KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning

Rall, Deniz; Schweidtmann, Artur M.; Kruse, Maximilian ORCID iD icon 1; Evdochenko, Elizaveta; Mitsos, Alexander; Wessling, Matthias
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Innovative membrane technologies optimally integrated into large separation process plants are essential for economical water treatment and disposal. However, the mass transport through membranes is commonly described by nonlinear differential-algebraic mechanistic models at the nano-scale, while the process and its economics range up to large-scale. Thus, the optimal design of membranes in process plants requires decision making across multiple scales, which is not possible using standard tools. In this work, we embed artificial neural networks (ANNs) as surrogate models in the deterministic global optimization to bridge the gap of scales. This methodology allows for deterministic global optimization of membrane processes with accurate transport models – avoiding the utilization of inaccurate approximations through heuristics or short-cut models. The ANNs are trained based on data generated by a one-dimensional extended Nernst-Planck ion transport model and extended to a more accurate two-dimensional distribution of the membrane module, that captures the filtration-related decreasing retention of salt. We simultaneously design the membrane and plant layout yielding optimal membrane module synthesis properties along with the optimal plant design for multiple objectives, feed concentrations, filtration stages, and salt mixtures. ... mehr


Originalveröffentlichung
DOI: 10.1016/j.memsci.2020.118208
Scopus
Zitationen: 47
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.08.2020
Sprache Englisch
Identifikator ISSN: 0376-7388
KITopen-ID: 1000177503
Erschienen in Journal of Membrane Science
Verlag Elsevier
Band 608
Seiten Art.-Nr.: 118208
Vorab online veröffentlicht am 04.05.2020
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page