Following the approach in [6], a Butterworth low-pass filter with a

cutoff frequency of 0.3 Hz is used. The movement component contains infor-

mation related to the intensity, frequency, and changes in movement, while the

gravity component provides insights into body posture or orientation.

However, the aforementioned procedures represent relatively simple data

processing methods. In contrast, data augmentation and transformation frame-

works have been extensively studied and are routinely used in NLP [47] and

computer vision model training [135]. These methods have become standard

practices in those fields, yet they are rarely applied in HAR tasks [69; 156; 3].

In the following sections, we will review the related work on data augmentation

and transformation in HAR tasks.

3.1.1 Data Augmentation

To improve data quality and enhance the generalization performance of mod-

els, data augmentation has emerged as a promising solution. data augmentation

involves enriching datasets by creating virtual training samples through vari-

ous transformations of the original data. Existing data augmentation methods

34

for HAR tasks can be broadly classified into two categories: traditional and

advanced [156].

3.1.1.1 Traditional Approaches. Traditional data augmentation techniques

for HAR tasks typically involve random signal transformations such as adding

noise, window slicing, magnitude scaling, and random warping [27; 4; 75].

However, these methods are not specifically designed for HAR tasks and often

lack awareness of the target task and data characteristics [156]. Consequently,

the implementation of inappropriate data augmentation methods can distort

the original data characteristics, potentially altering the label semantic infor-

mation [71] and negatively impacting model performance [69]. These obser-

vations underscore the importance of selecting appropriate data augmentation

methods that minimize the distortion of the original data characteristics.

To address this, w-augment [49] proposed sample-adaptive automatic weight-

ing schemes that learn the contribution of each random transformation, en-

abling the exclusion of excessive or redundant methods. However, this ap-

proach was not specifically assessed on HAR data. Additionally, while it

learns the importance of individual random transformations, it does not explore

their combination. Research has shown that combining multiple augmentation

methods can lead to improved performance [149; 156; 71]. However, these

studies typically involve manually predefined combinations of methods. Iden-

tifying the optimal set of augmentation methods is a combinatorial problem,

which is NP-hard and requires substantial computational resources.

To mitigate the issue of label semantics distortion arising from random trans-

formations, Abedin et al. [1] proposed the MixUp data augmentation method,

which randomly linearly mixes two data samples and their labels to generate

virtual data. Another approach, ALAE-TAE-CutMix [3], employs a different

data mixing technique by randomly replacing sub-segments in one data sam-

ple with corresponding sub-segments from another sample. However, these

methods face challenges in generating a diverse range of augmented data, es-

pecially considering variations in subjects, activities, sensor placements, and

sensor elasticity [143]. The substantial intra-class and inter-subject variability

prevalent in HAR datasets implies that relying solely on training set augmen-

35

tation through mixing techniques may not adequately bridge the distributional

gap between training and test sets. As a result, the exploration of supplemen-

tary data augmentation techniques capable of increasing diversity and mirror-

ing real-world scenario variability becomes indispensable.

3.1.1.2 Advanced Approaches. Advanced approaches for data augmenta-

tion primarily involve synthesizing data using generative models. For instance,

Goubeaud et al. [52] trained a variational autoencoder (VAE) on the original

data and subsequently generated new samples to augment the training set. Sim-

ilarly, ActivityGAN [90] employed a generative adversarial network (GAN)-

based approach to generate new training samples.

Another emerging class of generative models is the diffusion model, increas-

ingly applied in the image domain and recently adapted for HAR. This includes

applications in WiFi channel state information-based HAR [64], and wearable-

based HAR [191; 134]. Shao et al. [134] reconfigured the U-net architecture

for the denoising model to assess the efficacy of diffusion-based models, while

Zuo et al.[191] conditioned the diffusion model on statistical information to

generate diverse synthetic sensor data.

However, a noteworthy limitation of these approaches is that they did not

train the virtual data generator in an end-to-end manner alongside the HAR

model, potentially resulting in sub-optimal performance. To address this issue,

the Sample Fusion Network (SFN) [111] cascaded a long short-term memory

(LSTM) autoencoder (AE) network to the HAR network, employing a data

mixing style to create a combined network that can be trained in an end-to-end

manner.

While these advanced approaches offer data- and task-dependent advan-

tages, it is important to acknowledge that they tend to be computationally

expensive [69; 156]. Successfully applying these advanced techniques often

requires a high level of expertise in model structure design and training con-

figuration to ensure the quality of synthetic samples. To mitigate the need for

such expert knowledge, fields like image processing have extensively explored

automatedda taoptimization frameworks [29; 59]. However, these frameworks

have not been explicitly applied to the HAR field. Furthermore, unlike im-

36

age data, HAR data involves more complex modalities and is more sensitive

to perturbations, factors that have not been adequately addressed in previous

research [29; 59].

3.1.1.3 Challenges. Based on the review of data augmentation techniques

in HAR tasks, we identify four primary challenges in applying data augmenta-

tion to the HAR domain:

Inter-Class Similarity Challenge: HAR datasets often exhibit significant

similarities between different activities [24], making it difficult to apply ran-

dom transformations without altering activity labels. For example, Jeong et

al. [71] demonstrated how augmenting a "walking" segment could lead to a

misclassification as "jogging." Aggressive or inappropriate augmentations can

bias the data and diminish model performance[71; 69; 149]. The key challenge

is selectingdata augmentationmethods that preserve the data’s characteristics

and the semantic nuances of activities.

Data Augmentation Combination Challenge: Research [75; 149; 156] has

shown that combining multiple data augmentation methods can significantly

improve HAR performance. However, the large number of available meth-

ods [69] makes exhaustive experimentation with all combinations impractical.

Automating the selection and integration of data augmentation algorithms for

HAR tasks remains an unresolved issue that requires further investigation.

Multi-Modality Challenge: Data captured from different body locations

using various sensors (e.g., accelerometers, gyroscopes) provide unique in-

sights into activities. Applying transformations indiscriminately across modal-

ities can compromise their effectiveness.

Intra-Class and Inter-Subject Variability Challenge: The variability in

data leads to a distribution discrepancy between training and test datasets,

causing HAR model performance to decline when applied to new subjects.

Although many data augmentation methods aim to generate diverse synthetic

data that approximates the original data distribution, they often do not account

for the differences between training and test distributions, potentially failing to

capture the variations encountered in test scenarios, as illustrated in the Fig-

ure 3.2.

37

Test Data
Distribution

Training Data
Distribution discrepancy

Training Data Augmented Data Test Data

Figure 3.2: Data augmentation is a process that generates additional data points
in alignment with the original training data distribution. However,
in HAR datasets, a significant train-test distribution discrepancy
often exists. Therefore, it is crucial to identify augmentation poli-
cies that generate data points more representative of both (train and
test) data distribution, thereby improving the model’s generaliza-
tion ability.

In response to these challenges, we propose AutoaugHAR, an automated

data augmentation optimization framework, which will be introduced in Sec-

tion 3.2.

3.1.2 Data Transformation

Signals acquired through wearable sensors often exhibit multi-frequency, non-

periodic, and fluctuating characteristics [24]. Therefore, frequency features

are imperative for differentiating human activities. Although frequency infor-

mation can be implicitly modeled within DL models using time-series repre-

sentations [164], according to the frequency principle [164], DL models face

challenges in effectively learning and generalizing from high-frequency data.

Directly utilizing frequency representations offers richer frequency features

that may be imperceptible in the time domain. This approach enables the model

to learn the evolution of frequency amplitude over time. Given these considera-

tions, frequency representations have become increasingly popular in research

38

Time

F
re

q
u

en
cy

Time Series

Time

F
re

q
u

en
cy

Fourier Transform

Time

F
re

q
u

en
cy

Spectrogram

Time

F
re

q
u

en
cy

Scalogram

(a) (b) (c) (d)

Figure 3.3: The diagram illustrates the time and frequency resolutions of dif-
ferent representations.

efforts focused on HAR tasks [99; 167; 102; 23]. Two widely adopted methods

for converting time-domain representations to frequency-domain representa-

tions are the use of Short-Time Fourier Transform (STFT) to create spectro-

grams, and Wavelet Transform to generate scalograms.

3.1.2.1 Short-Time Fourier Transform. The time and frequency resolu-

tions of different representations are illustrated in Figure 3.3. The size and

orientation of the blocks indicate the granularity of features that can be distin-

guished in the time and frequency domains. As observed from the Figure 3.3

(a), the time-series representation provides high resolution in the time domain

but offers no information in the frequency domain. However, when the time

series is transformed into a frequency representation using Fourier Transform,

the frequency representation loses temporal information while gaining high

resolution in the frequency domain, as observed from the Figure 3.3 (b). This

indicates that the Fourier Transform eliminates the time-dependency of fre-

quency information.

The general rule is that this approach, utilizing the Fourier Transform, per-

forms effectively when the frequency spectrum is stationary, meaning that the

frequencies present in the signal remain constant over time. However, HAR

data are often non-stationary or dynamic signals. Consequently, many HAR

researchers have adopted the STFT to address this issue. In this approach,

the original signal is divided into T intervals of equal length τ , without over-

lap [99; 167]. If the length of the time series is L, then the relationship between

T and τ is given by T = L/τ . Each interval then undergoes an FFT transforma-

39

Complex Morlet Frequency B-Spline

Gaussian Mexican Hat

Morlet Shannon
(b)

Raw Sensor Readings

(a)

Raw Sensor Readings

(a)

) = *) = +,

) = -.) = ,/

(b)

Figure 3.4: STFT with different interval length τ .

tion, with f amplitude and phase spectral pairs computed from each interval.

Typically, the value of f is equal to τ . This process yields a representation

known as a spectrogram. As shown in Figure 3.3 (c), the resolution in both

time and frequency domains depends on the parameters T and τ . Figure 3.4,

based on data from an x-axis accelerometer, illustrates the effect of varying

parameter settings in the STFT on the resulting representations. When the in-

terval length τ is small, the resolution in the frequency dimension is low, but

the resolution in the time dimension is high. As τ increases, finer details are

captured in the frequency dimension, while the time-dependent information

becomes increasingly blurred.

3.1.2.2 Wavelet Transformation. The Fourier Transform uses a series of

sine waves with different frequencies to analyze a signal, representing it as a

linear combination of these sine waves. In contrast, the Wavelet Transform em-

ploys wavelet functions to capture frequency information [174]. Wavelet func-

tions are scaled—either compressed or stretched—using a scale parameter to

capture frequency information across different ranges. Small scales correspond

to high frequencies, while large scales correspond to low frequencies. The rep-

resentation obtained through the Wavelet Transform is known as a scalogram.

40

Complex Morlet Frequency B-Spline

Gaussian Mexican Hat

Morlet Shannon
(b)

Raw Sensor Readings

(a)

Raw Sensor Readings

(a)

) = *) = +,

) = -.) = ,/

(b)

Figure 3.5: This figure illustrates six different representative mother wavelet
functions. The results of transforming the same sensor readings
using these mother wavelet functions are visualized to the right of
each corresponding wavelet. It is evident that the resulting repre-
sentations vary significantly.

As illustrated in Figure 3.3 (d), the scalogram differs from the spectrogram in

that it provides high resolution in the frequency domain and low resolution in

the time domain for small frequency values. Conversely, for large frequency

values, it offers low resolution in the frequency domain and high resolution in

the time domain. This reflects a trade-off inherent in the Wavelet Transform.

To effectively utilize the Wavelet Transform, various families (types) of

wavelets are available. Some representative wavelets are shown in Figure 3.5.

These wavelet families differ from each other based on the specific trade-offs

made regarding the compactness and smoothness of the wavelet. Each fam-

ily optimizes different aspects of the wavelet’s shape to suit particular analysis

needs.

41

3.1.2.3 Challenges. A challenge in implementing spectrogram or scalo-

gram representations lies in defining the appropriate hyper-parameters. For in-

stance, when calculating the spectrogram representation, the Fourier Transform

is executed to calculate the frequency over a short time interval with length τ .

According to the uncertainty principle [124], determining the optimal interval

length τ is complex: A smaller window provides more precise information

about the timing of frequency occurrences in the signal but offers less accu-

racy regarding the frequency value itself, potentially losing information about

long temporal dependencies. Conversely, a larger interval size provides more

accurate information about the frequency value but less about its exact timing.

Activities such as falling or stumbling, which exhibit abrupt and sharp changes

in time-series representation, may become blurred or even erased in spectro-

gram representations. In previous HAR studies that utilized spectrograms as

inputs, the specifics of how these hyperparameters were defined are often not

introduced [167; 99; 102; 23].

Similarly, when calculating scalogram representations, the choice of the

mother wavelet function is critical. As shown in the Figure 3.5, there is a

significant difference in the visualizations of the results after applying differ-

ent wavelet transforms to the data. Experimental findings in [114] indicate that

the selection of the mother wavelet significantly impacts the results. To address

this issue, several works [175; 109] have utilized multiple wavelets in combi-

nation with CNN for HAR tasks. However, these approaches typically employ

only a limited number of pre-selected wavelets (one wavelet in [175] and seven

wavelets in [109]), and importantly, the wavelets in these works are not learn-

able. A framework for learnable "wavelet" filters was proposed in [130], but it

only preserves the form of wavelet transformation (i.e., correlation and down-

sampling). The necessary properties of wavelets, such as bi-orthogonality and

energy conservation, are not guaranteed in this framework.

To mitigate the impact of these hyperparameter choices on model perfor-

mance, we propose a learnable wavelet layer for HAR models, which is intro-

duced in Section 3.3.

42

3.2 Data Augmentation AutoAugHAR

This section explores the impact of data augmentation on the performance of

HAR models. Considering the various challenges associated with applying

data augmentation to HAR tasks, as discussed in Section 3.1.1.3, we propose

a framework for the automated optimization of data augmentation policies,

named AutoAugHAR [188].

3.2.1 Preliminaries

Before introducing the AutoAugHAR framework, the foundational concepts

essential for the implementation of a self-optimizing generalizable data aug-

mentation are presented. In particular, we introduce the concept of data aug-

mentation sub-policies and formally define the corresponding optimization prob-

lem.

3.2.1.1 Background. Let O represent a set comprising m candidate time

series processing operations. Each operation o within O represents a func-

tion capable of transforming the time series samples, given by x̃ = o(x). An

augmentation sub-policy, denoted as s and composed of n consecutive trans-

formations, is expressed as:

x̃ = s(x) = on (· · ·o2 (o1 (x))) (3.1)

In this formulation, each operation is sequentially applied to the time series

sample x. To implement an augmentation sub-policy, it is necessary to de-

termine the number of consecutive operations n and identify the appropriate

operation form the set O for each transformation step. For instance, Chung

et al. [27] utilized a single transformation method jittering, which means the

number of consecutive operations n = 1 and the op = ” jittering”. And Um

et al. [149] utilized an augmentation sub-policy encompassing three consecu-

tive operations (n = 3), which are o1 = rotation, o2 = permutation, and o3 =

time-warping, respectively.

Let S symbolize the set of all possible augmentation sub-policies. Given m

candidate operations and each augmentation sub-policy comprising n consecu-

43

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠!&𝑠' 𝑠(𝑠) 𝑠*sa
m

pl
in

g
pr

ob
ab

ili
ty uniform distribution

sa
m

pl
in

g
pr

ob
ab

ili
ty optimized distribution

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠!&𝑠' 𝑠(𝑠) 𝑠*
(a) (b)

Figure 3.6: Categorical distribution of 10 augmentation sub-policies. Red bars
indicate sub-policies with a negative influence, while green bars
represent those with a positive impact.

tive transformations, the total number of sub-policies is Ls = |S |= Pn
m, where

S =
(︁
s1,s2, · · · ,sLs

)︁
. Each augmentation sub-policy possesses a distinct com-

bination of the candidate operations. However, a brute-force approach to ex-

plore all various augmentation sub-policies demands significant experimenta-

tion and computational resources, rendering it inefficient and sub-optimal.

3.2.1.2 Naive Approach. To address the challenge of efficiently selecting

effective augmentation sub-policies, we use a baseline approach, that is com-

monly used data augmentation mechanism in computer vision model [30]. In-

stead of using only a singular, predefined augmentation sub-policy, the entire

set of possible sub-policies S is employed in a stochastic manner during the

training phase. During the augmentation phase of each mini-batch iteration, a

single augmentation sub-policy is randomly selected from S and subsequently

applied to the mini-batch data.

Let the categorical distribution p represent the likelihood of each sub-policy

being sampled. In this context, p =
[︁
p1, p2, · · · , pLs

]︁
=
[︂

1
Ls
, 1

Ls
, · · · , 1

Ls

]︂
fol-

lows a uniform probability distribution, providing an equal chance for all aug-

mentation sub-policies to be utilized. Thus, the entirety of possible augmenta-

tion sub-policies is leveraged, offering a significantly increased diversity of the

augmented data. Furthermore, this approach mitigates potential model degra-

dation that could arise from the utilization of predetermined, sub-optimal aug-

mentation sub-policies.

44

3.2.1.3 Data Augmentation Optimization. The naive approach adopted a

uniform probability distribution, treating all augmentation sub-policies equally

without considering their potential positive or negative impacts, as demon-

strated in Figure 3.6 (a). Ideally, augmentation sub-policies that exert positive

influences should be assigned higher probabilities. Therefore, the primary ob-

jective of this study is to automatically optimize the categorical distribution for

all augmentation sub-policies, as illustrated in Figure 3.6 (b). Moreover, this

optimization process should be executed without incurring excessive training

overheads or necessitating model modifications.

3.2.2 Methodology

To effectively optimize the categorical distribution (combinatory space) of sub-

policies, we present a two-stage gradient-based framework, termed AutoAugHAR.

This framework takes into account multi-modality characteristics inherent in

HAR tasks. Optimization of the categorical distribution and weights of the

HAR model is performed end-to-end (see Section 3.2.2.1) using gradient de-

scent (Section 3.2.2.2) . We have designed a HAR specific search space of data

augmentation operators that constitute the augmentation sub-policies (Section 3.2.2.3).

3.2.2.1 Overview of AutoAugHAR. During the training phase, data sam-

ples are subjected to data augmentation transformations before being input

into the HAR models (see augmentation layer preceding the HAR model in

Figure 3.7). Contrary to prior studies, this framework incorporates a total of

Ls distinct augmentation sub-policies. For each mini-batch iteration, only a

sub-policy is selected and executed, ensuring that memory consumption aligns

with traditional HAR model training paradigms. The selection is determined

by sampling the sub-policy in accordance with the categorical distribution p =[︁
p1, p2, · · · , pLs

]︁
. Each element pi represents the probability of selecting the

i-th sub-policy in the sampling process:

45

𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.1 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑙𝑖𝑐𝑖𝑛𝑔

𝒑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑏𝑦
𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜶

𝐷𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙
𝑤𝑖𝑡ℎ 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝒘

ℒ(𝜶,𝒘)
𝐷𝑎𝑡𝑎 𝑆𝑎𝑚𝑝𝑙𝑒

Augmentation Layer HAR Model

𝑀𝑖𝑥𝑢𝑝 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 σ=0.1

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 7 𝐶𝑢𝑡𝑀𝑖𝑥

𝐴𝑑𝑑𝑖𝑛𝑔 𝑆𝑙𝑜𝑝𝑒 𝑊𝑖𝑛𝑑𝑜𝑤 𝑊𝑎𝑟𝑝𝑖𝑛𝑔

𝐶𝑢𝑡𝑀𝑖𝑥 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑊𝑎𝑟𝑝𝑖𝑛𝑔 σ=0.2

𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑙𝑖𝑐𝑖𝑛𝑔 𝐴𝑑𝑑𝑖𝑛𝑔 𝑆𝑙𝑜𝑝𝑒

𝑇𝑖𝑚𝑒 𝑊𝑎𝑟𝑝𝑖𝑛𝑔 σ=0.1𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝑝!

𝑝"#$%

𝑝%

𝑝&

𝑝'

𝑝"#$!

𝑝"#

Figure 3.7: An overview of the proposed AutoAugHARbasic. Every channel
across all modalities undergoes the same augmentation sub-policy.
During the data propagation phase, only one augmentation sub-
policy is chosen and applied. The selection of this sub-policy de-
pends on the probability pi associated with each path. The objec-
tive of the optimization is to ensure that sub-policies which improve
performance have a higher probability compared to those that af-
fect performance.

c = sample
(︂

p1, p2, · · · , pLs
)︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1,0, · · · ,0] with probability p1

· · ·
[0,0, · · · ,1] with probability pLs

(3.2)

Upon sampling, the path within the augmentation layer is represented as a

one-hot encoded vector, denoted as c, contingent on the associated probability:

x̃ =
Ls

∑
i=1

cisi (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1 (x) with probability p1

· · ·
sL (x) with probability pL

s

(3.3)

At any given instance, only a single augmentation sub-policy path is acti-

vated. If the categorical distribution of sub-policies p is uniformly distributed

and remains unoptimized, this procedure mirrors the baseline approach de-

46

tailed in section 3.2.1.2. For clarity in subsequent experimental comparisons,

we refer to this framework as AutoAugHARrandom.

Categorical distribution p is typically parameterized by a learnable vector

α =
[︁
α1,α2, · · · ,αLs

]︁
. Subsequently, the distribution p is derived by applying

the softmax function over α leading to the following probability of selecting

the i-th sub-policy:

pi = pα

(︂
s = si

)︂
= softmax

(︂
α

i;α

)︂
=

exp
(︁
α i)︁

∑
Ls
j=1 exp(α j)

(3.4)

αi signifies the importance attributed to the i-th sub-policy: a relatively large

value of αi indicates a higher likelihood for selecting the corresponding i-th

sub-policy. We define the resulting optimization problem as follows:

min
(α,w)

L (α,w) (3.5)

Both α and w are subjected to end-to-end training, minimizing the loss func-

tion. The "sample" operation in equation 3.2 introduces a discontinuity, thereby

inhibiting the propagation of gradients to the weights α (solution please refer

to section 3.2.2.2). While this optimization strategy enables dynamic weights

optimization for augmentation sub-policies during the model’s training phase,

it still overlooks the distinct attributes of the candidate data augmentation oper-

ations within set O and the multi-modality characteristics of HAR tasks. (We

refer to this framework as AutoAugHARbasic.)

Given two distinct categories of candidate data augmentation operations,

each with varying capacities to preserve label semantics (refer to Section 3.2.2.3),

and aiming to optimize augmentation sub-polices for each modality, we revised

the structure. The updated framework, named AutoAugHAR, is depicted in

Figure 3.8. AutoAugHAR operates in two stages. The first mixing stage trans-

forms the data using label-preserving sample-pair-based mixing techniques

like MixUp [1] and CutMix [3]. The second stage, which has a slightly higher

risk of compromising label semantics, incorporates random data augmentation

augmentations to further enrich the diversity of the data.

In contrast to AutoAugHARbasic, which optimizes p universally across all

modalities, AutoAugHAR tailors the distribution of augmentation sub-policies

47

𝑑𝑎
𝑡𝑎
𝑠𝑎
𝑚
𝑝𝑙
𝑒

𝑀
𝑖𝑥
𝑈
𝑝

𝐶𝑢
𝑡𝑀
𝑖𝑥

𝐼𝑑
𝑒𝑛
𝑡𝑖
𝑡𝑦

𝐴𝑛
𝑜𝑡
ℎ𝑒
𝑟
𝑟𝑎
𝑛𝑑
𝑜𝑚

𝑑𝑎
𝑡𝑎
𝑠𝑎
𝑚
𝑝𝑙
𝑒

𝒑𝒉
𝒆𝒂
𝒅

𝒑𝒕
𝒐𝒓
𝒔𝒐

𝒑𝒖
𝒑𝒑
𝒆𝒓
𝒍𝒊
𝒎
𝒃

𝒑𝒍
𝒐𝒘

𝒆𝒓
𝒍𝒊
𝒎
𝒃

H
A

R
 M

od
el

𝐷
𝑒𝑒
𝑝
𝑙𝑒
𝑎𝑟
𝑛𝑖
𝑛𝑔

𝑚
𝑜𝑑
𝑒𝑙

𝑤
𝑖𝑡
ℎ
𝑡𝑟
𝑎𝑖
𝑛𝑎
𝑏𝑙
𝑒
𝑤
𝑒𝑖
𝑔ℎ
𝑡𝑠
𝒘

ℒ(
𝜶
,𝒘
)

𝑚
𝑖𝑥
𝑒𝑑

𝑑𝑎
𝑡𝑎

𝑠𝑎
𝑚
𝑝𝑙
𝑒

𝑚
𝑜𝑑
𝑎𝑙
𝑖𝑡
𝑦
−
𝑠𝑝
𝑒𝑐
𝑖𝑓
𝑖𝑐

𝑟𝑎
𝑛𝑑
𝑜𝑚

𝑎𝑢
𝑔𝑚

𝑒𝑛
𝑡𝑒
𝑑

𝑑𝑎
𝑡𝑎
𝑠𝑎
𝑚
𝑝𝑙
𝑒

𝒑
=

𝒑𝒎
𝒊𝒙
𝒊𝒏
𝒈
,𝒑

𝒉𝒆
𝒂𝒅
,𝒑

𝒕𝒐
𝒓𝒔
𝒐 ,
𝒑𝒖

𝒑𝒑
𝒆𝒓
𝒍𝒊
𝒎
𝒃
,𝒑

𝒍𝒐
𝒘
𝒆𝒓
𝒍𝒊
𝒎
𝒃

is
pa
ra
m
et
er
iz
ed
by

𝜶
=

𝜶
𝒎
𝒊𝒙
𝒊𝒏
𝒈
,𝜶

𝒉𝒆
𝒂𝒅
,𝜶

𝒕𝒐
𝒓𝒔
𝒐 ,
𝜶
𝒖𝒑
𝒑𝒆
𝒓𝒍
𝒊𝒎

𝒃
,𝜶

𝒍𝒐
𝒘
𝒆𝒓
𝒍𝒊
𝒎
𝒃

𝒑𝒎
𝒊𝒙
𝒊𝒏
𝒈

1s
t
A

ug
m

en
ta

tio
n

st
ag

e
2n
d

A
ug

m
en

ta
tio

n
st

ag
e

𝑠3 𝑠4 𝑠5 𝑠6
7
3

𝑠6
𝑠3 𝑠4 𝑠5 𝑠6
7
3

𝑠6
𝑠3 𝑠4 𝑠5 𝑠6
7
3

𝑠6
𝑠3 𝑠4 𝑠5 𝑠6
7
3

𝑠6

Fi
gu

re
3.

8:
O

ve
rv

ie
w

of
th

e
pr

op
os

ed
A

ut
oA

ug
H

A
R

fr
am

ew
or

k.
D

iff
er

en
tc

ol
or

s
re

pr
es

en
td

at
a

fr
om

va
ri

ou
s

m
od

al
iti

es
.I

n
th

e
fir

st
st

ag
e,

da
ta

fr
om

al
lm

od
al

iti
es

ar
e

tr
an

sf
or

m
ed

us
in

g
th

e
sa

m
e

se
le

ct
ed

op
er

at
or

.I
n

th
e

se
co

nd
st

ag
e,

da
ta

fr
om

ea
ch

m
od

al
ity

is
in

di
vi

du
al

ly
tr

an
sf

or
m

ed
by

di
ff

er
en

to
pe

ra
to

rs
an

d
su

bs
eq

ue
nt

ly
in

te
gr

at
ed

.

48

for each modality in the second stage individually. Modalities are classified

based on sensor placement, e.g. head, upper limb, lower limb, and torso.

During the forward pass of the second stage, data samples are partitioned ac-

cording to the modality. For each, a path is sampled independently, with the

corresponding augmentation sub-policy applied. Subsequently, data from all

modalities are integrated and fed to the HAR model. We did not perform in-

dividual modality-wise optimization in the first stage. This is attributed to the

incompatibility of sample-pair-based mixing techniques for such a purpose (see

section 3.2.2.3).

For optimization, separate categorical distributions are initialized for the first

mixing stage and each modality of the second stage. These separate categorical

distributions are denoted as
(︁

pmixing, phead , pupperlimb, plowerlimb, ptorso)︁ with

learnable vectors
(︁
αmixing,αhead ,αupperlimb,α lowerlimb,αtorso)︁. The size and

search space of these distributions are detailed in section 3.2.2.3. During the

forward pass, within each categorical distribution, a path will be sampled us-

ing equation 3.2. The corresponding sub-policy is then applied to the data

according to equation 3.3. Upon optimization, the first mixing stage as well as

all individual modalities of the second stage, will acquire a specifically opti-

mized distribution for applying data augmentation sub-policies. By leveraging

this two-stage structure, AutoAugHAR seeks to preserve the label semantic

information of the data while generating optimized categorical distribution of

augmentation policies intrinsic to each modality, thus improving the overall

performance.

3.2.2.2 Gradient Based Optimization. The loss function in equation 3.5 is

differentiable with respect to the model weights w, allowing optimization via

stochastic gradient descent. However, the loss is not directly differentiable with

respect to the sampling parameter α , because the discrete "sample" operation

introduces non-differentiable points in the network. This section will describe

how to optimize the weights α using a gradient descent approach. Because the

forward process and gradient back propagation process of all categorical distri-

butions parameterized by α are same, we decide to omit the use of superscripts

(head, upperlimb, lowerlimb and torso) to explain these processes.

49

In order to facilitate back-propagation through these non-differentiable op-

erations, Straight-Through Estimators (STE) [16] are employed. The basic

idea behind STE is to provide a way to back-propagate gradients through these

non-differentiable operations while maintaining their original behavior during

forward pass and avoiding any gradient vanishing or exploding issues during

the backward pass. In order to obtain a differentiable approximation, we apply

the Straight-Through Gumbel-Softmax Estimator [70]. Compared to sampling

the path with equation 3.2, the Gumbel-Max trick [56; 103] provides a different

way to sample the path (sub-policy):

c = Onehot_Encoding
(︃

argmax
i

(︂
gi + log

(︂
α

i
)︂)︂)︃

(3.6)

where gi are independent samples drawn from a standard Gumbel distribu-

tion gi ∼ Gumbel(0,1). The reparameterization trick refractors the sampling

of c into a deterministic distribution function using α and independent noise

g from a fixed distribution, maintaining an identical sampling procedure us-

ing equation 3.2. This technique avoids having to back-propagate through the

stochastic node g and instead only back-propagate into the deterministic distri-

bution function, updating the parameters α .

During the gradient back-propagation, argmax operation is still not differ-

entiable. To address this issue, a differentiable approximation of argmax is

needed. Gumbel so f tmax [70] offers a differentiable approximation to argmax,

as utilized in various works [159; 162; 41; 91]:

pi = GumbelSoftmax
(︂

α
i;α

)︂
=

exp
(︁(︁

log
(︁
α i)︁+gi)︁/θ

)︁
∑

L
j=1 exp((log(α j)+g j)/θ)

(3.7)

θ is the temperature parameter that controls the fidelity of the approximation

to discrete one-hot vectors. Consequently, this allows the model to be trained

with discrete operations, using equations 3.6 and 3.3 for the forward pass and

the differentiable equation 3.7 for gradient back-propagation.

Following the exploration of the differentiable optimization problem, we

now present the entire optimization process. To evaluate whether a categor-

ical distribution for augmentation sub-policies is good or not good, it is needed

50

to train the HAR model to converge to obtain the optimal model weights,

w∗ (α) = argminw Ltrain (w,α). The optimal weight w∗ is affected by the

categorical distribution parameterized by α , if α changes, the corresponding

optimal w∗ will also change. This implies a typical bi-level optimization prob-

lem [171; 97; 5] with α as the upper-level variable and the model weight w as

the lower-level variable, mathematically defined as follows.

min
α

Lval (w
∗ (α) ,α) s.t. w∗ (α) = argmin

w
Ltrain (w,α) (3.8)

where Ltrain and Lval denote the training and validation loss, respectively.

The objective is to determine the categorical distribution parameterized by α ,

which minimizes the validation loss, where the weights of the HAR model w

are obtained by minimizing the training loss. Using the performance of the

validation set as a reward for updating upper-level variable is a common prac-

tice [189; 97; 190; 96]. In this case, minimizing the validation loss through α

encourages the optimized categorical distribution for augmentation sub-policies

preserve the data semantic information and also fill the gap between seen (train-

ing) and unseen (validation) data. This mitigates the risk of generating aug-

mentation sub-policies that might over-fit the training set.

During the training process, w and α are alternately fine-tuned through gra-

dient descent. The training protocol is explained in Algorithm 1. Initially, an

augmentation sub-policy is sampled for the initial mini-batch data loading in

accordance with equation 3.6 (line 2). Following this step, α undergoes an

update through gradient calculations (line 4). Subsequently, the weights w of

the model are updated on the basis of the updated α (line 5). Conclusively,

the augmentation sub-policy is re-sampled for the forthcoming mini-batch data

loading (line 6). This alternating optimization procedure is repeated until the

maximum optimization epoch is reached.

However, during the α update step, the calculation of the gradient of α re-

quires a computationally intensive internal optimization. w∗ are derived by

minimizing training loss. To avoid extensive optimization, a one-step opti-

mization technique is employed to approximate w∗, as outlined below.

51

Algorithm 1 Training Procedure

Variables:
α - Categorical distribution for augmentation sub-policies

α =
(︁
αmixing,αhead ,αupperlimb,α lowerlimb,αtorso)︁

w - weights of the model
ξw - Learning rate for updating w
ξα - Learning rate for updating α

epochsearch - Number of epoch for optimization the data augmentation sub-
policies

1: for i=1 to epochsearch do
2: Augmentation sub-policy sampling
3: for Sample a mini-batch of data do
4: Update distribution α: α = α −ξα ∇αLval (w∗,α)
5: Update model weights w : w = w−ξw∇wLtrain (w,α)
6: Augmentation sub-policy sampling
7: end for
8: end for

∇αLval (w
∗ (α) ,α) (3.9)

≈∇αLval (w−ξw∇αLtrain (w,α) ,α) (3.10)

=∇αLval

(︂
w

′
,α
)︂
−ξw∇

2
α,wLtrain (w,α)∇w′ Lval

(︂
w

′
,α
)︂

(3.11)

here, w∗ ≈ w
′
= w−ξw∇αLtrain (w,α) is approximated using a single vir-

tual gradient step over the training set. By applying the chain rule for deriva-

tives, equation 3.11 is derived. However, the second term in the equation 3.11

contains an expensive matrix-vector product with a computational complexity

of O(|α| |w|). Fortunately, the complexity can be reduced using a finite differ-

ence approximation. Let ε be a small scalar, and w± = w± ε∇w′ Lval

(︂
w

′
,α
)︂

,

then:

∇
2
α,wLtrain (w,α)∇w′ Lval

(︂
w

′
,α
)︂
≈ ∇αLtrain

(︁
w+,α

)︁
−∇αLtrain

(︁
w−,α

)︁
2ε

(3.12)

52

The evaluation of the finite difference requires only two forward passes for

the weights and two backward passes for al pha. following the settings in [97;

91] , we let ε = 0.01/
⃦⃦⃦

∇w′ Lval

(︂
w

′
,α
)︂⃦⃦⃦

2
.

Table 3.1: Candidate operators and the settings of hyper-parameters.

Method Parameter value/range

Jittering σ 0.05
Jittering σ 0.10
Jittering σ 0.15

Moving Average ws 3
Moving Average ws 5
Moving Average ws 7

Magnitude Scaling σ 0.1
Magnitude Scaling σ 0.2
Magnitude Warping σ 0.2
Magnitude Warping σ 0.4

Window Slicing λ [0.7,0.9]
Slope-Like Trend slope [−0.1,0.1]

Time Warping σ 0.1
Time Warping σ 0.2

Mixup α 0.3
CutMix α 0.8

3.2.2.3 Candidate Operations And Search Space. In this section, we pres-

ent an exhaustive overview of considered candidate augmentation operators

that constitute the augmentation sub-policies. Drawing from a thorough re-

view of the relevant literature, we have identified a set of 17 operators, which

are both diverse and computationally efficient. All considered candidate data

augmentation operators are graphically depicted in Figure 3.9 and their hyper-

parameter settings are shown in the Table 3.1. The settings of these hyper-

parameters are summarized from related works [1; 3; 49; 69]. It is important to

note that the same operators but with different hyper-parameters are regarded

as distinct and unique entities. The candidate operators can be systematically

categorized into two primary categories: label-preserving augmentation oper-

53

ators and random transformation operators. In the following sections, we will

go into the details of each of these two categories of operators.

Label-preserving Operators. Label-preserving transformation operators aim

to produce virtual data that retain the intrinsic characteristics of the original

data. A widely applied technique in this regard is the use of sample-pair-based

methods, which involves mixing signals and labels from two input data sam-

ples.

In the MixUp approach, for two given samples (x1,y1) and (x2,y2), a virtual

training sample (x̃, ỹ) is created through linear interpolation between the input

sample pair as follows: x̃ = λx1 +(1−λ)x2 and ỹ = λy1 +(1−λ)y2. The

mixing ratio λ is a stochastic value drawn from the beta distribution B(θ ,θ),

determining the mixing intensity. Adhering to the configuration presented

in [1], the parameter θ is specified as 0.3.

In the CutMix methodology, segments from two samples are swapped to

produce a new virtual sample. Given two samples, x1 and x2, each compris-

ing T time steps. A randomly selected region, spanning a length of λT , is

delineated within x1, from which the respective sub-segment is cropped. This

cropped sub-segment subsequently replaces the counterpart in sample x2, lead-

ing to the formation of a mixed virtual sample. Unlike the MixUp mecha-

nism, CutMix generates virtual samples without altering the raw data values.

The samples generated by CutMix have steep transitions between activities.

The label associated with this augmented data is derived from the formula,

ỹ = λy1 +(1−λ)y2. Here, the coefficient λ , which controls the degree of

mixing, is also drawn from the beta distribution B(θ ,θ). As referenced in [3],

the parameter θ is set at 0.8.

In addition to those two operators, the identity operator is also incorporated.

Within the first stage, the count of conservative operations n1st is set to 1. Thus,

the size of the categorical distribution for this stage is pmixing ∈ R3. Modality-

wise optimization is not adopted, because the mixing approach does not merely

amalgamate data values, but also integrates their corresponding labels, which

would become semantically ambiguous.

54

Raw Data Augmented Data

𝑀𝑖𝑥𝑈𝑝 𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.05 𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.10 𝐽𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝜎 = 0.15

𝑇𝑖𝑚𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.1 𝑇𝑖𝑚𝑒 𝑊𝑟𝑎𝑝 𝜎 = 0.2 𝐴𝑑𝑑𝑖𝑛𝑔 𝑆𝑙𝑜𝑝𝑒 −0.1，0.1 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑐𝑖𝑙𝑖𝑛𝑔

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 3 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 7𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑤𝑠 = 5𝐶𝑢𝑡𝑀𝑖𝑥

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝜎 = 0.1 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝜎 = 0.2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.2 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑊𝑎𝑟𝑝 𝜎 = 0.4

Figure 3.9: Examples of candidate augmentation operators on the HAPT
dataset.

55

Random Transformation Operators. Given that random transformations run

the risk of corrupting the original semantic information of the data, in total 14

such candidate operators are employed in the second stage of AutoAugHAR.

Adding Noise to data samples, also referred to as jittering, is specifically de-

signed to simulate sensor noise. To implement this method, controlled amounts

of random noise are added to the raw data, producing a new representation de-

noted as x̃ = x+ ε , with ε symbolizing the random drawn noise vector from a

Gaussian distribution N
(︁
0,σ2)︁. Unlike prior studies, we introduced multiple

distinct values of σ , namely 0.05, 0.1, and 0.15, with each corresponding to

different noise intensities.

Moving Average involves calculating the average of a sliding window of

sensor data over time. It is effective in mitigating the impact of outliers and

noise present in the sensor data, but might introduce lag, especially with larger

window sizes (ws). The moving average’s inherent smoothing effect can dampen

abrupt changes. Therefore, the selection of an appropriate ws becomes critical.

We have incorporated three ws: 3, 5, and 7.

Magnitude Scaling is a technique that alters the magnitude of a signal by

applying a stochastic scaling factor to simulate variations in the intensity of

physical activity observed in real-world scenarios, defined as x̃ = x× s f , where

the scaling factor s f is a stochastic variable drawn from a Gaussian distribution

N
(︁
1,σ2)︁. We have introduced two scaling ranges, σ = 0.1 and σ = 0.2.

Magnitude Warping [10]. In contrast to magnitude scaling, which uni-

formly scales all values within the signal using the same factor, magnitude

warping involves distorting the magnitude of the signal by applying a smoothed

curve generated through cubic spline interpolation with K knots. As a result,

Magnitude Warping can produce more realistic variations in the intensity of

time-series data. To implement magnitude warping, K knots (reference points)

are selected along the time-series data, dividing the time-series data into K −1

equal segments. For each knot, a random scaling factor is sampled from a

Gaussian distribution N
(︁
1,σ2)︁. These knots, along with their corresponding

scaling factors, serve as control points for the subsequent cubic spline interpo-

lation. The original time-series data is then warped by applying the values of

the interpolated curve at corresponding time points t. We defined two scaling

56

ranges, σ = 0.2 and σ = 0.4 to avoid unrealistic distortions.

Window Slicing [86], also known as cropping, involves randomly select-

ing a segments of random length from the original signal. Given a data sam-

ple x with L time steps, mathematically, window slicing can be expressed as

x̃ = x [t : t +λL] at the starting point t with a random segment length λL. We

chose to sample segments between 70% and 90% of the original length of the

input signal, λ ∈ [0.7,0.9].

Time Warping [69] involves warping the time steps based on a cubic spline

interpolation with K knots, that are first selected along the time-series data,

dividing the time-series data into K − 1 equal segments. These knots are ran-

domly perturbed by multiplying them by a random factor which is sampled

from a Gaussian distribution N
(︁
1,σ2)︁, where sigma controls the strength of

perturbations (we use σ = 0.1 and σ = 0.2). The original time steps are re-

placed with warped time steps from the new spline. Values corresponding to

new time steps are obtained through interpolation.

Incorporating a Slope-Like Trend involves adding a linear trend to the

time series to represent patterns in specific scenarios such as a drift in ac-

cellerometer data. The slope is selected randomly from a predetermined range,

[−0.1,0.1].

If operators change the length of the original time series, we interpolate the

transformed time series back to the original length. In addition, the identity

operator is also incorporated in this step.

In this second stage of AutoAugHAR, we set the conservative operation

count n2nd to 2. Therefore, there are in total P2
14+1-14-3×2-3×2-2-2-2 = 178

augmentation sub-policies. Among all possible augmentation sub-policies,

we eliminate identical ones. For example, ’identity + jittering’ is the same

as ’jittering + identity’. We also removed sub-policies with the same op-

erators, such as ’jittering σ = 0.05 + jittering σ = 0.10’. As a result, each

modality’s categorical distribution size is as follows: phead ∈R178, pupperlimb∈
R178, plowerlimb ∈ R178, ptorso ∈ R178. In this setting, the total number of con-

servative operations n = 3 = n1st +n2nd .

57

3.2.3 Experiments and Discussions

We hypothesize that AutoAugHAR is more effective than manually selecting

existing data augmentation approaches without additional expert-based opti-

mizations. Thus, AutoAugHAR must not perform worse than any of the exist-

ing techniques given a specific sensor-based HAR task using DL techniques.

To validate the effectiveness and universality of the proposed AutoAugHAR,

we conducted extensive evaluations.

3.2.3.1 Experiment Setup.

Datasets and HAR Models. Eight datasets are selected to represent a broad

spectrum of sensing modalities, sampling frequencies, and activity classifica-

tions. These datasets include: HAPT [128], PAMAP2 [127], OPPO [21],

RW [141], DSADS [14], WISDM [83], DG [11] and GesHome [115]. Sen-

sors are grouped into different modalities based on their mounting locations.

In order to demonstrate the generalizability, we considered five diverse HAR

models in the experiments, Multi-branch CNN (MCNN) [112], hybrid model

DeepConvLSTM (DCL) [119], DeepConvLSTM-Attention (DCL-A) [113],

Attend-Discriminate (Attend) [1] and TinyHAR [185].

Compared Data Augmentation Approaches. We compare the proposed Au-
toAugHAR against the following seven data augmentation techniques in addi-

tion to a baseline (training without DA). These techniques can be categorized

into three groups: traditional data augmentation techniques (MixUp, CutMix),

generative models (SFN [111], ActivityGAN, SF-DM), and data augmentation

optimization framework (w-augment). The brief description of each technique

is as follows.

SDA [71] introduces a data augmentation pipeline that incorporates time-

warping and data masking strategy, drawing inspiration from the SpecAugment

method [120] used in language processing. Unlike the original SpecAugment

approach, SDA proposes different data masking strategies. Based on their ex-

perimental findings, we implemented the random masking strategy.

58

MixUp [1] and CutMix [3] are also included in the candidate operators,

please refer to section 4.4.1.2 for more details.

SFN [111] draws inspiration from sample-pair-based augmentation strate-

gies. Instead of using hand crafted techniques like MixUp and CutMix, SFN

generates virtual samples using a 4-layer LSTM autoencoder (AE). This LSTM

AE is cascaded with the HAR model through a MixUp fusion style to form a

unified network that can be trained end-to-end.

ActivityGAN [90]: This method presents a GAN-based framework for gen-

erating synthetic sensor-based data. The framework consists of a generator

model and a discriminator model. The generator model uses a stack of 1D-

convolution and 1D-transposed convolution layers to generate synthetic sensor

data, and the discriminator model employs 2D-convolution networks to distin-

guish between real and synthetic data. After training this GAN-based frame-

work, the generator model is unitized for DA. In the experiments, the config-

uration of ActivityGAN aligns with the original study’s design as described

in [90].

SF-DM [191] proposes an unsupervised statistical feature-guided diffusion

model for sensor-based HAR. By conditioning the diffusion model on statisti-

cal information, SF-DM can generate diverse and representative synthetic sen-

sor data. The structure of the diffusion model and training setup are consist

with the original paper.

w-augment [49] is very similar to our proposed framework: both are specif-

ically designed to learn the optimal weight of each data augmentation sub-

policy during the training phase. In w-augment, for all data augmentation sub-

policies, a weight vector with a dimension equals to the number of sub-policies

is initialized with equal weights. During the optimization process, the training

loss is utilized to update the weights of each data augmentation sub-policy.

w-augment aims to prioritize sub-policies by assigning them larger weights.

Following the settings in the original paper, only one-step sub-policies are con-

sidered. In this experiment, the included one-step sub-policies for w-augment

are the data augmentation methods summarized in Table 3.1.

It is worth nothing that for all data augmentation techniques, original sam-

ples are incorporated into the training process.

59

3.2.3.2 Comparison to State-of-the-art. The results presented in Figures 3.10

and 3.11 provide an exhaustive comparison of various data augmentation tech-

niques across multiple datasets and models. The bars represent the mean of the

macro F1 score (F1M), with the standard deviation indicated above each bar.

Each row in the figure corresponds to the performance on a specific dataset.

Furthermore, each row is divided into five groups, each representing the per-

formance of one HAR model under different data augmentation algorithms.

To determine the statistical difference in performance between the two data

augmentation algorithms, we employed the Mann-Whitney U test [157]. Bold

items mark the statistically significant best result with a p-value less than 0.05.

Across all datasets and models, applying data augmentation techniques leads

to an improvement of performance compared to the baseline that does not in-

corporate DA. Among the data augmentation techniques examined, AutoAugHAR

stood out, achieving the best results in 38 out of 40 comparison experiments.

SFN also exhibits commendable performance, followed by SF-DM, MixUp

and CutMix. SFN, MixUp and CutMix are sample-pair-based approaches.

They generate virtual samples while preserving label semantic information,

underscoring the importance of label-preserving data augmentation strategies

in HAR tasks.

Before comparing AutoAugHAR with other data augmentation frameworks,

we first examine how AutoAugHAR enhances the performance of lightweight

HAR models. We begin with the MCNN model, a purely CNN-based model

that is highly deployment-friendly. However, due to its simple architecture

and the inherent limitations of CNNs in capturing long-term dependencies, its

performance significantly lags behind SOTA models such as Attend. This dis-

parity is clearly illustrated in Figure 3.10 and Figure 3.11, where the green bars

in the columns representing the MCNN and Attend models show their perfor-

mance without data augmentation. It is evident that the green bar for Attend is

much higher than that of MCNN.

However, after applying the AutoAugHAR framework to the MCNN model

(indicated by the pink bars), its performance surpasses that of the Attend model

(without data augmentation) on 3 out of 8 datasets (DSADS, RW, and GesHome).

Moreover, on the WISDM and DG datasets, the performance gap between

60

82%
84%
86%
88%
90%

DCL MCNN TinyHAR Attend DCL+A

DSADS
87
.2
6
±
0.
57

86
.6
1
±
0.
82

𝟖𝟗
.𝟑
𝟒
±
𝟎.
𝟔𝟑

87
.7
9
±
0.
89

87
.3
7
±
1.
18

87
.0
6
±
0.
55

87
.5
3
±
0.
34

88
.0
6
±
0.
78

𝟗𝟎
.𝟏
𝟗
±
𝟎.
𝟒𝟖

88
.7
3
±
0.
41

87
.9
2
±
0.
86

88
.7
6
±
0.
60

89
.8
0
±
0.
36

89
.2
1
±
0.
81

𝟗𝟎
.𝟒
𝟏
±
𝟎.
𝟑𝟑

89
.6
4
±
0.
47

89
.0
9
±
0.
89

85
.0
9
±
0.
83

87
.4
6
±
0.
49

86
.9
8
±
0.
73

𝟖𝟖
.𝟕
𝟒
±
𝟎.
𝟐𝟕

87
.9
1
±
0.
52

87
.4
8
±
0.
66

86
.9
5
±
0.
65

89
.3
4
±
0.
42

87
.8
6
±
0.
60

86
.7
3
±
0.
56

83
.1
8
±
1.
16

84
.9
3
±
1.
04

86
.2
5
±
0.
93

85
.6
2
±
1.
22

86
.5
8
±
0.
79

86
.1
4
±
1.
39

𝟖𝟕
.𝟒
𝟑
±
𝟎.
𝟕𝟓

86
.6
5
±
1.
03

88
.6
0
±
0.
76

83
.0
4
±
0.
85

87
.0
7
±
0.
94

89
.3
3
±
0.
53

90
.1
8
±
0.
96

87
.5
8
±
0.
49

89
.2
9
±
0.
52

85
.1
2
±
0.
68

88
.1
6
±
0.
44

86
.4
6
±
0.
94

90%
88%
86%
84%
82%

37%
40%
43%
46%
49%

40
.4
1
±
0.
60

42
.3
7
±
0.
78

𝟒𝟕
.𝟖
𝟓
±
𝟎.
𝟒𝟕

44
.8
1
±
0.
49

40
.1
9
±
0.
53

38
.8
1
±
1.
16

41
.2
5
±
0.
89

𝟒𝟒
.𝟏
𝟖
±
𝟎.
𝟕𝟔

𝟒𝟑
.𝟗
𝟕
±
𝟎.
𝟗𝟓

39
.9
2
±
0.
42

40
.7
9
±
1.
23

42
.6
0
±
0.
95

𝟒𝟕
.𝟗
𝟔
±
𝟎.
𝟖𝟒

44
.8
8
±
0.
81

41
.2
3
±
1.
10

45
.8
0
±
1.
34

45
.7
0
±
0.
87

𝟒𝟖
.𝟑
𝟏
±
𝟎.
𝟕𝟗

46
.6
4
±
0.
72

45
.4
4
±
0.
68

41
.3
3
±
0.
56

42
.7
6
±
0.
47

𝟒𝟖
.𝟔
𝟐
±
𝟎.
𝟒𝟒

45
.8
2
±
0.
60

40
.7
8
±
0.
72

42
.7
4
±
0.
54

43
.1
9
±
05
1

42
.2
9
±
1.
07

42
.6
5
±
0.
82

42
.9
6
±
1.
38

43
.6
8
±
1.
13

45
.9
1
±
1.
15

45
.8
4
±
1.
02

43
.4
9
±
0.
51

43
.7
2
±
0.
53

40
.9
3
±
0.
66

41
.6
6
±
0.
53

39
.0
6
±
0.
98

40
.8
2
±
0.
81

40
.8
4
±
1.
07

41
.4
6
±
0.
83

45
.2
5
±
1.
18

44
.9
6
±
0.
93

41
.5
2
±
0.
44

42
.0
5
±
0.
42

49%

46%

43%

40%

37%
DCL MCNN TinyHAR Attend DCL+A

OPPO

66%
72%
78%
84%
90% PAMAP290%

84%

78%

72%

66% 75
.96

±
0.
97

77
.91

±
0.
81

𝟖𝟏
.𝟎
𝟐
±
𝟎.
𝟔𝟑

79
.3
2
±
0.
74

77
.1
6
±
0.
93

69
.19

±
1.
10

72
.2
6
±
0.
89

𝟕𝟔
.𝟎
𝟏
±
𝟎.
𝟖𝟎

73
.21

±
0.
84

71
.81

±
0.
92

76
.46

±
0.
67

77
.2
3
±
0.
55

𝟖𝟏
.𝟗
𝟓
±
𝟎.
𝟒𝟖

79
.0
1
±
0.
72

76
.62

±
0.
66

86
.77

±
0.
37

87
.87

±
0.
49

𝟖𝟗
.𝟗
𝟑
±
𝟎.
𝟐𝟕

88
.27

±
0.
31

86
.92

±
0.
55

77
.33

±
0.
69

78
.53

±
0.
91

𝟖𝟏
.𝟖
𝟑
±
𝟎.
𝟓𝟕

79
.66

±
0.
65

77
.93

±
0.
84

78
.63

±
0.
85

77
.17

±
1.
03

72
.68

±
0.
97

71
.16

±
1.
18

78
.5
9
±
0.
61

77
.65

±
0.
53

87
.64

±
0.
42

87
.53

±
0.
34

78
.39

±
0.
77

78
.72

±
0.
61

76
.55

±
0.
64

78
.96

±
0.
73

69
.04

±
0.
86

72
.50

±
0.
65

77
.08

±
0.
70

78
.83

±
0.
64

86
.92

±
0.
33

88
.64

±
0.
58

77
.54

±
0.
56

79
.01

±
0.
72

DCL MCNN TinyHAR Attend DCL+A

68%
71%
74%
77%
80% RW80%

77%

74%

71%

68% 73
.8
4
±
0.
44

74
.8
9
±
0.
48

𝟕𝟖
.𝟖
𝟔
±
𝟎.
𝟑𝟗

77
.2
8
±
0.
29

75
.2
0
±
0.
45

71
.3
8
±
0.
36

73
.4
1
±
0.
57

𝟕𝟔
.𝟖
𝟓
±
𝟎.
𝟐𝟗

75
.6
4
±
0.
26

73
.4
1
±
0.
63

73
.7
1
±
0.
69

76
.2
9
±
0.
71

𝟕𝟗
.𝟑
𝟏
±
𝟎.
𝟒𝟖

77
.5
3
±
0.
40

76
.7
2
±
0.
57

74
.3
8
±
0.
46

76
.7
2
±
0.
47

𝟕𝟗
.𝟖
𝟎
±
𝟎.
𝟓𝟏

77
.7
1
±
0.
32

76
.0
3
±
0.
52

71
.5
3
±
0.
24

72
.3
6
±
0.
15

𝟕𝟓
.𝟗
𝟑
±
𝟎.
𝟐𝟗

74
.7
9
±
0.
18

73
.0
5
±
0.
36

76
.8
3
±
0.
31

76
.5
4
±
0.
37

74
.4
5
±
0.
45

73
.4
2
±
0.
52

76
.9
5
±
0.
44

76
.5
8
±
0.
52

77
.2
4
±
0.
39

76
.8
1
±
0.
31

73
.7
3
±
0.
23

73
.9
7
±
0.
28

74
.2
7
±
0.
58

74
.7
2
±
0.
34

71
.7
9
±
0.
44

74
.0
8
±
0.
60

74
.0
6
±
0.
56

76
.0
4
±
0.
58

74
.8
5
±
0.
35

76
.5
6
±
0.
54

72
.1
2
±
0.
30

73
.4
5
±
0.
27

DCL MCNN TinyHAR Attend DCL+A

54%
58%
61%
65%
68% DG

58
.76

±
1.
10

59
.11

±
1.
43

𝟔𝟓
.𝟖
𝟖
±
𝟎.
𝟔𝟒

62
.79

±
0.
89

55
.32

±
0.
34

59
.05

±
1.
08

59
.33

±
1.
38

𝟔𝟔
.𝟗
𝟔
±
𝟎.
𝟓𝟓

61
.83

±
0.
92

57
.24

±
0.
36

57
.34

±
1.
23

57
.62

±
1.
36

𝟔𝟑
.𝟏
𝟓
±
𝟎.
𝟕𝟕

61
.73

±
0.
95

55
.64

±
0.
41

62
.82

±
1.
31

63
.29

±
0.
94

𝟔𝟓
.𝟒
𝟎
±
𝟎.
𝟖𝟒

64
.0
8
±
0.
97

58
.92

±
0.
50

63
.87

±
1.
44

63
.76

±
1.
08

𝟔𝟔
.𝟐
𝟐
±
𝟎.
𝟔𝟗

64
.25

±
0.
94

62
.49

±
0.
46

60
.84

±
1.
02

63
.89

±
0.
66

60
.15

±
1.
05

62
.03

±
0.
97

62
.87

±
1.
23

64
.38

±
0.
78

64
.3
1
±
1.
21

65
.42

±
1.
05

61
.04

±
1.
17

63
.6
7
±
0.
83

58
.92

±
0.
87

59
.82

±
1.
25

57
.26

±
1.
34

58
.08

±
1.
08

63
.51

±
1.
15

63
.73

±
1.
03

64
.38

±
1.
16

63
.97

±
0.
85

59
.43

±
0.
84

60
.39

±
0.
99

68%

65%

61%

58%

54%
DCL MCNN TinyHAR Attend DCL+A

Baseline SDA MixUp CutMix SFN ActivityGAN SF-DM W-Augment AutoAugHar

Figure 3.10: Comparison of the classification performance between the pro-
posed AutoAugHAR and other SOTA augmentation methods
across five datasets, each containing multiple modalities.

61

Baseline SDA MixUp CutMix SFN ActivityGAN SF-DM W-Augment AutoAugHar

78%
80%
82%
84%
86%

81
.2
4
±
1.
10

81
.6
2
±
1.
23

𝟖𝟑
.𝟗
𝟐
±
𝟎.
𝟖𝟗

83
.3
1
±
0.
71

82
.7
4
±
0.
57

78
.0
9
±
0.
86

80
.6
1
±
0.
64

𝟖𝟏
.𝟔
𝟖
±
𝟎.
𝟕𝟕

𝟖𝟏
.𝟓
𝟒
±
𝟎.
𝟒𝟗

80
.9
8
±
0.
39

80
.5
7
±
0.
71

82
.0
0
±
0.
98

𝟖𝟒
.𝟐
𝟔
±
𝟎.
𝟒𝟗

82
.9
4
±
0.
62

82
.4
5
±
0.
47

83
.5
3
±
0.
50

84
.3
6
±
0.
54

𝟖𝟓
.𝟔
𝟎
±
𝟎.
𝟑𝟑

84
.5
5
±
0.
48

83
.6
9
±
0.
27

81
.4
7
±
0.
58

83
.5
8
±
0.
72

𝟖𝟒
.𝟓
𝟏
±
𝟎.
𝟓𝟓

𝟖𝟒
.𝟑
𝟗
±
𝟎.
𝟑𝟔

83
.8
1
±
0.
22

82
.3
9
±
0.
85

82
.8
8
±
0.
78

80
.3
0
±
0.
58

81
.0
6
±
0.
52

82
.3
6
±
0.
85

82
.7
3
±
0.
52

84
.1
8
±
0.
43

84
.6
8
±
0.
32

82
.7
5
±
0.
42

84
.1
2
±
0.
47

81
.5
4
±
0.
96

82
.4
6
±
0.
79

78
.1
1
±
1.
03

81
.1
5
±
0.
38

80
.9
2
±
0.
54

82
.9
5
±
0.
76

84
.0
6
±
0.
48

84
.7
8
±
0.
25

81
.8
4
±
0.
51

83
.8
1
±
0.
49

DCL MCNN TinyHAR Attend DCL+A

86%
84%

82%

80%

78%

HAPT

83%

85%

87%

89%

83
.69

±
0.
93

85
.01

±
0.
96

𝟖𝟔
.𝟓
𝟑
±
𝟎.
𝟕𝟔

𝟖𝟔
.𝟒
𝟐
±
𝟎.
𝟖1

85
.13

±
0.
55

82
.93

±
0.
59

84
.25

±
0.
57

85
.47

±
0.
44

𝟖𝟓
.𝟖
𝟑
±
𝟎.
𝟑𝟑

84
.64

±
0.
30

84
.6
8
±
1.
21

85
.36

±
1.
29

𝟖𝟔
.𝟕
𝟔
±
𝟎.
𝟓𝟗

𝟖𝟔
.𝟕
𝟎
±
𝟎.
𝟔𝟖

85
.42

±
0.
65

85
.81

±
0.
88

86
.99

±
1.
06

𝟖𝟗
.𝟏
𝟑
±
𝟎.
𝟒𝟕

𝟖𝟖
.𝟗
𝟕
±
𝟎.
𝟓𝟏

86
.41

±
0.
64

83
.99

±
0.
42

84
.49

±
0.
59

𝟖𝟔
.𝟒
𝟑
±
𝟎.
𝟒𝟕

𝟖𝟔
.𝟑
𝟓
±
𝟎.
𝟑𝟏

84
.92

±
0.
26

85
.2
9
±
0.
78

85
.6
0
±
0.
64

85
.13

±
0.
36

84
.86

±
0.
42

86
.04

±
1.
04

86
.53

±
0.
83

87
.81

±
0.
63

87
.45

±
0.
84

85
.87

±
0.
35

85
.22

±
0.
40

84
.82

±
0.
63

86
.17

±
0.
77

83
.87

±
0.
45

85
.2
1
±
0.
38

85
.54

±
0.
76

86
.44

±
0.
80

86
.79

±
0.
54

88
.23

±
0.
69

84
.85

±
0.
27

86
.08

±
0.
38

89%

87%

85%

83%

WISDM

DCL MCNN TinyHAR Attend DCL+A

92%
93%
94%
95%
96%
97%

93
.97

±
0.
39

94
.38

±
0.
47

95
.10

±
0.
22

94
.46

±
0.
25

95
.33

±
0.
13

95
.08

±
0.
72

𝟗𝟓
.𝟕
𝟐
±
𝟎.
𝟓𝟑

94
.77

±
0.
43

𝟗𝟓
.𝟖
𝟗
±
𝟎.
𝟐𝟏

92
.69

±
0.
46

92
.99

±
0.
61

93
.75

±
0.
33

94
.04

±
0.
49

94
.17

±
0.
32

94
.50

±
0.
75

94
.94

±
0.
48

94
.38

±
0.
37

𝟗𝟓
.𝟕
𝟔
±
𝟎.
𝟐𝟒

93
.66

±
0.
25

94
.25

±
0.
36

94
.96

±
0.
14

94
.8
3
±
0.
18
7

95
.08

±
0.
12

94
.97

±
0.
33

95
.39

±
0.
29

94
.84

±
0.
46

𝟗𝟔
.𝟎
𝟐
±
𝟎.
𝟎𝟗

92
.96

±
0.
18

93
.42

±
0.
25

94
.73

±
0.
11

94
.29

±
0.
16

95
.45

±
0.
32

94
.51

±
0.
26

95
.31

±
0.
29

95
.09

±
0.
42

𝟗𝟔
.𝟑
𝟏
±
𝟎.
𝟐𝟑

92
.81

±
0.
12

93
.38

±
0.
31

94
.47

±
0.
07

93
.96

±
0.
16

94
.90

±
0.
25

94
.86

±
0.
50

𝟗𝟓
.𝟓
𝟔
±
𝟎.
𝟒𝟑

94
.7
2
±
0.
69

𝟗𝟓
.𝟓
𝟑
±
𝟎.
𝟏𝟑

97%
96%
95%
94%
96%
92%

GesHome

DCL MCNN TinyHAR Attend DCL+A

Figure 3.11: Comparison of the classification performance between the pro-
posed AutoAugHAR and other SOTA augmentation methods
across three datasets, each containing only a single modality.

62

MCNN (with AutoAugHAR) and Attend (without AutoAugHAR) narrows to

less than 1%. This demonstrates that AutoAugHAR can significantly enhance

the performance of lightweight models, compensating effectively for their in-

herent limitations due to smaller model sizes.

A similar trend is observed with the TinyHAR model. Without data aug-

mentation, TinyHAR underperforms compared to Attend on the OPPO, RW,

DG, HAPT, and WISDM datasets. However, with the application of the Au-

toAugHAR framework, TinyHAR outperforms Attend without data augmenta-

tion. This underscores AutoAugHAR’s ability to improve model performance,

particularly in simple or lightweight models where inherent limitations can be

mitigated through the proposed framework. In Section 3.2.3.3, we further re-

duce the size of the TinyHAR model to investigate the impact of AutoAugHAR

on its performance.

Next, we will discuss the performance comparison between AutoAugHAR

and other data augmentation frameworks.

The w-augment shows inconsistent results in all datasets, performing par-

ticularly poorly on the DG and OPPO datasets. While w-augment and Au-

toAugHAR both aim to allocate more weight to beneficial augmentation sub-

policies during training, they diverge in their augmentation sub-policy weight

update procedures. Specifically, w-augment employs training loss for augmen-

tation sub-policy weight optimization, while the proposed AutoAugHAR lever-

ages validation loss. This difference makes w-augment more prone to over-

fitting, potentially favoring "easy-to-learn" augmentation sub-policies. "Easy-

to-learn" augmentation sub-policies might significantly reduce training loss,

but they often fail to bridge the distribution gap between training and testing

datasets. This shortcoming is especially evident on the OPPO and DG datasets,

characterized by challenges such as limited subjects and intra-class variability.

ActivityGAN improves the performance of the model, but it does not reach

the extent achieved by AutoAugHAR, SFN, SF-DM, MixUp or CutMix. This

can be attributed to the separate training procedures of the generator and the

HAR model, potentially leading to sub-optimal solutions. The generator within

ActivityGAN is trained to produce virtual samples that match the original data

distribution, often neglecting the need to bridge the gap with data not previ-

63

ously encountered. These virtual samples may not align optimally with the

downstream HAR model’s task requirements. In contrast, the standout perfor-

mance of AutoAugHAR and SFN can be attributed to their end-to-end training

approach. This ensures that the virtual data both mirrors the original distribu-

tion and improves the model’s performance on unfamiliar data.

Compared to ActivityGAN, another generative model, SF-DM has shown

superior performance, especially notable in its outperformance over SFN across

three datasets: DSADS, HAPT, and GesHome. However, it still lags behind the

proposed model, AutoAugHar. In datasets collected from a relatively larger

number of subjects, SF-DM demonstrates its impressive ability to generate

diverse and complex data. However, it encounters challenges with certain

datasets, particularly the OPPO dataset. This could be attributed to two pri-

mary factors. First, the OPPO dataset, which consists of data from only four

subjects, exhibits a highly varied data distribution. Similar to ActivityGAN,

the separate training of the data generator and the HAR model hinders the

use of validation loss as guidance for data generation. Second, the simple de-

noising model employed by SF-DM fails to deal with datasets such as OPPO,

which feature 42 channels and 18 classes. The structure of the model does not

adequately address the characteristics of HAR datasets. Literatures [116; 39]

suggest that the success of a diffusion-based approach depends greatly on the

model’s design and its denoising configuration. Therefore, there is consider-

able room for improvement in the performance of diffusion-based techniques.

Handcrafted algorithms, MixUp and CutMix, produce consistent results across

all datasets. However, their performance varies among different datasets and

models. For example, MixUp outperforms CutMix on the RW and PAMAP2

datasets, whereas CutMix excels over MixUp on the OPPO and DSADS datasets.

This variability highlights the importance and need for automated data aug-

mentation techniques, such as AutoAugHAR, which autonomously determine

the best techniques or combine them.

The effectiveness of the SDN technique, is generally less impressive com-

pared to MixUp and CutMix. SDN achieves only modest improvements on

most datasets and can sometimes even reduce model performance. This under-

performance is mainly due to SDN’s dependence on a predefined data augmen-

64

tation policy, which might not be suitable for all scenarios.

AutoAugHAR surpasses SFN on most datasets and models, though it shows

comparable performance on the WISDM dataset. We attribute this observation

to two main reasons: 1) SFN employs a MixUp-style approach to fuse original

samples with virtual samples generated by LSTM AutoEncoder (AE). These

though MixUp-style generated samples may appear completely different from

the original sequences and become meaningless from a human perspective [3].

As past comparisons between CutMix and MixUp indicate, each sample-pair-

based technique has its unique advantages. The adoption of the MixUp-style

fusion approach in SFN could potentially reduce its efficacy in specific sce-

narios. 2) Sample-pair-based algorithms are constrained in their capacity to

explore more diverse data domains, being entirely reliant on data sample fu-

sion. In contrast, the proposed AutoAugHAR can effectively select from vari-

ous sample-pair-based methods and combine them with random transformation

methods to produce more diverse data.

In the context of the WIDSM and HAPT datasets, AutoAugHAR and SFN

exhibit comparable performance. On both datasets, AutoAugHAR and SFN

obtained the best performance 6 times without significant differences. These

datasets possess shared characteristics, including the utilization of a singular

sensor, the categorization of everyday activities, and data sourced from over 30

subjects. These factors make the datasets sufficiently representative for their

tasks, eliminating the need for random augmentation to enhance data diversity.

Given the singular modality in these datasets, AutoAugHAR can’t optimize on

a modality basis to boost performance. However, it’s worth noting that SFN’s

integration with an additional LSTM AE encoder into the HAR model enlarges

the model’s size and necessitates expert knowledge for its design. In contrast,

AutoAugHAR doesn’t alter the HAR model’s structure or increase its size.

3.2.3.3 Model Compression. There are various methods for model com-

pression, including pruning, quantization, and knowledge distillation. A more

straightforward approach is to start with a strong baseline model and reduce its

size by decreasing the number of layers or filters, similar to the width multi-

plier or filter multiplier strategies employed in EfficientNet [142]. This method

65

Table 3.2: Comparison between TinyHAR without AutoAugHAR and the
compressed TinyHAR model with AutoAugHAR.

Dataset TinyHAR without DA TinyHAR_0.9 with DA TinyHAR_0.8 with DA
DSADS 88.76± 0.60 89.68± 0.81 88.91± 0.77
OPPO 40.79 ± 1.23 44.32 ± 0.94 42.68 ± 1.08
PAMAP2 76.46 ± 0.67 80.95 ± 0.58 78.14 ± 0.92
RW 73.71± 0.69 78.77± 0.43 75.31± 0.36
DG 62.82 ± 1.31 65.15 ± 1.16 63.82 ± 0.75
HAPT 80.57± 0.71 83.10± 0.67 80.17± 0.49
WISDM 84.68 ± 1.21 85.52 ± 0.83 85.29 ± 1.07
GesHome 93.66 ± 0.25 95.74 ± 0.31 94.43 ± 0.20

requires less expert knowledge compared to other techniques. However, per-

formance degradation is a major concern when compressing models. All com-

pression techniques must aim to strike an optimal balance between efficiency

and accuracy. Our proposed AutoAugHAR can be easily integrated with com-

pressed models to mitigate performance degradation.

To demonstrate this, we conducted a series of experiments. Specifically,

we selected the TinyHAR model, which is already lightweight, as our base-

line. We further reduced the model size by decreasing the number of filters

using a scaling factor, resulting in the TinyHAR_0.9 and TinyHAR_0.8 mod-

els. Compared to the original TinyHAR, TinyHAR_0.9 retains approximately

82% of the trainable parameters, while TinyHAR_0.8 retains around 64%. If

these compressed models can achieve performance levels close to the original,

it would validate the effectiveness of the data augmentation strategy in training

lightweight models.

Their performance is listed in Table 3.2. As shown, when utilizing data aug-

mentation, the compressed models perform similarly to the original TinyHAR.

In most cases, even TinyHAR_0.8 surpasses the performance of the original

model. This clearly demonstrates the crucial role of the proposed framework

in maintaining high performance, even when the model size is significantly

reduced.

3.2.3.4 Ablation Study. In order to assess the contribution of the design

underlying the proposed AutoAugHAR, three variants of AutoAugHAR were

66

82%
84%
86%
88%
90%

DCL MCNN TinyHAR Attend DCL+A

DSADS
86
.4
6
±
0.
94

87
.1
1
±
1.
43

𝟖𝟗
.𝟑
𝟒
±
𝟎.
𝟔𝟑

88
.5
9
±
0.
51

88
.4
9
±
0.
67

83
.1
8
±
1.
16

𝟖𝟕
.𝟒
𝟑
±
𝟎.
𝟕𝟓

86
.5
6
±
0.
83

86
.8
4
±
0.
80

84
.0
4
±
1.
45

88
.7
6
±
0.
60

𝟗𝟎
.𝟒
𝟏
±
𝟎.
𝟑𝟑

89
.9
2
±
0.
57

89
.7
1
±
0.
63

89
.2
7
±
0.
98

85
.0
9
±
0.
83

𝟖𝟖
.𝟕
𝟒
±
𝟎.
𝟐𝟕

87
.7
7
±
0.
52

87
.9
0
±
0.
35

86
.4
5
±
1.
33

87
.0
6
±
0.
55

87
.3
9
±
1.
06

88
.8
6
±
0.
46

89
.2
5
±
0.
54

𝟗𝟎
.𝟏
𝟗
±
𝟎.
𝟒𝟖

89
.0
5
±
0.
42

𝟖𝟕
.𝟓
𝟏
±
𝟎.
𝟔𝟔

𝟗𝟎
.𝟑
𝟒
±
𝟎.
𝟐𝟗

89
.7
7
±
0.
54

88
.3
3
±
0.
31

66%
72%
78%
84%
90%

DCL MCNN TinyHAR Attend DCL+A

PAMAP2

75
.9
6
±
0.
97

𝟖𝟏
.𝟎
𝟐
±
𝟎.
𝟔𝟑

80
.1
5
±
0.
94

79
.9
2
±
0.
52

76
.6
1
±
0.
83

69
.1
9
±
1.
10

74
.3
1
±
0.
80

73
.6
3
±
0.
96

73
.8
6
±
0.
73

70
.1
5
±
1.
28

76
.4
6
±
0.
67

𝟖𝟏
.𝟗
𝟓
±
𝟎.
𝟒𝟖

80
.5
8
±
0.
64

81
.1
9
±
0.
73

76
.8
7
±
0.
99

86
.7
7
±
0.
37

89
.9
3
±
0.
27

88
.2
5
±
0.
43

88
.8
3
±
0.
25

86
.8
4
±
0.
69

77
.3
1
±
0.
69

𝟖𝟏
.𝟖
𝟑
±
𝟎.
𝟓𝟕

79
.8
0
±
0.
68

80
.3
6
±
0.
45

78
.3
9
±
1.
06

81
.2
8
±
0.
62

𝟗𝟎
.𝟏
𝟗
±
𝟎.
𝟑𝟒

81
.7
5
±
0.
52

𝟕𝟒
.𝟔
𝟎
±
𝟎.
𝟕𝟓

80
.8
6
±
0.
45

68%
71%
74%
77%
80%

DCL MCNN TinyHAR Attend DCL+A

RW

73
.8
4
±
0.
44

78
.8
6
±
0.
39

77
.6
4
±
0.
33

78
.3
7
±
0.
26

75
.1
3
±
0.
72

71
.3
8
±
0.
36

𝟕𝟔
.𝟖
𝟓
±
𝟎.
𝟐𝟗

75
.4
1
±
0.
31

75
.2
9
±
0.
25

72
.2
5
±
0.
42

73
.7
1
±
0.
69

79
.3
1
±
0.
48

78
.5
6
±
0.
47

78
.6
3
±
0.
59

74
.2
4
±
0.
65

74
.3
8
±
0.
46

𝟕𝟗
.𝟖
𝟎
±
𝟎.
𝟓𝟏

79
.2
1
±
0.
61

79
.3
4
±
0.
42

76
.9
8
±
0.
65

71
.5
3
±
0.
24

𝟕𝟓
.𝟗
𝟑
±
𝟎.
𝟐𝟗

74
.6
9
±
0.
40

75
.4
7
±
0.
35

73
.1
9
±
0.
47

𝟕𝟗
.𝟏
𝟐
±
𝟎.
𝟑𝟎

76
.4
0
±
0.
37

𝟕𝟗
.𝟓
𝟔
±
𝟎.
𝟔𝟑

79
.5
5
±
0.
39

𝟕𝟔
.𝟎
𝟏
±
𝟎.
𝟒𝟒

54%
58%
61%
65%
68%

DCL MCNN TinyHAR Attend DCL+A

DG

58
.7
6
±
1.
10

𝟔𝟓
.𝟖
𝟏
±
𝟎.
𝟔𝟒

64
.3
4
±
0.
94

65
.0
2
±
0.
61

59
.5
5
±
1.
37

57
.3
4
±
1.
23

𝟔𝟏
.𝟏
𝟓
±
𝟎.
𝟕𝟕

60
.5
7
±
0.
75

60
.2
3
±
1.
72

56
.6
7
±
1.
51

62
.8
2
±
1.
31

𝟔𝟒
.𝟗
𝟎
±
𝟎.
𝟖𝟒

64
.4
9
±
0.
95

64
.3
1
±
0.
79

62
.6
8
±
1.
34

63
.8
7
±
1.
44

𝟔𝟔
.𝟐
𝟐
±
𝟎.
𝟔𝟗

65
.1
3
±
1.
02

64
.9
8
±
0.
89

64
.1
4
±
1.
20

59
.0
5
±
1.
08

𝟔𝟔
.𝟗
𝟔
±
𝟎.
𝟓𝟓

64
.5
4
±
0.
65

65
.3
1
±
0.
49

60
.1
1
±
0.
90

65
.5
7
±
0.
49

𝟔𝟏
.𝟐
𝟎
±
𝟎.
𝟒𝟗

𝟔𝟒
.𝟗
𝟑
±
𝟎.
𝟓𝟔

65
.5
4
±
0.
71

66
.4
8
±
0.
61

37%
40%
43%
46%
49%

DCL MCNN TinyHAR Attend DCL+A

OPPO

40
.4
1
±
0.
60

47
.8
5
±
0.
63

46
.6
3
±
0.
72

47
.2
1
±
0.
49

42
.5
4
±
1.
11

38
.9
1
±
1.
16

44
.1
8
±
0.
76

43
.8
4
±
0.
98

43
.8
7
±
1.
03

41
.0
0
±
1.
24

45
.8
0
±
1.
34

𝟒𝟖
.𝟑
𝟏
±
𝟎.
𝟕𝟗

47
.2
9
±
0.
92

47
.9
6
±
0.
66

46
.0
2
±
1.
27

41
.3
3
±
0.
56

𝟒𝟖
.𝟔
𝟐
±
𝟎.
𝟒𝟒

47
.6
6
±
0.
59

48
.0
4
±
0.
51

42
.6
8
±
0.
86

40
.7
9
±
1.
23

42
.3
4
±
1.
03

46
.5
6
±
1.
16

47
.2
2
±
0.
75

𝟒𝟕
.𝟗
𝟓
±
𝟎.
𝟖𝟒

𝟒𝟖
.𝟎
𝟐
±
𝟎.
𝟕𝟏

𝟒𝟒
.𝟑
𝟖
±
𝟎.
𝟖𝟐

47
.4
6
±
0.
79

𝟒𝟖
.𝟒
𝟑
±
𝟎.
𝟔𝟏

𝟒𝟖
.𝟓
𝟓
±
𝟎.
𝟓𝟕

Baseline AutoAugHARRandom AutoAugHARbasic

AutoAugHARNoModality AutoAugHAR_1 AutoAugHar

Figure 3.12: Comparison of the classification performance between the pro-
posed AutoAugHAR and several of its variants across five multi-
modal datasets. This comparison validates the contributions of
AutoAugHAR’s design. 67

subjected to comparative analysis: AutoAugHARrandom, AutoAugHARbasic,

and AutoAugHARNoModality.

AutoAugHARrandom, as elaborated in section 3.2.1.2, does not optimize

the categorical distribution for data augmentation sub-policies. It adopts a uni-

form distribution for the application of these data augmentation sub-policies.

AutoAugHARbasic, detailed in section 3.2.2.1, optimizes the categorical

distribution for data augmentation sub-policies. However, it doesn’t differenti-

ate between sample-pair-based data augmentation methods and random trans-

formation methods, and it overlooks multi-modality considerations.

AutoAugHARNoModality follows a two-stage structure like the proposed

AutoAugHAR but doesn’t account for multi-modality.

When the total conservative operation count n is set to 3, the total number of

augmentation sub-policies for AutoAugHARrandom and AutoAugHARbasic

surpasses 3000, even after eliminating redundant ones. Given the expansive

search space, the performance for both AutoAugHARrandom and AutoAugH-

ARbasic is poor. In order to conduct a effective ablation study, we reduced n

to 2. With n = 2, after removing redundant and identical augmentation sub-

policies, the number of augmentation sub-policies for AutoAugHARrandom

and AutoAugHARbasic becomes P16
17 −16−3×2−3×2−2−2−2 = 238.

For a fair comparison, we set n1st and n2nd to 1 for each stage in AutoAugH-

ARNoModality. Furthermore, we also re-trained AutoAugHAR with n2nd = 1

in the second stage, denoted as AutoAugHAR_1. Experiments were specifi-

cally conducted on datasets characterized by the presence of multiple modali-

ties, thereby validating the contribution of multi-modality optimization in the

proposed AutoAugHAR. The results are visually represented in Figure 3.12.

It can be observed that AutoAugHARRandom’s performance is unstable.

For instance, on the DG dataset, it had a detrimental impact on the MCNN

model’s performance. Furthermore, its improvements are marginal compared

to the performance of CutMix and MixUp, as illustrated in Figures 3.10 and 3.11.

Although the stochastic application of data augmentation techniques like Au-

toAugHARRandom is a conventional procedure in computer vision tasks, it

proves unsuitable for HAR tasks. The inherent nature of HAR data, which are

more sensitive to perturbations compared to image data, can lead to distortions

68

Epoch Number

Pr
ob

ab
ili

ty

DG

PAMAP2 RW

Pr
ob

ab
ili

ty

Epoch Number

Pr
ob

ab
ili

ty

Epoch Number

DSADS OPPO

Pr
ob

ab
ili

ty

Epoch Number Epoch Number

Pr
ob

ab
ili

ty Class A: sample-pair-based
method as the first operator
Class B: random transformation
method as the first operator

Figure 3.13: Evolution of augmentation sub-policy probabilities over training
epochs during the AutoAugHAR training process. These exam-
ples are derived from training the Attend model.

in label semantic information due to excessive perturbations.

By employing the AutoAugHARbasic algorithm, after the optimization of

weights for augmentation sub-policies, a significant improvement in perfor-

mance compared to AutoAugHARRandom was noted. This observation vali-

dates the benefits of automatic optimization of data augmentation sub-policies.

When compared to AutoAugHARbasic, AutoAugHARNoModality mostly

demonstrated marginally superior performance. Although the forced order-

ing of these two operator categories might limit the diversity of augmentation

sub-policies, it effectively reduces the search space, which helps optimization.

We believe that augmentation sub-policies, when arranged in this specific or-

der, garner more attention during training. To validate this hypothesis, we

further examined the evolution of the probability distribution during the Au-

toAugHARbasic optimization process. Figure 3.13 illustrates this evolution

while training the Attend model on five datasets. For clarity, the 238 aug-

mentation sub-policies were grouped into two classes. Class A consists of

sub-policies where sample-pair-based methods are applied as the first operator,

totaling 30 sub-policies. Class B includes sub-policies where random augmen-

tation is the initial operator, with 208 sub-policies in this class. The probability

assigned to each class is the sum of its constituent probabilities. Given the

limited number of sub-policies in Class A, its initial sampling probability is

relatively low. However, as optimization continues, there’s a noticeable in-

69

0
1000
2000
3000
4000
5000
6000
7000
8000

0
5000
10000
15000
20000
25000
30000
35000

Se
co

nd
s

Se
co

nd
s

AutoAugHARrandom
Baseline SDA MixUp CutMix SFN ActivityGAN
SF-DM W-Augment AutoAugHar

HAPT Dataset OPPO Dataset

Figure 3.14: The training time for one iteration of the LOSO-CV process.

crease in this class’s probability. Even though Class A accounts for a small

portion of the total sub-policies, its probability exceeds 40% by the end of the

optimization process. Remarkably, for the DSADS dataset, this probability

reaches 60%. We observed that sub-policies that prioritize the sample-pair-

based method as the primary operation tend to receive higher weights, further

affirming the rationale behind AutoAugHAR’s design.

Compared to AutoAugHARNoModality, AutoAugHAR_1 consistently out-

performed AutoAugHARNoModality, highlighting the benefits of considering

the multi-modal nature of HAR task. This finding underscores the contribution

of optimizing each modality separately.

To understand the influence of the number of operations N on performance,

we included the results of AutoAugHAR (with N2nd = 2 in the second stage)

from previous experiments in Figure 3.12. Our analysis revealed that AutoAug-

HAR achieved optimal results in 18 instances, while AutoAugHAR_1 did

so in 13 instances. Although AutoAugHAR often had the edge over Au-

toAugHAR_1, the difference in performance between the two was marginal.

An increase in the number of operations indeed offers a more diverse augmen-

tation policy. However, this benefit is offset by the challenges of a larger search

space and the potential for excessive transformations due to the increased op-

erational steps.

3.2.3.5 Training Overhead. Figure 3.14 depicts the training time required

for a single iteration of the LOSO-CV process on two datasets, primarily dif-

ferentiated by their number of sensor channels. Among the three traditional

data augmentation algorithms, MixUp and CutMix lead to a slight increase in

70

training time. In contrast, the SDA algorithm significantly extends training

time due to its default application of the ’time-warp’ operation, which requires

re-interpolation for each sequence. This impact is more pronounced on the

OPPO dataset, where the training time is further extended due to the increased

number of channels.

In terms of generative algorithms, SFN is the most time-efficient, followed

by ActivityGAN and SF-DM. The longer training durations for ActivityGAN

and SF-DM can be attributed to their separate training processes, in which the

generator/denoising model is first trained and then incorporated into the dat-

aloader for HAR model training. SF-DM’s intelligent design uses unlabeled

data as input instead of random noise, resulting in shorter training times com-

pared to ActivityGAN.

The training time required for AutoAugHAR is lower than that of most gen-

erative augmentations but higher than SFN. The training time primarily con-

sists of three components: HAR model training, data transformation using data

augmentation policies, and data augmentation policy optimization. The extra

training time is largely attributable to data transformations using data augmen-

tation policies. As shown in Figure 3.14, even AutoAugHARrandom without

policy optimization significantly increases training time, particularly due to

time-intensive operations like ’time-warp’ and ’magnitude-warp’. The addi-

tional training time required to update the data augmentation policy weights is

indicated by the arrows in Figure 3.14. The reason why the training time for

data augmentation policy optimization is acceptable is that the weights for data

augmentation policies are updated using gradients obtained through a back-

ward process in the Adam algorithm. The training time of w-augment is sub-

stantially higher than AutoAugHAR because all available data augmentation

operators are applied simultaneously to each data sample.

3.2.4 Discussion

The consistent and significant improvements observed across a wide range of

target datasets and tasks indicate that automated data augmentation techniques,

such as AutoAugHAR, have the potential to become a standard tool for many

HAR applications. This technique not only enhances the performance of SOTA

71

models but also addresses the limited learning capacity of lightweight mod-

els, particularly in resource-constrained settings. Numerous studies [43] have

demonstrated that data quality plays a critical role in determining model per-

formance. As outlined in Section 2.2, HAR data presents several unique chal-

lenges. By utilizing our end-to-end approach, the learned data augmentation

policies are precisely tailored to the model’s learning requirements, resulting in

enhanced data quality and, consequently, improved overall model performance,

even with reduced model size.

3.3 Learnable Data Transformation

In section 3.1.2, we reviewed two data transformation methods commonly

used for HAR tasks: one based on wavelet transforms and the other on short-

time Fourier transforms (STFT). A key challenge with both methods is how to

set their hyperparameters, as these can significantly affect the performance of

HAR models. To address this issue, in this section, we introduce our proposed

learnable sparse wavelet layer [181].

We chose the wavelet transform because wavelets are based on well-established

mathematical principles and do not require learning from data. In contrast to

FFT, which combines raw signals using sine functions, wavelets offer a broader

range of mother wavelets that can better interpret the original sequence. Ad-

ditionally, wavelets possess essential properties for signal filtering, such as

biorthogonality. Therefore, we hypothesize that when integrated into a learning

framework, wavelets can provide superior performance.

To test this hypothesis, we extend SOTA HAR models by incorporating a

learnable sparse wavelet layer as a feature extraction component. The learnable

sparse wavelet layer functions like a convolutional layer, composed of several

learnable wavelet primitives. By employing multiple wavelet types, we avoid

the challenge of selecting a single mother wavelet. At the same time, to main-

tain the sparsity of this layer, non-informative wavelet filters are automatically

identified and pruned during training.

Our experiments show that this approach enhances the performance of HAR

models, particularly when model size is constrained. This advantage is critical

for real-time HAR applications and supports the deployment of HAR models

72

on wearable computing devices with limited computational resources.

3.3.1 Methodology

In the following sections, we will first provide a detailed explanation of the

generation, selection, and pre-processing of the wavelets in section 3.3.1.1.

Next, we will describe the implementation of the learnable components of the

wavelets in section 3.3.1.2. Finally, in section 3.3.1.3, we will introduce the

filter pruning technique, which is designed to reduce computational costs.

3.3.1.1 Wavelet Filters. There are various mother wavelets, each represent-

ing different underlying information. For example, the Shannon wavelet func-

tions as an ideal band-pass filter [74], while the Morlet wavelet behaves more

like a low-pass filter closely related to human perception [35; 108]. Some

wavelets, such as the Daubechies wavelet [151], extend beyond frequency-

domain filtering. By utilizing these wavelets, robust and diverse features can

generally be extracted for HAR tasks [146].

Unlike the approaches in [175] and [109], we do not pre-specify the wavelets

to be used. Instead, we begin by applying all 127 discrete mother wavelets

provided by PyWavelets1. These mother wavelets are then sampled to match

the length of the sliding window L used for activity recognition. To capture

information across different frequency ranges, each mother wavelet primitive

undergoes temporal scaling through down-sampling by power-of-two scaling

factors. For example, when L is 128, a mother wavelet is downscaled into

various sizes through a series of scaling factors represented by the vector sc =
[1,2,4,8,16,32]. The size of the scaling factor vector sc is log2 L − 1. As

illustrated in Figure 3.15 and Figure 3.16, a raw signal was convolved with

wavelet functions at different scales, resulting in various filtered signals that

capture the dynamics of the original signal from different perspectives.

When the 127 mother wavelets are transformed through temporal scaling

with different scaling factors, they result in thousands of wavelets. To re-

duce the number of mother wavelets while preserving their expressiveness, we

first use a clustering approach to select the most representative mother wavelet

1https://pywavelets.readthedocs.io

73

https://pywavelets.readthedocs.io

*

*

*

*

*

*

=

=

=

=

=

=

*

*

*

*

*

*

=

=

=

=

=

=

Raw Signals =*
Coiflets wavelets

with different scales Raw Signals Filtered Signals=*

Raw Signals =*
Symlets wavelets

with different scales Raw Signals Filtered Signals=*

Figure 3.15: Raw signals from the accelerometer’s x-axis (middle column) are
convolved with Symlets wavelets at different scales (left column).

*

*

*

*

*

*

=

=

=

=

=

=

*

*

*

*

*

*

=

=

=

=

=

=

Raw Signals =*
Coiflets wavelets

with different scales Raw Signals Filtered Signals=*

Raw Signals =*
Symlets wavelets

with different scales Raw Signals Filtered Signals=*

Figure 3.16: Raw signals from the accelerometer’s x-axis (middle column) are
convolved with Coiflet wavelets at different scales (left column).

74

Haar-Wavelet Biorthogonal 3.1 Symlets 2

Biorthogonal 3.3Daubechies 4 Coiflets 1

Figure 3.17: This figure shows the six mother wavelet functions representing
the cluster centroids from the k-means clustering.

primitives. Specifically, we apply K-means clustering based on both temporal

and frequency domains of the 127 different mother wavelets. The distance be-

tween the i-th and j-th mother wavelet is defined as ∥ f ∗i − f ∗j∥2 +∥Fi −F j∥2

where f ∗i and Fi represent the i-th wavelet and its Fourier transformation, re-

spectively. To ensure the conservation of energy in each filtering, we normalize

the wavelets by

f̃ ∗i =

⎧⎨⎩ f ∗i , Ei ≤ 1,

f ∗i /Ei, Ei > 1,
Ei =

⃓⃓⃓⃓
∑
t

f ∗i [t]
⃓⃓⃓⃓
, (1)

where f ∗i [t] denotes the value of the t-th element in the i-th wavelet. After

clustering, we select the centroid of each cluster as the representative wavelet

for that cluster. The optimal number of clusters, ncluster, is determined using

the silhouette coefficient [131]. Figure 3.17 presents six automatically selected

representative wavelet functions. These ncluster representative mother wavelets,

after undergoing temporal scaling, result in a total number of ncluster × log2 L

filters applied to each sensor channel. It is important to note that this nor-

75

!

$
Machine
learning
model

∗ ⋅%

!
!

%

$

%

!
$

%

⋅%′

!
!

%′

$
%′

!
$

%′

∗

Original signal

Filtering before pruning

Filtering after pruning

Filters

Pruned filters

Informative
factor

Pruned
informative

factor

Pipline of the learnable sparse wavelet layer.!

$
Machine
learning
model

∗ ⋅%

!
!

%

$

%

!
$

%

⋅%′

!
!

%′

$
%′

!
$

%′

∗

Original signal

Filtering before pruning

Filtering after pruning

Filters

Pruned filters

Informative
factor

Pruned
informative

factor!

$
Machine
learning
model

∗ ⋅%

!
!

%

$

%

!
$

%

⋅%′

!
!

%′

$
%′

!
$

%′

∗

Original signal

Filtering before pruning

Filtering after pruning

Filters

Pruned filters

Informative
factor

Pruned
informative

factor
!

$
Machine
learning
model

∗ ⋅%

!
!

%

$

%

!
$

%

⋅%′

!
!

%′

$
%′

!
$

%′

∗

Original signal

Filtering before pruning

Filtering after pruning

Filters

Pruned filters

Informative
factor

Pruned
informative

factor

Filter Before Pruning

Filter After Pruning

L

L

C

C

HAR
 Model

HAR
 Model

(a)

(b)

𝒃∗

𝒃∗

Filters
Informative

Factor

Pruned Filters
Pruned

Informative
Factor

Figure 3.18: Overview of the proposed learnable sparse wavelet layer, which
can be integrated into any HAR model. Figure (a) represents the
training process, where the learnable layer learns which wavelet
filters are important. Figure (b) shows the deployment process,
where unimportant wavelet filters are pruned. C = number of
channels, L = length of sliding window, F = number of initially
selected filters, F ′ = number of filters after pruning.

malization in equation is applied to all mother wavelets, including those after

temporal scaling.

Even after the selection process, the number of mother wavelets remains

substantial following temporal scaling, and they are convolved with each sen-

sor channel. This results in an increase in the input dimension from the original

sensor count C to F =C×ncluster × (log2 L−1). The increase in sensor chan-

nels also leads to greater computational demands for the model. The current

challenge, therefore, is how to further reduce the number of input sensor chan-

nels F .

3.3.1.2 Learnable Wavelets. To enable more flexible and task-oriented se-

lection of important wavelet filters without losing their functional properties,

we introduce a learnable parameter b∗ ∈RF that indicates the informativeness

of each filtered signal in the HAR model. As illustrated in Figure 3.18 (a),

the informative indicator b∗ is multiplied by the corresponding filtered signals,

with each element in b∗ directly corresponding to a filtered signal. A larger

76

element in b∗ indicates a more important signal, while a smaller element indi-

cates a less important one. Due to the presence of the informative factor b∗,

we can remove non-informative filtered signals based on their corresponding

indicators.

3.3.1.3 Filter Pruning. The current task is to identify the non-informative

signals, which involves learning the weights of k and automatically optimizing

which elements of the b∗ vector should be large and which should be small.

Similar problems have been studied in the field of neural network pruning.

Here, we adopt a strategy similar to that used in [101] and [97]. Specifically,

we train the HAR model along with the informative factors b∗. Additionally,

we add a penalty term to the objective function to encourage the informative

factors to approach zero. Ideally, this penalty term would be ℓ0(b∗), indicat-

ing the number of non-zero elements in b∗, also known as the sparsity of b∗.

However, ℓ0(·) is ill-conditioned [180] and cannot be solved using gradient-

based optimization. Fortunately, it has been shown that ℓ0(b∗) can often be

approximated by the sum of the absolute values of all elements in the vector

b∗ [42], also known as the ℓ1 norm, i.e., ℓ1(b∗) = ∑i |b∗
i |. The ℓ1 regulariza-

tion serves as a trade-off between the sparsity of the informative factor and the

performance of the model.

During training, while maintaining the classification performance of the

model, elements in b∗ corresponding to unimportant signals will be compressed

to very small values. After training, we remove all informative factors lower

than a threshold, along with their corresponding filtered signals. Figure 4.13

(a) and (b) shows a comparison of the filtering process before and after prun-

ing. After removing the unimportant filters, F is reduced to F ′, where F ′ is

significantly smaller than F . Since the indicator of the pruned signals is not

exactly zero, the performance of the model typically degrades after pruning.

Therefore, the model is fine-tuned to adapt to the pruned input. We remove the

ℓ1 norm during fine-tuning.

77

3.3.2 Experiments and Discussions

3.3.2.1 Experiment Setup. To verify the improvement provided by the learn-

able sparse wavelets layer for HAR models, we conducted experiments on six

benchmark datasets: Opportunity, Skoda, PAMAP2, DSADS, Daphnet, and

WISDM. We integrated the learnable wavelet layer into three SOTA HAR

models: DeepConvLSTM [119], Multibranch CNN (MCNN) [112], and Self-

Attention HAR (SA-HAR) [105]. These three models were selected because

they represent distinct architectural approaches in HAR modeling, thereby al-

lowing us to demonstrate the generality of our proposed method. Specifically,

MCNN is a purely convolution-based model that employs late-fusion tech-

niques to optimally combine multimodal sensor data. DeepConvLSTM is a

hybrid model that leverages the strengths of both CNN and LSTM. SA-HAR

is a purely self-attention-based HAR model without any recurrent structures.

Furthermore, to demonstrate that our proposed layer can help maintain SOTA

performance even when the model size is reduced, we evaluated the three base-

line models with different model sizes using the width scaling method [61]. By

applying the model width scaling factor γ , the number of filters in each layer of

the model is reduced. For example, when γ = 0.5, the number of convolutional

filters in each layer is halved, resulting in a model size that is quadratically

reduced to approximately γ2 = 0.25 of the original model size.

3.3.2.2 Comparison to State-of-the-art. The experimental results are pre-

sented in Figure 3.19, where different colors indicate different HAR models:

green for DeepConvLSTM, purple for SA-HAR, and blue for MCNN. Differ-

ent line types represent the macro F1-scores from various setups: dashed lines

for baselines, solid lines for models with pruned learnable sparse wavelet lay-

ers, and dotted lines for models with all learnable sparse wavelet layers. The

bars with varying intensities indicate the number of floating-point operations

required by different setups: light colors for baselines, normal colors for mod-

els with pruned learnable sparse wavelet layers, and dark colors for models

with learnable wavelets without pruning.

From Figure 3.19, we can observe that the learnable sparse wavelet layer

improves the overall performance of the baseline HAR models. This is evident

78

M
ac

ro
 F

1
Sc

or
e

1.00 0.75 0.5 0.25

Model Scaling Factor ν

Models: DeepConvLSTM SA-HAR MCNN
Linetypes: baseline basline+sparse Baseline+wavelet

FLOPs: baseline wavelet+sparse wavelet

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

0.42
0.38
0.34
0.31
0.27

80M
60M
40M
20M
0M

1.00
0.98
0.95
0.93
0.90

200M
150M
100M
50M
0M

1.00 0.75 0.5 0.25

0.78
0.75
0.71
0.68
0.64

1.00 0.75 0.5 0.25

400M
300M
200M
100M
0M

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

0.87
0.85
0.82
0.80
0.78

600M
450M
300M
150M
0M

1.00 0.75 0.5 0.25

M
ac

ro
 F

1
Sc

or
e

N
um

ber of FLO
Ps

N
um

ber of FLO
Ps

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhao, et al.

0.90

0.93

0.95

0.98

1.00

1 0.75 0.5 0.25
0.27

0.31

0.34

0.38

0.42

1 0.75 0.5 0.25

0.78

0.80

0.82

0.85

0.87

1 0.75 0.5 0.25
0.45

0.49

0.52

0.56

0.59

1 0.75 0.5 0.25
0.70

0.74

0.78

0.83

0.87

1 0.75 0.5 0.25

0.64

0.68

0.71

0.75

0.78

1 0.75 0.5 0.25

M
ac

ro
F1

sc
or

e

80M

60M

40M

20M

0M

Floating
point operations

600M

450M

300M

150M

0M

200M

150M

100M

50M

0M

80M

60M

40M

20M

0M

400M

300M

200M

100M

0M

80M

60M

40M

20M

0M

Model scaling factor !

Opportunity Skoda PAMAP2

DSADS Daphnet WISDM

baseline baseline + sparse wavelet baseline + waveletDeepConvLSTM SA-HAR MCNN FLOP:Models: Linetypes: baseline sparse wavelet wavelet

Figure 2: Result of the experiment. Di�erent colors indicate di�erent HAR models (green for DeepConvLSTM, purple for
SA-HAR, and blue for MCNN). Di�erent linetypes denote the macro �1-scores from di�erent setups (dash lines for baselines,
solid lines for learnable sparse wavelet layers, and dot lines for learnable wavelet layers without pruning). The bars with
di�erent intensities refer to the number of �oating point operations required by di�erent setups, namely light colors for
baselines, normal colors for learnable sparse wavelet layers, and dark colors show learnable wavelets without pruning.

datasets Opportunity, Skoda, DSADS, and WISDM, the perfor-
mance of baselines deteriorate as the model sizes decrease, i.e., less
information can be learned when the models are smaller. In this
case, the information extracted by learnable wavelets compensates
signi�cantly for the lack of model size in those cases. Particularly,
the contribution of learnable wavelets increases as the model size
scales down. Conversely, as the model is close to the saturation
size, learnable wavelets may not provide additional information
to improve the model (e.g., Opportunity with U = {1, 0.75, 0.5}).
Regarding Daphnet, we speculate that the baselines over�t, i.e.,
with growing model sizes, the generalizability (which is re�ected
by the performance on test data) decreases. As hypothesized in Sec-
tion 2.1, learnable wavelets, due to their non-data-oriented nature,
should not over�t the training data to an equal extend, and thus,
may be able to remedy the generalizability of the models to some
extent.

3.3 Discussion
From the experiments, we can see that the learnable wavelets gen-
erally enhance the performance of the baseline HAR models. We
believe that the improvement can be summarized in two aspects
that support our initial hypothesis: When the model tends to over-
�t the training data due to large size, learnable wavelets do not
over�t. In this way, the generalization ability of the model can
be ameliorated. In contrast, when the model size is too small and
therefore lacks learning capability, the rich representational ability
of the wavelets can help extract more robust and useful informa-
tion and consequently improve the performance. Particularly, the
improvement gets more noticeable when the model size is smaller.
This advantage renders our approach a strong candidate for the

deployment of HAR models on hardware with limited computing
capacity, such as wearable devices.

4 CONCLUSION
In this work, we proposed the learnable sparse wavelets layer by
leveraging the superior properties of wavelets. To make the wavelets
capable of learning without losing the ability to extract generally
useful features and necessary properties for general signal-�ltering,
we designed the temporal scaling factors k and informative factor
w as learnable parameters. Our hypothesis is supported by our ex-
periment that, the learnable sparse wavelets layer extracts rich and
general information for the subsequent HAR model, and thus, the
performance can be improved. Furthermore, the proposed layer is
more pronounced when the model is the smaller, this facilitates the
deployment of the HAR models on wearable devices.

Future work. In this work, the temporal scaling factor k can not
be optimized by gradient-based approaches due to the discrete-
ness of the mother wavelets 5 [C]. In the future, analytical mother
wavelets 5 (C) should be used, so that the gradient w.r.t. tempo-
ral scaling factors rk 5 (kC) exists. Moreover, the learnable sparse
wavelet layer functions as a data pre-processing that extract more
useful and general information. To further decrease the computa-
tional cost of HAR, more e�cient HAR models can be designed.
Generally, more ablation studies are expected to fully understand
the positive e�ects of learnable wavelets in HAR models.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),

87

0.59
0.56
0.52
0.49
0.45

80M
60M
40M
20M
0M

1.00 0.75 0.5 0.25

0.87
0.83
0.78
0.74
0.70

80M
60M
40M
20M
0M

1.00 0.75 0.5 0.25

M
ac

ro
 F

1
Sc

or
e

N
um

ber of FLO
Ps

OPPO Skoda

PAMAP2 DSADS

Daphnet WISDM

Model Scaling Factor ν

Model Scaling Factor ν

Model Scaling Factor ν

Model Scaling Factor ν

Model Scaling Factor ν

Figure 3.19: Result of the experiment. Different colors indicate different HAR
models (green for DeepConvLSTM, purple for SA-HAR, and blue
for MCNN). Different linetypes denote the macro F1-scores from
different setups (dash lines for baselines, solid lines for learnable
sparse wavelet layers, and dot lines for learnable wavelet layers
without pruning). The bars with different intensities refer to the
number of floating point operations required by different setups,
namely light colors for baselines, normal colors for learnable
sparse wavelet layers, and dark colors show learnable wavelets
without pruning.

79

as both the solid and dotted lines are positioned above the dashed line in most

cases. This observation is particularly pronounced in the Daphnet and WISDM

datasets, where adding the learnable wavelet layer to the model significantly

enhances performance. Upon closer inspection of the differences between the

solid and dotted lines, we can see that the differences are minimal, with models

containing all learnable sparse wavelet layers performing slightly better than

those with pruned learnable sparse wavelet layers. This suggests that the filters

retained after pruning are indeed crucial. Moreover, as observed from the bar

plot, the introduction of pruning significantly reduces the computational cost

without compromising performance, and in some instances, even improves it.

Additionally, we notice that for the datasets Opportunity, Skoda, DSADS,

and WISDM, the performance of the baseline models deteriorates as the model

sizes decrease. This suggests that less information can be learned when the

models are smaller. However, in these cases, the information extracted by the

learnable wavelets compensates significantly for the reduced model size. No-

tably, the contribution of the learnable wavelets increases as the model size

scales down. Conversely, when the model approaches its saturation size, the

learnable wavelets may no longer provide additional information to enhance

the model’s performance (e.g., Opportunity with ν = 1, 0.75, 0.5).

Regarding the Daphnet dataset, we speculate that the baseline models may

overfit, meaning that as model sizes increase, generalizability decreases. As

hypothesized in Section 3.3, learnable wavelets, due to their non-data-oriented

nature, are less prone to over-fitting the training data. Consequently, they may

help improve the generalizability of the models to some extent.

3.3.3 Discussion

In this work, we proposed the learnable sparse wavelets layer by leveraging

the superior properties of wavelets. To make the wavelets capable of learning

without losing the ability to extract generally useful features and necessary

properties for general signal-filtering, we designed the temporal scaling factors

k and informative factor w as learnable parameters. Our hypothesis is supported

by our experiment that, the learnable sparse wavelets layer extracts rich and

general information for the subsequent HAR model, and thus, the performance

80

can be improved. Furthermore, the proposed layer is more pronounced when

the model is the smaller, this facilitates the deployment of the HAR models on

wearable devices.

3.4 Summary

In this chapter, we demonstrate that both data augmentation and data transfor-

mation techniques are effective methods for maintaining model performance

while reducing model size. By leveraging these two approaches, we show that

it is possible to create more efficient models without compromising their accu-

racy or generalization ability. The use of data augmentation helps to enrich the

training data, improving the model’s capacity to learn robust patterns, while

data transformation techniques optimize the input data in ways that make mod-

els more compact and computationally efficient. Together, these methods offer

a promising solution for achieving lightweight models suitable for resource-

constrained environments, without sacrificing performance. This highlights the

potential of data-centric strategies in the development of efficient HAR models.

81

4 Model Architecture Design

Both data augmentation and transformation techniques have been applied SOTA

HAR models. While these methods have contributed to enhancing the perfor-

mance of lightweight HAR models, they are not always the most direct so-

lution. For example, when these techniques are applied to models that are

inherently too large, they may reduce the model size to some extent, but the

resulting models may still remain oversized due to the complexity of the orig-

inal architecture. Therefore, the most effective approach is to focus on model

design from the outset. In this chapter, we explore manual design strategies for

creating lightweight HAR models.

First, by comprehensively considering the unique characteristics of HAR

tasks, we designed the TinyHAR model, which will be discussed in Section 4.2.

Building upon the TinyHAR architecture and addressing the inherent limita-

tions of neural networks, we propose a dual-branch model that processes two

types of input representations: one as a raw time-series representation and

the other as a spectrogram, as introduced in Section 4.3. Finally, based on

the insights gained from TinyHAR and the dual-branch model, and consider-

ing hardware constraints, we developed a fully-connected layer-based model,

MLP-HAR, which is detailed in Section 4.4. In the concluding Section 4.5, we

summarize the work presented in this chapter.

4.1 Related Work

In Section 2.3, we reviewed the structure of current SOTA HAR models and

the relevant work on lightweight HAR models. However, there is limited re-

search within the HAR domain specifically focused on developing deployable

lightweight models [144]. In contrast, significant advancements have been

made in lightweight model design within other fields, particularly in computer

83

vision [153; 89; 61; 132; 168; 177; 142]. In this section, we draw upon key in-

sights from computer vision by reviewing notable developments in lightweight

model design.

Two primary strategies have emerged for lightweight model design in com-

puter vision tasks: (1) structural design aimed at enhancing information extrac-

tion [153; 89; 168; 142; 62] and (2) efficient operator design to reduce com-

putational complexity [61; 132; 177]. Structural designs, such as those in the

YOLO series [153] and SSD [100], simplify object detection by reformulating

it as a single-stage process. YOLO, for example, frames detection as a regres-

sion problem to accelerate speed, while SSD uses multi-scale feature maps to

detect objects of different sizes in a single pass. The hourglass network ar-

chitecture [163] further enhances multi-scale feature extraction through a sym-

metrical encoder-decoder design, making it particularly effective for tasks like

pose estimation. DenseNet [63] facilitates feature reuse and propagation by

densely connecting layers, enabling models to reduce depth without sacrificing

performance. Similarly, Feature Pyramid Networks (FPN) [94] enhance object

detection by aggregating features across multiple scales, supporting detection

across varied resolutions. These structural innovations are specifically tailored

to address the demands of computer vision, where tasks require both detailed

local features and global structural information, prompting the development of

these advanced feature extraction mechanisms. This raises an important ques-

tion: What type of information is necessary for accurate HAR, and how can

these requirements be effectively integrated into model design?

In contrast, efficient operator design focuses on reducing computational over-

head. MobileNet [61], for instance, employs depthwise separable convolutions

to minimize parameters and computational costs while maintaining robust per-

formance. ShuffleNet [177] builds upon this by introducing group convolu-

tions and channel shuffling, further lowering computational demands, particu-

larly for mobile and low-power devices. EfficientNet [142] tackles the problem

from a scaling perspective, employing a compound scaling approach to balance

network depth, width, and resolution, optimizing performance while keeping

the model compact.

The key distinction between these approaches lies in their focus: structural

84

designs, such as those in YOLO and SSD, prioritize improved feature extrac-

tion and handling of multi-scale information, whereas operator designs, like

MobileNet and ShuffleNet, emphasize computational efficiency through spe-

cialized operations. However, as noted in YOLOv6 [89], while depthwise sep-

arable convolutions reduce parameters and FLOPs, their higher memory access

costs can sometimes result in slower computations compared to standard con-

volutions. Additionally, custom operators, like those in ShuffleNet [177], may

not be supported by inference libraries on edge devices, limiting their deploy-

ability in practical applications.

In summary, these insights guide our approach, emphasizing the design of

model architectures tailored to the specific needs of HAR tasks and the in-

formation required for accurate classification. While custom operators can

provide certain advantages, their deployment on resource-constrained edge de-

vices is often hindered by the lack of support from inference libraries.

4.2 TinyHAR

In this section, we present our proposed model, TinyHAR [185]. An overview

of the model architecture is shown in Figure 4.1. Before delving into the de-

tails of TinyHAR’s structure, we outline the design principles informed by our

review of SOTA HAR models in Section 4.2.1. Based on these principles, the

methodology behind TinyHAR is introduced in Section 4.2.2.

4.2.1 Practical Guidelines for Efficient HAR Model Design

Designing an optimal, lightweight DL model requires careful consideration of

the characteristics of target tasks and the factors that could reduce inference

time and the number of operations. Based on these considerations, we devel-

oped the following guidelines for designing lightweight HAR models:

• G1: Enhance the extraction of local temporal context. Unlike NLP

tasks, where each word carries meaning in a sequence, the values at a

single point in a time series offer limited information [1; 119].

• G2: Unequal treatment of different sensor modalities. These modal-

85

Convolution𝐿
𝐶

𝑑 = 1

Raw Input
Data

Individual
Convolutional

Subnet

Transformer
Encoder
Block

flatten

FC

Temporal
Attention

Cross-Channel
Interaction

𝑑
𝐶 𝐿∗ 𝐶

𝑑

𝐿∗

𝐿∗

𝑑∗
𝐿∗

𝑑∗

𝒙𝑳∗ ∈ ℝ#
∗

𝒛 ∈ ℝ!∗

𝑇∗

𝐶𝑑

Convolution
Convolution
Convolution

𝐗 ∈ ℝ$×&×' 𝐗 ∈ ℝ$∗×&×(𝐗 ∈ ℝ$∗×&×# 𝐗 ∈ ℝ$∗×&#

Cross-Channel
Fusion Prediction

Temporal
Information
Extraction

Temporal
Information
Enhancement

LSTM

𝐿∗

𝐶𝑑

𝐗 ∈ ℝ$∗×&# 𝐗 ∈ ℝ$∗×#∗ 𝐗 ∈ ℝ$∗×#∗

Figure 4.1: Overview of the proposed TinyHAR model.

ities include different sensor types and wearing positions. Only some

modalities are informative for recognizing certain activities, while oth-

ers may contain patterns irrelevant to the activity [167; 102]. Irrele-

vant modalities can negatively impact recognition and undermine per-

formance [23].

• G3: Multi-modal fusion. Activities involve the collective movement of

various body parts. Extracting features without considering the interac-

tion between different modalities may limit the model’s performance [99].

• G4: Global temporal information extraction. Human activities are

embedded as sequential, transient information in sensor readings. Infor-

mation at certain time steps may exhibit more salient patterns [119] than

others. Accurate classification depends on a thorough understanding of

the dynamic changes across the entire sequence.

• G5: Appropriately reduce the temporal dimension. Compared to im-

86

age data, HAR data typically has a much larger temporal dimension rel-

ative to its spatial dimension. An excessively long temporal dimension

can lead to high model complexity and hinder the effective extraction of

global temporal dependencies [78]. Reducing the temporal dimension

can alleviate this issue and reduce computational cost.

In essence, HAR models developed prior to the publication of these guide-

lines have often overlooked some of these principles.

4.2.2 Methodology

Following the guidelines above, we designed TinyHAR, which consists of five

parts, as illustrated in Figure 4.1. The input data to the model is denoted as

X ∈ RL×C×d , where L represents the temporal sliding window size, C is the

number of sensor channels, and d indicates the number of filters (d = 1 for raw

data input that has not been processed).

4.2.2.1 Individual Convolutional Subnet. To enhance the local context,

we implemented a convolutional subnet to extract and integrate local features

from the raw data (following G1). Given the varying contributions of differ-

ent modalities, each channel is processed independently through four distinct

convolutional layers (following G2). Each convolutional layer employs ReLU

activation functions [2] and batch normalization [67]. The term "individual

convolution" refers to kernels that are 1D along the temporal axis, with a ker-

nel size of 5×1. To reduce the temporal dimension (in line with G5), the stride

in each layer is set to 2. All four convolutional layers share the same number

of filters, denoted by d. Consequently, the output shape of this convolutional

subnet is RL∗×C×d , where L∗ represents the reduced temporal length. Since

padding is not applied, the size of L∗ is approximately 1
16 of the original in-

put length L. Notably, the kernel size of 5, being larger than the stride of 2,

prevents information loss that could occur when the stride exceeds 1.

4.2.2.2 Cross-Channel Info Interaction. After extracting local context in-

formation from each sensor channel, the next step is to enable the learning of

87

𝛼! 𝛼" 𝛼# 𝛼$+ + +

Attention-based fusion FC fusion

Add & LayerNorm

Feed Forward

Add & LayerNorm

scaled dot-product Self-Attention

Figure 4.2: Architecture of transformer block.

interactions between them. Building on the success of the self-attention mech-

anism in learning collaborations between sensor channels, as demonstrated

in [1], we implemented a transformer encoder block [150] to capture these in-

teractions. The transformer encoder block comprises a scaled dot-product self-

attention layer and a two-layer fully connected (FC) feed-forward network, as

illustrated in Figure 4.2.

This process is applied across the sensor channel dimension (following G2)

at each time step. The scaled dot-product self-attention layer determines the

relative importance of each sensor channel by assessing its similarity to all

other sensor channels. As illustrated in Figure 4.3, the extracted features at

each time step, represented by a 2-dimensional matrix X t ∈ RC×d , are pro-

cessed sequentially and separately using the self-attention layer. During the

self-attention process, the feature vector of each sensor channel in X t under-

goes a mapping by three linear transformations: Q = X tW q (query), K = X tW k

(key), and V = X tW v (value). Here, W q, W k, and W v ∈ Rd×d are learnable

weight matrices. Normalized correlation scores across all pairs of feature vec-

tors for each sensor channel are computed by applying a scaled dot product,
QKT
√

d
, followed by a softmax function. These correlation scores dictate the ex-

tent to which the feature vector of each sensor channel should interact with the

other feature vectors. A feature vector with higher correlation scores will exert

a larger influence. The correlation scores are utilized to compute a weighted

88

Transpose

𝑾!𝑾" 𝑾#

𝑸 𝑲 𝑽

SoftmaxSk
ip

 C
on

ne
ct

io
n

𝑿$

𝐿

𝐶

𝑑

Figure 4.3: The self-attention is employed to facilitate cross-channel interac-
tions, enabling each channel to dynamically integrate information
from all other channels.

sum of the value matrix V , generating a new feature vector for each sensor

channel that aggregates information from all other sensor channels. Subse-

quently, the new feature vectors are reintegrated with the initial feature vectors

via a residual connection. This approach enables each sensor channel to adap-

tively and flexibly from interactions among other sensor channels. The process

can be mathematically formulated as

X t = softmax
(︃

QKT
√

d

)︃
V +X t .

Following this, as illustrated in Figure 4.2, two feed-forward layers are ap-

plied to each sensor channel, further refining the aggregated features. At this

stage, the features of each channel are contextualized with the underlying cross-

channel interactions. The skip connections are employed to preserve each sen-

sor channel’s unique information, even as key information from other channels

is integrated and fused.

4.2.2.3 Cross-Channel Info Fusion. Up to this point, information exchange

between sensor channels has been facilitated, but a comprehensive fusion of all

89

𝛼! 𝛼" 𝛼# 𝛼$+ + +

(a) Attention-based fusion (b) FC fusion

Add & LayerNorm

Feed Forward

Add & LayerNorm

scaled dot-product Self-Attention

Fused feature

Fused feature

flatten
𝑑

𝐶𝐶

𝑑

𝑑𝐶

Figure 4.4: Attention-based fusion (a) vs fully-connected layer-based fusion
(b).

the information has not yet been performed. Many models, such as Attend [1]

and ALAE [3], overlook this step. They opt to vectorize the 2D feature repre-

sentations at each time step into a 1D vector and directly feed this into subse-

quent RNN models. This approach not only bypasses feature fusion but also

increases the input size to d×C, leading to a significant increase in the number

of learnable parameters in the subsequent models.

As illustrated in Figure 4.4 (b), in TinyHAR, we similarly first vectorize

these representations at each time step, transforming X ∈ RL∗×C×d to X ∈ RL∗×Cd .

To effectively fuse the learned features from all sensor channels (in line with

G3), we apply a fully connected layer that performs a weighted summation

of all features. Unlike the attention mechanism used in [102], as shown in

Figure 4.4 (a), where features from the same sensor channel share the same

weights, the FC layer allows different features within the same sensor channel

to have distinct weights. This flexibility enables more comprehensive feature

fusion. Additionally, this FC layer acts as a bottleneck in TinyHAR, reducing

the feature dimension to d∗. As a result, the input size to the RNN is reduced

from Cd to d∗. In our design, we set d∗ = 2d, which is typically much smaller

than the original number of sensor channels, C. Compressing the dimensions

not only enhances feature fusion but also effectively reduces the size and com-

putational complexity of the subsequent RNN layers.

4.2.2.4 Global Temporal Info Extraction. After fusing the features across

the sensor and filter dimensions, we obtain a sequence of refined feature vec-

90

tors in RL∗×d∗
that are ready for sequence modeling. At this stage, we apply

a single LSTM layer to learn the global temporal dependencies. One layer is

sufficient since the temporal dimension has already been significantly reduced.

Additionally, further global temporal enhancement will be addressed in subse-

quent stages.

4.2.2.5 Global Temporal Info Enhancement. Given that not all time steps

contribute equally to the recognition of ongoing activities, it is crucial to evalu-

ate the significance of features at each time step within the sequence. Following

the methodology proposed by AttenSense [102], we construct a global contex-

tual representation z ∈ Rd∗
by calculating a weighted average of the hidden

states (features) across past time steps. The weights β are derived through a

temporal self-attention mechanism, which initially transforms the context of

each time step xi to x̃i and then calculates their relative importance based on

these transformed contexts x̃i. Since the feature at the final time step xL∗ ∈ Rd∗

encapsulates information from the entire sequence, the generated global repre-

sentation z is subsequently added to xL∗ . To allow the model to dynamically

decide whether to incorporate or disregard the generated global representation

z, we introduce a trainable scaling parameter γ . This process can be mathemat-

ically formulated as follows:

past hidden context = [x1,x2, · · · ,xL∗−1]

last context = xL∗

trans f romed context xĩ = tanh
(︂

W1
β

xi +b1
β

)︂
weight βi =

exp
(︂

W2
β

xĩ

)︂
∑

L∗−1
j=1 exp

(︂
W2

β
x j˜
)︂

global representation z = ∑
L∗−1
i=1 βixi

out put = xL∗ + γz

In this context, W1
β

and W2
β

represent the weights of two fully connected

layers, which transform the past context into a scalar value. The relative weights

β are then obtained by applying a softmax function to these scalar values.

91

4.2.3 Experiments and Discussions

4.2.3.1 Experiment Setup. In order to validate the effectiveness of the pro-

posed TinyHAR, we evaluate it on six widely used HAR benchmark datasets,

they are DSADS [14], SKODA(r) [170], WISDM [83], Daphnet [11], PAMAP2 [127]

and OPPO [21]. The datasets were selected to exhibit a great diversity in terms

of the sensing modalities used, installation locations, sampling frequency, data

collection scenarios and activities to be recognized.

We compare TinyHAR with the improved DeepConvLSTM (DCL) [19] model,

an enhanced version of the widely used benchmark model DeepConvLSTM [119]

frequently referenced in various works. The improved DeepConvLSTM ex-

hibits a reduced model size while achieving better performance. The specifi-

cations of all layers in DCL remain consistent with the settings in the origi-

nal work [19]. Furthermore, we introduce a model shrinking hyper-parameter

width multiplier ν [142] to thin DCL uniformly at each layer. By setting

ν = {0.25, 0.5, 0.75}, the model size will be reduced to approximately 1
2 ,

1
4 and 1

16 respectively (referred as DCL_0_75, DCL_0_50 and DCL_0_25).

We adjust the filter number d of TinyHAR, so that has a comparable number

of parameters to DCL_0_25.

4.2.3.2 Comparison to State-of-the-art. Figure 4.5 presents the experi-

mental results. Each column in the table represents the results for a specific

dataset. The first row in each column shows the macro F1 score F1M , the sec-

ond row displays the model size in terms of the number of trainable parameters,

and the third row indicates the model complexity in terms of FLOPs. Observ-

ing the second row, it is evident that TinyHAR, by design, has a significantly

smaller size compared to the baseline models and their scaled-down variants.

However, when examining the first row, it is clear that TinyHAR achieves su-

perior performance on three datasets (PAMAP2, DSADS, and Daphnet) com-

pared to its competitors. On these datasets, TinyHAR outperforms the baseline

models in their original size, with improvements in F1M of 1.8%, 3.1% and

9.78%, respectively.

We observed an overfitting trend in the DCL variants for the PAMAP2 and

Daphnet datasets, where the model’s performance improved as the model be-

92

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhou, et al.

DeepConvLSTM DeepConvLSTM_0_75 DeepConvLSTM_0_50 DeepConvLSTM_0_25 TinyHAR

(a) DSADS

83%

85%

86%

88%

89%

85
.2
7%
±
0.
61

%

85
.0
3%
±
0.
30

%

85
.8
5%
±
0.
94

%

84
.1
1%
±
0.
95

%

88
.3
7%
±
1.
15

%

0k

800k

1600k

16
05

58
7

90
39

07

40
24

19

10
11

23

99
36

7

0M

200M

400M

34
47

49
22

2

19
51

61
99

0

87
84

13
82

22
78

73
98

55
67

76
34

(b) SKODA

96%

97%

98%

98%

99%

98
.9
9%
±
0.
24

%

98
.6
9%
±
0.
36

%

98
.0
6%
±
0.
36

%

96
.5
8%
±
1.
04

%

98
.8
2%
±
0.
54

%

0k

600k

1200k

11
12

90
6

62
65

54

27
89

54

70
10

6

67
09

2

0M

75M

150M
14

12
53

14
0

79
99

68
20

36
03

58
60

93
70

26
0

19
81

55
72

(c) WISDM

80%

81%

82%

83%

84%

83
.3
9%
±
0.
64

%

82
.8
9%
±
0.
74

%

82
.8
2%
±
0.
56

%

81
.2
7%
±
0.
81

%

83
.4
7%
±
0.
89

%

0k

120k

240k

22
76

54

12
85

02

57
51

0

14
67

8

16
18

4

0M

10M

20M

19
80

34
04

11
21

99
16

50
58

18
8

13
18

22
0

14
66

76
4

(d) Daphnet

47%

51%

55%

59%

63%

51
.5
1%
±
0.
59

%

53
.0
1%
±
1.
44

%

52
.6
4%
±
1.
78

%

55
.6
0%
±
1.
74

%

61
.2
9%
±
1.
41

%

0k

220k

440k

42
37

46

23
87

06

10
64

02

26
83

4

19
12

4

0M

15M

30M

30
73

79
24

17
41

63
24

78
52

80
4

20
47

36
4

20
83

20
4

(e) PAMAP2

73%

74%

75%

75%

76%

73
.4
7%
±
0.
66

%

73
.8
8%
±
1.
32

%

74
.2
7%
±
1.
28

%

74
.6
6%
±
0.
97

%

75
.2
7%
±
0.
87

%

0k

360k

720k

71
99

48

40
55

64

18
07

80

45
59

6

37
27

4

0M

100M

200M

19
24

42
39

2

10
89

42
36

0

49
03

52
88

12
72

11
76

19
12

72
24

(d) OPPO

36%

37%

38%

39%

40%

39
.8
1%
±
1.
16

%

39
.5
0%
±
1.
06

%

39
.8
6%
±
0.
85

%

37
.7
0%
±
1.
33

%

38
.9
0%
±
1.
22

%

0k

1200k

2400k

26
54

03
4

14
93

63
4

66
44

98

16
66

26

16
51

92

0M

40M

80M

75
63

49
80

42
95

75
40

19
45

92
36

51
40

06
8

14
75

45
80

Av
er

ag
e

F1
 S

co
re

M
od

el
siz

e
FL

OP

Figure 2: LOSO CV Performance comparison. For each dataset, the averaged �1" , the corresponding model size (number of
trainable parameters) and number of FLOPs are shown separately.

Training. The training is performed using the Adam optimizer [12]
with an initial learning rate 10�4. The learning rate decays to 10%
with a patience equal to 5 epochs. We train models for a maximum
of 150 epochs with early stopping, and the batch size is 256. All
models were trained on a single NVIDIA A100 40G GPU.

4.2 Result
As summarized in Figure 2, TinyHAR by design has the smaller
size than the baseline. However, it achieves a better performance
on the three datasets (PAMAP2, DSADS and Daphnet) compared
to its competitors. On these three datasets, TinyHAR outperforms
the baseline in original size in terms of �1" by 1.8%, 3.1%0=39.78%.
We observed an over�tting trend of DeepConvLSTM variants for
the PAMAP2 and Daphnet dataset in comparison with the reduced
DeepConvLSTM model variants. Therefore, for Daphnet data, we
additionally compared TinyHAR to a DeepConvLSTM with U =
0.21 (model size 17786), which achieved an �1" of 55.93% ± 1.75%.
Although the performance has gotten better, it is still 5.36% lower
than TinyHAR. For PAMAP2 dataset, we additionally reduced U to
0.23 (model size 36254). In this case, we observe a degradation of
the performance (74.36% ± 1.02%)

Compared to the baseline, TinyHAR obtains slightly lower �1"
on Skoda dataset and slightly higher �1" on WISDM dataset. Sig-
ni�cant tests show that there is no statistically signi�cant di�erence
in the performance between both models. TinyHAR is, however,
much smaller than the comparison model and performs signi�-
cantly better than DeepConvLSTM_0_25 with a similar size. We
speculate that the reason for the positive correlation of performance
with model size for the baseline is that, Skoda data was collected
from only one subject, so it does not penalize over�tting as the
statistical independence of training and test samples within the
CV is smaller. Similarly, the WISDM dataset was collected from 36
subjects through controlled, laboratory conditions, which reduces
the e�ect of generalizability. Even under this condition, the Tiny-
HAR still reaches the same performance with around 6% model
size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and
DSADS suggests that TinyHAR has a great capability to capture
temporal-spatial patterns in multimodal sensing.

However, TinyHAR obtains lower �1" score on Opportunity.
Compared to other datasets, dataset Opportunity has much more
sensor channels. We assume that the poor performance is owing
to the fact that the model is too small to e�ectively extract and
fuse information from so many channels. Thus, we increased the
�lter number � from 28 to 42 (model size 370082). The model’s �1"
performance of 41.22% ± 1.19% in this case (as predicted) exceeds
the performance of all DeepConvLSTM variants.

As shown in Figure 2 (third row), we also utilized the computa-
tional cost (number of FLOPs) as an e�ciency metric. The TinyHAR
model has a much smaller number of FLOPs compared to the Deep-
ConvLSTM model. Compared to the DeepConvLSTM_0_25 model,
the TinyHAR model achieves better results on all datasets, although
it has a higher number of FLOPs.

5 CONCLUSION
Through a HAR-speci�c design, we were able to develop a light-
weight but highly competitive DL model. Particularly, when taking
the model size into account, which is of great importance for wear-
able computing, the model clearly outperforms the DeepConvLSTM
as an example of a state of the art HAR model in our experiments.

Instead of only adapting an architecture from another domain
and letting the optimizer do its magic, di�erent saliency of multi
modalities, multimodal collaboration and temporal information
extraction were speci�cally translated into a network architecture
to achieve this performance. We believe that this shows that there
is still a great potential for improvement in HAR models with the
focus on deployment on wearable computing devices.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),
and the Ministry of Economic A�airs, Labour and Tourism Baden-
Württemberg as part of CC-KING.

ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Zhou, et al.

DeepConvLSTM DeepConvLSTM_0_75 DeepConvLSTM_0_50 DeepConvLSTM_0_25 TinyHAR

(a) DSADS

83%

85%

86%

88%

89%

85
.2
7%
±
0.
61

%

85
.0
3%
±
0.
30

%

85
.8
5%
±
0.
94

%

84
.1
1%
±
0.
95

%

88
.3
7%
±
1.
15

%

0k

800k

1600k

16
05

58
7

90
39

07

40
24

19

10
11

23

99
36

7

0M

200M

400M

34
47

49
22

2

19
51

61
99

0

87
84

13
82

22
78

73
98

55
67

76
34

(b) SKODA

96%

97%

98%

98%

99%

98
.9
9%
±
0.
24

%

98
.6
9%
±
0.
36

%

98
.0
6%
±
0.
36

%

96
.5
8%
±
1.
04

%

98
.8
2%
±
0.
54

%

0k

600k

1200k

11
12

90
6

62
65

54

27
89

54

70
10

6

67
09

2

0M

75M

150M

14
12

53
14

0

79
99

68
20

36
03

58
60

93
70

26
0

19
81

55
72

(c) WISDM

80%

81%

82%

83%

84%

83
.3
9%
±
0.
64

%

82
.8
9%
±
0.
74

%

82
.8
2%
±
0.
56

%

81
.2
7%
±
0.
81

%

83
.4
7%
±
0.
89

%

0k

120k

240k

22
76

54

12
85

02

57
51

0

14
67

8

16
18

4

0M

10M

20M

19
80

34
04

11
21

99
16

50
58

18
8

13
18

22
0

14
66

76
4

(d) Daphnet

47%

51%

55%

59%

63%

51
.5
1%
±
0.
59

%

53
.0
1%
±
1.
44

%

52
.6
4%
±
1.
78

%

55
.6
0%
±
1.
74

%

61
.2
9%
±
1.
41

%

0k

220k

440k

42
37

46

23
87

06

10
64

02

26
83

4

19
12

4

0M

15M

30M

30
73

79
24

17
41

63
24

78
52

80
4

20
47

36
4

20
83

20
4

(e) PAMAP2

73%

74%

75%

75%

76%

73
.4
7%
±
0.
66

%

73
.8
8%
±
1.
32

%

74
.2
7%
±
1.
28

%

74
.6
6%
±
0.
97

%

75
.2
7%
±
0.
87

%

0k

360k

720k

71
99

48

40
55

64

18
07

80

45
59

6

37
27

4

0M

100M

200M

19
24

42
39

2

10
89

42
36

0

49
03

52
88

12
72

11
76

19
12

72
24

(d) OPPO

36%

37%

38%

39%

40%

39
.8
1%
±
1.
16

%

39
.5
0%
±
1.
06

%

39
.8
6%
±
0.
85

%

37
.7
0%
±
1.
33

%

38
.9
0%
±
1.
22

%
0k

1200k

2400k

26
54

03
4

14
93

63
4

66
44

98

16
66

26

16
51

92

0M

40M

80M

75
63

49
80

42
95

75
40

19
45

92
36

51
40

06
8

14
75

45
80

Av
er

ag
e

F1
 S

co
re

M
od

el
siz

e
FL

OP

Figure 2: LOSO CV Performance comparison. For each dataset, the averaged �1" , the corresponding model size (number of
trainable parameters) and number of FLOPs are shown separately.

Training. The training is performed using the Adam optimizer [12]
with an initial learning rate 10�4. The learning rate decays to 10%
with a patience equal to 5 epochs. We train models for a maximum
of 150 epochs with early stopping, and the batch size is 256. All
models were trained on a single NVIDIA A100 40G GPU.

4.2 Result
As summarized in Figure 2, TinyHAR by design has the smaller
size than the baseline. However, it achieves a better performance
on the three datasets (PAMAP2, DSADS and Daphnet) compared
to its competitors. On these three datasets, TinyHAR outperforms
the baseline in original size in terms of �1" by 1.8%, 3.1%0=39.78%.
We observed an over�tting trend of DeepConvLSTM variants for
the PAMAP2 and Daphnet dataset in comparison with the reduced
DeepConvLSTM model variants. Therefore, for Daphnet data, we
additionally compared TinyHAR to a DeepConvLSTM with U =
0.21 (model size 17786), which achieved an �1" of 55.93% ± 1.75%.
Although the performance has gotten better, it is still 5.36% lower
than TinyHAR. For PAMAP2 dataset, we additionally reduced U to
0.23 (model size 36254). In this case, we observe a degradation of
the performance (74.36% ± 1.02%)

Compared to the baseline, TinyHAR obtains slightly lower �1"
on Skoda dataset and slightly higher �1" on WISDM dataset. Sig-
ni�cant tests show that there is no statistically signi�cant di�erence
in the performance between both models. TinyHAR is, however,
much smaller than the comparison model and performs signi�-
cantly better than DeepConvLSTM_0_25 with a similar size. We
speculate that the reason for the positive correlation of performance
with model size for the baseline is that, Skoda data was collected
from only one subject, so it does not penalize over�tting as the
statistical independence of training and test samples within the
CV is smaller. Similarly, the WISDM dataset was collected from 36
subjects through controlled, laboratory conditions, which reduces
the e�ect of generalizability. Even under this condition, the Tiny-
HAR still reaches the same performance with around 6% model
size. The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and
DSADS suggests that TinyHAR has a great capability to capture
temporal-spatial patterns in multimodal sensing.

However, TinyHAR obtains lower �1" score on Opportunity.
Compared to other datasets, dataset Opportunity has much more
sensor channels. We assume that the poor performance is owing
to the fact that the model is too small to e�ectively extract and
fuse information from so many channels. Thus, we increased the
�lter number � from 28 to 42 (model size 370082). The model’s �1"
performance of 41.22% ± 1.19% in this case (as predicted) exceeds
the performance of all DeepConvLSTM variants.

As shown in Figure 2 (third row), we also utilized the computa-
tional cost (number of FLOPs) as an e�ciency metric. The TinyHAR
model has a much smaller number of FLOPs compared to the Deep-
ConvLSTM model. Compared to the DeepConvLSTM_0_25 model,
the TinyHAR model achieves better results on all datasets, although
it has a higher number of FLOPs.

5 CONCLUSION
Through a HAR-speci�c design, we were able to develop a light-
weight but highly competitive DL model. Particularly, when taking
the model size into account, which is of great importance for wear-
able computing, the model clearly outperforms the DeepConvLSTM
as an example of a state of the art HAR model in our experiments.

Instead of only adapting an architecture from another domain
and letting the optimizer do its magic, di�erent saliency of multi
modalities, multimodal collaboration and temporal information
extraction were speci�cally translated into a network architecture
to achieve this performance. We believe that this shows that there
is still a great potential for improvement in HAR models with the
focus on deployment on wearable computing devices.

ACKNOWLEDGMENTS
This work has been partially supported by the Carl-Zeiss-Foundation
as part of "stay young with robots" (Jubot) project, the German Min-
istry of Research and Education as part of the SDIL (01IS19030A),
and the Ministry of Economic A�airs, Labour and Tourism Baden-
Württemberg as part of CC-KING.

DCL DCL_0_75 DCL_0_50 DCL_0_25 TinyHAR

M
ac

ro
 F

1
Sc

or
e

M
od

el
 S

iz
e

FL
O

Ps
M

ac
ro

 F
1

Sc
or

e
M

od
el

 S
iz

e
FL

O
Ps

Figure 4.5: LOSO-CV performance comparison between TinyHAR and the
DCL model with varying model sizes. For each dataset, the av-
eraged F1M , the corresponding model size (number of trainable
parameters) and number of FLOPs are shown separately.

93

coming smaller with the decreased shrink parameter ν . To further investigate

this behavior, we continued reducing the size of the DCL model by decreas-

ing the shrink parameter ν . For the Daphnet dataset, we set ν = 0.21, result-

ing in a model size of 17,786 parameters, making it smaller than TinyHAR.

Given the risk of overfitting on this dataset, the reduced DCL achieved an F1M

of 55.93% ± 1.75%. Although the performance improved, it was still 5.36%

lower than that of TinyHAR. For the PAMAP2 dataset, we reduced ν to 0.23,

yielding a model size of 36,254 parameters. In this case, we observed a degra-

dation in performance (74.36% ± 1.02%). Even when the parameter count

was reduced to a level comparable to TinyHAR, TinyHAR consistently out-

performed the DCL variants, particularly on datasets prone to overfitting. This

superior performance is attributed to TinyHAR’s design, which fully considers

the unique characteristics of HAR tasks.

Compared to the baseline, TinyHAR obtains slightly lower F1M on Skoda

dataset and slightly higher F1M on WISDM dataset. Significant tests show

that there is no statistically significant difference in the performance between

both models. TinyHAR is, however, much smaller than the comparison model

and performs significantly better than DCL_0_25 with a similar size. We spec-

ulate that the reason for the positive correlation of performance with model

size for the baseline is that, Skoda data was collected from only one subject,

so it does not penalize overfitting as the statistical independence of training

and test samples within the cross validation is smaller. Similarly, the WISDM

dataset was collected from 36 subjects through controlled, laboratory condi-

tions, which reduces the effect of generalizability. Even under this condition,

the TinyHAR still reaches the same performance with around 6% model size.

The Performance on Dahpnet, PAMAP2, SKODA, WISDM, and DSADS sug-

gests that TinyHAR has a great capability to capture temporal-spatial patterns

in multi-modal sensing.

However, TinyHAR obtains lower F1M score on Opportunity. Compared to

other datasets, dataset Opportunity has much more sensor channels. We as-

sume that the poor performance is owing to the fact that the model is too small

to effectively extract and fuse information from so many channels. Thus, we

increased the filter number d from 28 to 42 (model size 370082). The model’s

94

F1M performance of 41.22% ± 1.19% in this case (as predicted) exceeds the

performance of all DCL variants.

When evaluating computational complexity in terms of FLOPs, as shown in

Figure 4.5 (third row), the TinyHAR model exhibits significantly fewer FLOPs

than the DCL model and its variants, DCL_0_75 and DCL_0_50. However,

TinyHAR has a higher number of FLOPs compared to the DCL_0_25 model.

This increase in complexity is attributed to TinyHAR’s more advanced ar-

chitecture, which includes additional modules such as the cross-channel in-

teraction module, feature fusion module, and temporal information enhance-

ment module. Nevertheless, despite its higher computational cost relative to

DCL_0_25, TinyHAR consistently delivers superior performance across all

datasets.

4.2.4 Discussion

Through a HAR-specific design, we were able to develop a lightweight but

highly competitive DL model. Particularly, when taking the model size into

account, which is of great importance for wearable computing, the model

clearly outperforms the DeepConvLSTM as an example of a state of the art

HAR model in our experiments.

Instead of only adapting an architecture from another domain and letting

the optimizer do its magic, different saliency of multi modalities, multimodal

collaboration and temporal information extraction were specifically translated

into a network architecture to achieve this performance.

We believe there is still significant potential for improving the design of

lightweight HAR models, particularly for deployment on wearable computing

devices. For example, the structural diversity of TinyHAR’s components can

result in relatively high computational complexity, especially when the filter

size d is small. Moreover, certain operators, such as RNN-based layers, are

less favorable in time-constrained environments due to their sequential nature,

which limits parallel processing and hinders efficient inference.

95

4.3 Cross-Attention with Multi-Representation

Despite TinyHAR’s compact size and its ability to outperform the benchmark

model DeepConvLSTM, there remains a performance gap compared to other

SOTA models. In this chapter, we introduce our proposed Cross-Attention with

Multi-Representation (Cross-Atten) model, which surpasses the performance

of all existing SOTA HAR models.

4.3.1 Methodology

To more effectively exploit the complementarity of representations during the

learning process, we devised a dual-branch model. The overall structure of this

model, depicted in Figure 4.6, includes a time-series branch (Branch-ts) and a

spectrogram branch (Branch-sc). Within this framework, the data processing

flow is divided into four stages. (1) Initially, the raw sensory time-series repre-

sentation is transformed into a spectrogram representation through the Fourier

transformation. (2) Subsequently, both the spectrogram representation and the

time-series representation are processed separately through the local embed-

ding module corresponding to their respective branches. Notably, although

these two embedding modules follow the same design, they do not share their

parameters. (3) In the ensuing phase, the extracted features are passed through

the attention module, which is designed to extract global temporal dependen-

cies. Instead of directly concatenating these features, the interaction between

the features acquired by each branch is enhanced through the incorporation

of a cross-attention block. This cross-attention block allows the features of

each branch to adaptively gather relevant and complementary information from

each other, thus facilitating joint robust feature learning. (4) In the final stage,

the features derived from both branches are concatenated to generate the final

prediction. Subsequent sections will provide a detailed introduction of these

modules, presented in sequential order.

Throughout this work, we use notations with different symbols to differen-

tiate between parameters and feature maps associated with the two branches

within the proposed framework. Notations pertaining to the time-series branch

will have a hat symbol, whereas those associated with the spectrogram branch

96

Time-Series
Representation

Spectrogram
Representation

X = FFT(&X)

Individual Convolution

Cross Channel Attention

Reshape + FC Layer

Self-Attention

Cross-Attention

Temporal-Attention Temporal-Attention

Individual Convolution

Cross Channel Attention

Reshape + FC Layer

Self-Attention

Self-Attention

Cross-Attention

Self-Attention

D
at

a
Tr

an
sf

or
m

at
io

n
Em

be
dd

in
g

M
od

ul
e

A
tte

nt
io

n
M

od
ul

e
Pr

ed
ic

tio
n

M
od

ul
e

Concat

FC Prediction

𝐿 𝐶

1

𝑇 𝑐

2𝑓

𝑑′

𝑑′

𝐿 𝑇

𝑑′

𝐿 𝑇

𝑑′

𝑑′𝑑′

𝐗

𝐗

𝐗
2𝐗

2𝐗

2𝐗

3𝐳 𝒛

Figure 4.6: An overview of the proposed model, Cross-Atten, which consists
of two branches. The branches are color-coded: blue for the time-
series branch and green for the spectrogram branch. The notation of
the feature map and the parameters within each branch are denoted
by different symbols, hat and bar, respectively.

97

will bear a bar symbol. If a notation does not have a symbol in the following

discussions, it implies that the process is equivalent in both branches.

4.3.1.1 Data Transformation. Given the readings of multidimensional sen-

sors, the initial step involves segmenting these readings into uniform lengths

using a sliding window. Following this, a classification model maps each data

segment to predefined activity classes. The segment directed to the time-series

branch is represented as a 3-dimensional matrix, X̂ ∈ RL×C×d , where L rep-

resents the size of the sliding window (the length of the segment), and C de-

notes the number of sensor channels. Since the raw data are not processed, the

feature dimension equals to d = 1. Meanwhile, the input directed to the spec-

trogram branch is also a 3-dimensional matrix, symbolized as X̄ ∈ RT×C×2 f ,

having been transformed from X̂ . To compute the spectrogram X̄ , we follow

methodologies employed in prior works [99; 167; 102]. The time-series data

from each sensor channel is first segmented along the temporal dimension into

T equal-length intervals, with each interval having a length of τ . The FFT is

then applied to each interval, producing spectral features that consist of f pairs

of magnitude and phase, where f = τ . Consequently, the feature dimension of

X̄ is established as 2 f .

4.3.1.2 Individual Embedding Module. Following the data transforma-

tion, the two representations are fed into the embedding module of each re-

spective branch to independently extract features, with the embedding module

comprising three parts. The structural design of this module follows the prin-

ciples outlined in TinyHAR [185].

Initially, to enhance the local context, an individual convolutional subnet is

applied to extract and fuse local features from the raw data. Given the varying

contributions of different modalities, each sensor channel is processed sepa-

rately through four individual convolutional layers. Individual convolution im-

plies that the kernels have a 1D structure along the temporal axis, with a kernel

size of (k×1). Consequently, features are extracted solely along the tempo-

ral axis, without interaction between sensor channels. For each convolutional

layer, ReLU nonlinearities [2] and batch normalization [67] are employed. No-

tably, the feature dimensionality of the convolutional kernel, denoted as d, re-

98

mains consistent across all four convolutional layers.

To facilitate learning of the collaboration between sensor channels, cross-

channel attention is applied following individual convolution [1]. As illustrated

in Figure 4.3, the extracted features at each time step are processed sequentially

and separately using the self-attention block. During the self-attention process,

the feature vector of each sensor channel in X t undergoes a mapping by three

linear transformations: Q = X tW q (query), K = X tW k (key), and V = X tW v

(value). Normalized correlation scores across all pairs of feature vectors for

each sensor channel are computed by applying a scaled dot product, QKT
√

d
, fol-

lowed by a softmax function. The correlation scores are utilized to compute

a weighted sum of the value matrix V , generating a new feature vector for

each sensor channel that aggregates information from all other sensor chan-

nels. Subsequently, the new feature vectors are reintegrated with the initial

feature vectors via a residual connection. The process can be mathematically

formulated as

X t = softmax
(︃

QKT
√

d

)︃
V +X t .

Upon learning the interaction and to fuse the learned features across all sen-

sor channels, the features at each time step are vectorized in the final step of

this embedding module. Feature maps from both branches are converted into

sequential feature vectors X̂ ∈ Rl×cd and X̄ ∈ Rn×cd . Subsequently, a fully

connected layer is employed to perform a weighted mapping of the vectorized

feature vectors. In our work, we define the number of features will be mapped

from cd to d′ = 2d. This fully-connected layer not only facilitates the fusion

of features across all sensor channels but also plays a role in reducing the fea-

ture size. This effectively decreases the computational load of the subsequent

model structure as well as the number of learnable parameters. Regardless

of the number of sensor channels C, the number of features is compressed to

d′ = 2d.

4.3.1.3 Attention Module. Up to this point, the extracted features from the

embedding module of both branches have only covered the local context. At

this stage, the two feature vector sequences X̂ ∈ Rl×d′
and X̄ ∈ Rn×d′

will be

introduced to the attention block. This block is tasked with learning the global

99

!𝐖! !𝐖"!𝐖# 𝐖!𝐖" 𝐖#

!𝐐$!𝐊!𝐕 𝐐𝒕𝐊 𝐕

𝐿 𝑇
𝑑′ 𝑑′

!𝐗 𝐗

𝐗 !𝐗 𝐗𝐭!𝐗𝒕

Softmax Softmax
Transpose Transpose

Figure 4.7: Cross-attention block for two branches. Each feature vector serves
as a query to interact with all feature vectors from the opposite
branch. Both branches adhere to the same procedure.

temporal dependencies through two self-attention blocks and also facilitating

interaction between the two branches via the cross-attention block.

Initially, the attention module employs a self-attention block to extract global

temporal dependencies within each branch independently. The self-attention

mechanism utilized here is the same as that described in Sec 4.3.1.2 with the

only difference: the self-attention in the previous section learned the interaction

across sensor channels, here, it is executed along the temporal dimension.

After the feature vector at each time step has exchanged information with

the feature vectors at other time points within the same sequence, the atten-

tion module employs the cross-attention block to enable information exchange

across the feature vector sequences of the two branches. The process of cross-

attention is illustrated in Figure 4.7. The concept of cross-attention extends the

mechanism of self-attention: rather than each feature vector in a sequence at-

tending solely to feature vectors from the same sequence (as in self-attention),

in cross-attention, the feature vector from one sequence computes correlation

100

scores with feature vectors from another sequence.

Taking the time-series branch as an example, when it is producing its output

sequence, the feature vector at one time step serves as a query to interact with

all feature vectors from the spectrogram branch. After the linear transforma-

tion, the scaled dot product of the matrix query and key determine the relative

correlation between the feature vector from the time-series branch and all fea-

ture vectors from the spectrogram branch. After normalizing the correlation

through the softmax function, the mapped feature vectors from the spectro-

gram branch are summed with weights, according to the normalized correla-

tion scores, to form a new feature vector, which blends information from the

spectrogram branch. This new feature vector is then added back to the feature

vector of the time-series branch. In this manner, communication is facilitated

between the two branches, enabling them to give attention to each other and

leverage information from each other during learning. This process is mir-

rored in the spectrogram branch. The cross-attention mechanism for the two

branches can be formulated as follows:

X̂ = softmax

(︄
Q̂K̄⊤
√

d′

)︄
V̄ + X̂ ,

X̄ = softmax

(︄
Q̄K̂⊤
√

d′

)︄
V̂ + X̄ ,

where Q̄ = X̄W̄ q, K̄ = X̄W̄ k, V̄ = X̄W̄ v, Q̂ = X̂Ŵ q, K̂ = X̂Ŵ k and V̂ = X̂Ŵ v,

with trainable weight matrices Ŵ q, Ŵ k and Ŵ v for the time-series branch and

trainable weight matrices W̄ q, W̄ k and W̄ v for the spectrogram branch.

After the cross-attention block, the attention module employs a second self-

attention block, allowing the features in each respective branch to further refine

the temporal dependency, based on the fused complementary information from

the opposite branch.

4.3.1.4 Prediction Module. The output of the attention module in each

branch remains a sequence of feature vectors. Considering that not all time

steps contribute equally to the recognition of activities, the prediction mod-

ule employs temporal attention to generate a representative feature vector z for

101

each branch by taking a weighted average sum of the feature vectors across all

time steps, given by ẑ = ∑
l
i=1 β̂ ix̂i and z̄ = ∑

n
i=1 β̄ ix̄i. Here, βi represents the

computed attention weight for the feature vector at each time step. Technically,

attention weights βi are obtained by first mapping each feature vector to a sin-

gle score with two Fully Connected layers and then normalizing these scores

across time steps using a softmax function. Subsequently, the learned repre-

sentations from both branches are concatenated to form a joint representation,

denoted as concat(ẑ, z̄). This joint representation is then fed into an FC layer

to generate predictions for pre-defined activities.

4.3.2 Experiments and Discussions

4.3.2.1 Experimental Setup. To systematically validate the efficacy of the

proposed model, an extensive performance evaluation was conducted using

twelve widely used datasets. These datasets exhibit substantial diversity, show-

ing variations in activity types, sensor installation locations, and sampling

rates. These datasets include: PAMAP2 [127], DSADS [14], Daphnet [11], Re-

alWorld HAR (RW) [141], HAPT [128], Motion Sense [107], Skoda(r) [170],

Ges-Home [115], EMG-G [87], Letters of Sign Language dataset (L-Sign) [123]

and Heterogeneity Activity Recognition (HHAR) [136].

Table 4.1: Parameters related to FFT transformation for each dataset.

Data L Window Size T # Intervals # f
PAMAP2 1.28s 80 16
DSADS 5s 5 25
Daphnet 1s 4 16

RW 2s 10 10
HAPT 2.56s 8 16

MotionSense 2.56s 8 16
Skoda 2s 10 20

GesHome 2s 7 20
L-Sign 3s 6 25
EMG-G 1s 10 20
HHAR 2s 10 20

MHealth 2.56s 8 16

Table 4.1 provides information about the parameters related to data prepa-

ration/transformation. The column "window size" L denotes the size of the

102

sliding window. The signals of each sensor are z-normalized separately before

the FFT transformation. For generating the spectrogram representation, "# in-

terval" T denotes the specific number of intervals into which the data segments

are subdivided. Furthermore, "# f " represents the quantity of amplitude and

phase spectral pairs computed from each interval. This data preparation setup

adhered to the setup delineated in relevant works [167; 99; 178] without any

tuning adjustments.

In the context of this research, the proposed model is analytically compared

with six SOTA HAR models. DeepConvLSTM [119] is a widely used baseline

model. The other five models are SOTA HAR models. DeepSense [167] and

GlobalFusion [99] are representative of models that utilize spectrogram rep-

resentations as input. The models Attend-Discriminate (Attend) [1], ALAE-
TAE [3], and IF-ConvTransformer (IF-ConvT) [178] represent models that

use time-series representations as input and exhibit diverse neural architecture

designs.

The structure of the proposed Cross-Atten model is detailed in Tables 4.2

and 4.3, with Table 4.2 presenting the architecture of the time-series branch

and Table 4.3 showing the structure of the spectrogram branch. Following the

practices of models like DeepSense, Attend, Globalfusion, and ALAE-TAE,

we set the total number of filters to 64 in our model. However, given its dual-

branch design, we reduced the filter number to 32 for each branch’s individual

embedding block to maintain balance (d = 32). This ensures that the total

number of filters across both branches remains consistent with the comparison

models. It is important to note that in this experiment, the parameter d = 32

was not optimized but was simply set to evenly split the 64 filters between the

two branches, in line with the settings of the benchmark HAR models.

4.3.2.2 Comparison to State-of-the-art. Figure 4.8, Figure 4.9 and Fig-

ure 4.10 illustrate the comparative performance of the models across twelve

datasets. Each figure presents the model’s performance on four datasets, with

each dataset represented by a column. Each column is divided into three rows:

the first row shows the classification performance, the second row displays the

computational complexity, and the third row reports the number of learnable

103

Table 4.2: The structure for the time-series branch.

Individual
Convolutional
Layers

kernel_size = (5,1), padding=0, d=32, stride=(2,1)
kernel_size = (5,1), padding=0, d=32, stride=(1,1)
kernel_size = (5,1), padding=0, d=32, stride=(2,1)
kernel_size = (5,1), padding=0, d=32, stride=(1,1)

Cross Channel Attention d=32

Fully Connected Layer d′=64

Self-Attention d′=64

Cross-Attention d′=64

Self-Attention d′=64

Table 4.3: The structure for the spectrogram branch.

Individual
Convolutional
Layers

kernel_size = (3,1), padding=1, d=32, stride=(1,1)
kernel_size = (3,1), padding=1, d=32, stride=(1,1)
kernel_size = (3,1), padding=1, d=32, stride=(1,1)
kernel_size = (3,1), padding=1, d=32, stride=(1,1)

Cross Channel Attention d=32

Fully Connected Layer d′=64

Self-Attention d′=64

Cross-Attention d′=64

Self-Attention d′=64

parameters in the model. To assess the statistical difference in performance be-

tween the models, we employed the Mann-Whitney U test [157], considering

a difference statistically significant if the p-value is less than 0.05. The best

performances are highlighted in bold.

An overall observation reveals that the proposed model, Cross-Atten, consis-

tently surpasses its counterparts, achieving the best avaraged macro F1 Score

F1M on 10 of 12 datasets. For the datasets where the Cross-Atten did not

secure the top performance, it achieved the second-best. This observation un-

derscores the robustness and efficacy of Cross-Atten in navigating various sce-

narios.

A more granular exploration of the data representations employed by the

models unveils additional insights. Notably, the GlobalFusion model, which

utilizes a spectrogram representation, offers superior results on the EEG-G,

HHAR, GesHome and L-sign datasets compared to models leveraging time-

series representation, as illustrated in Figure 4.9. In contrast, on the PAMAP2,

104

74
.61

±
0.9

4
79
.42

±
1.0

4
83
.96

±
0.6

6
84
.48

±
0.3

7
85
.29

±
0.4

4
85
.86

±
0.5

1
-.
.-
-±

/.
01

90
.89

±
0.2

6
90
.38

±
0.4

7
91
.72

±
0.3

3
91
.97

±
0.1

9
92
.20

±
0.2

1
93
.12

±
0.3

9
23
.3
1±

/.
4.

58
.76

±
1.1

0
59
.72

±
0.7

4
62
.11

±
0.6

9
63
.87

±
1.4

4
63
.34

±
1.2

9
62
.45

±
0.5

3
05
.2
3±

/.
0-

86
.46

±
0.9

4
87
.51

±
0.6

7
88
.75

±
0.5

8
87
.06

±
0.5

5
88
.79

±
0.7

7
-2
.6
3±

/.
63

-2
.6
5±

/.
00

DCL DeepSense GlobalFusion Attend ALAE IF-Conv Cross-Atten

Figure 4.8: Performance comparison on four HAR datasets between the pro-
posed Cross-Atten model and other SOTA HAR models (I).

DG, DSADS and SKODA(r) datasets, as illustrated in Figure 4.8, this domi-

nance is reversed; model Attend utilizing time-series data representation clearly

demonstrates better performance. This phenomenon implicitly shines light on

the strengths and weaknesses inherent within respective data representations,

which subsequently influence the models’ proficiency in feature extraction.

However, Cross-Atten demonstrates excellent performance on most datasets,

thereby confirming the hypothesis that utilizing both representations simulta-

neously can benefit from their respective strengths.

A detailed analysis of the performance on the PAMAP2 dataset (Figure 4.8)

and the EMG-G dataset (Figure 4.9) underscores the effectiveness of the Cross-

Atten model. Notably, Cross-Atten surpasses the IF-Conv model on the PAMAP2

dataset by a significant margin of 2.02%, and outperforms the GlobalFusion

model on the EMG-G dataset by 1.42%. These statistically significant im-

provements demonstrate the superior ability of Cross-Atten to leverage the

complementarity between the two representations. By simultaneously utiliz-

105

61
.62

±
0.3

6
64
.31

±
0.6

7
65
.85

±
0.5

2
61
.59

±
0.3

1
61
.34

±
0.7

5
64
.65

±
0.2

8
0.
.4
.±

/.
56

93
.97

±
0.3

9
94
.23

±
0.3

5
94
.73

±
0.3

5
92
.96

±
0.1

8
92
.24

±
0.1

1
95
.38

±
0.1

7
20
.5
0±

/.
40

90
.81

±
0.4

3
93
.86

±
0.4

0
94
.75

±
0.3

2
92
.47

±
0.6

3
92
.71

±
0.9

7
94
.16

±
0.2

2
26
.6
.±

/.
30

80
.61

±
0.1

6
83
.99

±
0.2

2
84
.68

±
0.1

2
82
.78

±
0.2

8
83
.61

±
0.3

9
-6
.6
.±

/.
45

85
.02

±
0.1

3

DCL DeepSense GlobalFusion Attend ALAE IF-Conv Cross-Atten

Figure 4.9: Performance comparison on four HAR datasets between the pro-
posed Cross-Atten model and other SOTA HAR models (II).

ing both representations for feature extraction, and facilitating their interaction

through the cross-attention block, the model generates enhanced features en-

riched by complementary information from the opposite branch. This, in turn,

boosts the model’s overall predictive performance.

When closely examining the second row in Figure 4.8, Figure 4.9, and Fig-

ure 4.10, it becomes evident that the proposed Cross-Atten model stands out

for its minimal complexity compared to the other evaluated models. Why

is the complexity of this dual-branch model still lower than that of single-

branch models? This is because the model’s complexity is quadratically re-

lated to the number of filters. In our two-branch model, each branch uses

32 filters, which significantly reduces the computational complexity compared

to a single-branch model with 64 filters. Furthermore, following the guide-

lines from the TinyHAR work, Cross-Atten minimizes the temporal dimen-

sions wherever possible. For the spectrogram representation, since the STFT is

applied, the raw sequence is split into T intervals, where the temporal dimen-

106

81
.24

±
1.1

0
82
.86

±
0.8

2
82
.41

±
0.6

9
83
.53

±
0.5

0
82
.73

±
0.4

1
84
.56

±
0.6

2
-6
.5
0±

/.
55

90
.57

±
0.6

3
88
.25

±
0.3

2
90
.68

±
0.4

1
92
.05

±
0.7

5
91
.75

±
1.0

6
92
.23

±
0.3

8
23
.1
1±

/.
52

91
.61

±
0.2

7
91
.73

±
0.7

1
92
.25

±
0.3

0
92
.89

±
0.2

8
93
.45

±
0.4

6
25
.5
.±

/.
45

94
.23

±
0.2

1

78
.84

±
0.5

7
84
.68

±
0.6

8
84
.60

±
0.4

8
84
.03

±
0.3

6
83
.29

±
0.5

4
85
.34

±
0.4

2
-0
.5
4±

/.
03

DCL DeepSense GlobalFusion Attend ALAE IF-Conv Cross-Atten

Figure 4.10: Performance comparison on four HAR datasets between the pro-
posed Cross-Atten model and other SOTA HAR models (III).

sion T is considerably smaller than the original sequence length L.

When closely examining the third row in Figure 4.8, Figure 4.9, and Fig-

ure 4.10, it is clear that the proposed Cross-Atten model ranks second in terms

of having the fewest trainable parameters. The IF-Conv model holds the fewest

trainable parameters among all the compared models. To further explore the

potential for model compression when utilizing two representations, we con-

ducted additional experiments. Specifically, we reduced the filter count d from

32 to 24 of the proposed Cross-Atten model. This adjustment aims to further

decrease the model’s computational complexity and the total number of train-

able parameters, which are lower than those of the IF-Conv model.

The results for Cross-Atten with d = 24 are presented in Figure 4.11 and

Figure 4.12. As shown in the figures, reducing d from 32 to 24 decreases the

model’s size, making it smaller than the IF-Conv model and further reducing its

complexity. Despite the reduction in size, the performance gap between Cross-

Atten with d = 32 and Cross-Atten with d = 24 remains minimal. In nine out

107

Cross-Atten (d=24)IF-Conv Cross-Atten (d=32)

Figure 4.11: Performance comparison on six HAR datasets between the re-
duced Cross-Atten model and the IF-Conv model (I).

of twelve datasets, the reduced model, Cross-Atten (d = 24), still outperforms

the IF-Conv model. On the Skoda(r) dataset, both the reduced Cross-Atten

(d = 24) and the IF-Conv model achieved comparable performance. Only on

the MotionSense and L-Sign datasets did the IF-Conv model outperform the

reduced Cross-Atten (d = 24). However, it is important to emphasize that both

the size and complexity of the IF-Conv model are significantly greater than

those of the reduced Cross-Atten (d = 24).

4.3.2.3 Ablation Study. In order to verify the contributions of the cross-

attention block, we performed a detailed ablation study on seven datasets.

In addition to the proposed models, we consider here three more variants as

follows: V1 Branch-TS that perform the classification only by operating on

time-series representation. V2 Branch-SC that predicts the activity by only

operating on spectrogram representations. V3, dual-branch model that oper-

ates both representations but without cross-attention. The architecture of all

three model variants follow the structure design as described in section 4.4.1,

108

Cross-Atten (d=24)IF-Conv Cross-Atten (d=32)

Figure 4.12: Performance comparison on six HAR datasets between the re-
duced Cross-Atten model and the IF-Conv model (II).

only the cross-attention block is replaced as self-attention block. For a fair

comparison, by varying the parameter d, all model variants have a number of

parameters comparable to the proposed model Cross-Atten.

The comparative results are listed in Table 4.4. By comparing model vari-

ants V1 and V2, they perform differently on different datasets, sometimes V1

is better, sometimes V2 is better. The model structure of V1 and V2 is ex-

actly the same, the only difference is the input representation type. Again,

the effect of representation on the results is highlighted. V3 has gained mo-

mentum by taking the features extracted from the two representations and con-

catenating them directly. Model V3 even outperformed the SOTA model on

some datasets. For example, V3 outperforms HAR models GlobalFusion and

IF-Conv on DSADS, RealWorld, HAPT and Skoda(r) datasets. When cross-

attention is utilized, which enables the information of the two branches to be

further exchanged during the feature learning process, so the proposed model

Cross-Atten further improves the performance of V3 in all cases except on

109

Table 4.4: Ablation study on seven datasets

PAMAP2 DSADS DG RealWorld
V1 (TS) 86.29±0.44 86.98±0.63 61.35±0.92 83.96±0.62
V2 (SC) 85.17±0.68 86.24±0.55 63.73±1.26 84.43±0.54

V3 (TS+SC) 86.76±0.53 88.47±0.49 63.70±0.43 85.59±0.37
Cross-Atten 87.88±0.61 89.54±0.66 64.93±0.68 86.42±0.63

HAPT MotionSense SKODA(r)
V1 (TS) 82.29±0.65 92.82±0.43 92.17±0.31
V2 (SC) 83.92±0.68 93.54±0.29 90.65±0.48

V3 (TS+SC) 84.57±0.40 93.97±0.27 93.49±0.26
Cross-Atten 85.46±0.44 94.23±0.21 93.31±0.27

Table 4.5: Performance on 10 datasets from the UEA multivariate time series
classification archive.

MiniRocket TST TimeNet WHEN Cross-Atten

EthanolConcentration 0.475 0.326 0.357 0.422 0.341
FaceDetection 0.620 0.689 0.686 0.658 0.696
Handwriting 0.511 0.359 0.321 0.561 0.388

Heartbeat 0.766 0.776 0.780 0.780 0.785
JapaneseVowels 0.984 0.997 0.984 0.995 0.995

PEMS-SF 0.827 0.896 0.896 0.925 0.919
SelfRegulationSCP1 0.904 0.922 0.918 0.908 0.934
SelfRegulationSCP2 0.506 0.604 0.572 0.589 0.612
SpokenArabicDigits 0.991 0.998 0.997 0.990 0.998

UWaveGestureLibrary 0.925 0.913 0.919 0.853 0.919

the Skoda(r) dataset. These observations validate our hypothesis and also the

design of the model design.

4.3.2.4 Generalization Performance on UEA Datasets. The HAR task is

fundamentally a multivariate time series analysis. To illustrate the adaptability

and generalizability of the proposed model, ten datasets are selected from the

UEA Time Series Classification Archive [12] for empirical evaluation. The se-

lection criteria for these datasets are based on prior research [173; 160]. These

datasets encompass a broad spectrum of applications, including audio recogni-

tion, medical diagnostics, heartbeat monitoring, and other real-world applica-

tions. For comparative analysis, the baseline model is Mini Rocket [38], which

is a representative method of feature-based models with a ridge regression

classifier. Moreover, this evaluation incorporates three SOTA models specif-

110

ically designed for multivariate time-series analysis tasks; they are Time Series

Transformer (TST) [173], TimesNet [160] and WHEN [154].

As illustrated by the Table 4.5, the proposed model attained accuracy com-

parable to other models under comparison. It secured first place in five out of

ten datasets. In the remaining five datasets, it achieved second place in three

datasets. This outstanding and robust performance underscores the advantage

of utilizing both representations simultaneously.

4.3.3 Discussion

This work highlighted the importance and advantages of simultaneously utiliz-

ing both time-series and spectrogram representations for HAR tasks. The care-

ful selection and application of appropriate input representations can enhance

model performance. When combining these two representations through the

proposed two-branch attention-based model, it is not necessary to rigorously

optimize each representation and its parameters. Comprehensive experiments

on twelve HAR benchmark datasets demonstrated the superior performance of

the proposed model over other contemporary SOTA HAR models. The ablation

study further validated the contribution of integrating the cross-attention block.

Due to the strong feature extraction capability of the proposed dual-branch ar-

chitecture, the number of parameters used is significantly smaller compared to

other models, while still surpassing their performance. However, this model

can only be deployed on edge devices like smartwatches and is not suitable for

deployment on micro-controllers.

4.4 MLP-HAR

The proposed TinyHAR and Cross-Atten models demonstrate strong feature

extraction capabilities despite their small size. However, both approaches over-

look hardware constraints, particularly in highly resource-constrained edge de-

vices like micro-controllers. Specifically, TinyHAR integrates the unique char-

acteristics of HAR tasks into the model’s structural design, while Cross-Atten

compensates for inherent limitations in neural networks by leveraging multi-

representations. Nevertheless, neither model accounts for hardware limitations

111

Overview

Temporal
Mixing
Block

Data
Embedding

Module
Modality
Mixing
Block

Prediction
Module

Mixer Module

𝑵×

Data	Embedding	Module

FFTTra
nsf
orm

FC

FC

Concat FC𝐿

𝜏

𝐶 𝑇

𝐶 𝑇

2𝑓
𝐶 𝑇

𝐶 𝑇

𝐶 𝑇 𝐶 𝑇

𝑑

𝑑

2𝑑 2𝑑

𝑋!

𝑋"𝐶

Reshape FC FC Reshape

Skip	Connection

Reshape FC FC Reshape

Skip	Connection
Temporal	Mixing	Block Modality	Mixing	Block

Mixer	Module

𝐶 𝑇

2𝑑

𝐶

2𝑑
𝑇

𝐶

2𝑑
𝑇

𝐶

2𝑑
𝜎𝑇

𝐶 𝑇

2𝑑

𝑇

2𝑑
𝐶

2𝑑
𝜎𝐶

2𝑑
𝐶

𝑇

𝑇

𝐶 𝑇

2𝑑

Figure 4.13: This figure presents an overview of the architecture of the pro-
posed MLP-HAR model.

or deployment requirements. For instance, the dual-branch structure imposes

significant memory access demands, and the RNN architecture in TinyHAR,

due to its inability to parallelize, negatively impacts inference time. Taking

these considerations into account, this section addresses such hardware lim-

itations by designing a model that acknowledges the specific characteristics

and constraints of resource-constrained devices. Consequently, we propose the

MLP-HAR model [187].

4.4.1 Methodology

In this section, we elucidate the proposed model MLP-HAR, illustrated in Fig-

ure 4.13, which comprises three main modules: the Data Embedding Module,

the Information Mixing Module, and the Prediction Module. The Data Embed-

ding Module extracts local temporal features from raw data. The Information

Mixing Module employs a repeated alternating structure to facilitate informa-

tion exchange and integration across temporal and sensor channel dimensions.

Finally, the Prediction Module condenses the extracted features to make the

final prediction. All modules consist solely of fully connected (FC) layers.

4.4.1.1 Data Embedding Module. The detailed structure of the Data Em-

bedding Module is illustrated in Figure 4.14 (a). The design is inspired by

the previously introduced Cross-Atten model, leveraging two representations:

the time-series representation and the spectrogram representation. Unlike the

Cross-Atten model, in the Data Embedding Module, features extracted from

the two representations are concatenated early to avoid the prolonged dual-

branch structure. Specifically, in this module, the raw input segment X ∈RL×C

112

O
ve
rv
ie
w

Te
m

po
ra

l
M

ix
in

g
Bl

oc
k

D
at

a
Em

be
dd

in
g

M
od

ul
e

M
od

al
ity

M
ix

in
g

Bl
oc

k

Pr
ed

ic
tio

n
M

od
ul

e

M
ix

er
 M

od
ul

e

𝑵
×

Da
ta
	E
m
be
dd
in
g	
M
od
ul
e

FF
T

Tr
an
sfo
rm

FC FC

Co
nc
at

FC
𝐿

𝜏

𝐶
𝑇

𝐶
𝑇

2𝑓
𝐶

𝑇

𝐶
𝑇

𝐶
𝑇

𝐶
𝑇

𝑑 𝑑

2𝑑
2𝑑

𝑋 ! 𝑋 "
𝐶

Re
sh
ap
e

FC
FC

Re
sh
ap
e

Sk
ip
	C
on
ne
ct
io
n

Re
sh
ap
e

FC
FC

Re
sh
ap
e

Sk
ip
	C
on
ne
ct
io
n

Te
m
po
ra
l	M
ix
in
g	
Bl
oc
k

M
od
al
ity
	M
ix
in
g	
Bl
oc
k

M
ix
er
	M
od
ul
e

𝐶
𝑇

2𝑑

𝐶2𝑑𝑇

𝐶

2𝑑𝑇
𝐶2𝑑𝜎𝑇

𝐶
𝑇

2𝑑

𝑇2𝑑𝐶

2𝑑𝜎𝐶

2𝑑𝐶

𝑇

𝑇

𝐶
𝑇

2𝑑

(𝒂
)

(𝒃
)

Fi
gu

re
4.

14
:F

ig
ur

e
(a

)s
ho

w
s

th
e

sp
ec

ifi
c

st
ru

ct
ur

e
of

th
e

da
ta

em
be

dd
in

g
m

od
ul

e.
Fi

gu
re

(b
)s

ho
w

s
th

e
sp

ec
ifi

c
st

ru
ct

ur
e

of
th

e
m

ix
er

m
od

ul
e.

D
iff

er
en

tc
ol

or
s

in
th

e
fig

ur
e

re
pr

es
en

tr
ea

di
ng

s
of

di
ff

er
en

ts
en

so
rc

ha
nn

el
s,

an
d

di
ff

er
en

ts
ha

de
s

of
th

e
sa

m
e

co
lo

rr
ep

re
se

nt
di

ff
er

en
ti

nt
er

va
ls

.M
ix

ed
co

lo
rs

ho
w

s
fu

se
d

in
fo

rm
at

io
n

fr
om

FC
la

ye
r.

113

(where L is the sliding window size and C is the number of sensor chan-

nels) is divided into intervals of length τ , resulting in T intervals, denoted as

Xt ∈ RT×C×τ . Each interval then undergoes an FFT transformation to extract

frequency-domain representations, yielding X f ∈ RT×C×2 f , where f repre-

sents the frequency magnitude and phase pairs.

The benefits of this process are twofold: (1) Interval segmentation reduces

the raw data’s temporal length, lowering computational demands in subsequent

steps. (2) Frequency features are crucial for differentiating human activities, as

signals acquired through wearable sensors often exhibit multi-frequency char-

acteristics [102]. Extracting frequency information directly via FFT simplifies

the model’s task of frequency feature extraction [164]. Both the time and fre-

quency representations are then processed through separate FC layers, each

followed by layer normalization [9] and a ReLU activation. The output size of

the FC layers is d. The feature maps extracted from both representations are

concatenated to form a combined feature with dimensions T ×C×2d, which is

then further fused by an additional FC layer to maintain consistent dimensions.

4.4.1.2 Mixer Module. After embedding the local information from each

sensor channel, the Mixing Module fuses this information across both temporal

and sensor channel dimensions. As shown in Figure 4.13 (b), this module con-

sists of two components: the temporal mixing block and the modality mixing

block.

Temporal Mixing Block. The temporal mixing block fuses information within

each sensor channel along the temporal dimension. It begins by flattening the

feature map from T ×C× 2d to C× 2dT , followed by layer normalization to

standardize features within each channel. The feature map then passes through

two FC layers. To reduce the parameter count, the first FC layer decreases the

feature size using a shrink ratio ν , while the second FC layer restores it to 2d.

A ReLU function is applied after the first FC layer as activation. These two

FC layers enable efficient feature exchange across different temporal intervals.

A skip connection reintegrates the fused features back into the original feature

space, allowing each interval to incorporate information from others. The pro-

cess concludes with another layer normalization before reshaping the data back

114

to T ×C×2d.

Modality Mixing Block. The Modality Mixing Block enables the exchange

and fusion of information between intervals at the same time step but in differ-

ent modalities. It omits layer normalization since it was applied in the temporal

mixing block. Initially, the features are flattened based on the modality dimen-

sions, transforming the feature map from T ×C×2d to T ×2dC. Subsequently,

two FC layers facilitate interactions among features of different modalities. Fi-

nally, the fused features across modalities are reintegrated into the original

feature set via a skip connection.

Discussion. This design enables rapid information propagation across differ-

ent time steps and modalities. Unlike traditional HAR models, which follow

a fixed sequence of feature extraction—first channel interaction, then tempo-

ral information—our model adopts a more flexible approach. By stacking this

mixer model N times, the iterative process allows multiple integrations of infor-

mation across both dimensions for each interval, enhancing the model’s ability

to extract powerful features.

4.4.1.3 Prediction Module. This module includes two FC layers. The first

FC layer fuses the features from each sensor channel into a single vector. The

second FC layer then uses these fused vectors from all sensor channels to pre-

dict the final activity.

4.4.2 Experiments and Discussions

4.4.2.1 Experiment Setup. To validate the performance of our model, we

conducted experiments using six open-source datasets: PAMAP2 [127], HAPT [128],

DSADS [14], Daphnet [11], MotionSense [107], and MHealth [13]. For certain

models, including ours, the segmented raw data undergoes an FFT transforma-

tion to generate spectrograms. The parameters for this transformation, such as

the number of intervals (T), interval length (τ), and the number of amplitude

and phase spectral pairs (f), are provided in Table 4.6. The FFT transforma-

tion is implemented directly within the model using the torch.fft function, with

115

Table 4.6: Hyper-parameters related to the Short-Time Fourier Transform for
each dataset.

Dataset #SW # T # τ # f

PAMAP2 [127] 1.28 s 8 16
HAPT [128] 2.56 s 8 16
DSADS [14] 5 s 5 25
Daphnet [11] 1 s 4 16
MotionSense [107] 2.56 s 8 16
Mhealth [13] 2.56 s 8 16

the model accepting only raw time-series data as input. In subsequent evalu-

ations, the computational time and complexity of the FFT transformation are

accounted for in the measurement of inference time and overall model com-

plexity.

In this experiment, we compared our approach against following ten com-

parative models. DCNN [166], DCL [119], DCL-Attn [113], Attend [1] IF-
ConvT [178],ALAE-TAE [3], DeepSense [167],GlobalFusion [99]: Tiny-
HAR [185], MLP [117]: which has a similar model architecture to the pro-

posed MLP-HAR model. The key difference is that the MLP model treats the

input time series as an image and directly applies the MLP architecture de-

signed for vision tasks [147] to the HAR task. It is important to note that,

except for the MLP model [117], the configurations of all the aforementioned

models strictly adhere to their descriptions and source code as presented in the

referenced literature. The MLP model’s configuration in the original work [117]

is much larger than the other comparison models and cannot run on the watch

due to exceeding the watch’s memory. The specifications used for the MLP

model in this experiment are: 5 layers, a patch-embedding size of 256, a patch

dimension of 64, and a channel dimension of 256. For our proposed MLP-

HAR model, we fix the number of mixer modules N at 2 and the filter number

d at 6.

In addition to reporting the mean and variance of F1-scores from the LOSO-

CV experiments, we also provide the model size in terms of the number of

trainable parameters (in thousands) and computational complexity in Million

MACs (MMACs). Furthermore, the models are deployed on a Samsung Galaxy

116

1
0.1

10
10!
10"

58
.2
5

29
9.
23

22
1.
09

87
.8
8

10
5.
79

22
6.
54

24
8.
92

87
.4
9

7.
53

10
10!
10"

1 63
8.
03

79
4.
83

86
9.
46

88
6.
80

39
4.
07

66
8.
12

87
0.
48

17
1.
13

51
.3
6

78
.4
7

10
10!
10"

1 21
.7
2

24
5.
67

44
7.
94

87
.1
7

16
5.
24

51
1.
61

10
9.
22

63
.2
8

50
2.
78

9.
50

PAMAP2

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

70
.3
2

74
.6
1

75
.2
3

79
.4
2

83
.9
6

84
.4
8

85
.2
9

85
.8
6

82
.7
5

84
.1
7

68
72
76
80
84

0.
71

DSADS

95
.5
1

47
9.
29

34
2.
99

15
3.
32

17
9.
26

36
1.
75

38
6.
99

10
3.
9

12
.5
2

73
6.
47

11
88
.1
8

12
62
.8
0

20
67
.7
9

50
5.
62

12
63
.8
3

96
3.
16

18
1.
49

65
.2
3

30
.7
8

29
8.
61

48
8.
33

10
3.
83

15
3.
17

73
8.
56

13
7.
89

67
.4
4

59
0.
28

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

1
0.1

10
10!
10"

0.
45

86
.410

10!
10"

1

10#

10
10!
10"

1 9.
72

82
84
86
88
90

83
.1
8

86
.4
6

85
.0
9

87
.5
1

88
.7
5

87
.0
6

88
.7
9

89
.5
3

88
.7
6

89
.8
4

MHealth

58
.2
5

29
9.
23

22
1.
09

87
.8
8

11
7.
77

22
6.
54

24
8.
92

87
.4
9

7.
53

63
7.
26

86
8.
68

79
4.
06

88
6.
41

39
0.
99

66
7.
34

86
9.
71

17
0.
74

51
.0
6

0.
331

0.1

10
10!
10"

36
.7
610

10!
10"

1

21
.7
8

24
7.
28

44
4.
50

85
.7
8

16
6.
33

51
2.
51

11
0.
72

64
.1
1

50
1.
06

9.
3310

10!
10"

1

86
.4
6

90
.5
7

91
.4
4

88
.2
5

90
.6
8

92
.0
5

91
.7
5

92
.2
3

91
.6
0

91
.8
9

84
86
88
90
92

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

38
.9
8

20
1.
48

15
5.
53

81
.2
9

10
5.
31

15
5.
62

17
5.
24

51
.0
9

5.
12

58
7.
33

59
6.
68

67
1.
30

88
5.
38

38
7.
91

51
9.
11

67
2.
33

14
3.
78

43
.8
6

13
.0
6

20
8.
04

43
3.
39

74
.3
9

16
3.
78

49
1.
67

65
.9
4

46
.2
8

45
8.
28

MotionSense

0.
371

0.1

10
10!
10"

42
.9
210

10!
10"

1

8.
2210

10!
10"

1

89
.4
5

91
.6
1

90
.9
9

91
.7
3

92
.2
5

92
.8
9

93
.4
5

94
.4
7

92
.8
6

93
.6
4

89
91
93
95

12
.7
2

50
.6
8

53
.9
1

39
.0
1

28
.5
5

52
.9
7

69
.1
9

24
.5
1

1.
65

30
0.
1

49
7.
86

57
2.
48

88
4.
8

36
4.
87

44
4.
87

57
3.
51

14
4.
39

40
.2
0

5.
67

62
.7
8

19
0.
51

37
.1
1

46
.3
9

24
5.
44

43
.5
6

19
.8
9

20
0.
17

DG

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

0.
17

30
.3
3

5.
61

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

57
.3
4

58
.7
6

59
.0
5

59
.7
2

62
.1
1

63
.8
7

63
.3
4

62
.4
5

62
.8
2

62
.3
7

56
58
60
62
64

1
0.1

10
10!

10
10!
10"

1

10
10!
10"

1

19
.7
1

10
3.
72

89
.9
6

74
.7
1

56
.8
8

85
.7
4

68
.2
3

33
.8
3

2.
81

53
8.
96

40
0.
84

47
5.
47

88
5.
13

35
0.
03

37
2.
43

47
6.
49

13
1.
88

37
.2
4

17
.1
7

17
8.
22

39
8.
39

65
.6
1

23
3.
72

44
1.
72

46
2.
61

56
.7
2

44
.8
3

HAPT

0.
24

37
.9
8

6.
33

78
.0
9

81
.2
4

81
.4
7

82
.8
6

82
.4
1

83
.5
3

82
.7
3

84
.5
6

80
.5
7

82
.4
7

76
78
80
82
84
86

1
0.1

10
10!
10"

10
10!
10"

1

10
10!
10"

1

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

DCNN DCL DCL-Attn DeepSense GlobalFusion Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

1
0.1

10
10!
10"

58
.2
5

29
9.
23

22
1.
09

87
.8
8

10
5.
79

22
6.
54

24
8.
92

87
.4
9

7.
53

10
10!
10"

1 63
8.
03

79
4.
83

86
9.
46

88
6.
80

39
4.
07

66
8.
12

87
0.
48

17
1.
13

51
.3
6

78
.4
7

10
10!
10"

1 21
.7
2

24
5.
67

44
7.
94

87
.1
7

16
5.
24

51
1.
61

10
9.
22

63
.2
8

50
2.
78

9.
50

PAMAP2

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

70
.3
2

74
.6
1

75
.2
3

79
.4
2

83
.9
6

84
.4
8

85
.2
9

85
.8
6

82
.7
5

84
.1
7

68
72
76
80
84

0.
71

DSADS

95
.5
1

47
9.
29

34
2.
99

15
3.
32

17
9.
26

36
1.
75

38
6.
99

10
3.
9

12
.5
2

73
6.
47

11
88
.1
8

12
62
.8
0

20
67
.7
9

50
5.
62

12
63
.8
3

96
3.
16

18
1.
49

65
.2
3

30
.7
8

29
8.
61

48
8.
33

10
3.
83

15
3.
17

73
8.
56

13
7.
89

67
.4
4

59
0.
28

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

1
0.1

10
10!
10"

0.
45

86
.410

10!
10"

1

10#

10
10!
10"

1 9.
72

82
84
86
88
90

83
.1
8

86
.4
6

85
.0
9

87
.5
1

88
.7
5

87
.0
6

88
.7
9

89
.5
3

88
.7
6

89
.8
4

MHealth

58
.2
5

29
9.
23

22
1.
09

87
.8
8

11
7.
77

22
6.
54

24
8.
92

87
.4
9

7.
53

63
7.
26

86
8.
68

79
4.
06

88
6.
41

39
0.
99

66
7.
34

86
9.
71

17
0.
74

51
.0
6

0.
331

0.1

10
10!
10"

36
.7
610

10!
10"

1

21
.7
8

24
7.
28

44
4.
50

85
.7
8

16
6.
33

51
2.
51

11
0.
72

64
.1
1

50
1.
06

9.
3310

10!
10"

1

86
.4
6

90
.5
7

91
.4
4

88
.2
5

90
.6
8

92
.0
5

91
.7
5

92
.2
3

91
.6
0

91
.8
9

84
86
88
90
92

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

38
.9
8

20
1.
48

15
5.
53

81
.2
9

10
5.
31

15
5.
62

17
5.
24

51
.0
9

5.
12

58
7.
33

59
6.
68

67
1.
30

88
5.
38

38
7.
91

51
9.
11

67
2.
33

14
3.
78

43
.8
6

13
.0
6

20
8.
04

43
3.
39

74
.3
9

16
3.
78

49
1.
67

65
.9
4

46
.2
8

45
8.
28

MotionSense

0.
371

0.1

10
10!
10"

42
.9
210

10!
10"

1

8.
2210

10!
10"

1

89
.4
5

91
.6
1

90
.9
9

91
.7
3

92
.2
5

92
.8
9

93
.4
5

94
.4
7

92
.8
6

93
.6
4

89
91
93
95

12
.7
2

50
.6
8

53
.9
1

39
.0
1

28
.5
5

52
.9
7

69
.1
9

24
.5
1

1.
65

30
0.
1

49
7.
86

57
2.
48

88
4.
8

36
4.
87

44
4.
87

57
3.
51

14
4.
39

40
.2
0

5.
67

62
.7
8

19
0.
51

37
.1
1

46
.3
9

24
5.
44

43
.5
6

19
.8
9

20
0.
17

DG

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

0.
17

30
.3
3

5.
61

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

57
.3
4

58
.7
6

59
.0
5

59
.7
2

62
.1
1

63
.8
7

63
.3
4

62
.4
5

62
.8
2

62
.3
7

56
58
60
62
64

1
0.1

10
10!

10
10!
10"

1

10
10!
10"

1

19
.7
1

10
3.
72

89
.9
6

74
.7
1

56
.8
8

85
.7
4

68
.2
3

33
.8
3

2.
81

53
8.
96

40
0.
84

47
5.
47

88
5.
13

35
0.
03

37
2.
43

47
6.
49

13
1.
88

37
.2
4

17
.1
7

17
8.
22

39
8.
39

65
.6
1

23
3.
72

44
1.
72

46
2.
61

56
.7
2

44
.8
3

HAPT

0.
24

37
.9
8

6.
33

78
.0
9

81
.2
4

81
.4
7

82
.8
6

82
.4
1

83
.5
3

82
.7
3

84
.5
6

80
.5
7

82
.4
7

76
78
80
82
84
86

1
0.1

10
10!
10"

10
10!
10"

1

10
10!
10"

1

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

DCNN DCL DCL-Attn DeepSense GlobalFusion Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

DCNN DCL DCL-Attn DeepSense GlobalFusion

Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

DCNN DCL DCL-Attn DeepSense GlobalFusion

Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

Figure 4.15: Performance comparison on three HAR benchmark datasets be-
tween the MLP-HAR model and other SOTA HAR model (I).

Watch 5 Pro1 to evaluate their real-world performance. We report the average

inference time for each model to process 10,000 input samples on the watch.

4.4.2.2 Comparison to State-of-the-art. Figures 4.15 and 4.16 present the

performance of all models across six datasets, visualizing the averaged macro

F1 score, model complexity, model size, and inference time for each dataset

in column blocks. Since our model and TinyHAR exhibit significantly lower

computational complexity and fewer learnable parameters compared to the

other models, the y-axes for model complexity and size are logarithmically
1For deployment, we used post-training int8 quantization from TensorFlow and the inference frame-

work is TensorFlow Lite Micro.

117

https://www.tensorflow.org/lite/performance/post_training_quantization
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro

1
0.1

10
10!
10"

58
.2
5

29
9.
23

22
1.
09

87
.8
8

10
5.
79

22
6.
54

24
8.
92

87
.4
9

7.
53

10
10!
10"

1 63
8.
03

79
4.
83

86
9.
46

88
6.
80

39
4.
07

66
8.
12

87
0.
48

17
1.
13

51
.3
6

78
.4
7

10
10!
10"

1 21
.7
2

24
5.
67

44
7.
94

87
.1
7

16
5.
24

51
1.
61

10
9.
22

63
.2
8

50
2.
78

9.
50

PAMAP2

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

70
.3
2

74
.6
1

75
.2
3

79
.4
2

83
.9
6

84
.4
8

85
.2
9

85
.8
6

82
.7
5

84
.1
7

68
72
76
80
84

0.
71

DSADS

95
.5
1

47
9.
29

34
2.
99

15
3.
32

17
9.
26

36
1.
75

38
6.
99

10
3.
9

12
.5
2

73
6.
47

11
88
.1
8

12
62
.8
0

20
67
.7
9

50
5.
62

12
63
.8
3

96
3.
16

18
1.
49

65
.2
3

30
.7
8

29
8.
61

48
8.
33

10
3.
83

15
3.
17

73
8.
56

13
7.
89

67
.4
4

59
0.
28

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

1
0.1

10
10!
10"

0.
45

86
.410

10!
10"

1

10#

10
10!
10"

1 9.
72

82
84
86
88
90

83
.1
8

86
.4
6

85
.0
9

87
.5
1

88
.7
5

87
.0
6

88
.7
9

89
.5
3

88
.7
6

89
.8
4

MHealth

58
.2
5

29
9.
23

22
1.
09

87
.8
8

11
7.
77

22
6.
54

24
8.
92

87
.4
9

7.
53

63
7.
26

86
8.
68

79
4.
06

88
6.
41

39
0.
99

66
7.
34

86
9.
71

17
0.
74

51
.0
6

0.
331

0.1

10
10!
10"

36
.7
610

10!
10"

1

21
.7
8

24
7.
28

44
4.
50

85
.7
8

16
6.
33

51
2.
51

11
0.
72

64
.1
1

50
1.
06

9.
3310

10!
10"

1

86
.4
6

90
.5
7

91
.4
4

88
.2
5

90
.6
8

92
.0
5

91
.7
5

92
.2
3

91
.6
0

91
.8
9

84
86
88
90
92

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

38
.9
8

20
1.
48

15
5.
53

81
.2
9

10
5.
31

15
5.
62

17
5.
24

51
.0
9

5.
12

58
7.
33

59
6.
68

67
1.
30

88
5.
38

38
7.
91

51
9.
11

67
2.
33

14
3.
78

43
.8
6

13
.0
6

20
8.
04

43
3.
39

74
.3
9

16
3.
78

49
1.
67

65
.9
4

46
.2
8

45
8.
28

MotionSense

0.
371

0.1

10
10!
10"

42
.9
210

10!
10"

1

8.
2210

10!
10"

1

89
.4
5

91
.6
1

90
.9
9

91
.7
3

92
.2
5

92
.8
9

93
.4
5

94
.4
7

92
.8
6

93
.6
4

89
91
93
95

12
.7
2

50
.6
8

53
.9
1

39
.0
1

28
.5
5

52
.9
7

69
.1
9

24
.5
1

1.
65

30
0.
1

49
7.
86

57
2.
48

88
4.
8

36
4.
87

44
4.
87

57
3.
51

14
4.
39

40
.2
0

5.
67

62
.7
8

19
0.
51

37
.1
1

46
.3
9

24
5.
44

43
.5
6

19
.8
9

20
0.
17

DG

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

0.
17

30
.3
3

5.
61

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

57
.3
4

58
.7
6

59
.0
5

59
.7
2

62
.1
1

63
.8
7

63
.3
4

62
.4
5

62
.8
2

62
.3
7

56
58
60
62
64

1
0.1

10
10!

10
10!
10"

1

10
10!
10"

1

19
.7
1

10
3.
72

89
.9
6

74
.7
1

56
.8
8

85
.7
4

68
.2
3

33
.8
3

2.
81

53
8.
96

40
0.
84

47
5.
47

88
5.
13

35
0.
03

37
2.
43

47
6.
49

13
1.
88

37
.2
4

17
.1
7

17
8.
22

39
8.
39

65
.6
1

23
3.
72

44
1.
72

46
2.
61

56
.7
2

44
.8
3

HAPT

0.
24

37
.9
8

6.
33

78
.0
9

81
.2
4

81
.4
7

82
.8
6

82
.4
1

83
.5
3

82
.7
3

84
.5
6

80
.5
7

82
.4
7

76
78
80
82
84
86

1
0.1

10
10!
10"

10
10!
10"

1

10
10!
10"

1

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

DCNN DCL DCL-Attn DeepSense GlobalFusion Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

1
0.1

10
10!
10"

58
.2
5

29
9.
23

22
1.
09

87
.8
8

10
5.
79

22
6.
54

24
8.
92

87
.4
9

7.
53

10
10!
10"

1 63
8.
03

79
4.
83

86
9.
46

88
6.
80

39
4.
07

66
8.
12

87
0.
48

17
1.
13

51
.3
6

78
.4
7

10
10!
10"

1 21
.7
2

24
5.
67

44
7.
94

87
.1
7

16
5.
24

51
1.
61

10
9.
22

63
.2
8

50
2.
78

9.
50

PAMAP2

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

70
.3
2

74
.6
1

75
.2
3

79
.4
2

83
.9
6

84
.4
8

85
.2
9

85
.8
6

82
.7
5

84
.1
7

68
72
76
80
84

0.
71

DSADS

95
.5
1

47
9.
29

34
2.
99

15
3.
32

17
9.
26

36
1.
75

38
6.
99

10
3.
9

12
.5
2

73
6.
47

11
88
.1
8

12
62
.8
0

20
67
.7
9

50
5.
62

12
63
.8
3

96
3.
16

18
1.
49

65
.2
3

30
.7
8

29
8.
61

48
8.
33

10
3.
83

15
3.
17

73
8.
56

13
7.
89

67
.4
4

59
0.
28

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

1
0.1

10
10!
10"

0.
45

86
.410

10!
10"

1

10#

10
10!
10"

1 9.
72

82
84
86
88
90

83
.1
8

86
.4
6

85
.0
9

87
.5
1

88
.7
5

87
.0
6

88
.7
9

89
.5
3

88
.7
6

89
.8
4

MHealth

58
.2
5

29
9.
23

22
1.
09

87
.8
8

11
7.
77

22
6.
54

24
8.
92

87
.4
9

7.
53

63
7.
26

86
8.
68

79
4.
06

88
6.
41

39
0.
99

66
7.
34

86
9.
71

17
0.
74

51
.0
6

0.
331

0.1

10
10!
10"

36
.7
610

10!
10"

1

21
.7
8

24
7.
28

44
4.
50

85
.7
8

16
6.
33

51
2.
51

11
0.
72

64
.1
1

50
1.
06

9.
3310

10!
10"

1

86
.4
6

90
.5
7

91
.4
4

88
.2
5

90
.6
8

92
.0
5

91
.7
5

92
.2
3

91
.6
0

91
.8
9

84
86
88
90
92

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score
38
.9
8

20
1.
48

15
5.
53

81
.2
9

10
5.
31

15
5.
62

17
5.
24

51
.0
9

5.
12

58
7.
33

59
6.
68

67
1.
30

88
5.
38

38
7.
91

51
9.
11

67
2.
33

14
3.
78

43
.8
6

13
.0
6

20
8.
04

43
3.
39

74
.3
9

16
3.
78

49
1.
67

65
.9
4

46
.2
8

45
8.
28

MotionSense

0.
371

0.1

10
10!
10"

42
.9
210

10!
10"

1

8.
2210

10!
10"

1

89
.4
5

91
.6
1

90
.9
9

91
.7
3

92
.2
5

92
.8
9

93
.4
5

94
.4
7

92
.8
6

93
.6
4

89
91
93
95

12
.7
2

50
.6
8

53
.9
1

39
.0
1

28
.5
5

52
.9
7

69
.1
9

24
.5
1

1.
65

30
0.
1

49
7.
86

57
2.
48

88
4.
8

36
4.
87

44
4.
87

57
3.
51

14
4.
39

40
.2
0

5.
67

62
.7
8

19
0.
51

37
.1
1

46
.3
9

24
5.
44

43
.5
6

19
.8
9

20
0.
17

DG

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

0.
17

30
.3
3

5.
61

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

57
.3
4

58
.7
6

59
.0
5

59
.7
2

62
.1
1

63
.8
7

63
.3
4

62
.4
5

62
.8
2

62
.3
7

56
58
60
62
64

1
0.1

10
10!

10
10!
10"

1

10
10!
10"

1

19
.7
1

10
3.
72

89
.9
6

74
.7
1

56
.8
8

85
.7
4

68
.2
3

33
.8
3

2.
81

53
8.
96

40
0.
84

47
5.
47

88
5.
13

35
0.
03

37
2.
43

47
6.
49

13
1.
88

37
.2
4

17
.1
7

17
8.
22

39
8.
39

65
.6
1

23
3.
72

44
1.
72

46
2.
61

56
.7
2

44
.8
3

HAPT

0.
24

37
.9
8

6.
33

78
.0
9

81
.2
4

81
.4
7

82
.8
6

82
.4
1

83
.5
3

82
.7
3

84
.5
6

80
.5
7

82
.4
7

76
78
80
82
84
86

1
0.1

10
10!
10"

10
10!
10"

1

10
10!
10"

1

MMac

Parameters (k)

Inference Time (ms)

Macro F1 Score

DCNN DCL DCL-Attn DeepSense GlobalFusion Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

DCNN DCL DCL-Attn DeepSense GlobalFusion

Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

DCNN DCL DCL-Attn DeepSense GlobalFusion

Attend ALAE-TAE IF-ConvT TinyHAR MLP-HAR

Figure 4.16: Performance comparison on three HAR benchmark datasets be-
tween the MLP-HAR model and other SOTA HAR model (II).

118

Table 4.7: Average ranking of all models across six datasets. The smaller the
rank, the better the performance.

IF-ConvT ALAE-TAE Attend MLP-HAR TinyHAR GlobalFusion
1.83 3.17 3.33 3.33 5.67 6.00
MLP DeepSense DCL-Attn DCL DCNN
6.17 7.33 8.83 9.33 11.00

scaled with a base of 10.

Our proposed MLP-HAR model achieves superior performance on the DSADS

dataset and comparable performance on the PAMAP2, Mhealth, and Motion-

sense datasets. Notably, to achieve such performance, our model requires only

significantly fewer learnable parameters and lower complexity. For a compre-

hensive comparison, we conducted a pairwise average rank comparison using

the Wilcoxon signed-rank test with Holm’s alpha correction at 5% [157; 60].

The average ranking across all datasets, listed in Table 4.7, shows the IF-ConvT

model achieving the best performance, followed by the Attend, ALAE-TAE,

and proposed MLP-HAR models, which form a closely ranked cluster with no

significant performance differences. Compared to the best-performing model

IF-ConvT, our MLP-HAR can provide 10× speed up in inference time while

lose only 0.74% lower F1 score on average across six datasets. This slight

accuracy drop can be further mitigated by the post-process in practical appli-

cation, see Section 4.4.2.3.

Compared to the model TinyHAR, our MLP-HAR, despite having a sim-

ilar number of learnable parameters, demonstrates significantly (10×) lower

computational complexity. This reduced complexity also reflects in the infer-

ence time on the device, with our model running about 6× faster on average

compared to TinyHAR.

Compared to the benchmark model DCL, MLP-HAR significantly outper-

forms it. The DCL model has much greater complexity and substantially

slower inference times. For instance, when processing the DSADS dataset,

DCL requires 298.61ms, whereas our model operates in just 10.61ms. En-

hancements to the DCL framework, such as DCL-Attn, Attend, and ALAE-

TAE models, have shown effectiveness in our experiments. However, these

models are even slower than DCL. Interestingly, on most datasets, these three

119

models exhibit generally lower complexity than DCL. Theoretically, the DCL

model, which incorporates only one LSTM layer, should exhibit lower com-

plexity than these three models, which use two LSTM layers. However, the

large kernel size of 11 in DCL’s convolutional layers significantly increases its

complexity. This observation highlights two key points: convolutional layers

processing raw data contribute substantially to the model’s overall complexity,

and inference time is influenced not only by computational complexity but also

by architectural design. The excessive use of LSTM layers and self-attention

in the DCL-Attn, Attend, and ALAE-TAE models, due to the sequential calcu-

lations inherent in LSTM layers which lack efficient parallelism, further slows

down their inference times.

This observation that structural complexity can slow down inference is un-

derscored by comparing the DeepSense and GlobalFusion models. Despite

having lower model complexity per dataset, GlobalFusion exhibits significantly

slower inference times. This slowdown is due to its complex multi-branch

structure, which incorporates self-attention layers for global information fu-

sion. This example highlights the importance of our proposed model’s design

philosophy: its plain topology is deployment-friendly, emphasizing efficiency

and simpler architectural choices that facilitate faster processing speeds.

Among all models examined, the DCNN model is the least effective. Despite

its higher computational complexity and greater number of learnable parame-

ters, it achieves the second-fastest inference time on the device. For example,

when processing the DG dataset on a smartwatch, its inference time is compa-

rable to that of the proposed MLP-HAR, even with a higher parameter count

and complexity. This underscores that a plain topology, combined with the use

of CNN and FC layers, significantly aids in the efficient deployment of models.

This observation is further supported by the performance of the MLP model,

which is fast despite having many parameters and high computational com-

plexity due to its configuration. However, since the MLP model completely

ignores the characteristics of the HAR task, its performance is much worse

than that of the proposed MLP-HAR model.

120

Table 4.8: Comparison of performance before and after post-processing. The
model name + P stands for post-processing.

HAPT PAMAP2 DSADS MHealth MotionSense DG
IF-ConvT 84.56 85.86 89.53 92.23 94.47 62.45

IF-ConvT+P 87.28 87.42 92.49 97.45 98.96 63.04

MLP-HAR 82.28 84.17 89.90 92.03 93.64 62.63
MLP-HAR+P 86.93 87.50 92.81 97.29 98.73 62.11

4.4.2.3 Post-Processing Experiment. In the deployment of HAR models,

transitions between different activities are typically gradual. To enhance the

robustness and accuracy of predictions, a post-processing technique known

as majority voting is frequently utilized. To assess the performance of IF-

ConvT and our proposed MLP-HAR model during deployment, we applied

post-processing to all their predictions. The device operates with a double

buffering mechanism, where one thread collects and buffers data, and another

thread manages model inference. The window size for majority voting was

set to 10. Table 4.8 illustrates the results of both models before and after post-

processing. The results indicate that post-processing generally improves model

performance, especially when the models already demonstrate good initial per-

formance. For example, on the MotionSense and MHealth datasets, both mod-

els showed significant improvements. On the HAPT dataset, the performance

gap between IF-ConvT and MLP-HAR narrowed from 2.28% to 0.35%. No-

tably, models with faster inference times hold a distinct advantage in actual

deployment. A model with shorter inference times can update its predictions

more frequently, allowing it to process more data windows within the same

amount of time when using a majority voting strategy, thereby solidifying the

results. Conversely, if a model’s inference time is long, a large voting window

can lead to response delays.

4.4.2.4 Ablation Study and Parameter Analysis. To validate the impact

of different representations in the data embedding module and the effect of skip

connections in the mixer module, we conducted an extensive ablation study.

We evaluated the model using only frequency representation, only temporal

representation, and both representations in the data embedding module. Addi-

121

DG DG

DSADS DSADS

HAPT HAPT

Mhealth Mhealth

0.64

F1 0.62

0.60

0.58

0.92
0.90
0.88
0.86
0.84

0.84
0.83
0.82
0.81
0.80
0.79

0.94
0.92
0.90
0.88
0.86

F1
F1

F1

0.64

F1 0.62

0.60

0.58

0.92
0.90
0.88
0.86
0.84

0.84
0.83
0.82
0.81
0.80
0.79

0.94
0.92
0.90
0.88
0.86

F1
F1

F1

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

N

Temporal with skip Temporal without skip
Frequency with skip Frequency without skip
both with skip both without skip

𝑓 = 16 DG, HAPT,Mhealth , 𝑓 = 25 𝐷𝑆𝐴𝐷𝑆
𝑓 = 24 DG, HAPT,Mhealth , 𝑓 = 38 𝐷𝑆𝐴𝐷𝑆
𝑓 = 32 DG, HAPT,Mhealth , 𝑓 = 50 𝐷𝑆𝐴𝐷𝑆

(a) (b)

N

Figure 4.17: (a) Ablation study validating the contributions of different repre-
sentations and skip connections, along with an impact analysis of
parameter N in the MLP-HAR model. (b) Impact analysis of pa-
rameters f and N in the MLP-HAR model.

122

tionally, we examined the impact of including (True) or excluding (False) skip

connections in the mixer module. This resulted in six different model config-

urations. We also investigated the effect of the number of blocks N on perfor-

mance, training and evaluating the six model configurations with N set to 1, 2,

3, and 4. The results are presented in Figure 4.17 (a). The results show that us-

ing skip connections generally improves model performance. The performance

of using only frequency or temporal representation varies across datasets. For

example, on the DG and MHealth datasets, models using frequency represen-

tation outperform those using temporal representation, whereas on the DSADS

and HAPT datasets, the opposite is true. Using both representations leverages

the strengths of each, leading to improved performance. The model’s perfor-

mance is also influenced by changes in N, varying by dataset. For instance,

on the HAPT dataset, more blocks lead to better performance, while on the

DSADS dataset, N = 2 achieves the best results. Increasing N raises model

complexity and the number of parameters, introducing different over-fitting

risks depending on the dataset. However, models with N ≥ 2 consistently out-

perform those with N = 1. We speculate this is because N ≥ 2 allows the model

to perform multiple fusions across temporal and sensor channel dimensions.

After confirming the benefits of using both representations and skip connec-

tions, we examined the impact of parameter variations in the FFT transforma-

tion. Specifically, we varied the size of f and the number of blocks N while

employing both representations and skip connections. Figure 4.17(b) shows

the range of f and N values and their corresponding model performance. The

results indicate that there is no universal combination of f and N that consis-

tently improves performance across all datasets. However, optimizing these

parameters for individual datasets does enhance performance. For instance, on

the DSADS and HAPT datasets, adjusting f and N values resulted in signifi-

cant performance improvements.

4.4.2.5 Deployment on Hardware. In this section, we explore the deploy-

ment of our model on the Arduino Portenta H7 LITE, a board with more limited

computing capabilities. As previously shown, because the TinyHAR model

demonstrates the lowest inference time and computational complexity aside

123

MLP-HAR (Smartwatch)
TinyHAR (Smartwatch)

MLP-HAR (Arduino)
TinyHAR (Arduino)

MoSense

1

10

10!

10"

16
.7

9

57
5.

27

8.
22

46
.2

8
Inference
Time (ms)

Mhealth

1

10

10!

10"

9.
39

64
.1

1

15
.9

7

85
2.

13

Inference
Time (ms)
DSADS

1

10

10!
10"

10
.6

1

67
.4

4
13

92
.1

8

20
.3

2

Inference
Time (ms)

PAMAP2

1

10

10!

10"

9.
50

63
.2

8

25
.8

2

85
3.

07

Inference
Time (ms)

HAPT

1

10

10!

10"

6.
11

44
.8

3

10
.8

7

29
7.

33

Inference
Time (ms)

Inference
Time (ms)

DG

1

10

10!

10"

10
.8

2

21
4.

77

5.
17

18
.8

9

Figure 4.18: Comparison of inference time between the MLP-HAR and Tiny-
HAR models on two devices. The Y-axis is logarithmically scaled
(base 10).

124

from our proposed MLP-HAR model, we report only the inference times for

TinyHAR and MLP-HAR on the Arduino Portenta H7 LITE. The results are

illustrated in Figure 4.18. From the figure, it is evident that due to the re-

duced computational power of the device, the inference times of both models

are longer compared to those on the smartwatch. However, it is noteworthy

that the increase in inference time for TinyHAR is substantial, slowing down

by at least 10×. In contrast, the increase in inference time for the proposed

MLP-HAR model is approximately 2× to 3× between the two devices. This

outcome underscores the superiority of our proposed model when deployed on

devices with more restricted computing capabilities, which can be attributed to

MLP-HAR’s plain topology composed solely of FC layers.

4.4.3 Discussion

In this work, we introduced a purely FC model architecture, thoughtfully de-

signed not only to leverage the different saliencies of multi-modalities and tem-

poral information extraction, but also to facilitate efficient deployment on edge

devices. Experimental results demonstrate that compared to current SOTA

HAR models, our model delivers comparable performance while boasting the

smallest model size, minimal computational complexity, and the fastest infer-

ence time. When deployed on edge devices with limited computational capac-

ity, the proposed model’s superior capabilities were further showcased, high-

lighting its potential for practical real-world applications where computational

resources are at a premium.

4.5 Summary

In this chapter, we introduce three lightweight models for HAR tasks, starting

with TinyHAR, which serves as the foundation for the other two models. Tiny-

HAR demonstrates that by carefully considering the unique characteristics of

HAR, a small model can still exhibit strong learning capabilities. However,

despite its potential, TinyHAR remains structurally complex and falls short of

achieving SOTA performance on some datasets.

Building on the design principles of TinyHAR, we developed two addi-

125

tional models: Cross-Atten and MLP-HAR. Cross-Atten is a semi-lightweight

model that, while unsuitable for micro-controller deployment due to its dual-

branch structure, performs exceptionally well on various datasets and is ideal

for smartwatch deployment, thanks to its robust feature extraction capabili-

ties. However, its high memory consumption limits its use in highly resource-

constrained environments.

To overcome this, we designed MLP-HAR, a model optimized for micro-

controller deployment. MLP-HAR matches the performance of SOTA models

while delivering faster inference times, making it highly suitable for scenarios

with stringent hardware limitations.

In summary, the primary contribution of this chapter is offering two models

tailored for different edge computing environments: Cross-Atten for devices

with moderate resources, and MLP-HAR for highly constrained devices. Both

models are grounded in the design principles established by TinyHAR, which

we believe will continue to guide future HAR model development.

126

5 Model Architecture Optimization

In the previous chapters, we introduced models that were manually designed,

heavily relying on expert knowledge. In this chapter, we explore how to lever-

age automated machine learning (AutoML) techniques to automatically opti-

mize model architectures, thereby reducing the dependency on expert knowl-

edge.

5.1 Related Work

AutoML has garnered significant attention in recent years, primarily due to its

ability to automate model selection and hyper-parameter tuning. Although Au-

toML techniques have been successfully applied in various domains, such as

image classification and natural language processing, their application to time

series classification, particularly for HAR tasks, remains relatively underex-

plored.

In the field of time series classification, AutoML methods have demonstrated

promise in automating the design and optimization of models. Frameworks

like Auto-sklearn [48] and TPOT [118] have been developed to select and tune

models for time series data, focusing predominantly on traditional machine

learning approaches, such as decision trees and ensemble methods. More re-

cently, deep learning-based AutoML frameworks, such as Auto-Keras [72],

have begun incorporating neural architectures for time series classification,

leveraging their capability to capture temporal dependencies. These frame-

works typically explore predefined neural architectures, such as RNNs, CNNs,

and their variants, to discover optimal configurations for time series data.

However, despite advancements in applying AutoML to general time series

tasks, the specific domain of HAR has seen limited exploration. HAR presents

distinct challenges, including its multi-modal nature, sensor noise, and the

127

need for real-time inference on resource-constrained devices. Current AutoML

frameworks are not explicitly designed to address these challenges, as they typ-

ically target static datasets with fewer constraints on computational resources.

Additionally, custom neural architectures tailored to HAR tasks—particularly

those optimized for capturing both spatial and temporal dependencies across

multiple sensor modalities—are rarely included in the search space of existing

AutoML frameworks.

Given the limited research on AutoML for HAR tasks, there is a clear oppor-

tunity to automate the model design process specifically for HAR, addressing

its unique challenges and constraints.

5.2 AutoML Framework : ECLSTM

The AutoML framework consists of two fundamental components: the search

space and the optimization algorithm. Defining the search space is the first

critical step in constructing an AutoML framework. As previous studies [72]

have demonstrated, the choice of search space has a substantial impact on the

performance of the resulting models. Given the specific challenges of HAR,

we propose that the search space for HAR models should incorporate two key

aspects: first, it must be designed to capture the unique characteristics of HAR

tasks; second, to streamline the search process and reduce complexity, the op-

erators should be stackable, ensuring a consistent structure across layers.

With these considerations, we propose an AutoML framework specifically

tailored for HAR tasks, utilizing a novel operator we introduce, called Embed-

ded Convolutional LSTM (ECLSTM) [184].

5.2.1 Methodology

In the following sections, we will first introduce the innovative operators that

constitute the search space in Section 5.2.1.1, followed by a detailed discus-

sion of the search space definition in Section 5.2.1.2. Finally, the optimization

algorithm will be presented in Section 5.2.1.5.

128

Temporal dimension

Se
ns

or
Ch

an
ne

l
Di

m
en

sio
n

…
Flatten according to sensor channel dimension

Flatten according to temporal dimension

LSTM

!!

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

!" !# !$!% !& !' !(!) !!*
LSTM LSTM LSTM LSTM

Sensor values at each time step as input

Sensor values within an interval as input

6Y.Zhouetal.

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

sli
din
g
dir
ec
tio
n

(a) Early Fusion 1D convolution(b) late Fusion 1D convolution(c) Hybrid Fusion 1D convolution

Fig.3.Intheearlyfusionconvolution,thekernelheightisfixed,thatis,thesameas
thenumberoffeatures.Theslidingdirectionoftheconvolutionkernelisalongthetime
axis.Inthelatefusionconvolution,thekernelheightis1.Eachfeaturehasitsown
convolutionkernel.Theconvolutionkernelalsohasonlyoneslidingdirection,namely
thetimeaxis.Inhybridfusionconvolution,thekernelheightisalso1.Butithastwo
slidingdirections,oneisthetimeaxisandtheotheristhefeatureaxis.Becauseof
weightsharing,itcansavemanyparameters.Itshouldbenotedthatwhenthenumber
offiltersisgreaterthan1,theoutputoftheearlyfusionconvolutionis2-dimensional.
Theoutputsofthetworemainingconvolutionsare3-dimensional.

5AutomaticPredictionFramework

Becausetheabovearchitectureissensitivetohyper-parametersthataredi�cultto
chooseevenbydomainexperts,weintroducetheautomaticpredictionframework.
Ourassumptionisthatsuchaframeworkwilloutperformtypicalstateoftheart
timeseriespredictionalgorithmswhenappliedtoRULprediction.

Theframework’sstructureisdesignedbasedonasummaryofthestructures
fromotherrelatedworksthatuseneuralnetworkstohandlemultivariatetime
seriestasks.Thisframeworkconsistsofthreeparts,namelythepre-processing,
featureextractionandRULpredictionparts.Thestructureandconfiguration
spaceofeachpartwillbeintroducedseparately.Thentheoptimizationprocess
oftheentireframeworkwillbeshownattheendofthissection.

Pre-processingWhenthesamplingfrequencyinonecycleistoohigh,itis
impracticaltodirectlyusetherawdataastheinputtotherecurrentneural
network.Processingsomanyvaluesrequiresalargerkernelwidthorarelatively
deepconvolutionalnetwork.Bothwillleadtoincreasedmodelcomplexityi.e.
parametersandleadtoover-fitting.Traditionalmethodstoreducethemode
complexityarefeatureextractionordown-sampling.Sincedown-samplingleads
toalossofinformation,andmanualfeatureextractionneedstobedoneona
pertaskbasis,weavoidbothforourframework.Inordertocontrolthemodel
complexitywhilestillbeingabletoextractsophisticatedfeatures,weresortto
convolutionswithakernelheightof1.Throughthis,thedimensionalitycanbe
reducedwhileusefulfeaturescanbeextractedautomatically(illustrationsee
Fig.4).Byadjustingthekernelwidth,thestride,andthedilationrate,the
intensityofthedimensionalreductioncanbeadjusted.Notethatinthisstepthe

Temporal dimension Temporal dimension Temporal dimension

Sensor
Channel

Dim
ension

Sl
id

in
g

di
re

ct
io

n

Sliding directionSliding directionSliding direction

Figure 5.1: Sensor values at each time step or within an interval are sequen-
tially fed into the LSTM.

5.2.1.1 Embedded Convolutional LSTM. In Section 2.3, we reviewed cur-

rent SOTA HAR models and observed that most designs follow a common

strategy: CNNs are typically used to extract local information, followed by

LSTM modules to capture temporal dependencies. When LSTMs are applied

without CNNs, they often fail to capture local context effectively, leading to

sub-optimal results. To address this issue, several approaches have been pro-

posed to enhance the ability of traditional LSTMs to capture local context.

Specifically, rather than feeding only the value at each time step, values within

an interval are provided to the model. As shown in Figure 5.1, the input to the

LSTM is no longer individual values at each time step but an interval, repre-

sented by the red dashed bounding box.

However, since traditional LSTMs are designed to accept only one-dimensional

inputs, this two-dimensional interval must first be projected into a 1D vector,

as illustrated in Figure 5.2. As discussed earlier, HAR time series data have

two critical dimensions: one representing temporal dependencies and the other

representing sensor channel relationships. In Figure 5.2, sensor values at the

same time step are aligned in a column, indicated by the same color, while

values from the same sensor channel are arranged in a row, denoted by the

same shape, preserving both spatial and temporal relationships. However, after

flattening, one of these critical dimensions is inevitably compromised.

Moreover, converting a 2D structure into a 1D vector significantly increases

129

Temporal dimension
Se

ns
or

Ch
an

ne
l

Di
m

en
sio

n
…

Flatten according to sensor channel dimension

Flatten according to temporal dimension

LSTM

!!

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

!" !# !$!% !& !' !(!) !!*
LSTM LSTM LSTM LSTM

Sensor values at each time step as input

Sensor values within an interval as input

6Y.Zhouetal.

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

sli
din
g
dir
ec
tio
n

(a) Early Fusion 1D convolution(b) late Fusion 1D convolution(c) Hybrid Fusion 1D convolution

Fig.3.Intheearlyfusionconvolution,thekernelheightisfixed,thatis,thesameas
thenumberoffeatures.Theslidingdirectionoftheconvolutionkernelisalongthetime
axis.Inthelatefusionconvolution,thekernelheightis1.Eachfeaturehasitsown
convolutionkernel.Theconvolutionkernelalsohasonlyoneslidingdirection,namely
thetimeaxis.Inhybridfusionconvolution,thekernelheightisalso1.Butithastwo
slidingdirections,oneisthetimeaxisandtheotheristhefeatureaxis.Becauseof
weightsharing,itcansavemanyparameters.Itshouldbenotedthatwhenthenumber
offiltersisgreaterthan1,theoutputoftheearlyfusionconvolutionis2-dimensional.
Theoutputsofthetworemainingconvolutionsare3-dimensional.

5AutomaticPredictionFramework

Becausetheabovearchitectureissensitivetohyper-parametersthataredi�cultto
chooseevenbydomainexperts,weintroducetheautomaticpredictionframework.
Ourassumptionisthatsuchaframeworkwilloutperformtypicalstateoftheart
timeseriespredictionalgorithmswhenappliedtoRULprediction.

Theframework’sstructureisdesignedbasedonasummaryofthestructures
fromotherrelatedworksthatuseneuralnetworkstohandlemultivariatetime
seriestasks.Thisframeworkconsistsofthreeparts,namelythepre-processing,
featureextractionandRULpredictionparts.Thestructureandconfiguration
spaceofeachpartwillbeintroducedseparately.Thentheoptimizationprocess
oftheentireframeworkwillbeshownattheendofthissection.

Pre-processingWhenthesamplingfrequencyinonecycleistoohigh,itis
impracticaltodirectlyusetherawdataastheinputtotherecurrentneural
network.Processingsomanyvaluesrequiresalargerkernelwidthorarelatively
deepconvolutionalnetwork.Bothwillleadtoincreasedmodelcomplexityi.e.
parametersandleadtoover-fitting.Traditionalmethodstoreducethemode
complexityarefeatureextractionordown-sampling.Sincedown-samplingleads
toalossofinformation,andmanualfeatureextractionneedstobedoneona
pertaskbasis,weavoidbothforourframework.Inordertocontrolthemodel
complexitywhilestillbeingabletoextractsophisticatedfeatures,weresortto
convolutionswithakernelheightof1.Throughthis,thedimensionalitycanbe
reducedwhileusefulfeaturescanbeextractedautomatically(illustrationsee
Fig.4).Byadjustingthekernelwidth,thestride,andthedilationrate,the
intensityofthedimensionalreductioncanbeadjusted.Notethatinthisstepthe

Temporal dimension Temporal dimension Temporal dimension

Sensor
Channel

Dim
ension

Sl
id

in
g

di
re

ct
io

n

Sliding directionSliding directionSliding direction

Figure 5.2: Multiple features (represented as shapes) at various sampling times
(represented as colors) within a single interval must be flattened
into a 1D vector for LSTM input, disrupting the natural sequence.
Alternatively, a convolutional kernel can be applied to aggregate
local information while preserving the original structure.

the input vector size, leading to a larger number of learnable parameters and

heightened computational complexity.

Inspired by these findings, and with the aim of developing a universal oper-

ator for constructing the search space, we propose an extension of the standard

LSTM: the Embedded Convolutional LSTM (ECLSTM). This model incorpo-

rates a set of 1D convolutions within the LSTM structure.

This approach enables the input to remain as a 2-dimensional tensor, pre-

serving the information within the interval along both dimensions. Moreover,

the embedded 1D convolutions allow for the extraction of local context as

information flows along the temporal dimension, effectively overcoming the

limitations of traditional LSTMs in capturing local context. Additionally, this

design increases the flexibility of the search space, as ECLSTM can operate

effectively even when used in isolation. We hypothesize that the ECLSTM

architecture is more powerful than standard LSTMs for handling multivariate

time series tasks.

Specifically, to integrate CNNs into the LSTM, we replace the fully con-

nected layers in the standard LSTM with convolutional operations. The result-

ing equations for the ECLSTM are thus formulated as follows:

130

it = σ(Wxi ∗ xt +Whi ∗ht−1 +bi),

ft = σ(Wx f ∗ xt +Wh f ∗ht−1 +b f),

ot = σ(Wxo ∗ xt +Who ∗ht−1 +bo),

C̃t = tanh(Wxc ∗ xt +Whc ∗ht−1 +bc),

Ct = ft ⊙Ct−1 + it ⊙C̃t ,

ht = ot ⊙ tanh(Ct),

where ∗ denotes the convolutional operation and ⊙ the element-wise prod-

uct. σ is the sigmoid activation function, tanh is the hyperbolic tangent func-

tion, it , ft , ot , Ct , and ht are the input gate, forget gate, output gate, cell state,

and hidden state at time step t, respectively, and Wxi, Whi, Wx f , Wh f , Wxo, Who,

Wxc, and Whc are the convolutional weight matrices.

There are three key advantages to using the convolution operator within

LSTM. First, the convolution parameters are determined by the kernel size and

the number of filters, rather than the length of the input interval, ensuring that

the model’s complexity remains constant even as the interval size increases.

Second, the hidden state (H) and memory (C) are represented as 2D tensors,

inherently preserving the temporal relationships within the data. Third, by

inputting data as intervals, the model reduces the number of iterative steps re-

quired along the temporal dimension, thus enhancing its inference time.

It is well-known that stacking convolutional layers allows for a hierarchical

decomposition of raw data and the combination of lower-level features. There-

fore, to extract more complex features from the local context, the convolutions

in Equation 5.2.1.1 can be stacked as convolutional cells in a chain structure.

When three convolutional layers are stacked within the cell, we refer to the

ECLSTM as a 3-depth-ECLSTM. For example, considering the input gate in

ECLSTM, the formula for the input gate can be expressed as:

it = σ(W (3)
xi ∗σ(W (2)

xi ∗σ(W (1)
xi ∗ xt)+Whi ∗ht−1 +bi)

where W (1)
xi ,W (2)

xi and W (3)
xi represent the weights of the three stacked con-

volutional layers. The other gates follow the same structure but do not share

these weights.

131

Temporal dimension

Se
ns

or
Ch

an
ne

l
Di

m
en

sio
n

…
Flatten according to sensor channel dimension

Flatten according to temporal dimension

LSTM

!!

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

!" !# !$!% !& !' !(!) !!*
LSTM LSTM LSTM LSTM

Sensor values at each time step as input

Sensor values within an interval as input

6Y.Zhouetal.

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

Fe
at
ur
e
Di
m
en
sio
n

Time Sequence

sliding direction

sli
din
g
dir
ec
tio
n

(a) Early Fusion 1D convolution(b) late Fusion 1D convolution(c) Hybrid Fusion 1D convolution

Fig.3.Intheearlyfusionconvolution,thekernelheightisfixed,thatis,thesameas
thenumberoffeatures.Theslidingdirectionoftheconvolutionkernelisalongthetime
axis.Inthelatefusionconvolution,thekernelheightis1.Eachfeaturehasitsown
convolutionkernel.Theconvolutionkernelalsohasonlyoneslidingdirection,namely
thetimeaxis.Inhybridfusionconvolution,thekernelheightisalso1.Butithastwo
slidingdirections,oneisthetimeaxisandtheotheristhefeatureaxis.Becauseof
weightsharing,itcansavemanyparameters.Itshouldbenotedthatwhenthenumber
offiltersisgreaterthan1,theoutputoftheearlyfusionconvolutionis2-dimensional.
Theoutputsofthetworemainingconvolutionsare3-dimensional.

5AutomaticPredictionFramework

Becausetheabovearchitectureissensitivetohyper-parametersthataredi�cultto
chooseevenbydomainexperts,weintroducetheautomaticpredictionframework.
Ourassumptionisthatsuchaframeworkwilloutperformtypicalstateoftheart
timeseriespredictionalgorithmswhenappliedtoRULprediction.

Theframework’sstructureisdesignedbasedonasummaryofthestructures
fromotherrelatedworksthatuseneuralnetworkstohandlemultivariatetime
seriestasks.Thisframeworkconsistsofthreeparts,namelythepre-processing,
featureextractionandRULpredictionparts.Thestructureandconfiguration
spaceofeachpartwillbeintroducedseparately.Thentheoptimizationprocess
oftheentireframeworkwillbeshownattheendofthissection.

Pre-processingWhenthesamplingfrequencyinonecycleistoohigh,itis
impracticaltodirectlyusetherawdataastheinputtotherecurrentneural
network.Processingsomanyvaluesrequiresalargerkernelwidthorarelatively
deepconvolutionalnetwork.Bothwillleadtoincreasedmodelcomplexityi.e.
parametersandleadtoover-fitting.Traditionalmethodstoreducethemode
complexityarefeatureextractionordown-sampling.Sincedown-samplingleads
toalossofinformation,andmanualfeatureextractionneedstobedoneona
pertaskbasis,weavoidbothforourframework.Inordertocontrolthemodel
complexitywhilestillbeingabletoextractsophisticatedfeatures,weresortto
convolutionswithakernelheightof1.Throughthis,thedimensionalitycanbe
reducedwhileusefulfeaturescanbeextractedautomatically(illustrationsee
Fig.4).Byadjustingthekernelwidth,thestride,andthedilationrate,the
intensityofthedimensionalreductioncanbeadjusted.Notethatinthisstepthe

Temporal dimension Temporal dimension Temporal dimension

Sensor
Channel

Dim
ension

Sl
id

in
g

di
re

ct
io

n

Sliding directionSliding directionSliding direction

(a) (b) (c)

Figure 5.3: (a) In hybrid fusion convolution, the kernel height remains 1, but
the kernel slides in two directions: along both the temporal axis and
the sensor channel axis. Thanks to weight sharing, this approach
significantly reduces the number of parameters. (b) In late fusion
convolution, the kernel height is set to 1, with each sensor channel
assigned its own convolution kernel, which also slides along the
temporal axis. (c) In early fusion convolution, the kernel height is
fixed to match the number of sensor channels, and the convolution
kernel slides along the temporal axis.

Moreover, results from various HAR models, such as [31], suggest that dif-

ferent fusion strategies can significantly influence performance. Inspired by

these findings, the convolutional cell in our ECLSTM operator incorporates

three distinct fusion strategies, as illustrated in Figure 5.3. The first is early

fusion convolution, which functions similarly to conventional 2D convolution,

where features are jointly extracted from all sensory data. The second is late

fusion convolution, where features are extracted separately from each sensor

using individual convolutions, with each sensor channel having its own convo-

lutional kernel, ensuring no weight sharing. The third is hybrid fusion convo-

lution, where features are also extracted separately from each sensor, but the

weights are shared across sensors.

By integrating CNN and LSTM, we combine the strengths of CNN in ex-

tracting local features and LSTM in capturing temporal dependencies, while

also enabling the use of various fusion strategies. The next challenge is to de-

fine the search space, determine the optimal depth of the convolutional layers,

and select the appropriate types of convolutions to be used within the ECLSTM

architecture.

132

5.2.1.2 Automatic Prediction Framework. Considering the complexity of

hyper-parameter selection, even for domain experts, we introduce an AutoML

framework based on the proposed ECLSTM operator. The search space of this

framework is designed following the guidelines proposed by TinyHAR. This

framework consists of three stages: local context extraction stage, temporal

information extraction stage, and prediction stage. The temporal information

extraction stage is composed of a series of ECLSTM operators, which not only

effectively capture temporal dependencies but also incorporate different fusion

strategies from the convolutional layers, facilitating the learning of interactions

and fusion across sensor channels. The structure and search space of each stage

will be introduced individually.

Local Context Extraction Stage. When the sampling frequency is too high or

the sliding window size too large, it becomes impractical to directly use raw

data as input to an ECLSTM layer. This is because ECLSTM, as an RNN-based

model, processes information iteratively and cannot perform parallel process-

ing, resulting in slow inference times. Therefore, it is essential to reduce the

temporal dimension. Compared to pooling or downsampling, a more effec-

tive method for reducing the temporal dimension is using convolutional layers.

Pooling or downsampling can lead to significant information loss, while con-

volution provides a more controlled reduction. Consequently, we first apply

convolution as a preprocessing step to reduce the temporal dimension. By ad-

justing the kernel width, stride, and dilation rate, we can fine-tune the level of

dimensionality reduction while simultaneously extracting local context. In this

step, individual convolutions are used, meaning the kernel height is set to 1.

The search space for this part is presented in Figure 5.4 under the "Pre-

Processing" section. There are dependencies between the parameters. If the

number of convolutional layers (Nconv) is set to 0, no preprocessing (temporal

reduction) is applied. Only when the number of layers exceeds 0 are other pa-

rameters, such as filter size (d), stride size (st), and kernel size (k), considered.

Rather than optimizing these parameters individually for each convolutional

layer, we enforce a simple rule: all convolutional layers have the same number

of filters, stride, dilation rate, and kernel width.

133

Part Conditioned on Parameter Name Range
"+,-. : No. of Layers

$: Filter Size
%&: Stride Size
': Kernel size

1D Max Pooling

−

"+,-. : No. of LayersPre-Processing

[2,64]
[1,2]

(1,3,5,7)
(True, False)

Type

[0,5] 67&
67&
67&
67&
89&

"/+0123 : No. of Layers
Cell Depth
$: Filter Size
': Kernel size

Conv Type

−

Feature
Extraction

[1,3]
[4,64]
(1,3,5,7)

(Early,Hybrid,Late)

[1,3] 67&
67&
67&
67&
89&

"/+0123 : No. of Layers

Cell Depth

"4+ : No. of Layers

$: Filter Size

−Activity
Prediction [4,64]

[1,4] 67&
67&"4+ : No. of Layers

Figure 5.4: Overview of the search space for the ECLSTM framework.

5.2.1.3 Temporal Feature Extraction Stage. This stage is central to the

model, as it is responsible for extracting both temporal and local features. The

ECLSTM operator is used in this stage, with multiple ECLSTMs stacked to

form the architecture. The "Feature Extraction" section in Figure 5.4 outlines

the search space for this stage, which includes parameters such as the number

of ECLSTM layers, the depth of the embedded convolutional layers within

each ECLSTM, the type of convolution, the number of filters, and the kernel

width. These hyperparameters are optimized on a per-layer basis, allowing

each ECLSTM to have a unique structure, thereby enhancing the diversity of

the network.

Similarly, there are dependencies among these hyperparameters. First, the

number of ECLSTM layers must be defined. To accommodate the need for

optimized time budgets, we limit the maximum number of stacked ECLSTM

layers to four. Once the number of layers is set, the depth of the convolution for

each ECLSTM is determined, followed by the specification of the convolution

type, the number of filters, and the kernel width for each convolutional layer.

5.2.1.4 Prediction Stage. The prediction stage consists of stacked fully

connected layers, with the input being the features extracted from the previous

134

stage. The final layer produces the model’s output. The "Activity Prediction"

section in Figure 5.4 outlines the search space for this stage, where each fully

connected layer requires the definition of the number of nodes, the activation

function, and the dropout rate.

5.2.1.5 Hyper-parameter Optimization. To optimize hyperparameters, ran-

dom search is a commonly used method, but it is often inefficient in highly

conditional configuration spaces. To address this, our proposed framework em-

ploys the BOHB optimizer [46], which combines Bayesian Optimization (BO)

with Hyperband (HB). Hyperband efficiently identifies the best configurations

through repeated calls to Successive Halving (SH), allocating more compu-

tational resources to promising configurations while terminating poorly per-

forming ones early, thereby optimizing the time budget. Meanwhile, Bayesian

Optimization uses a kernel density estimator to model the objective function,

identifying high-performance regions within the configuration space.

5.2.2 Experiments and Discussions

5.2.2.1 Experiment Setup. In this section, we evaluate the proposed frame-

work on three benchmark datasets: Opportunity (OPPO) [21], Daphnet [11],

and PAMAP2 [127]. Considering that the optimization search process of the

proposed framework is time-consuming, we used the train-test splits evalua-

tion setup for our experiments, rather than the leave-one-subject-out (LOSO)

approach. The specific train-test splits are as follows:

For the OPPO dataset, we used run 2 from subject 1 as the validation set

and replicated the most popular recognition challenge by using runs 4 and 5

from subjects 2 and 3 as the test set. The remaining data was used for training.

For frame-by-frame analysis, we created sliding windows with a duration of 1

second and 50% overlap. This resulted in approximately 650k training samples

(43k frames).

For the PAMAP2 dataset, we used runs 1 and 2 from subject 5 as the vali-

dation set and runs 1 and 2 from subject 6 as the test set, with the remaining

data used for training. In our analysis, we downsampled the accelerometer

data to 33.3Hz to achieve a temporal resolution comparable to the Opportu-

135

nity dataset. For frame-by-frame analysis, we followed previous work by us-

ing non-overlapping sliding windows with a duration of 5.12 seconds and a

stepping window of 1 second (78% overlap) [Reiss and Stricker, 2012]. This

resulted in a training set of approximately 473k samples (14k frames).

For the Daphnet dataset, we used run 1 from subject 9 as the validation set,

runs 1 and 2 from subject 2 as the test set, and the remaining data for training.

The accelerometer data was downsampled to 32Hz, and we created sliding

windows of 1 second duration with 50% overlap, resulting in approximately

470k training samples (30k frames).

In our framework, the objective function is defined by the model’s perfor-

mance on the validation dataset, ensuring a more robust evaluation of each

configuration by accounting for data variability and reducing the risk of over-

fitting. All experiments are conducted on a single GPU (RTX 2080 with 8GB

RAM), and models are trained using the Adam optimizer [80].

Table 5.1: Comparison of classification performance based on averaged F1-
scores on holdout test sequences between the ECLSTM model and
other HAR models.

HAR model OPPO PAMAP2 Daphnet
Ensembles LSTM [55] 65.9 75.6 76.0
b-LSTM [182] 68.4 83.8 74.1
DeepConvLSTM [119] 67.2 74.8 77.8
DeepConvLSTM-Attn [113] 70.7 87.5 75.6
ECLSTM 72.3 90.9 79.2

5.2.2.2 Comparison to State-of-the-art. The experimental results are pre-

sented in Table 5.1. Our framework consistently demonstrates significant recog-

nition improvements over other state-of-the-art (SOTA) models. Notably, we

observe a performance gain of 3.4% on the Opportunity dataset compared to

the second-best model, B-LSTM. This highlights the strong performance of

the models discovered through the search process. Once the search space is

defined, the search engine can automatically explore it, significantly reducing

manual effort.

136

However, an uncontrolled increase in model parameters was observed, with

our framework using more parameters than the DeepConvLSTM model across

nearly all datasets. This issue occurred because the optimizer prioritized model

performance during the search process, without factoring in model size or in-

ference time. When lightweight constraints are not included in the search ob-

jective, even though the optimizer can discover better-performing models, they

may not be suitable for resource-constrained applications.

Furthermore, when attempting to deploy the model on hardware devices,

a critical issue emerged: the ECLSTM operator is not supported by standard

edge devices. Most hardware platforms come with pre-built inference libraries,

and deploying ECLSTM on such devices would require the development of a

custom inference library, which significantly increases the development work-

load.

5.3 Summary

In this chapter, we explored the use of automated machine learning (AutoML)

to search for model architectures, successfully optimizing models that outper-

formed other state-of-the-art HAR models. Notably, this was the first attempt

to apply an AutoML framework to optimize HAR models at the time. This

work provided several important insights, summarized as follows:

1. Search efficiency must be improved: The approach used in this chapter

incurred significant overhead due to long optimization times.

2. Search space design should consider hardware limitations: In addi-

tion to accounting for task-specific characteristics, it is crucial to con-

sider hardware constraints, such as supported operators.

3. Without deployment constraints, the search process will prioritize
performance at the expense of model size: To optimize lightweight

models, hardware limitations must be explicitly incorporated into the

search objectives.

The insights gained from this chapter lay the foundation for the work pre-

sented in the following chapter.

137

6 Hardware-aware Model Architecture
Optimization

Microcontroller Units (MCUs) are compact, low-power computing systems

that are widely used in various devices, including medical equipment, con-

sumer electronics, and wearables. The integration of microprocessors and em-

bedded sensors, such as accelerometers and gyroscopes, enables on-device data

analysis, allowing these devices to operate autonomously in privacy-sensitive,

real-time environments [179; 22]. However, the limited hardware resources

of typical MCUs (e.g., 64 kB SRAM, 64 MHz CPU clock) pose significant

challenges for running SOTA HAR models like DeepConvLSTM [119], IF-

Conv [178], and Global-Fusion [99] on these devices.

A common approach to overcoming the limited resources of MCUs is to

transmit the raw data to a cloud server, where SOTA models can be executed,

and then send the results back to the MCU. However, this method is often

unsustainable for several reasons. For instance, network communication intro-

duces unpredictable latencies, making it unsuitable for real-time applications

or scenarios without reliable network access. Moreover, network communi-

cation is energy-intensive, which is particularly problematic for MCUs with

limited power resources. Finally, processing data on external servers raises

significant privacy concerns.

Another approach is to manually design efficient neural networks tailored

for specific use cases. This process is typically carried out by domain experts

with specialized knowledge in machine learning. However, it is often prone

to errors and can be highly time-consuming [110]. In addition to optimizing

model performance, other constraints such as task-specific requirements—like

the need for fast inference—or hardware limitations, such as restricted peak

memory, further complicate the design process. These multi-constraint design

139

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

Expert
Knowledge

…

Manual
Design

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

Designed
Neural Architectures

Training &
Evaluation

La
te

nc
y

Accuracy

Performance

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…
Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

Search
Space

…

Optimizer
Sampling

…

Search	space

… …
Neural	Architectures

Training	&	
Evaluation	

Target
dataset

Performance

Accuracy

Latency

Manual	Design

(a) A typical flow of manual ConvNet design.

… …
Neural	Architectures

Training	&	
Evaluation	

Proxy
dataset

Performance

Accuracy

Latency

Controller	sampling

Training	
controller

…

Search	space

(b) A typical flow of reinforcement learning based neural architec-
ture search.

Figure 2. Illustration of manual ConvNet design and reinforcement
learning based neural architecture search.

training a ConvNet is very time-consuming, typically taking
days or even weeks. As a result, previous ConvNet design
rarely explores the design space. A typical flow of man-
ual ConvNet design is illustrated in Figure 2(a). Design-
ers propose initial architectures and train them on the target
dataset. Based on the performance, designers evolve the ar-
chitectures accordingly. Limited by the time cost of training
ConvNets, the design flow has to stop after a few iterations,
which is far too few to sufficiently explore the design space.

Starting from [30], recent works adopt neural architec-
ture search (NAS) to explore the design space automati-
cally. Many previous works [30, 31, 20] use reinforce-
ment learning (RL) to guide the search and a typical flow
is illustrated in Figure 2(b). A controller samples architec-
tures from the search space to be trained. To reduce the
training cost, sampled architectures are trained on a smaller
proxy dataset such as CIFAR-10 or trained for fewer epochs
on ImageNet. The performance of the trained networks
is then used to train and improve the controller. Previ-
ous works [30, 31, 20] has demonstrated the effectiveness
of such methods in finding accurate and efficient ConvNet
models. However, training each architecture is still time-
consuming, and it usually takes thousands of architectures
to train the controller. As a result, the computational cost of
such methods is prohibitively high.

Nontransferable optimality: the optimality of ConvNet

architectures is conditioned on many factors such as input
resolutions and target devices. Once these factors change,
the optimal architecture is likely to be different. A common
practice to reduce the FLOP count of a network is to shrink
the input resolution. A smaller input resolution may require
a smaller receptive field of the network and therefore shal-
lower layers. On a different device, the same operator can
have different latency, so we need to adjust the ConvNet ar-
chitecture to achieve the best accuracy-efficiency trade-off.
Ideally, we should design different ConvNet architectures
case-by-case. In practice, however, limited by the computa-
tional cost of previous manual and automated approaches,
we can only realistically design one ConvNet and use it for
all conditions.

Inconsistent efficiency metrics: Most of the efficiency
metrics we care about are dependent on not only the Con-
vNet architecture but also the hardware and software con-
figurations on the target device. Such metrics include la-
tency, power, energy, and in this paper, we mainly focus
on latency. To simplify the problem, most of the previ-
ous works adopt hardware-agnostic metrics such as FLOPs
(more strictly, number of multiply-add operations) to evalu-
ate a ConvNet’s efficiency. However, a ConvNet with lower
FLOP count is not necessarily faster. For example, NasNet-
A [31] has a similar FLOP count as MobileNetV1 [6], but
its complicated and fragmented cell-level structure is not
hardware friendly, so the actual latency is slower [17]. The
inconsistency between hardware agnostic metrics and ac-
tual efficiency makes the ConvNet design more difficult.

To address the above problems, we propose to use dif-
ferentiable neural architecture search (DNAS) to discover
hardware-aware efficient ConvNets. The flow of our algo-
rithm is illustrated in Figure 1. DNAS allows us to explore
a layer-wise search space where we can choose a different
block for each layer of the network. Following [21], DNAS
represents the search space by a super net whose operators
execute stochastically. We relax the problem of finding the
optimal architecture to find a distribution that yields the op-
timal architecture. By using the Gumbel Softmax technique
[9], we can directly train the architecture distribution us-
ing gradient-based optimization such as SGD. The search
process is extremely fast compared with previous reinforce-
ment learning (RL) based method. The loss used to train the
stochastic super net consists of both the cross-entropy loss
that leads to better accuracy and the latency loss that penal-
izes the network’s latency on a target device. To estimate the
latency of an architecture, we measure the latency of each
operator in the search space and use a lookup table model
to compute the overall latency by adding up the latency of
each operator. Using this model allows us to quickly es-
timate the latency of architectures in this enormous search
space. More importantly, it makes the latency differentiable
with respect to layer-wise block choices.

Designed
Neural Architectures

Training &
Evaluation

La
te

nc
y

Accuracy

Performance

Expert Optimizer

(a) A typical flow of manual network design. (b) A typical flow of neural architecture search.

Figure 6.1: Illustration of manual network design and optimization based on
neural architecture search.

challenges can be extremely difficult, even for experienced professionals. To

address this issue and streamline the design process, neural architecture search

(NAS) [189] offers a solution by automatically identifying optimal neural net-

work architectures for specific use cases while simultaneously accounting for

hardware constraints [18].

In the following sections, we first review the related work on NAS in Sec-

tion 6.1. We then introduce our proposed MicroNAS approach in Section 6.2.

Following that, we present the integration of NAS and pruning techniques

within our SFTNAS framework in Section 6.3, which enables more effective

model compression. Finally, we conclude this chapter with a summary and a

discussion of potential future research directions in Section 6.4.

6.1 Related Works

6.1.1 Neural Architecture Search

As shown in Figure 6.1, the NAS process mimics the way human experts design

models. Experts, based on their specialized knowledge, design a model from

a search space of possible architectures. The designed model is then trained

and tested, and the results are returned. The experts, using the test results and

140

model size as feedback, adjust the model architecture and repeat the process

until a satisfactory result is achieved. The NAS method replaces the expert

with an optimizer. This optimizer iteratively designs new models based on the

feedback/reward from the previous designs.

Early NAS systems, as introduced by [189; 190], formulate the search pro-

cess as a reinforcement learning (RL) problem [140]. While this approach can

yield novel and effective architectures, it is highly time-consuming because

each iteration of the REINFORCE algorithm [158] requires training a neural

network to convergence, and the RL procedure typically necessitates many iter-

ations [45]. To address these inefficiencies, subsequent research has optimized

NAS in various ways, including improving training schema [95], adopting al-

ternative optimization algorithms [126; 44; 76], and developing one-shot NAS

approaches [162; 122].

One-shot NAS algorithms enhance efficiency by leveraging weight sharing

among models within the search space [122], achieved by training a single

super-net. This approach eliminates the need to train each model indepen-

dently from scratch to convergence. Among these advancements, DARTS [97]

introduced Differentiable Neural Architecture Search (DNAS), which employs

a relaxation strategy to make architecture parameters continuous and differ-

entiable, thereby further improving efficiency. During the architecture search,

both the model weights and architecture parameters are jointly optimized using

gradient descent. Due to its efficiency, our proposed frameworks, MicroNAS

and SFTNAS, utilize DNAS as their foundational approach.

6.1.2 Hardware-aware Neural Architecture Search

Recently, NAS has evolved to become hardware-aware (HW-NAS) [18], where

systems optimize not only traditional performance metrics such as accuracy

and precision but also hardware-specific metrics like execution latency, peak

memory usage, and energy consumption [17; 98]. Optimizing hardware utiliza-

tion is especially critical when targeting MCUs, which are often constrained by

limited resources.

During the optimization process of HW-NAS, it is crucial for the algorithm

to accurately estimate hardware-relevant metrics, such as latency and peak

141

memory consumption, for candidate neural network models with varying ar-

chitectures. For peak memory consumption, analytical estimation methods can

be employed to achieve precise calculations [176]. However, estimating execu-

tion latency is more challenging, and various approaches have been proposed

to address this issue [17].

One approach, employed during the architecture search process, utilizes a

hardware-in-the-loop setup, where the real-time latency of sampled models is

measured on the target hardware and returned to the optimizer. Although this

method provides accurate hardware-relevant metrics, it significantly extends

the search duration [17]. A more efficient alternative is to use the number of

floating-point operations (FLOPs) as a proxy for execution latency [159; 152;

93; 176]. While MicroNets [176] and µNAS [93] suggest that the number

of operations in a model is a reliable proxy for execution latency on MCUs,

other work [85] argues that this assumption is not always accurate. A middle-

ground approach between precise but slow on-device measurements and the

fast but less accurate latency estimations using FLOPs is the use of lookup

tables [17]. With this method, each candidate operation in the search space is

executed once on the target device, and its latency measurement is stored in a

lookup table. During the search process, the runtime of any designed model is

predicted based on this lookup table. This approach significantly improves the

efficiency of latency measurement while providing accurate predictions.

In our proposed MicroNAS approach, we adopt this lookup strategy, whereas

in the proposed SFTNAS approach, we use FLOPs as a proxy for latency es-

timation. The reason for this can be found in the experiments detailed in the

MicroNAS experiment section 6.2.2.2.

6.1.3 Neural Architecture Search for HAR

Existing HW-NAS systems have predominantly been developed for image clas-

sification tasks [176; 93; 20] and have been relatively under-explored for HAR

tasks. As discussed in Chapter 5, a critical element in executing NAS is defin-

ing the search space. However, the search spaces designed for image process-

ing fail to account for the unique characteristics of HAR tasks. Only a few

studies have investigated HW-NAS frameworks for HAR [82], but they not

142

only fall short in addressing the specific needs of HAR tasks, but also do not

target resource-constrained devices like MCUs. This gap highlights the ne-

cessity for a dedicated HW-NAS framework tailored specifically for HAR on

MCUs.

In summary, applying HW-NAS to multivariate time series classification,

such as HAR tasks, presents two key challenges. The first is accurately es-

timating the latency and memory usage of models on target hardware. The

second is designing an effective search space that not only meets hardware

constraints but also accounts for the unique characteristics of HAR tasks, such

as multi-modal interactions, the importance of local information, and the need

to capture long-term dependencies, among others.

6.2 MicroNAS

We first designed a CNN-based HW-NAS framework specifically for HAR

tasks, targeting MCU hardware. We have named this framework MicroNAS [79]

to reflect its focus on microcontroller units.

6.2.1 Methodology

The system overview of MicroNAS is illustrated in Figure 6.2. Before de-

signing the search space and training the model, it is essential to define the

target hardware constraints, such as setting the peak memory consumption

limit (Memt) and establishing the maximum allowable execution latency (Latt)

based on the application requirements.

Once these constraints are defined, the search space can be designed, which

will be discussed in Section 6.2.1.1. The second step involves hardware char-

acterization, which refers to predicting hardware-related metrics for each op-

erator within the defined search space on the target hardware, such as latency

and peak memory usage. This process will be detailed in Section 6.2.1.3. After

characterization, the HW-NAS process can begin, optimizing an optimal archi-

tecture from the defined search space that is tailored to the target hardware, as

explained in Section 6.2.1.4. Finally, in Section 6.2.3, we will discuss how to

deploy the optimized model onto the device.

143

Peak Memory Estimation & Latency Estimation

Target Micro-Controller Peak Memory limitation 𝑀𝑒𝑚!,
Maximal Latency limitation 𝐿𝑎𝑡!

Search Space Design

Hardware-aware Neural Architecture Search

Model Finetune & Quantization

Model Conversion & Deployment

Model in tf-lite Format

Constraints Loss
H

ar
dw

ar
e

Ch
ar

ac
te

riz
at

io
n

D
at

a

Figure 6.2: Before using the MicroNAS framework, the user needs to specify
the dataset to be used, the target micro-controller (MCUt), and the
maximum allowable hardware utilization in terms of execution la-
tency (Latt) and peak memory consumption (Memt). The output of
the system is a corresponding neural network in the TF-Lite format.

6.2.1.1 Search Space. An overview of the search space is depicted in Fig-

ure 6.3, which consists of three stages built from a linear stack of architecture-

searchable cells, each stage represented by different colors in the figure. The

division into three stages is based on guidelines summarized from our previ-

ous work, TinyHAR, where each stage extracts different information from the

HAR data.

Time-Reduce cells: These cells form the first stage of the architecture. They

are designed to extract local temporal context from the incoming time series

while simultaneously reducing the temporal dimension. By stacking multiple

layers of these cells, the first stage achieves a large temporal receptive field,

enabling it to capture global temporal dependencies as well.

Sensor-Fusion cells: These cells form the second stage of the architecture.

They facilitate cross-channel interactions and effectively fuse information from

multiple sensors.

Prediction cells: These cells form the third stage of the architecture. They

144

Conv
Kernel 1×𝑘
Stride 1×𝑠𝑡

Conv
Kernel 1×1
Stride 1×𝑠𝑡

Conv
Kernel 3×1
Stride 1×1

Conv
Kernel 5×1
Stride 1×1

Conv
Kernel 7×1
Stride 1×1

Skip

𝛼

𝛼

𝛼

𝛼

𝛼𝛼)* +𝑋 𝑂𝑢𝑡𝑝𝑢𝑡

Conv
Kernel 3×1
Stride 1×1

Conv
Kernel 5×1
Stride 1×1

Conv
Kernel 7×1
Stride 1×1

𝛼)*

𝑋

𝑂𝑢𝑡
𝑝𝑢𝑡

𝛼 𝛼)*

𝛼)*

Conv 𝛼)*
𝑋

. 𝑂𝑢𝑡
𝑝𝑢𝑡

𝑚+

𝑚,

𝑚-

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

O
ut

pu
t C

el
l

Activity
 Class

𝑁!" 𝑁#$

… …

1st Stage 2nd Stage 3rd Stage

𝑋

𝛼 Decision group

𝛼 Decision group

Figure 6.3: High-level overview of the search space for MicroNAS framework.

Conv
Kernel 1×𝑘
Stride 1×𝑠𝑡

Conv
Kernel 1×1
Stride 1×𝑠𝑡

Conv
Kernel 3×1
Stride 1×1

Conv
Kernel 5×1
Stride 1×1

Conv
Kernel 7×1
Stride 1×1

Skip

𝛼

𝛼

𝛼

𝛼

𝛼𝛼)* +𝑋 𝑂𝑢𝑡𝑝𝑢𝑡

Conv
Kernel 3×1
Stride 2×1

Conv
Kernel 5×1
Stride 2×1

Conv
Kernel 7×1
Stride 2×1

𝛼)*

𝑋

𝑂𝑢𝑡
𝑝𝑢𝑡

𝛼 𝛼)*

𝛼)*

Conv 𝛼)*𝑋 . 𝑂𝑢𝑡
𝑝𝑢𝑡

𝑚,

𝑚-

𝑚.

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

O
ut

pu
t C

el
l

Activity
 Class

𝑁!" 𝑁#$

… …

1st Stage 2nd Stage 3rd Stage

𝑋

𝛼 Decision group

𝛼 Decision group
(a) (b)

Figure 6.4: (a) Search space of Time-Reduce cell. It contains two decision
groups. α to choose a convolution operator and αch to search for
the number of filters for each operator. (b) Dynamic convolution
with searchable filter masks.

are responsible for the final prediction, integrating all the features extracted in

the previous stages.

In addition to accounting for the specific characteristics of HAR tasks, the

cell design also considers hardware constraints. The entire search space is

designed to be purely CNN-based, as CNNs are preferred for their high paral-

lelism and fast computational speed on hardware. After each layer in the archi-

tecture, batch normalization [67] and ReLU activation [2] are applied (though

not shown in Figure 6.3).

The following is a detailed introduction to the structure of the three cell

types.

145

Time-Reduce Cell & Stage. Placing the Time-Reduce cell in the first stage

serves two key purposes: extracting local temporal context within each sensor

channel and significantly reducing the temporal dimension. The Time-Reduce

cell consists of a series of parallel convolutional operators, each using a stride

of 2, as shown in Figure 6.4. These convolutional operators vary in their kernel

sizes, which are set to 3× 1, 5× 1, and 7× 1. Larger kernels can capture a

broader local context, but they also come with increased computational com-

plexity. In this framework, the stride for each convolution is set to 2. This is

because when the stride is 2, the temporal dimension of the output is approxi-

mately halved (due to the absence of padding) compared to the input.

To effectively capture global temporal information through convolution, mul-

tiple layers of Time-Reduce cells are stacked. The number of Time-Reduce

cells, denoted as Ntr, is calculated as follows:

Ntr =

⌊︃
log2

(︃
L

Lml

)︃⌋︃
where L is the input window size, and Lml is the minimum temporal length

of the output from the first stage. In designing the Time-Reduce cells, we

deliberately exclude kernel sizes of 1 or identity operators, as they may result

in information loss when the stride is set to 2.

For selecting the convolutional operators for each cell (layer), we adopt the

DARTS methodology [97]. Each candidate convolutional operator is associ-

ated with an architecture parameter α
j

i , j = 1,2,3, where the vector αi denotes

a decision group for the i-th layer. Each element α
j

i indicates the importance of

the corresponding j-th convolutional operator, which is reflected in the forward

process by the sampled probability. During forward inference, a convolutional

operator is sampled according to α using the Gumbel-Max trick approach [56]

as follows:

ci = Onehot_Encoding

(︄
argmax

j

(︂
g j

i + log
(︂

α
j

i

)︂)︂)︄
(6.1)

where gi are independent samples drawn from a standard Gumbel distribu-

tion (gi ∼ Gumbel(0,1)). ci is a one-hot encoded vector representation, with a

probability proportional to the value of αi. The forward process is as follows:

146

Conv
Kernel 1×𝑘
Stride 1×𝑠𝑡

Conv
Kernel 1×1
Stride 1×𝑠𝑡

Conv
Kernel 3×1
Stride 1×1

Conv
Kernel 5×1
Stride 1×1

Conv
Kernel 7×1
Stride 1×1

Skip

𝛼

𝛼

𝛼

𝛼

𝛼)* +𝑋 𝑂𝑢𝑡𝑝𝑢𝑡

Conv
Kernel 3×1
Stride 2×1

Conv
Kernel 5×1
Stride 2×1

Conv
Kernel 7×1
Stride 2×1

𝛼)*

𝑋

𝑂𝑢𝑡
𝑝𝑢𝑡

𝛼 𝛼)*

𝛼)*

Conv 𝛼)*𝑋 . 𝑂𝑢𝑡
𝑝𝑢𝑡

𝑚,

𝑚-

𝑚.

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Ti
m

e-
Re

du
ce

 C
el

l

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

Se
ns

or
-F

us
io

n
Ce

ll

O
ut

pu
t C

el
l

Activity
 Class

𝑁!" 𝑁#$

… …

1st Stage 2nd Stage 3rd Stage

𝑋

𝛼 Decision group

𝛼 Decision group
(a) (b)

𝛼

Figure 6.5: Search space of Sensor-Fusion cell. It contains six decision groups.
Each decision group is denoted as α in dashed box. Five of them
are for the five pathways and one for the filter masks.

X i+1 =
3

∑
j=1

c j
i op j

i (X i) (6.2)

At any given instance, only one operator is applied. During gradient back-

propagation, we compute the gradient of the argmax in equation 6.1 through a

differentiable approximation as follows:

G_Softmax
(︂

α
j

i ;α

)︂
=

exp
(︂(︂

log
(︂

α
j

i

)︂
+g j

i

)︂
/θ

)︂
∑

3
k=1 exp

(︁(︁
log
(︁
αk

i
)︁
+gk

i
)︁
/θ
)︁ (6.3)

Here, θ is the temperature parameter controlling the approximation’s fidelity

to discrete one-hot vectors. Consequently, this allows the model to be trained

with discrete operations, using equations 6.1 and 6.2 for the forward pass and

the differentiable equation 6.3 for gradient back-propagation.

Sensor-Fusion Cell & Stage. A common challenge in time series data pro-

cessing is managing the interactions between different sensor modalities. To

address this, we designed the Sensor-Fusion cell for the second stage, as illus-

trated in Figure 6.5. Building upon the Time-Reduce Cell structure, we intro-

duce a fixed convolution operator before the three candidate operators. Unlike

147

individual convolutions, this pre-convolution operator functions along the sen-

sor channel dimension with a kernel size of (1,k), facilitating cross-channel

interaction. This design is inspired by the previously proposed MLP-HAR

approach, where cross-sensor information exchange occurs first, followed by

intra-sensor information processing. By stacking multiple Sensor-Fusion cells,

information can efficiently propagate across both dimensions.

As shown in the Figure 6.5, beyond the three convolutional pathways used in

the Time-Reduce cell, the Sensor-Fusion cell incorporates two additional paths:

the topmost convolution operator with a kernel size of 1×1, which provides the

option to bypass cross-sensor information extraction, and the bottom identity

connection, which allows the entire layer to be skipped.

Similar to the Time-Reduce cell, each pathway in the Sensor-Fusion cell is

associated with an α parameter indicating its importance. However, unlike in

the Time-Reduce cell, these pathways do not compete with one another. For

example, in the Time-Reduce cell, only one convolutional operator can be se-

lected, but in the Sensor-Fusion cell, this limitation does not apply. In other

words, each α represents a distinct decision group that determines whether

its corresponding pathway is activated. Multiple pathways can be selected si-

multaneously, allowing for greater diversity within the cell, as convolutions

with different kernel sizes can be employed concurrently to capture informa-

tion across various temporal scales. While activating more pathways increases

diversity, it also adds computational complexity. The optimizer is responsi-

ble for balancing model complexity and performance, making the trade-off

between the two.

Output cell & Stage. The output cell has a fixed architecture with no learnable

parameters. It consists of a convolutional layer where the number of filters is

set to match the number of target classes. Class probabilities (ycls) are then ob-

tained through a Global Average Pooling (GAP) layer, followed by a Softmax

activation function.

6.2.1.2 Dynamic Convolutions. One challenge that remains is determining

the appropriate number of filters d for each layer. In previous works [1; 119;

99; 167], this value is typically predefined, with most studies setting d = 32 or

148

d = 64. However, the question arises: does every layer require the same num-

ber of filters, and do we need as many filters as predefined? To address this,

we incorporate dynamic convolution into our design [152]. A dynamic convo-

lution allows the number of filters to be adjusted through a search process.

In a dynamic convolution, the input is first processed through a convolutional

layer with the maximum number of allowed filters, denoted as dmax. The output

is then multiplied by a binary mask along the filter dimension. An example is

illustrated in Figure 6.4 (b). Different masks represent different configurations

of filter usage, allowing for the use of all filters (m3), two-thirds of the filters

(m2), or one-third of the filters (m1). Similar to operator selection, each mask

is assigned an architecture decision group weight, αch ∈R3, which determines

the likelihood of each mask being selected. In practice, the mask granularity is

finer than just three options in the example. We define a group size gr, which

is a divisor of dmax, and the number of mask options is equal to d divided by

gr.

In the Time-Reduce cell, each dynamic convolution has its own set of archi-

tecture weights for mask selection. However, in the Sensor-Fusion cell, since

all pathways must output tensors of the same shape, the decision group αch for

selecting the number of filters is shared across all pathways within the Sensor-

Fusion cell. In the Figure 6.4 and Figure 6.5, dashed boxes represent each

decision group. If multiple dashed boxes are shown, they are independent de-

cision groups. If the dashed box spans multiple branches, it indicates that the

branches still belong to the same decision group.

6.2.1.3 Latency & Peak Memory Estimation. For MicroNAS to identify

architectures that comply with user-defined constraints on execution latency

and peak memory consumption, it is crucial to accurately estimate the execu-

tion latency and peak memory consumption of designed neural networks within

the search space. Below, we describe the estimation algorithms used for these

two hardware-related metrics.

Execution Latency. To improve upon FLOPs-based proxy metrics for execu-

tion latency estimation, we employed a lookup-table-based approach. Specif-

ically, we profiled the latency of each operator by executing it on the target

149

MCU device. The lookup table was constructed by varying parameters such

as kernel size, stride, number of filters, input shape, and output shape for each

candidate operator. In our profiling system, each operator is considered along-

side its associated activation function, as the TensorFlow Lite Micro frame-

work [36] fuses operations with their subsequent activation functions. Execu-

tion latency is measured using the internal CPU cycle counter of ARM Cortex

processors, which can be easily converted to milliseconds. Using this lookup

table, we compute the execution latency for any designed models by summing

the latency of all operators in the model.

Peak Memory Consumption. When executing a neural network model in the

TFLM framework [37], memory is allocated from a user-provided byte array.

In TFLM, the byte array is divided into two sections. The first section, re-

ferred to as the Head, contains non-persistent tensor buffers, and its minimum

size corresponds to the peak memory usage, which is critical in the search

process. The second section, called the Tail, stores persistent allocations re-

quired by TFLM. According to the documentation [145], the Tail section in-

volves numerous dynamic allocations, making it difficult to predict the total

memory required for execution. As a result, our system focuses solely on op-

timizing peak memory usage by considering the intermediate tensors during

execution, excluding the Tail section from this optimization. To estimate peak

memory consumption, we follow the analytical methods proposed in the litera-

ture [17; 176]. During neural network execution, both input and output tensors

must be stored in memory, and certain operations may require additional mem-

ory for computations. For example, the CMSIS-NN kernel library requires

extra memory for certain operations such as convolutions [84]. The memory

requirement for a given operation is calculated as:

mem(op) = mem(input)+mem(out put)+ extra_mem(op). (6.4)

where mem(x) calculates the memory required to store a tensor, taking into

account its data format. For instance, int_8 tensors require only a quarter of the

memory compared to f loat_32 tensors. The total memory consumption of an

150

operation is the sum of the memory required for its input and output tensors,

along with any additional memory required for computation [84]. In line with

the analytical methods discussed in previous studies [17; 176], peak memory

consumption is defined as the maximum memory utilized by any operation

within the model. This approach allows us to estimate the peak memory usage

of a neural network architecture with high precision.

6.2.1.4 Optimization. The goal of the search is to identify an optimal ar-

chitecture, denoted as architecture parameter α∗, from the search space that

maximizes classification performance while adhering to user-defined hardware

constraints on execution latency Latt and peak memory consumption Memt .

The entire optimization process can be mathematically formulated as follows:

The objective of the search is to identify the optimal architecture, denoted

as the architecture parameter α∗, from the search space. This architecture is

expected to maximize classification performance while satisfying user-defined

hardware constraints on execution latency Latt and peak memory consumption

Memt . The entire optimization process can be mathematically formulated as

follows:

min
α

Lval (w
∗ (α) ,α) (6.5)

s.t. w∗ (α) = argmin
w

Ltrain (w,α) (6.6)

Where Ltrain and Lval represent the training and validation losses, respec-

tively. This forms a typical bi-level optimization problem [97], where the ar-

chitecture parameters α and αch are treated as the upper-level variables and

the model weights w as the lower-level variables. The optimization of these

two parameters follows the iterative optimization procedure used in DARTS,

as outlined in Algorithm 2.

In equation 6.5, the loss function consists of the cross-entropy loss Lcrossentropy

and hardware-aware constraints, formulated as follows:

L = Lcrossentropy +λlatLlatency +λmemLmemory (6.7)

151

Algorithm 2 Optimization Algorithm

Variables:
α - Architecture parameter (including αch, the dynamic filter parameter)
w - Model weights
ξw - Learning rate for updating w
ξα - Learning rate for updating α and αch
epochsearch - Number of epochs

for i = 1 to epochsearch do
Operator sampling and filter mask sampling
for each mini-batch of data do

Update distribution α: α = α −ξα ∇αLval (w∗,α)
Update model weights w : w = w−ξw∇wLtrain (w,α)
Operator sampling and filter mask sampling

end for
end for

The hardware-aware constraints include the model latency constraint loss

Llatency and the peak memory usage constraint loss Lmemory. The parameters

λlat and λmem are trade-off factors that balance the impact of execution la-

tency and memory usage on the overall loss function. These factors enable the

optimization process to adjust the focus between performance and hardware

efficiency, based on the specific requirements of the application.

The latency loss Llatency is formulated as:

Llatency = η (Lat(α,MCUt)) · log
(︃

Lat(α,MCUt)

Latt

)︃
(6.8)

where Lat(α,MCUt) denotes the predicted latency using the lookup table

approach. Similarly, the peak memory loss Lmemory is formulated as:

Lmemory = η (Mem(α,MCUt)) · log
(︃

Mem(α,MCUt)

Memt

)︃
(6.9)

where Mem(α,MCUt) denotes the estimated peak memory usage. Both for-

mulations ensure that the loss function increases when the current search space

configuration α leads to higher execution latency or peak memory consumption

than the allowed limits. Importantly, the function η ensures that the hardware-

152

related loss terms are set to zero when the current configuration of the search

space remains within the predefined targets. The definition of the η function is

as follows:

η (Lat(α,MCUt)) =

⎧⎨⎩γlat , if Lat(α,MCUt)≥ Latt

0, otherwise

η (Mem(α,MCUt)) =

⎧⎨⎩γmem, if Mem(α,MCUt)≥ Memt

0, otherwise

(6.10)

where γlat and γmem are penalty parameters. For example, if the predicted

latency Lat(α,MCUt) exceeds the limit Latt , the latency loss will no longer

be zero. The same applies to the memory loss. This ensures that the optimiza-

tion process focuses on configurations that meet the hardware constraints while

still aiming to maximize the model’s performance. To ensure that the user-

defined limits on execution latency and peak memory consumption are strictly

enforced, the penalty parameters γlat and γmem must be set sufficiently high.

These parameters strongly discourage configurations that exceed the specified

hardware constraints, effectively guiding the search process toward architec-

tures that meet both performance and hardware efficiency requirements.

6.2.2 Experiments and Discussions

6.2.2.1 Experiment Setup. Before presenting the results, this section out-

lines the training setup of the proposed MicroNAS framework. For the convo-

lutions in the Time-Reduce cells, the maximum number of filters dmax was set

to 16, with a group size gr of 4. In the Sensor-Fusion cells, dmax was set to 64,

and gr was set to 8. For the search algorithm, the exploration rate ε was set

to 0.995, the latency penalty coefficient γlat to 2, and the memory penalty co-

efficient γmem to 4. The super-network was trained for 60 epochs with a batch

size of 32. To optimize the weights w, we used the Adam optimizer, while the

architectural weights α were optimized using stochastic gradient descent, with

the learning rate for the architecture parameters set to 0.36. The training was

153

conducted on an Intel Core i7-12700K processor.

After the search process of MicroNAS, the optimized model is extracted

from the search space according to the architecture parameter α and retrained

from scratch using quantization-aware training to maximize classification per-

formance. Finally, the trained, int_8 quantized neural network is converted to

the TensorFlow Lite format, enabling deployment on the target micro-controller,

MCUt .

6.2.2.2 Latency Prediction Experiment. Accurately predicting the latency

of operators and networks is crucial for performing HW-NAS. Therefore, we

first evaluate the accuracy of latency estimation for different neural network ar-

chitectures by assessing the correlation between estimated latencies and actual

execution latencies on hardware. In this experiment, two latency prediction ap-

proaches were considered: one using the proposed lookup-table approach and

the other employing the FLOPs-based proxy metric. The FLOPs-based proxy

metric was implemented by training a linear regression model to estimate la-

tency based on FLOPs.

This experiment was conducted on the MCU NUCLEO-L552ZE-Q [137],

equipped with an STM32L552 (single core, ARM Cortex-M33, 80 MHz CPU

clock, 512 kB flash, 256 kB SRAM). For this evaluation, 200 random archi-

tecture samples were generated from the defined search space. To measure

the ground truth inference time, the sampled networks were first quantized to

int_8 and then deployed on the target hardware. The actual execution latency

was measured using the internal CPU-cycle counter on the ARM Cortex pro-

cessors.

The experimental results are shown in Figure 6.6. As can be clearly seen

from the figure, the proposed lookup table approach achieves an R2-score

of 99.97 with a mean absolute error (MAE) of 1.59 ms. In comparison, the

FLOPs-based latency estimation achieves an R2-score of 96.78 with an MAE

of 15.57 ms. These results indicate that while the FLOPs-based estimation

method serves as a reasonable proxy with high correlation, the lookup table

approach demonstrates a significantly stronger correlation with actual execu-

tion latency, providing more accurate predictions.

154

Diagonal Regression

Re
al

 L
at

en
cy

 (m
s)

500

400

300

200

100

Predicted Latency (Lookup Table)
100 200 300 400 500

Re
al

 L
at

en
cy

 (m
s) 500

400

300

200

100

FLOPs
0.5 1.0 1.5 2.0 2.51e7

Figure 6.6: Execution latency of whole architectures from our search space.
Left: Our lookup-table latency approach. MAE: 1.59 ms, R2:
99.97 %. Right: Flops based estimate: MAE: 15.57 ms, R2:
96.78 %.

Additionally, we validated the performance of the lookup table-based pre-

diction method on another device, the Arduino Nicla Sense ME [8], which is

equipped with an NRF52832 (single core, ARM Cortex-M4, 64 MHz CPU

clock, 512 kB flash, 64 kB SRAM). To clearly illustrate the difference between

the predicted and actual latency on the hardware, we sampled eight models of

varying sizes from the search space. The results of this experiment are shown

in Figure 6.7. For the tested architectures, the latencies predicted using the

lookup table closely matched the actual execution latency on the target micro-

controller. For the eight models under investigation, the mean difference in

execution latency was 1.02 ms, with a standard deviation of 0.63 ms.

In summary, the lookup table-based latency prediction method demonstrated

excellent accuracy compared to the FLOPs-based method across two different

devices. Our experiment also validated that, when using traditional convolu-

tions, FLOPs can serve as a reasonable proxy for latency estimation.

6.2.2.3 Latency vs. Performance. The primary advantage of the proposed

MicroNAS framework lies in its ability to autonomously identify architectures

that adhere to the latency constraints of a given task. In this study, we explore

the capability of MicroNAS to discover suitable models under varying latency

constraints. To isolate the effect of latency, we specifically disabled the loss

function related to peak memory consumption. For the UCI-HAR dataset, we

set the latency range to 0–250 ms, while for the SkodaR dataset, the latency

range was set to 0–500 ms. Under each latency constraint, experiments were

155

148.79
149.00

219.15
221.38

226.64
232.91

331.64
332.83

485.62
486.69

233.26

227.13

s

s
Sa

m
pl

ed
 M

od
el

 In
de

x

1
2
3
4
5
6
7

47.85
47.25
71.28
69.75

sReal Latency
Predicted Latency

s

Latency (ms)

8

0 100 200 300 400 500

Figure 6.7: Correlation between predicted execution latency and actual execu-
tion latency for several architectures from the search space.

conducted five times, and the mean performance metrics along with their vari-

ances are illustrated in Figure Figure 6.8 and Figure Figure 6.9.

As anticipated, the classification performance improves as the latency con-

straints are relaxed, as shown in Figure Figure 6.8 for the UCI-HAR dataset [128]

and Figure Figure 6.9 for the SkodaR dataset [170]. With increasing latency

allowances, the performance of the discovered models demonstrates an upward

trend. Stricter latency constraints significantly degrade performance. This

degradation is particularly pronounced in regions with very tight latency con-

straints. Nonetheless, MicroNAS efficiently optimizes models to meet a wide

range of latency constraints. Remarkably, even with an extremely tight con-

straint of 20 ms, the models identified by MicroNAS still perform well. This

is noteworthy as it is typically very challenging for domain experts to optimize

models under such extreme latency conditions.

6.2.2.4 Peak Memory vs. Performance. Another advantage of the pro-

posed MicroNAS is its ability to automatically search for the optimal model

based on hardware memory constraints. In this experiment, we demonstrate

MicroNAS’s capability to discover architectures under different peak memory

limitations. To isolate the effect of memory, we disabled the loss function as-

sociated with execution latency. As in the previous experiments, we set the

range of peak memory consumption between 6 KB and 30 KB. Under each

156

A
cc

ur
ac

y

NUCLEO-F446RE - quantNUCLEO-F446RENUCLEO-L552UE-Q - quantNUCLEO-L552UE-Q

Latency (ms)
50 100 150 200 250

Latency (ms)
50 100 150 200 250

95.0

94.5

94.0

93.5

93.0

92.5

92.0

95.0

94.5

94.0

93.5

93.0

92.5

92.0

F1
-S

co
re

Figure 6.8: Classification performance and latency trade-offs on the UCI-HAR
dataset. Left: Accuracy, Right: F1-Score (Macro).

A
cc

ur
ac

y

NUCLEO-F446RE - quantNUCLEO-F446RENUCLEO-L552UE-Q - quantNUCLEO-L552UE-Q

Latency (ms)
100 200 300 400 500

98.0

96.0

94.0

92.0

90.0

88.0

F1
-S

co
re

96.0
94.0
92.0
90.0
88.0
86.0
84.0

0
Latency (ms)

100 200 300 400 5000

Figure 6.9: Classification performance and latency trade-offs on the SkodaR
dataset. Left: Accuracy, Right: F1-Score (Macro).

Accuracy
Accuracy – quant

F1-Score (Macro)
F1-Score (Macro) -quant

95.0

92.5

90.0

97.5

5 10 15 20 25 30
Peak Memory (KB)

Figure 6.10: Trade-off between peak memory consumption and Accuracy / F1-
Score (Macro). Comparison on the SkodaR dataset.

157

Random Search MicroNAS

Random Search MicroNAS

97

96

95

94

93

A
cc

ur
ac

y

96

94

92

90

88

F1
-S

co
re

Latency (ms)
250 500 750 1000

Latency (ms)
250 500 750 1000

95

90

85

80

A
cc

ur
ac

y

95

90

85

80

F1
-S

co
re

Latency (ms)
50 100 150 200

Latency (ms)
50 100 150 200

Figure 6.11: MicroNAS compared against random search on the UCI-HAR
dataset with the Nucleo-L552ZE-Q.

memory constraint, we conducted the experiments five times and reported the

mean performance metrics along with their variances in Figure 6.10. Since

the TensorFlow Lite for Microcontrollers (TFLM) framework [37] utilizes the

same amount of memory across different microcontrollers, this experiment is

independent of specific hardware platforms. Therefore, we conducted this ex-

periment solely on the Nucleo-L552ZE-Q [138] using the SkodaR dataset.

As illustrated in Figure 6.10, and in line with our expectations, performance

improves as more memory becomes available. A closer examination of the left

portion of the figure, where the peak memory constraints are most stringent,

reveals a decline in model performance. However, even with a memory limit

as low as 6 KB, MicroNAS remains capable of efficiently and automatically

optimizing models that exhibit strong performance.

6.2.2.5 Comparison to Random Search. In this section, we compare Mi-

croNAS against a random search baseline. Random search simulates the behav-

ior of an inexperienced model designer who randomly attempts different archi-

tectures. For this comparison, 30 architectures were randomly sampled from

the search space and trained for 64 epochs using the same hyper-parameters as

in the other experiments. The total training time for these 30 architectures is

approximately equivalent to the time required for a full architecture search by

MicroNAS.

The results are presented in Figure 6.12 for the SkodaR dataset and Fig-

158

Random Search MicroNAS

Random Search MicroNAS

97

96

95

94

93

A
cc

ur
ac

y

96

94

92

90

88

F1
-S

co
re

Latency (ms)
250 500 750 1000

Latency (ms)
250 500 750 1000

95

90

85

80

A
cc

ur
ac

y

95

90

85

80

F1
-S

co
re

Latency (ms)
50 100 150 200

Latency (ms)
50 100 150 200

Figure 6.12: MicroNAS compared against random search on the SkodaR
dataset with the Nucleo-L552ZE-Q.

ure 6.11 for the UCI-HAR dataset. In both cases, the proposed MicroNAS

consistently outperforms the random search baseline across all configurations.

Specifically, while the random search generates models of varying sizes, lead-

ing to a wide range of latencies, the MicroNAS framework consistently achieves

superior performance. This results in a Pareto front that lies consistently above

the outcomes of the random search. These findings clearly demonstrate the

superior trade-offs between latency constraints and classification performance

achieved by the proposed MicroNAS across various latency limitations.

6.2.3 Discussion

This work demonstrates the feasibility of using NAS for designing and deploy-

ing neural network models on MCUs. By considering user-defined constraints

on execution latency and peak memory consumption for the target MCU, our

approach enables the rapid identification of architectures suitable for real-time

systems. This significantly reduces the complexity faced by model designers

when accounting for multiple hardware limitations. Through extensive experi-

ments, we validate the effectiveness of our HW-NAS method. However, com-

pared to SOTA HAR models, the architectures discovered by our approach,

while meeting task, hardware, and user requirements, exhibit a slight decrease

in performance. This highlights the untapped potential of HW-NAS for HAR

tasks, warranting further research.

159

6.3 NAS Meets Pruning

To further explore the potential of HW-NAS for model reduction, we conducted

an in-depth analysis of the complexity and size of current SOTA HAR mod-

els. Our analysis revealed that their large size and computational demands are

primarily driven by the extensive number of sensor channels and the use of

individual convolution layers, as discussed in Section 6.3.1. Based on these

insights, we developed a novel NAS-plus-pruning framework [186], which is

detailed in Section 6.3.2. This framework systematically filters sensor chan-

nels, prunes filters at each layer, reduces the temporal dimension, and opti-

mizes the model architecture in an end-to-end process. In Section 6.3.3, we

will demonstrate its performance on the NUCLEO-L552ZE-Q, equipped with

a STM32L552 (Single core, ARM Cortex-M33, 80 MHz CPU clock, 512 kB

flash, 256 kB SRAM). Finally, in Section 6.3.4, we provide a summary of this

work.

6.3.1 HAR Model Complexity and Size

The challenge in predicting activities from multidimensional sensor data lies in

accurately capturing local context, multi-modal interactions, and global tempo-

ral information [102; 185]. To capture these different dimensions of informa-

tion, the feature extraction process in most SOTA HAR models can be divided

into four stages: local context extraction, sensor information interaction, sensor

information fusion, and temporal information extraction [185], as illustrated in

Figure 6.13.

Following these design principles, as shown in Figure 6.13, the architec-

ture of most SOTA HAR models—such as Attend-and-Discrimina-te [1], If-

ConvTransformer [178], DeepSense [167], AttenSense [102], TinyHar [185],

GlobalFusion [99], and ALAE-TAE [3]—can be categorized into these stages.

The primary differences among these models lie in their approaches to sensor

fusion and temporal information extraction. However, nearly all these networks

begin with individual convolution blocks in the first stage for local context ex-

traction, which are then passed on to downstream modules.

We selected four SOTA HAR models and evaluated their model complexity

160

Local Context
Extraction

Cross-Channel
Interaction

Cross-Channel
Fusion

Temporal
Dependency
Extraction

Deep
ConvLSTM

1D Individual
Convolutional

Block
x x LSTM

Attend and
Discriminate

1D Individual
Convolutional

Block

Cross-Channel
Interaction
Encoder

x Attentional
GRU Layer

IF-Conv
Transformer

Filter + 1D
Individual

Convolutional
Block

Cross-Channel
Interaction
Encoder

Flatten + 1D
Convolution

Layer

Transformer
Block

DeepSense
1D Individual
Convolutional

Block
x

Flatten +
Merge

Convolutional
block

GRU

TinyHAR
1D Individual
Convolutional

Block

Cross-Channel
Interaction
Encoder

Flatten + Fully
Connected

Layer

Attentional
LSTM Layer

AttnSense
1D Individual
Convolutional

Block
x Attention-

fusion Subnet
Attentional
GRU Layer

GlobalFusion
1D Individual
Convolutional

Block

Spatial
Convolutional

Block

Modality
Convolutional

Block
GRU

ALAE-TAE-
CutMix

1D Individual
Convolutional

Block

Adaptive
Latent

Attention
Encoder

x Attentional
LSTM Layer

input

Stage 1 Stage 2 Stage 3 Stage 4

Complementary

Figure 6.13: Overview of the architecture design of HAR models.

161

9 18 27

1000k

800k

600k

400k

200k

400M

300M

200M

100M

0

N
um
be
r
of
Pa
ra
m
et
er
s

N
um
be
r
of
M
A
C
s

DeepConvLSTM TinyHAR Attend IFConv

500M

Number of Sensor Channels: 9 18 27 Blue for stage 1
Green for stage 2-4

Number of Sensor Channels: 279 18
DeepConvLSTM TinyHAR Attend IFConv

(a)

(b)
Figure 6.14: Impact of the number of sensor channels on model complexity (a)

and on number of trainable parameters (b).

at each stage. To quantify model complexity, we used Multiply-Accumulate

Operations (MACs) as the evaluation metric. To highlight the complexity of

the initial stage, we divided the four stages into two parts: the first part includes

only the first stage, while the second part encompasses the subsequent stages.

This evaluation was carried out using the UCI-HAR dataset, which utilizes a

single Inertial Measurement Unit (IMU) corresponding to 9 sensor channels

for data collection. Furthermore, we increased the number of sensor channels

from 9 to 18 and 27 to simulate scenarios involving the use of additional IMUs.

This modification enabled us to investigate how the number of sensor channels

impacts both model size and complexity.

As shown in Figure 6.14 (a), the majority of the MACs across all analyzed

models are concentrated in the first stage. In the figure, the computational

complexity of the first stage is represented by blue bars, while that of the sub-

sequent stages is shown in green. It is evident that the blue bars dominate.

This is primarily because the temporal dimension of the HAR data is signifi-

162

cantly larger than the other dimensions, and the first stage operates directly on

these original dimensions, leading to high computational intensity. This find-

ing further supports our previous work, which demonstrated that an effective

strategy to reduce model complexity is to shorten the temporal dimension in

this convolutional stage.

Interestingly, we observed that increasing the number of IMUs results in a

substantial rise in both the model’s parameter count and overall complexity.

As shown in Figure 6.14 (a) and (b), when the number of sensor channels in-

creases from 9 to 18, the model’s size and computational cost nearly double.

This increase can be attributed to two key factors. First, the individual con-

volutions applied to the expanded sensor channels significantly contribute to

the additional computational load. Second, models such as TinyHAR and If-

Conv employ a flatten operation followed by a fully connected layer for feature

fusion, while other models like DeepConvLSTM and Attend directly pass vec-

torized features to subsequent temporal extraction stages, which also include

fully connected layers. It is well-established that the number of parameters

and the complexity of a fully connected layer are proportional to its input and

output dimensions. Thus, an increase in sensor channels drastically enlarges

the input dimension, leading to a significant rise in computational demands for

these layers. Given the rapid advancement of sensor technologies and the in-

creasing ease of deploying wearable devices, the number of sensor channels in

future applications is expected to grow. This trend poses a major challenge for

processing data from multiple IMU sources, as it results in oversized models

with heightened computational requirements.

In conclusion, these investigations have uncovered two critical findings: first,

the initial stage of the model accounts for a substantial portion of the com-

putational resources; second, the model’s size and computational complexity

increase significantly with the number of sensor channels. To develop more

lightweight models, the most effective strategies involve optimizing the first

stage by minimizing the temporal dimension, carefully selecting efficient sen-

sor channels when their number is large, and reducing the number of filters in

each convolutional layer.

163

⊙ =

Input Segment

𝐶

𝐿!

DCS

𝒃!
Active sensor channel size

&𝐶 = 𝑠𝑢𝑚(𝒃!)
= 1
= 0

𝐿"

𝐶

𝑑

𝒃"
Active filter size
/𝑏" = 𝑠𝑢𝑚(𝒃")

⊙ =

Output Feature Map
of i-th Layer DCS

= 1
= 0

Figure 6.15: DSC layer for the input layer and convolutional layer.

6.3.2 Methodology

Based on the previous findings, we have designed an NAS-plus-pruning frame-

work that can be applied to any HAR model featuring an individual convolution

as the first stage.

6.3.2.1 Sensor and Convolutional Channel Pruning. To effectively re-

duce both the number of sensor channels and convolutional filters, a prun-

ing strategy is incorporated into the framework. Specifically, a Differentiable

Channel-wise Scaling (DCS) layer [92] is introduced at the beginning of the

model and at the end of each convolutional layer, as illustrated in Figure 6.15.

The DCS layer is parameterized by a binarized vector b∗. The mathematical

formulation of this process is given by:

Xi = b∗
i ⊙Xi i = 0 (6.11)

Xi+1 = b∗
i ⊙ (Xi−1 ⊗wi) i = 1,2, · · · ,L (6.12)

164

In this equation, the symbol ⊗ denotes the convolution operation, while ⊙
represents element-wise multiplication. Each value in the binarized parameter

vector b∗ serves as an indicator of the importance of the corresponding sen-

sor or filter channel. When i = 0, referring to the input layer, no convolutional

operation occurs. The initial DCS layer, parameterized by b∗
0 ∈ R1×C0×1, is re-

sponsible for selecting important sensor channels and pruning non-informative

sensor channels from the original input data. In contrast, the subsequent DCS

layers focus on selecting important filters and pruning redundant filters in the

preceding convolutional layers, where b∗
i ∈ R1×1×d for i = 1,2, · · · ,Nconv. A

value of 1 in b∗ signifies importance, ensuring the retention of the correspond-

ing feature map region for subsequent layers. Conversely, a value of 0 in b∗

indicates irrelevance, leading to the nullification of the associated feature map

section. Hence, the tasks of sensor channel (filter) selection and pruning are

framed as a binary optimization problem, governed by the parameter b∗
i .

To address the issue of gradient back-propagation associated with this bi-

narized parameter, the Straight-Through Estimator (STE) technique [16] was

employed. The forward and backward propagation processes are defined as

follows:

Forward : b∗
i =

⎧⎨⎩0 vi ≤ thres

1 vi > thres
(6.13)

Backward :
∂L

∂vi
=

∂L

∂b∗
i

(6.14)

In this context, the binarized parameter b∗
i is derived from a trainable con-

tinuous parameter vi. The threshold value thres is a hyper-parameter, set to

0.5 in this work. Through the integration of DCS layers and the STE method,

both the model parameters wi and the binarized informative parameters b∗
i ,

parameterized by vi, can be trained simultaneously.

6.3.2.2 Search Space. As mentioned in the previous section, in addition to

pruning sensor and filter channels, it is crucial to effectively condense the tem-

poral dimension. To achieve this, we have devised a search space, as illustrated

165

Identity

𝑫𝑺𝑪 𝒗𝒊𝟏 𝑫𝑺𝑪 𝒗𝒊𝟐 𝑫𝑺𝑪 𝒗𝒊𝟑 𝑫𝑺𝑪 𝒗𝒊𝟒

Input

C
onvolution stride = 2

C
onvolution stride = 1

C
onvolution stride = 2

C
onvolution stride = 1

C
onvolution stride = 1

C
onvolution stride = 2

C
onvolution stride = 1

…

𝜶𝒊𝟏 𝜶𝒊𝟐 𝜶𝒊𝟑 𝜶𝒊𝟒
Input Feature Map

Output Feature Map

Conv K=1 Conv K=5Conv K=3
𝑫𝑺𝑪 𝒗𝒊𝟓

Conv K=7

𝜶𝒊𝟓

Figure 6.16: Search space of each layer for SFTNAS framework.

in Figure 6.16. This space is structured by alternating convolutional layers

with strides of 2 and strides of 1. For each searchable layer, the available oper-

ations include five candidate operators: convolutions with kernel sizes of 1, 3,

5, and 7, along with an identity operator. To select operators for each layer, we

adopt the DARTS methodology [97], combined with the Gumbel-Max trick,

as discussed in section 6.2.1.1. Each candidate operator is associated with an

architecture parameter α
j

i , j = 1,2,3,4,5.

Since this work focuses on optimizing only the first stage of the HAR model,

the search space is defined to include more layers and a broader variety of op-

erators compared to our previous work, MicroNAS. The number of convolu-

tional layers with a stride of 2 is determined by the length of the input L. To

prevent excessive reduction of the temporal dimension, a specific strategy is

employed: the number of layers with a convolution stride of 2 is defined as

⌊log2
(︁ L

4
)︁
⌋. The denominator 4 ensures that, even when all convolutional lay-

ers with a stride of 2 are applied, the resulting size in the temporal dimension

will be at least 4. This setup maximizes the inclusion of convolutional lay-

ers within the search space. Compared to our previous work, MicroNAS, the

number of convolutional layers has increased and can be flexibly adjusted ac-

166

cording to the specific task requirements during the optimization process. For

example, when a layer is designated as an identity layer, it reduces the total

number of layers in the first stage. However, in our previous work, MicroNAS,

the number of convolutional layers was fixed.

6.3.2.3 Optimization. following our previous work as described in sec-

tion 6.2.1.4, the entire optimization process can be mathematically defined as

follows,

min
α

Lval (w
∗ (α) ,v∗ (α) ,α) (6.15)

s.t. w∗ (α) ,v∗ (α) = argmin
w,v

Ltrain (w,v,α) (6.16)

Where Ltrain and Lval denote the training and validation loss, respectively.

The key difference in our approach is that, in addition to optimizing the model

weights w, we also incorporate the trainable parameters v from the DCS layer.

This results in a typical bi-level optimization problem [97], with α as the upper-

level variable and the model weights w and learnable scaling factors v as the

lower-level variables. The optimization of these two sets of parameters fol-

lows the iterative optimization procedure used in DARTS. In equation 6.15,

the loss function comprises the cross-entropy loss Lcrossentropy and hardware-

aware constraints, defined as follows:

L = Lcrossentropy +λlatLlatency +λmemLmemory (6.17)

The hardware-aware constraints include model latency constraint and peak

memory usage limitation. λlat and λmem are trade-off parameters that control

the influence of efficiency and memory usage on the overall loss. During the

total loss minimization process, a policy is learned that decides whether to

remove or retain a layer, as well as modify its number of filters and sensor

channels.

Compared to our previous work, MicroNAS, a significant difference in this

study is that we use model computational complexity as a proxy for execution

latency. The model latency loss Llatency is analytically estimated through the

167

number of FLOPs (Floating Point Operations) as follows:

Llatency =
Nconv

∑
i=1

5

∑
j

c j
i

⃓⃓⃓⃓
b̂∗

i−1 · b̂
∗ j
i ·Ĉ0

·Li−1

sti
· k j

i ·1
⃓⃓⃓⃓2

(6.18)

For each layer i, the computational complexity of the selected operator op j
i

is included in the L2 norm regularization. The vector c j
i is a one-hot encoded

vector indicating which operator is sampled. The term b̂∗ j
i = ∑

(︂
b∗ j

i

)︂
denotes

the number of active filters for the selected operator, representing the output

dimension, while b̂∗
i−1 represents the input dimension. The stride of the cur-

rent layer is denoted by sti, and k j
i represents the current kernel size. The size

of the active sensor channels, Ĉ0 = ∑

(︂
b̂∗

0

)︂
, is derived from the first DCS layer

for the input segment. It is evident that the number of active sensor chan-

nels directly impacts the computational complexity of all subsequent layers.

Selecting and utilizing only the important sensor channels can significantly re-

duce the model’s computational complexity. Li−1 represents the length of the

input in the temporal dimension. Although FLOPs are not a perfect proxy for

latency, they exhibit a strong correlation, as demonstrated in the evaluation sec-

tion 6.2.2.2. Using FLOPs directly as a proxy for latency allows us to bypass

the cumbersome process of profiling all operators on hardware.

The loss for peak memory consumption is defined as follows:

Lmemory =

⎧⎨⎩log
(︂

Mem(α,v,MCUt)
Memt

)︂
, i f Mem(α,v,MCUt)> Memt

0, otherwise
(6.19)

A penalty is applied when peak memory usage exceeds the defined maxi-

mum memory limit Memt .

6.3.3 Experiments and Discussions

6.3.3.1 Experiment Setup. We use three HAR benchmark datasets to val-

idate the proposed framework and provide empirical evidence of its gener-

alizability: Skoda [170], the UCI-HAR dataset [128], and the MotionSense

dataset [107]. To demonstrate the applicability of the proposed framework

168

across various models, we consider three HAR models in our experiments:

DeepConvLSTM (DCL) [119], TinyHAR [185], and Attend-and-Discriminate

(Attend) [1]. All three models utilize an individual convolution block in the

initial stage. Therefore, we replace only the initial stage with our proposed

searchable framework, while the structure of the subsequent stages remains

consistent with the original models.

Pruning is a commonly used method to make models more lightweight. In

addition to our proposed method, we include two SOTA pruning methods, Au-

toSlim [169] and PaS [92], as baselines. Since we did not modify these two

algorithms, they only prune the number of filters in each convolutional layer.

However, our algorithm not only prunes the Sensor channels and Filters of

each layer but also reduces the length of the Temporal dimension. Thus, we

have named our model as SFTNAS.

To optimize the model weights w and informative parameters v, we use the

same setup as described in Section 2.4. For the optimization of the architecture

parameters α , we employ an additional Adam optimizer with a learning rate

of ξα = 5× 10−3, momentum (0.5,0.999), and a weight decay of 10−3. The

parameters α are initialized to 10−3. The temperature θ is initially set to θ0 =

5.0, and its decay is governed by the equation θ = θ0 × exp(−0.05× epoch).

6.3.3.2 Comparison to State-of-the-art. The three tables, Table 6.1, Ta-

ble 6.3, and Table 6.2, provide performance results for the algorithms applied

to different HAR models across three datasets: Motion Sense, UCI-HAR, and

SKODA. The algorithms with the best performance are highlighted in bold.

From a general point of view, SFTNAS consistently stands out as the most

effective algorithm in reducing model size across all datasets and models. It

achieves significant reductions in the number of parameters compared to the

original models. In addition, SFTNAS also proves to be highly efficient in

terms of model complexity reduction, achieving the lowest MMACs across all

combinations of datasets and models, indicating its ability to significantly im-

prove inference time. While AutoSlim and PaS also contribute to reducing

model size and complexity, they are not as effective as SFTNAS.

Regarding classification performance, SFTNAS enables all three HAR mod-

els to have the smallest model size and the least complexity on the Motion

169

Table 6.1: Performance comparison between the SFTNAS framework and
other pruning methods on the MotionSense dataset.

Model + Methods Parameters MMACs F1m

DCL 522.57 k 138.73 92.23
DCL + SFTNAS 81.92 k 2.32 89.88
DCL + AutoSlim 131.24 k 35.14 88.67
DCL + PaS 95.33 k 25.33 88.21

Attend 519.11 k 155.62 94.42
Attend + SFTNAS 56.45 k 3.74 91.37
Attend + AutoSlim 81.76 k 24.92 90.98
Attend + PaS 73.15 k 19.02 90.46

TinyHAR 322.76 k 47.17 92.12
TinyHAR + SFTNAS 41.28 k 1.79 90.17
TinyHAR + AutoSlim 50.03 k 7.69 89.21
TinyHAR + PaS 54.27 k 6.15 90.20

Sense and UCI-HAR datasets, achieving optimal results. On the SKODA

dataset, however, SFTNAS shows slightly lower results than the other two

pruning algorithms. Nevertheless, it is important to emphasize that the reduc-

tions in both model size and complexity on the SKODA dataset are significant

compared to the other two algorithms. This is because the proposed SFTNAS

not only reduces the number of filters, but also prunes the temporal dimension

and the sensor channels. One limitation is that SFTNAS only optimizes the

initial stage, while the subsequent model structures remain fixed.

It is important to note that, compared to the original models, the models com-

pressed by SFTNAS are reduced in size by approximately 7-20 times, while the

decrease in performance across the three datasets is no more than 3%. Com-

pared to MicroNAS, the performance degradation is significantly mitigated.

6.3.3.3 Performance on Hardware. We also performed an evaluation on

the NUCLEO-L552ZE-Q, equipped with a STM32L552 (Single core, ARM

Cortex-M33, 80 MHz CPU clock, 512 kB flash, 256 kB SRAM), using the

UCI-HAR dataset. Given the extreme limitations of this hardware, the three

170

Table 6.2: Performance comparison between the SFTNAS framework and
other pruning methods on the Skoda(r) dataset.

Model + Methods Parameters MMACs F1m

DCL 1.11 M 534.44 91.12
DCL + SFTNAS 61.66 k 3.54 90.01
DCL + AutoSlim 173.93 k 83.72 88.45
DCL + PaS 187.93 k 70.42 89.33

Attend 962.0 k 592.41 92.39
Attend + SFTNAS 63.87 k 5.03 91.04
Attend + AutoSlim 139.17 k 90.44 91.23
Attend + PaS 150.82 k 87.65 91.59

TinyHAR 470.73 k 183.2 90.48
TinyHAR + SFTNAS 38.01 k 4.27 87.48
TinyHAR + AutoSlim 141.73 k 57.53 87.01
TinyHAR + PaS 104.38 k 43.01 88.31

models, as well as the variants pruned by AutoSlim and PaS, could not be

deployed on it.

To deploy the model on this hardware, we applied the proposed SFTNAS

to TinyHAR. In addition to considering the model complexity during training,

we also included peak memory in the training loss, with L_Mem set to 96 kB.

After the model was trained, this optimized architecture was further fine-tuned

using quantization-aware training, and later the resulting model was deployed

to the MCU using int_8 quantization. Adjusting the size of βmem, we could

obtain models with different computational complexities. We experimented

with various values of βmem and plotted the trade-off between the inference

time and the performance of the resulting models in Figure 6.17 (a). This ex-

periment demonstrates SFTNAS’s ability to find architectures under different

model complexity constraints. When higher model complexities are allowed,

classification performance increases.

We further analyze the distribution of the number of filters per layer in the

optimize models and plot the distribution in Figure 6.17 (b). As can be ob-

served from the figure, there is an increasing trend in the number of filters

171

Table 6.3: Performance comparison between the SFTNAS framework and
other pruning methods on the UCI-HAR dataset.

Model + Methods Parameters MMACs F1m

DCL 424.26 k 105.95 92.51
DCL + SFTNAS 33.74 k 1.86 92.49
DCL + AutoSlim 46.21 k 11.72 91.83
DCL + PaS 37.89 k 9.64 92.04

Attend 445.38 k 120.55 94.07
Attend + SFTNAS 41.11 k 1.37 93.29
Attend + AutoSlim 48.62 k 13.59 92.88
Attend + PaS 39.89 k 11.2 92.71

TinyHAR 298.18 k 36.27 94.58
TinyHAR + SFTNAS 13.96 k 0.767 94.36
TinyHAR + AutoSlim 39.99 k 6.21 93.58
TinyHAR + PaS 21.34 k 3.56 94.19

as the number of layers increases. This trend can serve as a heuristic for the

manual design of HAR models.

6.3.4 Discussion

In this work, we have optimized the design of individual blocks in the HAR

model by using NAS in combination with a pruning technique. This approach

is designed to minimize the size of various dimensions, namely the sensor

channel dimension, time dimension, and filter dimension, without significantly

sacrificing the model’s performance. It has been experimentally demonstrated

that the proposed method can significantly reduce the size and complexity of

the model while maintaining its performance. In many cases, the complexity

is only about 2% of the original. This observation indirectly shows that reduc-

ing the complexity of the model in the first stage can also benefit subsequent

computations. Finally, we demonstrate the usability of the proposed method

by applying it on a microcontroller.

172

(a) (b)
1 2 3 4

Layer Index
5 6 7200 300 400 500

Inference Time (ms)

M
ac

ro
 F

1
Sc

or
e

94

90

92

88

Fi
lte

r N
um

be
r

15

5

10

(a) (b)

Figure 6.17: (a) Trade-off between inference time and performance from SFT-
NAS framework. (b) Distribution of optimized filter numbers
from SFTNAS framework.

6.4 Summary

In this chapter, we explored the application of HA-NAS to the optimization

of lightweight HAR models. HW-NAS provides an automated framework for

discovering models that not only achieve high performance but also adhere to

hardware constraints, greatly reducing the complexity of manual model design.

In the context of SFTNAS, we identified that the majority of the complexity in

HAR models stems from the first convolutional stage, which is significantly

impacted by the sensor channels. By optimizing this initial stage, we were

able to substantially reduce the model size while preserving comparable per-

formance.

However, we also highlighted a limitation of this framework: it focuses

solely on optimizing the first stage of HAR models, while the subsequent

stages remain unaltered, adhering to the original model design. In contrast,

MicroNAS provides a more flexible solution by enabling global optimization

across the entire model. Future work could extend the search space to include

the later stages of HAR models, allowing for more comprehensive optimization

and model compression.

173

7 Conclusion

Wearable HAR systems are increasingly used in real-time monitoring applica-

tions. Many of these applications depend on continuous sensor data collection

and real-time processing on edge devices such as smartwatches and micro-

controllers. However, the limited computational power, memory, and battery

life of these devices present significant challenges for deploying complex deep

learning models.

In recent years, numerous HAR models have been developed with progres-

sively better classification accuracy, yet these gains often come at the expense

of increased model complexity and size. Relatively few studies have focused

on lightweight HAR models, especially in the deep learning domain. This dis-

sertation addresses this gap by introducing a series of methods that not only

maintain high classification accuracy but also minimize resource consumption,

enabling wearable HAR systems to operate efficiently on resource-constrained

edge devices such as micro-controllers.

Contribution 1: Data Preparation for Model Size Reduction. The first ma-

jor contribution of this work focuses on data preparation as a means to reduce

model size. This approach is model-agnostic and can be applied to any HAR

model, making it particularly useful for non-expert users working in resource-

constrained environments. A common approach to reducing model size is to

manually decrease the number of layers or filters in a pre-existing model. How-

ever, this often reduces the model’s learning capacity, resulting in diminished

performance, even if the model becomes deployable on edge devices.

To address this issue, we proposed techniques such as automated data aug-
mentation and a learnable wavelet layer, which can be easily applied to man-

ually downsized models, creating an end-to-end learning framework. Exper-

imental results show that these approaches effectively mitigate performance

175

loss, allowing for smaller models that maintain or even improve upon the orig-

inal performance.

For example, the task-specific data augmentation optimization framework

AutoAugHAR enriched the training dataset, providing the model with more

diverse and informative inputs, thus enabling smaller models to learn more

robust patterns. Similarly, the learnable wavelet layer improved the model’s

ability to capture frequency-domain information, which is crucial for activity

classification, enhancing both model efficiency and compactness.

Contribution 2: Design Principles for Lightweight Models. The second ma-

jor contribution is the establishment of design principles specifically tailored

for lightweight models. These principles focus on two key aspects: (1) iden-

tifying the essential information required for accurate HAR predictions, and

(2) understanding the unique characteristics of HAR data and the reasons why

HAR models are often large and computationally intensive.

Building on these insights, we developed models such as TinyHAR, Cross-
Atten, and MLP-HAR. Despite their reduced size, these models demonstrate

robust information extraction capabilities by explicitly embedding necessary

information flows into the model architecture. For example, TinyHAR in-

corporates a hierarchical information flow, progressing from coarse-grained to

global features and facilitating cooperation across different modalities, signif-

icantly enhancing its ability to capture key activity patterns. The Cross-Atten
model further extends TinyHAR by effectively leveraging multiple represen-

tations to enhance performance. Notably, the MLP-HAR model is specifi-

cally optimized for edge devices, utilizing an architecture composed entirely

of fully connected layers. Despite its simplicity, MLP-HAR achieves SOTA

performance in terms of classification accuracy, while offering fast inference

times and efficient memory usage. These design principles not only serve as a

blueprint for developing lightweight models but also provide valuable insights

for structuring the search space in the AutoML frameworks introduced later.

Contribution 3: AutoML Framework for Model Optimization. The third ma-

jor contribution addresses the challenge of optimizing models for various ap-

plication scenarios and hardware environments. To simplify the model design

176

process, we developed two AutoML frameworks (MicroNAS and SFTNAS)

that automate model architecture optimization. Before initiating the optimiza-

tion process, users define the application scenario, target hardware, memory

limitations, and inference time requirements. The AutoML framework then

balances these objectives and outputs a model that is both deployable on the

specified hardware and capable of high performance.

This automation is essential in scenarios where manually optimizing models

is impractical due to the complexity of balancing classification performance,

model size, and computational efficiency. For instance, when deploying mod-

els on micro-controllers, manually tuning models to meet strict memory and

inference time requirements would be highly challenging. Our frameworks

ensure that these constraints are incorporated into the optimization process,

facilitating efficient deployment without compromising performance.

Moreover, our STFNAS framework integrates pruning techniques within

the model search process, further reducing model complexity by automatically

selecting the most important sensor channels. This not only simplifies the

model but also reduces data collection and transmission burdens, which are

critical factors in real-world applications where data acquisition can be costly

and energy-intensive.

Conclusion. In summary, this dissertation explores multiple strategies for de-

veloping lightweight HAR models, addressing challenges from various per-

spectives, including data preparation, model design, and automated optimiza-

tion. Each approach has been validated through extensive experimentation,

demonstrating its effectiveness in reducing model size while maintaining high

performance.

The work presented in this dissertation represents a significant advancement

in the field of wearable HAR systems on edge devices. It provides key insights

and sets the foundation for further research into developing highly efficient,

lightweight models for real-world deployment. The future of wearable HAR

holds great promise, with more diverse applications and enhanced user expe-

riences as lightweight models become increasingly feasible for deployment in

various real-world scenarios.

177

Bibliography

[1] A. Abedin, M. Ehsanpour, Q. Shi, H. Rezatofighi, and D. C. Ranas-

inghe. Attend and discriminate: Beyond the state-of-the-art for human

activity recognition using wearable sensors. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1):1–22,

2021.

[2] A. Agarap. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375, 2018.

[3] N. Ahmad and H.-f. Leung. Alae-tae-cutmix+: Beyond the state-of-the-

art for human activity recognition using wearable sensors. In 2023 IEEE

International Conference on Pervasive Computing and Communications

(PerCom), pages 222–231. IEEE, 2023.

[4] L. Alawneh, T. Alsarhan, M. Al-Zinati, M. Al-Ayyoub, Y. Jararweh, and

H. Lu. Enhancing Human Activity Recognition Using Deep Learning

and Time Series Augmented Data. Journal of Ambient Intelligence and

Humanized Computing, pages 1–16, 2021.

[5] G. Anandalingam and T. L. Friesz. Hierarchical optimization: An intro-

duction. Annals of Operations Research, 34:1–11, 1992.

[6] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, et al. A

Public Domain Dataset for Human Activity Recognition Using Smart-

phones. In Esann, volume 3, page 3, 2013.

[7] Ankita, S. Rani, H. Babbar, S. Coleman, A. Singh, and H. M. Aljah-

dali. An efficient and lightweight deep learning model for human activ-

ity recognition using smartphones. Sensors, 21(11):3845, 2021.

179

[8] Arduino. Arduino nicla sense me. https://www.bosch-sensortec.

com/software-tools/tools/arduino-nicla-sense-me, 2022.

(Accessed: 19.05.2022).

[9] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

[10] M. Bachlin, D. Roggen, G. Troster, M. Plotnik, N. Inbar, I. Meidan,

T. Herman, M. Brozgol, E. Shaviv, N. Giladi, et al. Potentials of En-

hanced Context Awareness in Wearable Assistants for Parkinson’s Dis-

ease Patients with the Freezing of Gait Syndrome. In 2009 International

Symposium on Wearable Computers, pages 123–130. IEEE, 2009.

[11] M. Bachlin, D. Roggen, G. Troster, M. Plotnik, N. Inbar, I. Meidan,

T. Herman, M. Brozgol, E. Shaviv, N. Giladi, et al. Potentials of En-

hanced Context Awareness in Wearable Assistants for Parkinson’s Dis-

ease Patients with the Freezing of Gait Syndrome. In 2009 International

Symposium on Wearable Computers, pages 123–130. IEEE, 2009.

[12] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,

P. Southam, and E. Keogh. The uea multivariate time series classifi-

cation archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

[13] O. Banos, R. Garcia, J. A. Holgado-Terriza, M. Damas, H. Pomares,

I. Rojas, A. Saez, and C. Villalonga. mhealthdroid: a novel framework

for agile development of mobile health applications. In Ambient Assisted

Living and Daily Activities: 6th International Work-Conference, IWAAL

2014, Belfast, UK, December 2-5, 2014. Proceedings 6, pages 91–98.

Springer, 2014.

[14] B. Barshan and M. C. Yüksek. Recognizing Daily and Sports Activities

in Two Open Source Machine Learning Environments Using Body-worn

Sensor Units. The Computer Journal, 57(11):1649–1667, 2014.

[15] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-

document transformer. arXiv preprint arXiv:2004.05150, 2020.

180

https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me
https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me

[16] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv

preprint arXiv:1308.3432, 2013.

[17] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wis-

tuba, and N. Wang. Hardware-aware neural architecture search: Sur-

vey and taxonomy. In Z.-H. Zhou, editor, Proceedings of the Thir-

tieth International Joint Conference on Artificial Intelligence, IJCAI-

21, pages 4322–4329. International Joint Conferences on Artificial In-

telligence Organization, 8 2021. doi: 10.24963/ijcai.2021/592. URL

https://doi.org/10.24963/ijcai.2021/592. Survey Track.

[18] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,

and N. Wang. A comprehensive survey on hardware-aware neural archi-

tecture search. arXiv preprint arXiv:2101.09336, 2021.

[19] M. Bock, A. Hölzemann, M. Moeller, and K. Van Laerhoven. Improving

Deep Learning for HAR with Shallow LSTMs. In 2021 International

Symposium on Wearable Computers, pages 7–12, 2021.

[20] H. Cai, L. Zhu, and S. Han. Proxylessnas: Direct neural architecture

search on target task and hardware, 2019.

[21] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster,

J. d. R. Millán, and D. Roggen. The Opportunity Challenge: A Bench-

mark Database for On-body Sensor-based Activity Recognition. Pattern

Recognition Letters, 34(15):2033–2042, 2013.

[22] J. Chen and X. Ran. Deep learning with edge computing: A review. Pro-

ceedings of the IEEE, 107(8):1655–1674, 2019. doi: 10.1109/JPROC.

2019.2921977.

[23] K. Chen, L. Yao, D. Zhang, B. Guo, and Z. Yu. Multi-agent attentional

activity recognition. arXiv preprint arXiv:1905.08948, 2019.

[24] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu. Deep learning

for sensor-based human activity recognition: Overview, challenges, and

opportunities. ACM Computing Surveys (CSUR), 54(4):1–40, 2021.

181

https://doi.org/10.24963/ijcai.2021/592

[25] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao. Lstm networks for

mobile human activity recognition. In 2016 International conference

on artificial intelligence: technologies and applications, pages 50–53.

Atlantis Press, 2016.

[26] H. Cheng, M. Zhang, and J. Q. Shi. A survey on deep neural network

pruning: Taxonomy, comparison, analysis, and recommendations. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2024.

[27] S. Chung, J. Lim, K. J. Noh, G. Kim, and H. Jeong. Sensor Data Acqui-

sition and Multimodal Sensor Fusion for Human Activity Recognition

Using Deep Learning. Sensors, 19(7):1716, 2019.

[28] Y. L. Coelho, F. d. A. S. dos Santos, A. Frizera-Neto, and T. F. Bastos-

Filho. A lightweight framework for human activity recognition on wear-

able devices. IEEE Sensors Journal, 21(21):24471–24481, 2021.

[29] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Au-

toaugment: Learning augmentation policies from data. arXiv preprint

arXiv:1805.09501, 2018.

[30] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical

Automated Data Augmentation with A Reduced Search Space. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern

recognition workshops, pages 702–703, 2020.

[31] Z. Cui, W. Chen, and Y. Chen. Multi-scale convolutional neural net-

works for time series classification. 2016. doi: 10.48550/ARXIV.1603.

06995. URL https://arxiv.org/abs/1603.06995.

[32] F. Daghero, A. Burrello, C. Xie, M. Castellano, L. Gandolfi, A. Cal-

imera, E. Macii, M. Poncino, and D. J. Pagliari. Human activity recog-

nition on microcontrollers with quantized and adaptive deep neural net-

works. ACM Transactions on Embedded Computing Systems (TECS),

21(4):1–28, 2022.

182

https://arxiv.org/abs/1603.06995

[33] L. M. Dang, K. Min, H. Wang, M. J. Piran, C. H. Lee, and H. Moon.

Sensor-based and vision-based human activity recognition: A compre-

hensive survey. Pattern Recognition, 108:107561, 2020.

[34] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and

memory-efficient exact attention with io-awareness. Advances in Neural

Information Processing Systems, 35:16344–16359, 2022.

[35] J. G. Daugman. Uncertainty Relation for Resolution in Space, Spatial

Frequency, and Orientation Optimized by Two-dimensional Visual Cor-

tical Filters. JOSA A, 2(7):1160–1169, 1985.

[36] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li,

N. Kreeger, I. Nappier, M. Natraj, T. Wang, et al. Tensorflow lite mi-

cro: Embedded machine learning for tinyml systems. Proceedings of

Machine Learning and Systems, 3:800–811, 2021.

[37] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li,

N. Kreeger, I. Nappier, M. Natraj, T. Wang, et al. Tensorflow lite mi-

cro: Embedded machine learning for tinyml systems. Proceedings of

Machine Learning and Systems, 3:800–811, 2021.

[38] A. Dempster, D. F. Schmidt, and G. I. Webb. Minirocket: A very fast

(almost) deterministic transform for time series classification. In Pro-

ceedings of the 27th ACM SIGKDD conference on knowledge discovery

& data mining, pages 248–257, 2021.

[39] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthe-

sis. Advances in neural information processing systems, 34:8780–8794,

2021.

[40] M. Dong, J. Han, Y. He, and X. Jing. Har-net: Fusing deep represen-

tation and hand-crafted features for human activity recognition. In Sig-

nal and Information Processing, Networking and Computers: Proceed-

ings of the 5th International Conference on Signal and Information Pro-

cessing, Networking and Computers (ICSINC), pages 32–40. Springer,

2019.

183

[41] X. Dong and Y. Yang. Searching for a robust neural architecture in four

gpu hours. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1761–1770, 2019.

[42] D. L. Donoho and M. Elad. Optimally Sparse Representation in General

(Nonorthogonal) Dictionaries via ℓ1 Minimization. Proceedings of the

National Academy of Sciences, 100(5):2197–2202, 2003.

[43] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,

A. Mathur, A. Schelten, A. Yang, A. Fan, et al. The llama 3 herd of

models. arXiv preprint arXiv:2407.21783, 2024.

[44] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective

neural architecture search via lamarckian evolution. arXiv preprint

arXiv:1804.09081, 2018.

[45] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A

survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[46] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperpa-

rameter optimization at scale. arXiv preprint arXiv:1807.01774, 2018.

[47] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura,

and E. Hovy. A survey of data augmentation approaches for nlp. arXiv

preprint arXiv:2105.03075, 2021.

[48] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and

F. Hutter. Efficient and robust automated machine learning. Advances

in neural information processing systems, 28, 2015.

[49] E. Fons, P. Dawson, X.-j. Zeng, J. Keane, and A. Iosifidis. Adaptive

weighting scheme for automatic time-series data augmentation. arXiv

preprint arXiv:2102.08310, 2021.

[50] S. Gedam and S. Paul. A review on mental stress detection using wear-

able sensors and machine learning techniques. IEEE Access, 9:84045–

84066, 2021.

184

[51] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer.

A survey of quantization methods for efficient neural network infer-

ence. In Low-Power Computer Vision, pages 291–326. Chapman and

Hall/CRC, 2022.

[52] M. Goubeaud, P. Joußen, N. Gmyrek, F. Ghorban, L. Schelkes, and

A. Kummert. Using Variational Autoencoder to Augment Sparse Time

Series Datasets. In 2021 7th International Conference on Optimization

and Applications (ICOA), pages 1–6. IEEE, 2021.

[53] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmid-

huber. Lstm: A search space odyssey. IEEE transactions on neural

networks and learning systems, 28(10):2222–2232, 2016.

[54] F. Gu, M.-H. Chung, M. Chignell, S. Valaee, B. Zhou, and X. Liu. A sur-

vey on deep learning for human activity recognition. ACM Computing

Surveys (CSUR), 54(8):1–34, 2021.

[55] Y. Guan and T. Plötz. Ensembles of deep lstm learners for activity recog-

nition using wearables. Proceedings of the ACM on interactive, mobile,

wearable and ubiquitous technologies, 1(2):1–28, 2017.

[56] E. J. Gumbel. Statistical theory of extreme values and some practical

applications: a series of lectures, volume 33. US Government Printing

Office, 1948.

[57] S. Ha and S. Choi. Convolutional neural networks for human activ-

ity recognition using multiple accelerometer and gyroscope sensors. In

2016 international joint conference on neural networks (IJCNN), pages

381–388. IEEE, 2016.

[58] S. Ha, J.-M. Yun, and S. Choi. Multi-modal convolutional neural net-

works for activity recognition. In 2015 IEEE International conference

on systems, man, and cybernetics, pages 3017–3022. IEEE, 2015.

[59] R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama. Faster au-

toaugment: Learning augmentation strategies using backpropagation.

185

In Computer Vision–ECCV 2020: 16th European Conference, Glas-

gow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pages 1–16.

Springer, 2020.

[60] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure.

Scandinavian journal of statistics, pages 65–70, 1979.

[61] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient Convolu-

tional Neural Networks for Mobile Vision Applications. arXiv preprint

arXiv:1704.04861, 2017.

[62] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Pro-

ceedings of the IEEE conference on computer vision and pattern recog-

nition, pages 7132–7141, 2018.

[63] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4700–4708,

2017.

[64] S. Huang, P.-Y. Chen, and J. McCann. Diffar: adaptive conditional dif-

fusion model for temporal-augmented human activity recognition. In

Proceedings of the Thirty-Second International Joint Conference on Ar-

tificial Intelligence, pages 3812–3820, 2023.

[65] D. Hughes and N. Correll. Distributed convolutional neural networks

for human activity recognition in wearable robotics. In Distributed Au-

tonomous Robotic Systems: The 13th International Symposium, pages

619–631. Springer, 2018.

[66] Z. Hussain, M. Sheng, and W. E. Zhang. Different approaches for human

activity recognition: A survey. arXiv preprint arXiv:1906.05074, 2019.

[67] S. Ioffe. Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

186

[68] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,

J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean. In-

ceptiontime: Finding alexnet for time series classification. Data Mining

and Knowledge Discovery, 34(6):1936–1962, 2020.

[69] B. K. Iwana and S. Uchida. An Empirical Survey of Data Augmentation

for Time Series Classification with Neural Networks. Plos one, 16(7):

e0254841, 2021.

[70] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[71] C. Y. Jeong, H. C. Shin, and M. Kim. Sensor-Data Augmentation for

Human Activity Recognition with Time-Warping and Data Masking.

Multimedia Tools and Applications, 80:20991–21009, 2021.

[72] H. Jin, Q. Song, and X. Hu. Auto-keras: An efficient neural architecture

search system. In Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 1946–1956,

2019.

[73] A. Jordao, A. C. Nazare Jr, J. Sena, and W. R. Schwartz. Human activity

recognition based on wearable sensor data: A standardization of the

state-of-the-art. arXiv preprint arXiv:1806.05226, 2018.

[74] G. Kaiser and L. H. Hudgins. A Friendly Guide to Wavelets, volume

300. Springer, 1994.

[75] G. Kalouris, E. I. Zacharaki, and V. Megalooikonomou. Improving

CNN-Based Activity Recognition by Data Augmentation and Transfer

Learning. In 2019 IEEE 17th International Conference on Industrial

Informatics (INDIN), volume 1, pages 1387–1394. IEEE, 2019.

[76] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing.

Neural architecture search with bayesian optimisation and optimal trans-

port. Advances in neural information processing systems, 31, 2018.

187

[77] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G.

Celler. Implementation of A Real-Time Human Movement Classifier

Using A Triaxial Accelerometer for Ambulatory Monitoring. IEEE

transactions on information technology in biomedicine, 10(1):156–167,

2006.

[78] U. Khandelwal, H. He, P. Qi, and D. Jurafsky. Sharp nearby, fuzzy

far away: How neural language models use context. arXiv preprint

arXiv:1805.04623, 2018.

[79] T. King, Y. Zhou, T. Röddiger, and M. Beigl. Micronas: Mem-

ory and latency constrained hardware-aware neural architecture search

for time series classification on microcontrollers. arXiv preprint

arXiv:2310.18384, 2023.

[80] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[81] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient trans-

former. arXiv preprint arXiv:2001.04451, 2020.

[82] S. Kobayashi, T. Hasegawa, T. Miyoshi, and M. Koshino. Marnasnets:

Towards cnn model architectures specific to sensor-based human activ-

ity recognition. IEEE Sensors Journal, 2023.

[83] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity Recognition Us-

ing Cell Phone Accelerometers. ACM SigKDD Explorations Newsletter,

12(2):74–82, 2011.

[84] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network

kernels for arm cortex-m cpus, 2018. URL https://arxiv.org/abs/

1801.06601.

[85] L. Lai, N. Suda, and V. Chandra. Not all ops are created equal!, 2018.

URL https://arxiv.org/abs/1801.04326.

[86] A. Le Guennec, S. Malinowski, and R. Tavenard. Data Augmentation

for Time Series Classification Using Convolutional Neural Networks. In

188

https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.04326

ECML/PKDD workshop on advanced analytics and learning on tempo-

ral data, 2016.

[87] B. LEE. Emg-eeg dataset for upper-limb gesture classification, 2023.

URL https://dx.doi.org/10.21227/5ztn-4k41.

[88] S.-M. Lee, S. M. Yoon, and H. Cho. Human activity recognition from

accelerometer data using convolutional neural network. In 2017 ieee

international conference on big data and smart computing (bigcomp),

pages 131–134. IEEE, 2017.

[89] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,

W. Nie, et al. Yolov6: A single-stage object detection framework for

industrial applications. arXiv preprint arXiv:2209.02976, 2022.

[90] X. Li, J. Luo, and R. Younes. ActivityGAN: Generative Adversarial Net-

works for Data Augmentation in Sensor-Based Human Activity Recog-

nition. In Adjunct Proceedings of the 2020 ACM International Joint

Conference on Pervasive and Ubiquitous Computing and Proceedings of

the 2020 ACM International Symposium on Wearable Computers, pages

249–254, 2020.

[91] Y. Li, G. Hu, Y. Wang, T. Hospedales, N. M. Robertson, and Y. Yang.

Dada: Differentiable automatic data augmentation. arXiv preprint

arXiv:2003.03780, 2020.

[92] Y. Li, P. Zhao, G. Yuan, X. Lin, Y. Wang, and X. Chen. Pruning-

as-search: Efficient neural architecture search via channel pruning and

structural reparameterization. arXiv preprint arXiv:2206.01198, 2022.

[93] E. Liberis, L. Dudziak, and N. D. Lane. µnas: Constrained neu-

ral architecture search for microcontrollers. In Proceedings of the 1st

Workshop on Machine Learning and Systems, EuroMLSys ’21, page

70–79, New York, NY, USA, 2021. Association for Computing Ma-

chinery. ISBN 9781450382984. doi: 10.1145/3437984.3458836. URL

https://doi.org/10.1145/3437984.3458836.

189

https://dx.doi.org/10.21227/5ztn-4k41
https://doi.org/10.1145/3437984.3458836

[94] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.

Feature pyramid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages

2117–2125, 2017.

[95] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,

A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture

search. In Proceedings of the European conference on computer vision

(ECCV), pages 19–34, 2018.

[96] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu.

Hierarchical representations for efficient architecture search. arXiv

preprint arXiv:1711.00436, 2017.

[97] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture

search. arXiv preprint arXiv:1806.09055, 2018.

[98] P. Liu, B. Wu, H. Ma, and M. Seok. Memnas: Memory-efficient neu-

ral architecture search with grow-trim learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[99] S. Liu, S. Yao, J. Li, D. Liu, T. Wang, H. Shao, and T. Abdelzaher.

Giobalfusion: A global attentional deep learning framework for mul-

tisensor information fusion. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, 4(1):1–27, 2020.

[100] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg. Ssd: Single shot multibox detector. In Computer Vision–

ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer,

2016.

[101] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Effi-

cient Convolutional Networks Through Network Slimming. In Proceed-

ings of the IEEE international conference on computer vision, pages

2736–2744, 2017.

190

[102] H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu. Attnsense: Multi-level atten-

tion mechanism for multimodal human activity recognition. In IJCAI,

pages 3109–3115, 2019.

[103] C. J. Maddison, D. Tarlow, and T. Minka. A* sampling. Advances in

neural information processing systems, 27, 2014.

[104] S. Mahmud, M. Tanjid Hasan Tonmoy, K. Kumar Bhaumik, A. Mah-

bubur Rahman, M. Ashraful Amin, M. Shoyaib, M. Asif Hossain Khan,

and A. Ahsan Ali. Human activity recognition from wearable sensor

data using self-attention. In ECAI 2020, pages 1332–1339. IOS Press,

2020.

[105] S. Mahmud, M. Tonmoy, K. K. Bhaumik, A. M. Rahman, M. A. Amin,

M. Shoyaib, M. A. H. Khan, and A. A. Ali. Human Activity Recog-

nition from Wearable Sensor Data Using Self-attention. arXiv preprint

arXiv:2003.09018, 2020.

[106] R. Mahony, T. Hamel, and J.-M. Pflimlin. Complementary filter design

on the special orthogonal group so (3). In Proceedings of the 44th IEEE

Conference on Decision and Control, pages 1477–1484. IEEE, 2005.

[107] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi. Mobile

sensor data anonymization. In Proceedings of the international con-

ference on internet of things design and implementation, pages 49–58,

2019.

[108] S. Mallat et al. A Wavelet Tour of Signal Processing: the Sparse Way.

AP Professional, Third Edition, London, 2009.

[109] Y. Mei, T. Jiang, X. Ding, Y. Zhong, S. Zhang, and Y. Liu. Wi-

wave: Wifi-based Human Activity Recognition Using the Wavelet In-

tegrated CNN. In 2021 IEEE/CIC International Conference on Com-

munications in China (ICCC Workshops), pages 100–105, 2021. doi:

10.1109/ICCCWorkshops52231.2021.9538931.

191

[110] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. To-

wards automatically-tuned neural networks. In F. Hutter, L. Kotthoff,

and J. Vanschoren, editors, Proceedings of the Workshop on Automatic

Machine Learning, volume 64 of Proceedings of Machine Learning Re-

search, pages 58–65, New York, New York, USA, 24 Jun 2016. PMLR.

URL https://proceedings.mlr.press/v64/mendoza_towards_

2016.html.

[111] F. Meng, H. Liu, Y. Liang, J. Tu, and M. Liu. Sample fusion network:

An end-to-end data augmentation network for skeleton-based human

action recognition. IEEE Transactions on Image Processing, 28(11):

5281–5295, 2019.

[112] S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, and

R. Dürichen. CNN-Based Sensor Fusion Techniques for Multimodal

Human Activity Recognition. In Proceedings of the 2017 ACM interna-

tional symposium on wearable computers, pages 158–165, 2017.

[113] V. S. Murahari and T. Plötz. On Attention Models for Human Activity

Recognition. In Proceedings of the 2018 ACM international symposium

on wearable computers, pages 100–103, 2018.

[114] A. Nedorubova, A. Kadyrova, and A. Khlyupin. Human activity recog-

nition using continuous wavelet transform and convolutional neural net-

works. arXiv preprint arXiv:2106.12666, 2021.

[115] K. Nguyen-Trong, H. N. Vu, N. N. Trung, and C. Pham. Gesture recog-

nition using wearable sensors with bi-long short-term memory convo-

lutional neural networks. IEEE Sensors Journal, 21(13):15065–15079,

2021.

[116] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilis-

tic models. In International Conference on Machine Learning, pages

8162–8171. PMLR, 2021.

[117] K. Ojiako and K. Farrahi. Mlps are all you need for human activity

recognition. Applied Sciences, 13(20):11154, 2023.

192

https://proceedings.mlr.press/v64/mendoza_towards_2016.html
https://proceedings.mlr.press/v64/mendoza_towards_2016.html

[118] R. S. Olson and J. H. Moore. Tpot: A tree-based pipeline optimiza-

tion tool for automating machine learning. In Workshop on automatic

machine learning, pages 66–74. PMLR, 2016.

[119] F. J. Ordóñez and D. Roggen. Deep convolutional and lstm recurrent

neural networks for multimodal wearable activity recognition. Sensors,

16(1), 2016. ISSN 1424-8220. doi: 10.3390/s16010115. URL https:

//www.mdpi.com/1424-8220/16/1/115.

[120] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,

and Q. V. Le. Specaugment: A simple data augmentation method for

automatic speech recognition. arXiv preprint arXiv:1904.08779, 2019.

[121] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imper-

ative style, high-performance deep learning library. Advances in neural

information processing systems, 32, 2019.

[122] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural ar-

chitecture search via parameters sharing. In International conference on

machine learning, pages 4095–4104. PMLR, 2018.

[123] J. Piskozub. Letters of polish sign language alphabet, 2023. URL

https://dx.doi.org/10.21227/w90m-m764.

[124] A. Poria. Uncertainty principles for the fourier and the short-time fourier

transforms. Journal of Mathematical Physics, 62(11), 2021.

[125] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K. Ma-

rina, and F. Kawsar. Multimodal deep learning for activity and context

recognition. Proceedings of the ACM on interactive, mobile, wearable

and ubiquitous technologies, 1(4):1–27, 2018.

[126] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.

Le, and A. Kurakin. Large-scale evolution of image classifiers. In In-

ternational conference on machine learning, pages 2902–2911. PMLR,

2017.

193

https://www.mdpi.com/1424-8220/16/1/115
https://www.mdpi.com/1424-8220/16/1/115
https://dx.doi.org/10.21227/w90m-m764

[127] A. Reiss and D. Stricker. Introducing A New Benchmarked Dataset for

Activity Monitoring. In 2012 16th international symposium on wearable

computers, pages 108–109. IEEE, 2012.

[128] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita.

Transition-aware human activity recognition using smartphones. Neu-

rocomputing, 171:754–767, 2016.

[129] J. Roberts and T. D. Roberts. Use of the butterworth low-pass filter

for oceanographic data. Journal of Geophysical Research: Oceans, 83

(C11):5510–5514, 1978.

[130] M. X. B. Rodriguez, A. Gruson, L. Polania, S. Fujieda, F. Prieto,

K. Takayama, and T. Hachisuka. Deep Adaptive Wavelet Network.

In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), March 2020.

[131] P. J. Rousseeuw. Silhouettes: A Graphical Aid to the Interpretation and

Validation of Cluster Analysis. Journal of computational and applied

mathematics, 20:53–65, 1987.

[132] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-

bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

4510–4520, 2018.

[133] S. R. Shakya, C. Zhang, and Z. Zhou. Comparative study of machine

learning and deep learning architecture for human activity recognition

using accelerometer data. Int. J. Mach. Learn. Comput, 8(6):577–582,

2018.

[134] S. Shao and V. Sanchez. A study on diffusion modelling for sensor-

based human activity recognition. In 2023 11th International Workshop

on Biometrics and Forensics (IWBF), pages 1–7. IEEE, 2023.

[135] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmenta-

tion for deep learning. Journal of big data, 6(1):1–48, 2019.

194

[136] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,

A. Dey, T. Sonne, and M. M. Jensen. Smart devices are different: As-

sessing and mitigatingmobile sensing heterogeneities for activity recog-

nition. In Proceedings of the 13th ACM conference on embedded net-

worked sensor systems, pages 127–140, 2015.

[137] STMicroelectronics. Nucleo-l552ze-q - stm32 nucleo-144 devel-

opment board. https://www.st.com/en/evaluation-tools/

nucleo-l552ze-q.html, 2023. (Accessed on 05/31/2022).

[138] STMicroelectronics. Nucleo-l552ze-q - stm32 nucleo-144 devel-

opment board. https://www.st.com/en/evaluation-tools/

nucleo-l552ze-q.html, 2023. (Accessed on 05/31/2022).

[139] D. Strigl, K. Kofler, and S. Podlipnig. Performance and scalability of

gpu-based convolutional neural networks. In 2010 18th Euromicro con-

ference on parallel, distributed and network-based processing, pages

317–324. IEEE, 2010.

[140] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient

methods for reinforcement learning with function approximation. Ad-

vances in neural information processing systems, 12, 1999.

[141] T. Sztyler and H. Stuckenschmidt. On-body localization of wearable de-

vices: An investigation of position-aware activity recognition. In 2016

IEEE International Conference on Pervasive Computing and Communi-

cations (PerCom), pages 1–9. IEEE, 2016.

[142] M. Tan. Efficientnet: Rethinking model scaling for convolutional neural

networks. arXiv preprint arXiv:1905.11946, 2019.

[143] C. I. Tang, I. Perez-Pozuelo, D. Spathis, S. Brage, N. Wareham, and

C. Mascolo. Selfhar: Improving human activity recognition through

self-training with unlabeled data. Proceedings of the ACM on interac-

tive, mobile, wearable and ubiquitous technologies, 5(1):1–30, 2021.

195

https://www.st.com/en/evaluation-tools/nucleo-l552ze-q.html
https://www.st.com/en/evaluation-tools/nucleo-l552ze-q.html
https://www.st.com/en/evaluation-tools/nucleo-l552ze-q.html
https://www.st.com/en/evaluation-tools/nucleo-l552ze-q.html

[144] Y. Tang, Q. Teng, L. Zhang, F. Min, and J. He. Layer-wise training

convolutional neural networks with smaller filters for human activity

recognition using wearable sensors. IEEE Sensors Journal, 21(1):581–

592, 2020.

[145] Tensorflow. tflite-micro/memory_management.md at main ·

tensorflow/tflite-micro. https://github.com/tensorflow/

tflite-micro/, 2022. (Accessed on 06/12/2022).

[146] Y. Tian, J. Zhang, J. Wang, Y. Geng, and X. Wang. Robust Human

Activity Recognition Using Single Accelerometer via Wavelet Energy

Spectrum Features and Ensemble Feature Selection. Systems Science &

Control Engineering, 8(1):83–96, 2020.

[147] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-

terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al. Mlp-mixer:

An all-mlp architecture for vision. Advances in neural information pro-

cessing systems, 34:24261–24272, 2021.

[148] M. T. H. Tonmoy, S. Mahmud, A. Mahbubur Rahman, M. Ashra-

ful Amin, and A. A. Ali. Hierarchical self attention based autoencoder

for open-set human activity recognition. In Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 351–363. Springer,

2021.

[149] T. T. Um, F. M. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fi-

etzek, and D. Kulić. Data Augmentation of Wearable Sensor Data for

Parkinson’s Disease Monitoring Using Convolutional Neural Networks.

In Proceedings of the 19th ACM international conference on multimodal

interaction, pages 216–220, 2017.

[150] A. Vaswani. Attention is all you need. Advances in Neural Information

Processing Systems, 2017.

[151] C. Vonesch, T. Blu, and M. Unser. Generalized Daubechies Wavelet

Families. IEEE Transactions on Signal Processing, 55(9):4415–4429,

2007.

196

https://github.com/tensorflow/tflite-micro/
https://github.com/tensorflow/tflite-micro/

[152] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu,

K. Chen, P. Vajda, and J. E. Gonzalez. Fbnetv2: Differentiable neural ar-

chitecture search for spatial and channel dimensions. In 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages

12962–12971, 2020. doi: 10.1109/CVPR42600.2020.01298.

[153] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors.

In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 7464–7475, 2023.

[154] J. Wang, C. Yang, X. Jiang, and J. Wu. When: A wavelet-dtw hybrid

attention network for heterogeneous time series analysis. In Proceedings

of the 29th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 2361–2373, 2023.

[155] S. Wang, H. Wu, X. Shi, T. Hu, H. Luo, L. Ma, J. Y. Zhang, and J. Zhou.

Timemixer: Decomposable multiscale mixing for time series forecast-

ing. arXiv preprint arXiv:2405.14616, 2024.

[156] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu. Time

Series Data Augmentation for Deep Learning: A Survey. arXiv preprint

arXiv:2002.12478, 2020.

[157] F. Wilcoxon. Individual comparisons by ranking methods. In Break-

throughs in Statistics: Methodology and Distribution, pages 196–202.

Springer, 1992.

[158] R. J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8:229–256, 1992.

[159] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,

Y. Jia, and K. Keutzer. Fbnet: Hardware-aware efficient convnet de-

sign via differentiable neural architecture search. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages

10726–10734, 2019. doi: 10.1109/CVPR.2019.01099.

197

[160] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long. Timesnet:

Temporal 2d-variation modeling for general time series analysis. arXiv

preprint arXiv:2210.02186, 2022.

[161] R. Xi, M. Hou, M. Fu, H. Qu, and D. Liu. Deep dilated convolution

on multimodality time series for human activity recognition. In 2018

international joint conference on neural networks (IJCNN), pages 1–8.

IEEE, 2018.

[162] S. Xie, H. Zheng, C. Liu, and L. Lin. Snas: stochastic neural architecture

search. arXiv preprint arXiv:1812.09926, 2018.

[163] T. Xu and W. Takano. Graph stacked hourglass networks for 3d hu-

man pose estimation. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 16105–16114, 2021.

[164] Z.-Q. J. Xu, Y. Zhang, and T. Luo. Overview frequency princi-

ple/spectral bias in deep learning. arXiv preprint arXiv:2201.07395,

2022.

[165] S. K. Yadav, K. Tiwari, H. M. Pandey, and S. A. Akbar. A review of mul-

timodal human activity recognition with special emphasis on classifica-

tion, applications, challenges and future directions. Knowledge-Based

Systems, 223:106970, 2021.

[166] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy. Deep

convolutional neural networks on multichannel time series for human

activity recognition. In Ijcai, volume 15, pages 3995–4001. Buenos

Aires, Argentina, 2015.

[167] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher. Deepsense: A uni-

fied deep learning framework for time-series mobile sensing data pro-

cessing. In Proceedings of the 26th international conference on world

wide web, pages 351–360, 2017.

[168] F. Yu, D. Wang, E. Shelhamer, and T. Darrell. Deep layer aggregation.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2403–2412, 2018.

198

[169] J. Yu and T. Huang. Autoslim: Towards one-shot architecture search for

channel numbers. arXiv preprint arXiv:1903.11728, 2019.

[170] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini,

and G. Tröster. Activity Recognition from On-body Sensors: Accuracy-

power Trade-off by Dynamic Sensor Selection. In European Conference

on Wireless Sensor Networks, pages 17–33. Springer, 2008.

[171] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. Un-

derstanding and robustifying differentiable architecture search. arXiv

preprint arXiv:1909.09656, 2019.

[172] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and

J. Zhang. Convolutional neural networks for human activity recogni-

tion using mobile sensors. In 6th international conference on mobile

computing, applications and services, pages 197–205. IEEE, 2014.

[173] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff.

A transformer-based framework for multivariate time series representa-

tion learning. In Proceedings of the 27th ACM SIGKDD conference on

knowledge discovery & data mining, pages 2114–2124, 2021.

[174] D. Zhang and D. Zhang. Wavelet transform. Fundamentals of image

data mining: Analysis, Features, Classification and Retrieval, pages 35–

44, 2019.

[175] D. Zhang, L. Zhang, Q. Yi, L. Huang, and G. Zhang. Human Activity

Recognition Based on Wavelet-CNN Architecture. In 2021 5th Asian

Conference on Artificial Intelligence Technology (ACAIT), pages 77–85,

2021. doi: 10.1109/ACAIT53529.2021.9731338.

[176] S. Zhang and X. Zhou. Micronet: Realizing micro neural network via

binarizing ghostnet. In 2021 6th International Conference on Intelligent

Computing and Signal Processing (ICSP), pages 1340–1343, 2021. doi:

10.1109/ICSP51882.2021.9408972.

199

[177] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely ef-

ficient convolutional neural network for mobile devices. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pages 6848–6856, 2018.

[178] Y. Zhang, L. Wang, H. Chen, A. Tian, S. Zhou, and Y. Guo. If-

convtransformer: A framework for human activity recognition using

imu fusion and convtransformer. Proceedings of the ACM on Interac-

tive, Mobile, Wearable and Ubiquitous Technologies, 6(2):1–26, 2022.

[179] Z. Zhang, L. Wang, and C. Lee. Recent advances in artificial intelligence

sensors. Advanced Sensor Research, 2(8):2200072, 2023. doi: https:

//doi.org/10.1002/adsr.202200072. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/adsr.202200072.

[180] H. Zhao, C. Funk, B. Noack, U. Hanebeck, and M. Beigl. Kalman

Filtered Compressive Sensing Using Pseudo-Measurements. In 2021

IEEE International Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI), pages 1–8. IEEE, 2021.

[181] H. Zhao, Y. Zhou, T. Riedel, M. Hefenbrock, and M. Beigl. Improving

human activity recognition models by learnable sparse wavelet layer. In

Proceedings of the 2022 ACM International Symposium on Wearable

Computers, pages 84–88, 2022.

[182] Y. Zhao, R. Yang, G. Chevalier, X. Xu, and Z. Zhang. Deep residual

bidir-lstm for human activity recognition using wearable sensors. Math-

ematical Problems in Engineering, 2018:1–13, 2018.

[183] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang.

Informer: Beyond efficient transformer for long sequence time-series

forecasting. In Proceedings of the AAAI conference on artificial intelli-

gence, volume 35, pages 11106–11115, 2021.

[184] Y. Zhou, M. Hefenbrock, Y. Huang, T. Riedel, and M. Beigl. Auto-

matic remaining useful life estimation framework with embedded con-

volutional lstm as the backbone. In Machine Learning and Knowledge

200

https://onlinelibrary.wiley.com/doi/abs/10.1002/adsr.202200072
https://onlinelibrary.wiley.com/doi/abs/10.1002/adsr.202200072

Discovery in Databases: Applied Data Science Track: European Con-

ference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,

Proceedings, Part IV, pages 461–477. Springer, 2021.

[185] Y. Zhou, H. Zhao, Y. Huang, T. Riedel, M. Hefenbrock, and M. Beigl.

Tinyhar: A lightweight deep learning model designed for human activity

recognition. In Proceedings of the 2022 ACM International Symposium

on Wearable Computers, pages 89–93, 2022.

[186] Y. Zhou, T. King, Y. Huang, H. Zhao, T. Riedel, T. Röddiger, and

M. Beigl. Enhancing efficiency in har models: Nas meets pruning.

In 2024 IEEE International Conference on Pervasive Computing and

Communications Workshops and other Affiliated Events (PerCom Work-

shops), pages 33–38. IEEE, 2024.

[187] Y. Zhou, T. King, H. Zhao, Y. Huang, T. Riedel, and M. Beigl. Mlp-har:

Boosting performance and efficiency of har models on edge devices with

purely fully connected layers. In 2024 ACM International Symposium

on Wearable Computers (ISWC’24), 2024.

[188] Y. Zhou, H. Zhao, Y. Huang, T. Röddiger, M. Kurnaz, T. Riedel, and

M. Beigl. Autoaughar: Automated data augmentation for sensor-based

human activity recognition. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, 8(2):1–27, 2024.

[189] B. Zoph and Q. V. Le. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578, 2016.

[190] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable

architectures for scalable image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8697–

8710, 2018.

[191] S. Zuo, V. Fortes, S. Suh, S. Sigg, and P. Lukowicz. Unsupervised diffu-

sion model for sensor-based human activity recognition. In Adjunct Pro-

ceedings of the 2023 ACM International Joint Conference on Pervasive

201

and Ubiquitous Computing & the 2023 ACM International Symposium

on Wearable Computing, pages 205–205, 2023.

202

	List of Figures
	List of Tables
	Introduction
	Background
	Problem and Motivation
	Aim and Objectives
	Research Hypothesis and Contributions
	HAR Data Preparation
	HAR Network Architecture Design
	Automatically Network Architecture Optimization
	Hardware-Aware Model Optimization

	Structure of This Thesis
	List of Publications

	Fundamentals
	Problem Definition
	Challenges and Characteristics of HAR Task
	Challenges
	Characteristics
	Discussion

	Taxonomy of Human Activity Recognition Models
	Convolutional Neural Networks
	Recurrent Neural Networks
	Attention-based Networks
	Hybrid Networks
	Lightweight HAR Models
	Discussion

	Experimental Setup
	Datasets
	Evaluation Protocol
	Training Procedures

	Data Preparation
	Related Works
	Data Augmentation
	Traditional Approaches
	Advanced Approaches
	Challenges

	Data Transformation
	Short-Time Fourier Transform
	Wavelet Transformation
	Challenges

	Data Augmentation AutoAugHAR
	Preliminaries
	Background
	Naive Approach
	Data Augmentation Optimization

	Methodology
	Overview of AutoAugHAR
	Gradient Based Optimization
	Candidate Operations And Search Space

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art
	Model Compression
	Ablation Study
	Training Overhead

	Discussion

	Learnable Data Transformation
	Methodology
	Wavelet Filters
	Learnable Wavelets
	Filter Pruning

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art

	Discussion

	Summary

	Model Architecture Design
	Related Work
	TinyHAR
	Practical Guidelines for Efficient HAR Model Design
	Methodology
	Individual Convolutional Subnet
	Cross-Channel Info Interaction
	Cross-Channel Info Fusion
	Global Temporal Info Extraction
	Global Temporal Info Enhancement

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art

	Discussion

	Cross-Attention with Multi-Representation
	Methodology
	Data Transformation
	Individual Embedding Module
	Attention Module
	Prediction Module

	Experiments and Discussions
	Experimental Setup
	Comparison to State-of-the-art
	Ablation Study
	Generalization Performance on UEA Datasets

	Discussion

	MLP-HAR
	Methodology
	Data Embedding Module
	Mixer Module
	Prediction Module

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art
	Post-Processing Experiment
	Ablation Study and Parameter Analysis
	Deployment on Hardware

	Discussion

	Summary

	Model Architecture Optimization
	Related Work
	AutoML Framework : ECLSTM
	Methodology
	Embedded Convolutional LSTM
	Automatic Prediction Framework
	Temporal Feature Extraction Stage
	Prediction Stage
	Hyper-parameter Optimization

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art

	Summary

	Hardware-aware Model Architecture Optimization
	Related Works
	Neural Architecture Search
	Hardware-aware Neural Architecture Search
	Neural Architecture Search for HAR

	MicroNAS
	Methodology
	Search Space
	Dynamic Convolutions
	Latency & Peak Memory Estimation
	Optimization

	Experiments and Discussions
	Experiment Setup
	Latency Prediction Experiment
	Latency vs. Performance
	Peak Memory vs. Performance
	Comparison to Random Search

	Discussion

	NAS Meets Pruning
	HAR Model Complexity and Size
	Methodology
	Sensor and Convolutional Channel Pruning
	Search Space
	Optimization

	Experiments and Discussions
	Experiment Setup
	Comparison to State-of-the-art
	Performance on Hardware

	Discussion

	Summary

	Conclusion

