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Abstract

Modern software systems are configurable and allow users to set many parameters ac-

cording to their needs. Usually, the same functionality can be achieved with varying

performance due to many non-functional parameters. However, it is unclear how the para-

meters affect performance, for example, when trying to understand application scalability.

Performance models express application performance as functions of input parameters,

helping users and developers understand application behavior. While performance models

can be created manually, the cost associated with this is high due to the need for perfor-

mance experts. Therefore, developers often select an arbitrary subset of the configuration

space for evaluation.

Automatic performance modeling generates models from empirical measurements that

ideally cover all configuration options. However, the number of options makes exhaustive

measurements of all configurations infeasible. For applications with many parameters,

modeling all options results in a trade-off between model quality and number of mea-

surements, leading to modeling only a subset of options. Current modeling approaches

do not consider filtering options that do not impact performance, and do not use known

interactions between options for designing measurements, resulting in expensive modeling

processes.

To manage increasingly complex and data-intensive simulations, many scientific commu-

nities design their applications as workflows with many jobs linked by data dependencies

between them. Additionally to finding optimal configurations of the single applications,

the challenge of orchestrating them arises. The scientific community is increasingly in-

terested in using serverless solutions. However, serverless platforms and orchestration

systems offer not only different APIs and capabilities, but also have fundamentally different

programming models, diverging in the statelessness of functions and the static nature of

graph definition. Publications use different applications to benchmark the performance of

new ideas, do not cover the same classes of workloads, and do not always compare against

the same subset of platforms. Consequently, it is unclear to developers which platform

will be best suited for their workloads. Developers need to conduct extensive and reliable

benchmarking to estimate the performance of their workloads and understand platform

limitations.

Therefore, this thesis addresses how the cost of automatic performance modeling methods

can be decreased and how the performance of workflow orchestrations can be analyzed

comparatively. As first contribution, we introduce a novel white-box measurement me-

thodology that uses parametric profiles to understand the impact of parameters on the

performance of program functions. By analyzing them, we can derive conclusions on
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parameter interactions in the program’s control flow. Applying the deduced conclusions

to the experiment design removes measuring points unnecessary to model parameter

interactions. By evaluating with two applications, we show that we can significantly

lower experimentation costs by a factor of up to 34 compared against two state-of-the-art

modeling workflows, while maintaining the accuracy of the resulting models.

Our second contribution is an approach to automatically determine performance-irrelevant

configuration options, allowing users to select options to model from a reduced set of

only performance-relevant configuration options without losing predictive power in the

resulting performance model. In the evaluation with the multi-physics solver Pace3D, we

show that the approach can accurately classify options as performance-irrelevant and

can save measurement costs for creating performance models despite the additional steps

introduced.

Our third contribution is a serverless workflows benchmarking suite to support developers

in choosing the right platform for their workflow and to support the quickly growing

research activity in serverless workflows by providing a benchmarking methodology

and a baseline to compare against. We propose a model for serverless workflows based

on the Petri Net formalism, providing a platform-agnostic workflow definition to model

control- and data-flow. Modeled applications can automatically be transcribed into a

cloud’s proprietary presentations, enabling developers to run near identical workloads on

different systems. We evaluate the expressiveness and overhead of our model by reviewing

the literature on serverless workflows. We provide a ready-to-use benchmarking suite with

application and micro-benchmarks and extensively analyze performance, cost, scaling,

stability, and how well serverless platforms support scientific workflows by deploying our

benchmarks to three different platforms.

This thesis contributes to providing methodology for domain scientists and software

developers to facilitate better understanding of application performance. By reducing the

costs and complexity associated with performance modeling and offering a comprehensive

benchmarking framework, the contributions of this work enable domain scientists to

better understand and optimize performance in their applications, fostering more efficient

use of resources and accelerating scientific innovation.
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Zusammenfassung

Moderne Softwaresysteme sind konfigurierbar und ermöglichen es den Nutzer:innen,

viele Parameter nach ihren Bedürfnissen einzustellen. Aufgrund vieler nicht-funktionalen

Parameter kann in der Regel dieselbe Funktionalität mit unterschiedlicher Performance er-

reicht werden. Es ist jedoch unklar, wie sich die Parameter auf die Performance auswirken,

zum Beispiel beim Versuch, die Skalierbarkeit der Anwendung zu verstehen. Performance-

Modelle drücken die Performance der Anwendung als Funktionen von Eingabeparametern

aus und helfen Benutzer:innen und Entwickler:innen, das Anwendungsverhalten zu verste-

hen. Performance-Modelle können zwar manuell erstellt werden, aber die damit verbunde-

nen Kosten sind hoch, da für deren Erstellung Performance-Expert:innen erforderlich sind.

Daher wählen Entwickler:innen oft eine beliebige Teilmenge des Konfigurationsraums für

die Bewertung aus.

Methoden zur automatischen Performance-Modellierung erzeugen Modelle aus empiri-

schen Messungen, die idealerweise alle Konfigurationsoptionen abdecken. Aufgrund der

Anzahl der Optionen sind jedoch erschöpfende Messungen aller Konfigurationen nicht

durchführbar. Bei Anwendungen mit vielen Parametern führt die Modellierung aller Op-

tionen zu einem Kompromiss zwischen Modellqualität und Anzahl der Messungen, so dass

nur eine Teilmenge der Optionen modelliert wird. Aktuelle Modellierungsansätze ziehen

nicht in Betracht, Optionen von der Modellierung auszuschließen, die sich nicht auf die

Performance auswirken, und nutzen keine bekannten Interaktionen zwischen Optionen

für das Design von Messungen, was zu teuren Modellierungsprozessen führt.

Um immer komplexere und datenintensivere Simulationen zu verwalten, entwickeln viele

wissenschaftliche Communities ihre Anwendungen als Workflows mit vielen einzelnen

Jobs, die durch Datenabhängigkeiten miteinander verbunden sind. Neben der Suche nach

optimalen Konfigurationen für die einzelnen Anwendungen ergibt sich auch die Her-

ausforderung, diese zu orchestrieren. Die wissenschaftliche Community ist zunehmend

an der Verwendung von serverlosen Lösungen interessiert. Serverlose Plattformen und

Orchestrierungssysteme bieten jedoch nicht nur unterschiedliche APIs und Fähigkei-

ten, sondern haben auch grundlegend unterschiedliche Programmiermodelle, die sich in

der Zustandslosigkeit von Funktionen und der statischen Natur der Graphendefinition

unterscheiden. Veröffentlichungen verwenden unterschiedliche Anwendungen, um die

Performance neuer Ideen zu bewerten, decken nicht die gleichen Klassen von Workloads

ab und vergleichen nicht immer mit der gleichen Teilmenge von Plattformen. Folglich ist es

für die Entwickler:innen unklar, welche Plattform für ihre Workloads am besten geeignet

ist. Entwickler:innen müssen umfangreiche und zuverlässige Benchmarks durchführen,

um die Performance ihrer Anwendungen abzuschätzen und die Grenzen der Plattformen

zu verstehen.
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Zusammenfassung

Daher befasst sich diese Arbeit mit den Fragen, wie die Kosten für Methoden der auto-

matischen Performance-Modellierung gesenkt werden können und wie die Leistung von

Workflow-Orchestrationen vergleichend analysiert werden kann. Als ersten Beitrag stellen

wir eine neuartige White-Box-Messmethodik vor, die parametrische Profile verwendet,

um die Auswirkungen von Parametern auf die Performance von Programmfunktionen

zu verstehen. Durch die Analyse dieser Profile können wir Rückschlüsse auf die Inter-

aktionen der Parameter im Kontrollfluss des Programms ziehen. Durch die Anwendung

der abgeleiteten Schlussfolgerungen auf das Design von Messungen werden Messpunkte

entfernt, die für die Modellierung von Parameterinteraktionen unnötig sind. Anhand von

zwei Anwendungen zeigen wir, dass wir die Messkosten im Vergleich zu zwei modernen

Modellierungsworkflows um einen Faktor von bis zu 34 senken können, während die

Genauigkeit der resultierenden Performance-Modelle erhalten bleibt.

Unser zweiter Beitrag ist ein Ansatz zur automatischen Bestimmung von für die Perfor-

mance relevanten Konfigurationsoptionen, der es Nutzer:innen ermöglicht, die zu modellie-

renden Optionen aus einer reduzierten Menge von ausschließlich performance-relevanten

Konfigurationsoptionen auszuwählen, ohne dass das resultierende Performance-Modell

an Vorhersagekraft verliert. In der Evaluierung mit der Multi-Physik Anwendung Pace3D

zeigen wir, dass der Ansatz Optionen akkurat als irrelevant für die Performance klas-

sifizieren kann und trotz der zusätzlichen Schritte Messkosten für die Erstellung von

Performance-Modellen sparen kann.

Unser dritter Beitrag ist eine Benchmarking-Suite für serverlose Workflows, um Entwick-

ler:innen bei der Auswahl der richtigen Plattform für ihren Workflow zu unterstützen

und die schnell wachsende Forschungsaktivität im Bereich der serverlosen Workflows

durch die Bereitstellung einer Benchmarking-Methode und einer Vergleichsgrundlage

zu fördern. Wir schlagen ein Modell für serverlose Workflows vor, das auf dem Petri-

Netz-Formalismus basiert und eine plattformunabhängige Workflow-Definition zur Mo-

dellierung von Kontroll- und Datenflüssen bietet. Modellierte Anwendungen können

automatisch in die proprietären Repräsentationen der Cloud-Plattformen übertragen wer-

den, so dass Entwickler:innen nahezu identische Workloads auf verschiedenen Systemen

ausführen können. Wir bewerten die Ausdruckskraft und den Overhead unseres Modells,

indem wir die Literatur über serverlose Workflows prüfen. Wir stellen eine gebrauchsfer-

tige Benchmarking-Suite mit Anwendungs- und Mikro-Benchmarks zur Verfügung und

analysieren ausführlich Performance, Kosten, Skalierung, Stabilität und wie gut serverlose

Plattformen wissenschaftliche Workflows unterstützen, indem wir unsere Benchmarks

auf drei verschiedenen Plattformen ausführen.

Diese Arbeit trägt dazu bei, Methoden für Wissenschaftler:innen und Softwareentwick-

ler:innen bereitzustellen, um ein besseres Verständnis der Anwendungs-Performance

zu ermöglichen. Durch die Verringerung der Kosten und der Komplexität, die mit der

Performance-Modellierung verbunden sind, und durch die Bereitstellung eines umfas-

senden Benchmarking-Frameworks ermöglichen die Beiträge dieser Arbeit Domänen-

Wissenschaftler:innen ein besseres Verständnis und eine Optimierung der Performance

ihrer Anwendungen, wodurch eine effizientere Nutzung von Ressourcen gefördert wird

und wissenschaftliche Innovationen beschleunigt werden.
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1. Introduction

Scientific computing describes the use of advanced computing capabilities to solve complex

problems from different areas of science and engineering. It encompasses the development

and application of mathematical models, numerical methods, and algorithms to simulate

and analyze natural and engineered systems. The impact of scientific computing spans

numerous fields, such as biology, physics, or material science. For instance, in biology, it

enables complex simulations of molecular dynamics, which are essential for understanding

biological processes at the molecular level. In physics, it allows for the modeling of particle

interactions and the behavior of materials under extreme conditions, leading to discover-

ies in condensed matter physics and astrophysics. Material science leverages scientific

computing to design and analyze new materials with desired properties, accelerating the

development of advanced materials for various applications.

Applications in scientific computing can vary widely, ranging from single, standalone appli-

cations to complex, multi-step workflows. Single applications are often highly specialized

programs designed to perform specific tasks, such as molecular dynamics simulations or

finite element analysis. In contrast, scientific workflows integrate multiple computational

tasks and data processing steps into a coherent, automated sequence. These workflows

facilitate the management of complex analyses, ensuring reproducibility, scalability, and

efficiency.

The computational demands of scientific computing necessitate the use of diverse com-

puting infrastructures. Two prominent paradigms in the domain are supercomputing

and cloud computing. Supercomputers offer high processing power, enabling the ex-

ecution of large-scale simulations and data analyses at unprecedented speeds. These

high-performance computing (HPC) systems are essential for applications requiring inten-

sive computational resources and low-latency interconnects. Cloud computing, on the

other hand, provides scalable and flexible computing resources over the internet. Platforms

such as Amazon Web Services, Google Cloud, and Microsoft Azure allow researchers to

dynamically allocate computing resources, facilitating cost-effective and accessible compu-

tational power. The on-demand nature of cloud computing makes it particularly suitable

for applications with variable workloads. Cloud computing has democratized access to

high-performance resources, enabling a broader range of researchers to conduct advanced

computational research.

Performance is an important quality attribute for scientific software as it affects how

quickly and how much research can be done. Scientific simulations and data analyses often

need to process large amounts of data and perform complex calculations, which can take a

lot of time. Faster runtimes allow researchers to domore experiments in the same amount of
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1. Introduction

time, speeding up the pace of discovery and innovation. Also, shorter runtimes can reduce

computational costs, especially when using pay-per-use resources like cloud computing.

Efficient applications enable researchers to execute more detailed simulations and test

different simulation parameters, which leads to more accurate results. In areas where time

is critical, like climate modeling and drug discovery, quick computational performance is

essential for making timely decisions and responding to important challenges. Therefore,

optimizing runtime performance is crucial for getting the most out of scientific research.

There are many challenges in developing and using scientific software and workflows, like

complex configurations, ensuring scalability, and varying performance across different

computing environments. These issues can make it hard to achieve good performance,

slowing down research and making it less effective. However, this thesis focuses on

two important aspects: configurability of scientific software and choosing the best option

amongmultiple different workflow orchestration offerings of cloud platforms. By providing

practical methods and tools, we aim to support scientists with these tasks, helping them

to work more efficiently and effectively.

1.1. Configurable Scientific Software

Many software systems are configurable, allowing the user to set functional and non-

functional properties of the software according to their needs. For example, in a materials

simulation [80], users select algorithm settings (non-functional) and properties to simulate

(functional), impacting performance metrics such as response time and throughput [142,

165]. While they set fixed values for functional options, non-functional options can be

chosen optimally depending on the execution environment and the choice of functional

options. Choosing a set of parameters that yields the best performance is challenging, as it

is non-trivial to determine how a single configuration option influences performance [73,

141]. Generally, developers and users do not know how configuration options interact and

which combination of options will yield the best performance [34]. An example of such a

challenge is understanding application scalability, i.e., the interaction between problem

size and the number of processes [17].

Performance modeling helps users understand application behavior and guide further

development by expressing application performance as functions of input parameters [78,

90]. Since the advent of High-Performance Computing (HPC), performance experts manu-

ally identify and model the parts of the application they consider critical to performance.

Due to the high cost of performance experts, HPC developers often rely on evaluating

application performance with a few configurations, with only their intuition to guide them

in navigating the configuration space. Automatic performance modeling generates models

from empirical measurements for all components of an application and can systematically

cover all configuration options. Even though configuration spaces are constrained and

smaller than combinatorial explosion would suggest [119], the number of options still

makes exhaustive measurements infeasible.
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1.2. Scientific Workflows

Therefore, building empirical performance models for highly-configurable HPC applica-

tions is an expensive process. Two factors dictate the construction cost [37]: First, the

number of required experiments required to measure the system’s performance. It in-

creases with every option added to the model (known as the curse of dimensionality).

Second, the costs of running an experiment on an HPC system: The costs of operating

an HPC system are in the range of millions of euros per year [23, 30]. While computing

centers do their best to design and run clusters economically, developers must ensure

that their applications scale efficiently on computing clusters. During the execution of

performance experiments, the infrastructure is occupied, preventing other applications

from running.

1.2. Scientific Workflows

To account for increasingly complex and data-intensive simulations, many scientific

communities design their applications as workflows with many jobs that have complex

constraints for the precedence of the different jobs [87]. Additionally to finding opti-

mal configurations of the single applications, the challenge of orchestrating them arises.

Serverless computing gained major adoption in the industry [47, 102], with 50-70% of cloud

customers using serverless functions and containers [42]. In the last decade, serverless

computing has become one of the most popular programming paradigms in the cloud with

rising interest in the scientific community to use serverless solutions [48]. This interest is

accompanied by experimentation with serverless offerings of the cloud platforms [105]

and management systems for serverless execution of workflows [83, 85, 126, 127].

In the Function-as-a-Service (FaaS) programming model, users implement stateless func-

tions and invoke them through a REST interface. The actual function deployment and

resource scheduling becomes the responsibility of the cloud operator, who gains a signif-

icant advantage in optimizing resource utilization. Users are no longer concerned with

managing their applications, and thanks to the pay-as-you-go billing system, they are

charged only for resources used to handle function invocations. While the primitive-

ness of FaaS can be an important benefit, it is also a major drawback: a single function

is insufficient to cover all use cases. Functions must be aggregated and connected to

build larger applications, keep the design modular, target heterogeneous resources, or use

pre-defined and standardized functions, e.g., for machine learning inference. For wider

adoption in cloud applications, serverless needs a more capable programming model to

support non-trivial control and data flow.

Serverless workflows introduced the ability to chain and aggregatemultiple functions into a

single application, creating a graph of functions and automating the execution of a sequence

through control and data dependencies. Workflows include the most important control-

flow components - conditions and loops - which allows them to represent full computations

such as multi-stage machine learning pipelines or parallel processing of large data sets in a

MapReduce job. Users implement functions and define the workflow structure in a cloud-

specific format. They are not responsible for orchestrating the involved functions. Instead,
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cloud operators control the workflow invocation and retain the ability to optimize resource

consumption, e.g., through optimized function placement, oversubscription, targeting idle

resources, and co-locating functions that depend on each other [1, 38, 103].

1.3. Challenges and Research Questions

Modeling frameworks for applications with many configuration parameters can be clas-

sified into black-box and white-box approaches. The former suffers from high sampling

costs and relies on heuristics to reduce the experiment design [141], introducing the risk

of excluding interactions between options from the sample set. The likelihood of this

problem can be decreased by using more samples – leading to a hard to quantify trade-off

between model accuracy and the number of samples [66, 94, 123]. White-box approaches

can support modeling of numerical options but do not use known interactions between

options, resulting in an expensive full-factorial experiment design [37] or using heuristics

to reduce the number of samples [159]. Other white-box procedures concentrate on binary

and binary-encoded options [153, 154] and do not consider numerical parameters such as

the problem size or the number of processes.

Problem P1:
Automatic performance modeling with many parameters is expensive, and

sampling optimization approaches rely on imprecise heuristics.

Moreover, in most cases, only a subset of the options strongly impact application per-

formance [82, 94]. Therefore, it is possible to remove the performance-irrelevant ones

from the experiments to be executed without affecting prediction accuracy of the resulting

model. This speeds up model construction by reducing the number of required perfor-

mance experiments that must be conducted on HPC computing systems. However, as the

performance influences and interactions among configuration options are complex, it is

hard to identify the configuration options that have a major impact on performance and

are therefore worthwhile to model.

Problem P2:
Users have to intuitively select a small subset of options to create perfor-

mance models, or decide to model all options, resulting in a hard-to-quantify

trade-off between model quality and number of experiments.

Workflows have been adopted by the most popular commercial cloud platforms [7, 9,

62] and make up almost a third of serverless applications [48]. However, just like every

FaaS platform is different [40], serverless workflows are quite distinct from each other.

Not only do they offer different APIs and incompatible graph syntax and format, but

they also have fundamentally different programming models: workflow platforms diverge

in the statelessness of functions and the static nature of graph definition (Section 2.5).

Serverless platforms already differ in their external features and internal behavior [40].

Even though FaaS platforms might seem like the same product, they offer drastically
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different performance, reliability, and cost [40, 104, 158]. With workflows built as an

orchestration of already existing functions, the functionality of the new programming

model is affected by both the orchestration service and the existing differences in the

underlying compute infrastructure.

Problem P3:
End users need to conduct extensive and complex benchmarking of server-

less cloud services to estimate the performance of their workloads and understand

platform limitations.

Based on these problems, we define the following main research questions:

Research Questions:

RQ1 How can the cost of automatic performance modeling be decreased while

deterministically maintaining accuracy of the resulting models?

RQ2 How can performance-irrelevant configuration options be identified

automatically?

RQ3 How can workflows be modeled and transcribed to different platforms to

enable comparative evaluation of their performance?

1.4. Thesis Contributions

The contributions of this thesis address how the cost of automatic performance modeling

methods can be decreased and how the performance of workflow orchestrations can be

analyzed comparatively.

Contribution C1:
A white-box measurement methodology to derive an optimized minimal

subset of required measurements for performance modeling.

As our first contribution C1, we present Performance-Detective [134], a novel white-

box measurement methodology that significantly reduces experimentation costs while

preserving the accuracy of the resulting models. Unlike previous sampling optimizations

that rely on imprecise heuristics, this approach utilizes parametric performance models

derived from a taint-based system analysis [37] to assess the impact of parameters on

program functions. By conducting a step-by-step analysis of parameter interactions,

Performance-Detective draws conclusions about these interactions within the program’s

control flow. Applying these insights to the experiment design eliminates unnecessary

measuring points for modeling parameter interactions.

As a result, Performance-Detective can decrease the dimensionality of experiments from

exponential to polynomial, while avoiding the risk of omitting important parameter
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dependencies. We empirically evaluate Performance-Detective through two case studies,

demonstrating that it maintains the accuracy of the resulting performance models while

reducing measurement costs by up to 34 times, compared to both the Extra-P empirical

performance modeling tool [32, 123] and Performance-Influence Models [141].

Contribution C2:
An approach that automatically determines performance-irrelevant config-

uration options and removes them from the remaining modeling process.

The second contribution C2 presents a method to automatically identify configuration

options that do not impact performance [135]. Users can use the approach when creating

performance models for their simulation scenario to filter performance-irrelevant options,

enabling them to focus on a smaller subset of performance-relevant options for modeling

without compromising the accuracy of the performance model.

This method involves three primary steps. First, users begin by conducting small-scale

experiments to gather samples, considering all available configuration options. Next, we

use an existing performance modeling technique to learn an initial performance model

from these samples. Based on this model, we categorize each configuration option as

either performance-relevant or performance-irrelevant. Configuration options deemed

irrelevant are then excluded from the subsequent modeling process. We validate our

approach using the multi-physics solver Pace3D [80], demonstrating that it accurately

identifies performance-irrelevant options and can reduce the costs associated with creating

performance models, even with the additional classification steps.

Contribution C3:
A serverless workflows benchmarking suite and a workflow model to model

control- and data-flow, automatically transcribe the application into a cloud’s

proprietary presentations, and enable users to run near identical workflows on

different systems.

The third contribution, C3, introduces a serverless workflows benchmarking suite [133]

designed to support end users in selecting the appropriate platform for their workflows

and to support the research activities in serverless workflows. This suite establishes

a baseline and provides a benchmarking methodology for evaluating and comparing

the optimizations and systems developed to enhance the performance and efficiency of

workflows.

We propose and formalize a model for serverless workflows, extending a platform-agnostic

workflow definition to capture both control-flow and data-flow [24]. This model allows

workflows to be automatically transcribed into the proprietary formats of various clouds,

enabling users to run nearly identical workloads across different systems. To evaluate

our model, we review existing literature on serverless workflows, showing its expres-

siveness and negligible overhead. We improve and extend a benchmarking suite with

six real-world application benchmarks, among them one scientific workflow, and four

microbenchmarks [24] and deploy benchmarks to three major cloud platforms, extensively
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analyzing performance, cost, scaling, stability, and how well serverless platforms support

scientific workflows.

Our research contributes to providing methodology for automatic performance modeling

and analysis. The developed tools are easily applicable as they do not require performance

engineering expertise, thus empowering domain scientists and end users to configure and

deploy their applications for optimal performance.

1.5. Outline

The rest of this document is structured as follows: First, we introduce terminology and basic

concepts used throughout the thesis in Chapter 2. Chapter 3 presents our first contribution

Performance-Detective, using insights about the interplay of configuration options to

deterministically reduce measurement cost. Chapter 4 covers our second contribution, the

empirical identification of performance-irrelevant configuration options. In Chapter 5,

we present our third contribution SeBS-Flow, a serverless workflows benchmarking suite

and platform-agnostic workflow model. Finally, we conclude the thesis in Chapter 6 and

discuss future work in Chapter 7.
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In this thesis, we introduce methodologies for automatic performance modeling of config-

urable scientific software and performance analysis of serverless workflows. In this chapter,

we describe the foundations for our work and introduce key concepts and terminology.

First, we introduce configurable software and highlight specificities of configurable sci-

entific software in Section 2.1. Second, we present different techniques to automated

performance modeling in Section 2.2. Next, Section 2.3 introduces scientific workflows.

Section 2.4 then explains key concepts of serverless computing before Section 2.5 presents

and compares different serverless workflows platforms. Finally, Section 2.6 introduces

Petri Nets and, more specifically, Workflow Nets as used for our workflow model later.

2.1. Configurable Software

Configurable software systems are designed with various adjustable parameters or con-

figuration options that allow customization and optimization of the software regarding

different execution environments, computations, or performance requirements. User can

then modify these settings to tailor the software behavior to their needs for specific use

cases during compile-time or during load-time [3].

The configuration space of configurable software systems can be classified into numerical

and binary options. Binary options have two possible states, typically represented as on or

off. These options enable or disable specific features or behaviors of the software [141],
such as usage of a compression algorithm. In contrast, numerical options can take on a

range of numerical values. They are often used to adjust existing functionality [141], thus

fine-tuning the software’s performance and behavior. Examples for numerical options are

the problem size and resolution, and number of processes.

Further, we classify configuration options into functional and non-functional options:

while the functional options define the problem to be solved, non-functional options

are free to vary. Moreover, we distinguish between configuration options that affect

performance and those that do not. Figure 2.1 shows examples for each type of option:

The problem size is an example for a functional configuration option that also affects

performance of the system. While the number of processes also impact performance, they

do not influence the result of the computation. On the other hand, physical constants do

influence the result of the computation, but are not performance-relevant as they do not

influence the amount of computation done.
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Figure 2.1.: Categorization of parameters depending on their type and effect on performance.

Potential constraints among the configuration options can limit the range of permissible

configurations [119], i.e., a set of selected values for the configuration options of a software

system. These constraints can include dependencies between options, such that setting

one option requires enabling other options or that setting the value of one option restricts

the acceptable values of others, e.g., setting the total problem size to solve may limit the

number of processes that can be used.

Domains of configurable software systems include, but are not limited to databases, com-

pilers, video encoders, and scientific software [34, 94, 166]. There are many challenges

associated with developing and using configurable software systems, such as identifying

which option will influence behavior of the system [84] or sampling valid configura-

tions [51]. However, in the scope of this thesis, we focus on challenges regarding modeling

the performance behavior of configurable software systems, as outlined in Section 1.3.

In the domain of scientific software, the challenges regarding the performance behavior

are even more important as software is typically long-running and compute resources

are expensive. Moreover, programs are usually parallelized using implementations of the

Message Passing Interface (MPI) [109], the de-facto standard for communication between

processes of a parallel application that run on a system with distributed memory. MPI

supports point-to-point communication between individual processes as well as collective

operations. To enable solving of bigger problems within reasonable time, users spawn

more MPI processes, making scalability of applications a key concern for domain scientists.
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2.2. Empirical Performance Modeling

Performance models help users understand application behavior. They can be utilized to,

e.g., pinpoint performance issues and therefore guide performance optimization [78, 141],

analyze scalability of the software [32], and tune configurations [78, 166]. A complementary

field of research is automated complexity analysis, aiming to automatically determine a

theoretical upper bound of the computational cost of a program using static analysis [68,

125]. While the upper bound gives insights about the worst-case behavior of a system, it

does not give insight into actual program performance for specific inputs in real-world

environments.

In general, there are different approaches to performance modeling of software. We can

distinguish between simulation, analytical modeling, and empirical modeling.

Simulation models are a virtual representation of the system that can be used to simulate

its behavior under different scenarios. The accuracy of the predictions depends on the

abstractions made during modeling the system and the granularity of the simulation:

While there are accurate simulations for e.g., execution of code on a specific hardware,

these are slower than actually executing the code on that hardware. Faster simulations,

however, have to abstract from details and therefore, bear the risk of abstracting away

from critical details needed to accurately predict different scenarios and may not enable

understanding the root cause of performance issues [78].

Analytical models use mathematical equations to represent system performance as a

function of the considered input parameters, such as the number of processors used [32,

78]. Developers have to derive themmanually by inspecting the source code and conducting

performance tests of the software. This limits the applicability, as performance expertise

is needed to create performance models, and limits the scope of performance models to

selected kernels of an application, as manually creating models for the whole application

would not be feasible [32].

In contrast, empirical performance models can be generated automatically based on

measurement data collected from actual system runs, thus requiring neither a deep un-

derstanding of implementation details nor performance engineering expertise. This is

especially beneficial in the context of software with many configuration options, as the

influence of the options can be captured automatically. Moreover, it enables modeling of

all functions within an application and updating performance models regularly during the

development process [29].

Constructing empirical performance prediction models automatically usually involves

four phases: First, the software system under consideration is analysed and the user selects

parameters to consider for the model. Second, the experiment design phase, in which

configurations to execute are determined. This involves utilizing a strategy for sampling

from all the possible configurations that result from the parameters selected, as measuring

all of them is not feasible. Sampling strategies can, for example, rely on achieving a

specific coverage, mathematical criteria, or sample configurations randomly [66]. Next,

the application under consideration is executed with the configurations derived from
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the experiment design phase to collect the required sample measurements. This step is

the most expensive [37] as the user needs to conduct the performance experiments on

the system they want to have a performance model for, typically a high-performance

system. In the last step, the acquired measurement samples are supplied to the performance

modeling tool that creates the empirical performance prediction model using a machine

learning approach [66], such as Classification and Regression Trees or Multiple Linear

Regression.

Different approaches can be applied to implement these steps. In the following, we

present different automatic, empirical performance modeling workflows for both black-

box (Section 2.2.1 and white-box modeling (Section 2.2.2).

2.2.1. Black-Box Modeling Workflows

Black-Box modeling treats the system to model as a “black box“, solely relying on input-

output data to create a model. This means that no knowledge of the internals of the system

is needed or utilized. In the following, we first present the black-box modeling workflow

of Extra-P in Section 2.2.1.1. Second, we introduce Performance-Influence Models in

Section 2.2.1.2. Finally, Section 2.2.1.3 explains DECART.

2.2.1.1. Extra-P

Extra-P [32] is a performance modeling tool that expresses the effect of configuration

parameters 𝑥𝑖, 𝑖 ∈ {1, . . . ,𝑚} on a performance metric 𝑓 (𝑥1, . . . , 𝑥𝑚). The result, such as

𝑡 (𝑛, 𝑝) = 10 · 𝑛 · log(𝑝), is a familiar, human-readable function, due to its similarity to how

the complexity of algorithms is expressed. Figure 2.2 shows an overview of the modeling

workflow.

In practice, the configuration parameters most often analyzed are problem size and process

count, and the metric of interest is usually the runtime. This allows developers to iden-

tify performance bottlenecks in their applications. Extra-P integrates with tools such as

Score-P [93] that allows automatic instrumentation and measurement at the granularity of

individual function calls, enabling automatic parsing and modeling of the resulting perfor-

mance profiles. Binary configuration parameters, such as the choice between algorithms,

are not supported.

The core assumption of the methods is that the complexity of most algorithms can be

expressed using a small number of building blocks, summarized in Equation 2.2.1.1. The

Performance Model Normal Form (PMNF) models a metric as a combination of polynomial

and logarithmic expressions of configuration parameters:

𝑓 (𝑥1, . . . , 𝑥𝑚) =
𝑛∑︁
𝑘=1

𝑐𝑘 ·
𝑚∏
𝑙=1

𝑥
𝑖𝑘𝑙
𝑙

· log 𝑗𝑘𝑙
2
(𝑥𝑙 )
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Figure 2.2.: Modeling workflow of Extra-P.

This limits the possible search space sufficiently to allow for a fast traversal while still

being sufficiently flexible to cover the overwhelming majority of applications.

In practice, gathering five measurement points for each parameter is sufficient, however,

when considering the impact of multiple parameters simultaneously a full factorial de-

sign is necessary [29]. Recent work [123] proposes heuristics that lower the necessary

measurements to a polynomial rather than exponential growth, at the cost of model accu-

racy. However, even this heuristic requires five measurements for each parameter, with

additional samples providing diminishing returns with respect to accuracy and predictive

power.

An issue not addressed in the state-of-the-art approaches is modeling more than three

parameters, limiting their ability to scale to applications with many parameters. In practice,

noise makes detecting parameters with a smaller impact on metrics of interest effectively

impossible for even four parameters.

2.2.1.2. Performance-Influence Models

Performance-Influence Models (PIMs) [141] describe how configuration options and their

interactions influence the performance of a system. They support a theoretically unlimited

number of binary and numerical configuration options. PIMs can be created using different

sampling and learning techniques. Different heuristics are employed for sampling binary

and numerical options [141].

Heuristics for sampling binary parameters include option-wise sampling, negative option-

wise sampling, and pair-wise sampling. While option-wise sampling aims at providing

one configuration per option such that the respective option is activated while all others

are disabled. In contrast, negative option-wise sampling aims at disabling the respective

option while activating all others. Pair-wise sampling selects configurations such that each

pair of options is activated per configuration, while the other options are disabled. This

results in the number of measurements being quadratic in the number of binary options.
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Numerical options are sampled using four different heuristics: Box-Behnken, Plackett-

Burman, Central Composite, and random selection, with the Plackett-Burman and random

selection heuristics achieving best results. The extended Plackett-Burman design [157]

requires defining a set number of levels for all of the configuration options, i.e., how

many different values to sample across their value range. A sequence of numbers from

zero to the number of levels is then used as seed to determine configurations to measure.

The length of the seed depends on the number of configuration options and number of

measurements the user is willing to execute. The complete configurations to measure

are determined by enriching each of the configurations selected for the binary options

with the numerical sampling set, resulting in 𝑐𝑏 × 𝑐𝑛 configurations to measure with 𝑐𝑏
configurations selected for binary options and 𝑐𝑛 configurations selected for numerical

options. Samples are typically taken by measuring the total system runtime.

The models are then learned in a black-box manner by providing the used configuration

and measured runtime as inputs to the selected technique. Siegmund et al. [141] initially

proposed stepwise linear regression to fit models to a number of linear, quadratic, and

logarithmic terms that represent the influence of options and their interactions. How-

ever, many techniques have been proposed since [153], such as Gaussian Processes and

Classification and Regresion Trees. Due to the high number of supported techniques,

it is generally not clear which combination of methods will provide the best accuracy

of the resulting model. However, there are works [66, 88] investigating the interplay of

sampling and learning techniques as well as the influence of the amount of samples on

model accuracy and giving recommendations on how to choose between them.

2.2.1.3. DECART

The performance modeling tool DECART [70], building on CART [69], uses random sam-

pling for the experiment design and Classification and Regression Trees as a learning

technique to create a model of the correlation between option selections and performance

measurements. Figure 2.3 shows an overview of the modeling process. DECART employs

automated resampling and parameter tuning to reuse the available measurement data

efficiently. It uses resampling to partition the samples into a training set for learning the

performance prediction model and a validation set to evaluate the produced results. This

allows integrated model validation without requiring additional validation measurement

sets. Parameter tuning is used to systematically and automatically search through the

parameter space of CART in order to find the parameter values that produce the perfor-

mance prediction model with the highest prediction accuracy. DECART only supports

binary configuration options. Support for numeric options is left for future extensions.

2.2.2. White-Box Modeling Workflows

White-box performance modeling creates performance models based on a detailed under-

standing of the implementation of the software system, leveraging knowledge about the
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Figure 2.3.: Overview of DECART, as depicted in Guo et al. [70].

control flow of the software system to predict performance influences of parameters more

accurately. By incorporating this detailed information, white-box models can provide

more precise and reliable predictions compared to black-box models, which rely solely

on input-output observations. In the following, we introduce two different workflows for

white-box performance modeling in the context of configurable software: Perf-Taint in

Section 2.2.2.1, and White-Box Performance-Influence models in Section 2.2.2.2.

2.2.2.1. Perf-Taint

Perf-Taint [37, 39] is a hybrid modeling tool that enhances the black-box and analytical

modeling tools with program information. Perf-Taint applies a sequence of static and

dynamic analyses to the program to understand how its computational effort is affected

by a change in input parameters. The core assumption is that changes in performance

metrics, such as the runtime, are related to to changes in the number of iterations of loop

constructs. The result of the analysis is a parametric profile of a program, consisting of

a list of performance-relevant functions and parameters which values can change the

performance. Perf-Taint is built on top of LLVM [99], and it supports C/C++ applications

and distributed parallel programs implemented with MPI. Internally, the tool uses static

LLVM loop analysis [59] and DFSan [43], a dataflow taint analysis library. In addition, the

taint analysis implementation is extended with support for control-flow tainting [163].

We present Perf-Taint on an example program with two functions in Figure 2.4. The

function important is performance-relevant because its complexity changes with the value

of parameter x. Thus, both the parameter and the function are included in the performance

profile on the right side. On the other hand, the function unimportant involves only a
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void important(int x, int* arr) {
for(int i = 0; i < x; ++i)
arr[i] += i;

}
void unimportant(int x, int* arr) {

for(int i = 0; i < 16; ++i)
arr[i] += x;

}

params: [ x ]
functions: {

important: {
loops: [ x ],
MPI: None

}
}

LLVM Static
Analysis

Dynamic Taint
Analysis

Figure 2.4.: Perf-Taint: applying the taint-based analysis to an application produces a JSON-like parametric

performance profile.

constant amount of computation: Since the performance of the function is not affected

by changes in the parameters, it should not be included in the modeling process, and

its performance model will be a constant function. The analysis does not determine the

actual number of loop iterations, nor does it analyze analytically the relation between

x and runtime of function important. The result is binary, and it is the responsibility of

the performance modeling tool to derive accurate and correct performance models from

experimental measurements.

The information obtained from program analysis improves the overall modeling workflow

by restricting the modeling tasks to program elements that are performance-relevant.

Without the performance profiles, models with false parametric dependencies could be

selected as good approximations for the experimental data because of noise. However,

since the performance profile provides the parametric dependencies for each function, the

modeler can remove models with false positives caused by noise in the experimental data.

In practice, many short-running functions are particularly affected by noise and could

otherwise generate false models that would make the modeling process more difficult

and error-prone. If Perf-Taint identified them as constant, they can even be automatically

excluded from the modeling process.

2.2.2.2. White-Box Performance-Influence Modeling

To overcome the trade-offs between measurement effort and accuracy in black-box per-

formance influence modeling, Velez et al. [153, 154] proposed White-Box Performance-

Influence Modeling for binary and binary-encoded configuration options. First, they

proposed ConfigCrusher which uses static data-flow analysis to identify where the con-

figuration options influence the control-flow statements of the program. Using these

insights, they help find an optimal sample set for these options. However, the overhead

of the static analysis limits the scalability of the approach to small systems. In contrast,

Comprex uses dynamic data-flow analysis and is able to scale to large systems. It collects

information about the control-flow influences of configuration options iteratively by re-

peatedly executing the system with different configurations. Thereby, Comprex derives

different sets of configurations that result in different control-flows in certain regions.

To build performance-influence models, they then systematically repeat executing and

measuring the system with different configurations such that all different control-flow
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Figure 2.5.: Modeling workflow of Weber’s PIMs.

paths in all regions are executed at least once. The local models per region are then

composed, eliminating the need for a learning technique. However, both approaches do

not consider numerical options such as the problem size. The problem size is typically

continuous and would be tedious to encode.

Weber et al. [159] present a two-step process for creating PIMs on the function level that

considers numerical and binary options. Weber’s PIMs use the extended Plackett-Burmann

design [157] for sampling the numerical options and feature- and pair-wise sampling

for binary options. As a learning technique, classification and regression trees are used.

Figure 2.5 shows an overview of their modeling workflow. First, they execute and measure

the methods’ runtime for each configuration in the sample set and learn a PIM for every

function based on these. For the functions that could not be learned with a specified

accuracy, but also have a certain minimum runtime and contribution to the overall system

runtime, they use tracing to enable learning more accurate models in a second step. In

their work, white-box refers to learning PIMs on the function level. They do not analyze

the system or use any knowledge about the system for learning.

2.3. Scientific Workflows

A wide range of scientific disciplines utilizes scientific workflows, such as bioinformatics,

astrophysics, and earthquake science [19]. Scientific workflows are designed to represent

and manage complex scientific analyses and computations, enhancing their reproducibility

by providing a structured and documented sequence of steps [58]. Moreover, individuals

steps can be reused and reconfigured for different analyses, supporting efficiency and

flexibility.

Scientific workflows are structured sequences of computational or data-processing tasks

used to conduct scientific research [52]. The tasks usually exhibit data dependencies,

where the output of one task serves as the input for subsequent tasks. For example, a data

preprocessing task must complete before the data analysis task can begin, thus implying

a temporal ordering between the tasks. Quantities of data transferred between tasks are
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preprocess

computeA

computeB

mergeResults

Figure 2.6.: Example workflow consisting of four different tasks, with arrows showing dependencies among

tasks.

usually large [16]. Scientific workflows are typically visualized as directed acyclic graph,

with nodes representing tasks and edges representing data dependencies [52]. Figure 2.6

shows an example with four different tasks: First, preprocess is executed. Once it finishes,
the tasks computeA and computeB receive the output of preprocess and can start. Finally,

mergeResults merges the outputs of the two preceding computations.

The constraints between the tasks can grow quite complex and large workflows can span

a million individual tasks [52]. Workflow management systems help in creating and

monitoring scientific workflows and can automate their execution [52] by scheduling tasks

according to their data dependencies and passing data between them. This eases the design

and execution of workflows for domain scientists, as they can abstract from technical

details. However, different workflow management systems support different workflow

execution models [52] and require different languages for specification of workflows,

complicating comparatively evaluating different management systems and workflows.

2.4. Serverless Computing

Serverless computing brought two main innovations to the cloud: automatically scaled

fine-grained workers and pay-as-you-go billing, where users are charged only for resources

consumed and not allocated. We summarize the main features and challenges of Function-

as-a-Service (FaaS), the dominating programming model in serverless.

The runtime and deployment of serverless functions are controlled entirely by the cloud

provider. Users only define functions by providing source code and dependencies (see

Figure 2.7). Then, they invoke functions using triggers to pass the invocation data, e.g.,

by sending a POST request through a REST interface or uploading a file to the cloud

storage. Function invocations are scheduled in dynamically allocated sandboxes, such as

containers and micro virtual machines. This design allows cloud providers to optimize

the placement of functions to reuse containers, target underutilized servers, and increase

data locality. In this model, users pay only for the memory and CPU time they consume,

and cloud operators are encouraged to oversubscribe resources and ensure as little idle

time as possible. In addition to a more efficient billing model, the other main advantage of

serverless is that users are no longer responsible for scheduling their applications.
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Figure 2.7.:Comparison of on-premise computing with the cloud compute models Infrastructure-as-a-Service

(IaaS), Container-as-a-Service (CaaS), and Function-as-as-Service (FaaS) regarding respective management

responsibilities.

Functions are stateless and execute in an ephemeral environment. While consecutive

invocations can be placed in the same container, data persistence is not guaranteed, as

the cloud operator can evict the container at any time. Container reuse is preferred,

resulting in warm invocations with all dependencies fetched and loaded to memory. On

the other hand, cold invocations require spinning up a fresh container and performing

the expensive initialization, resulting in significant overheads [40, 46, 110]. The cloud

provider determines the CPU time allocation. In addition, functions are configured with a

static and user-defined memory allocation (AWS, GCP) or have the memory dynamically

allocated (Azure).

2.5. Serverless Workflows Platforms

Serverless workflows bring high-level abstractions to FaaS that support control flow,

data passing parallelism, and fault tolerance. With workflows, users can build stateful

and complex applications decomposed into functions connected with control-flow and

data-flow conditions. While software engineers are increasingly interested in serverless

applications [161], they encounter a wide range of challenges while developing them, with

the first questions about the different capabilities of the platforms arising before starting

the implementation [128, 161]: Workflows have been adopted by all major cloud providers,

but their implementations are significantly different in capabilities and functionalities (Ta-

Platform Programming Model Model Flexibility Parallelism Limit Interface

AWS State Machine Static 40 JSON

Azure Orchestrator Function Dynamic Unlimited Durable Functions

Google Cloud State Machine Semi-dynamic 20 JSON/YAML

Table 2.1.: Comparison of key features of different serverless workflow platforms.
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tasks = []

for i in range(10):

tasks.append(context.call_activity("process", i)

res = yield context.task_all(parallel_tasks)

Listing 2.1: Workflow invoking function process in parallel, with inputs from zero to nine and results written

to res, implemented for Azure Durable Functions

ble 2.1). We focus on AWS Step Functions, Google Cloud Workflows, and Azure Durable

Functions, as they play a leading role.

The most significant change lies in the programming model, affecting the implementation

of the workflows, with unknown implications to workflow performance, an important

property for developers [161]. As the different implementations are all provider-specific,

moving workflows from one platform to another is complicated, causing vendor lock-

in [128]. Azure uses the programming model of Durable Functions [28], where the work-

flow definition is encoded within a regular program structure of an orchestrator. The graph

of functions is expressed using a mainstream programming language such as Python, as

seen in the example of invoking the process function ten times in parallel (Listing 2.1). The

computation model is built on top of stateless activity and stateful entity functions. This

distinction enables a flexible execution while providing an easy-to-use interface.

On the other hand, developers need to define their workflow using a state machine on

Google Cloud Workflows and AWS Step Functions. The workflow consists of states

representing computations and transitions that connect them together. The main states

include function invocations that perform user-defined computation, while supplementary

states encode control flow. State languages defined with a syntax based on JSON and YAML

files can be limited and verbose and, therefore, more difficult to debug, with missing tool

support for testing and debugging already being a problem for developers [102, 160].

The example implementations for Azure Durable Functions, Google Cloud Workflows,

and AWS Step Functions in Listing 2.1, Listing 2.2, and Listing 2.3, respectively, demon-

strate how simple code snippets can become much more verbose compared to a native

implementation of orchestrator. All three workflows invoke the function process in parallel

with inputs from zero to nine and write the results to res. Google Cloud Workflows and

AWS Step Functions both require multiple states to implement this behavior: Google

Cloud requires separate states for assigning and returning of variables and even a separate

workflow for the map state invoking the functions in parallel. AWS Step Function is less

verbose but still requires three different states. In Durable Functions, the implementation

of the same behavior requires less work and the single-source implementation is more

readable and easier to debug. However, the static form of a state machine gives the cloud

provider deep knowledge of the functions executed and their order, allowing for optimiza-

tions. While AWS Step Functions only allows fully static workflows, i.e., all functions that
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{

"assign_array" : {

"assign" : [

{

"array":[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]

}

] }

},

{

"process": {

"call" : "experimental.executions.map",

"args" : {

"workflow_id":"map-workflow",

"arguments":"${array}"

},

"result":"res" }

}

"separate map-workflow:"

{

"main" : {

"params" : [ "elem" ],

"steps" : [

{

"map": {

"call":"http.post",

"args": {

"url":"cloud.google.process",

"body": {

"payload":"${elem}"

}

},

"result":"elem"

}

},

{

"ret": {

"return":"${elem.body}"

}

}

] }

}

Listing 2.2: Workflow invoking function process in parallel, with inputs from zero to nine and results written

to res, implemented for Google Cloud Workflows
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"init": {

"Type": "Pass",

"Result": "States.Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)",

"ResultPath": "$.array",

"Next": "map"

},

"map": {

"Type": "Map",

"ItemsPath": "$.array",

"Parameters": {

"payload.$": "$$.Map.Item.Value"

},

"Iterator": {

"StartAt": "process",

"States": {

"process": {

"Type": "Task",

"Resource": "arn:process",

"Parameters": {

"payload.$": "$.payload"

},

"End": true

}

}

},

"ResultPath": "$.res",

"End": true

}

Listing 2.3: Workflow invoking function process in parallel, with inputs from zero to nine and results written

to res, implemented for AWS Step Functions.

could be called need to be known beforehand, Google Cloud Workflows also allows for

transferring the URL of the function to be called as an input parameter.

The programming model also has an impact on the billing system. In addition to the

cost of executing functions within a workflow, cloud providers charge users for workflow

orchestration. In Azure, users have to pay for the duration of the orchestration function.

In AWS and Google Cloud, users are charged per each transition of the state machine.

Moreover, Google Cloud differentiates between external transitions to resources outside

of Google Cloud and internal transitions. Table 2.2 shows an overview. Note that we

have to estimate the orchestration cost on Azure as billing is only at the granularity of

complete workflows. We do so by deploying a function chain, where each function just

24



2.6. Petri Nets

Platform Compute time Function invocation Orchestration (1000 transitions)

AWS $0.0000166667/GBs $0.20 per 1M $0.025

GCP $0.0000025/GBs $0.40 per 1M $0.01 (internal), $0.025 (external)

Azure $0.000016/GBs $0.20 per 1M $0.000355329

Table 2.2.: Pricing of different platforms according to the cloud vendors’ documentation [6, 8, 10, 60, 63].

returns without performing any computation, and splitting the incurred cost between the

functions and the orchestrator according to their runtime and execution count.

The platforms also have different limits for allowed parallelism: Azure Durable Function

sets no limit on parallelism. However, both AWS Step Functions and Google Cloud

Workflows limit the parallelism of workflows to forty and twenty concurrent function

invocations, respectively. These limits can, however, be worked around by invoking

sub-workflows.

As of now, the definition of benchmark applications is highly platform-dependent, and

applications are complex to port between platforms. With the different platform-specific

implications of implementing a workflow, it is difficult for developers to predict workflow

costs on a given platform. To efficiently support them during the development of serverless

workflows, we need a higher-level construct to abstract away the differences between

platforms, enabling evaluation of the same workflow on different platforms and therefore

facilitating informed decisions about the right platform.

2.6. Petri Nets

Petri nets [115] are a modeling tool to describe and analyze the flow of information in

systems. They are particularly useful for modeling concurrent and asynchronous systems,

providing a clear visualization of how different parts of a system interact. A Petri net is a

triple 𝐶 = ⟨𝑃,𝑇 , 𝐹 ⟩ consisting of places P, a finite set of transitions T, and a set of directed

arcs 𝐹 ⊆ (𝑃 ×𝑇 ) ∪ (𝑇 × 𝑃), i.e., connecting either a place to a transition or a transition to a

place. We show an example in Figure 2.8, consisting of five places and four transitions.

Dynamic properties of the system are modeled using tokens that pass through the net

as execution progresses. The state of the net is defined by the locations of tokens in it

and called a marking. A transition is enabled if there are tokens in all its input places

•𝑡 = {𝑝 | (𝑝, 𝑡) ∈ 𝐹 }. When it fires, it removes the token(s) from its input place(s) and moves

them to its output place(s) 𝑡• = {𝑝 | (𝑡, 𝑝) ∈ 𝐹 }. Figure 2.9 shows an example: The marked

net in Figure 2.9a has transition 𝑡1 enabled, as there is a token (visualized as black dot)

in its input place 𝑝1. After 𝑡1 fired, the marking of the net changes to the one shown in

Figure 2.9b: The token has been removed from 𝑝1 and tokens were moved to its output

places 𝑝2 and 𝑝3. This, in turn, enables transitions 𝑡2 and 𝑡3. Note that these transitions

can fire independently of one another and in any chronological sequence, thus enabling

two different next markings of the net.
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p1
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Figure 2.8.: Petri net with transitions 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} and places 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}

Workflow nets are an extension of Petri nets, usually used to depict business workflows. A

Petri net is a workflow net iff there is a single source place start without incoming arcs,

a single sink place without outgoing arcs, and every node is on a path from source to

sink [150]. For example, our previous example in Figure 2.8 is no workflow net, as there is

no single sink place.

We later base our model for serverless workflows on workflow nets with data (WFD-nets),

a further extension of workflow nets. A WFD-net [150] N is a tuple as follows:

𝑁 = ⟨𝑃,𝑇 , 𝐹, 𝐷, 𝑟,𝑤,𝑑, 𝑔𝑟𝑑⟩

consisting of a Petri net ⟨𝑃,𝑇 , 𝐹 ⟩, that is a workflow net, and additionally containing a set

𝐷 of data elements on top as well as read, write, and destroy operations 𝑟,𝑤, 𝑑 on these

data elements. The read operation is defined as 𝑟 : 𝑇 → 2
𝐷
, and the write and destroy

operations are defined similarly. Moreover, the guarding function 𝑔𝑟𝑑 : 𝑇 → 𝐺𝐷 can

assign guards to transitions. We show an example WFD-net in Figure 2.10 where 𝑡1 writes

data to 𝑥 , while 𝑡2 and 𝑡3 read from x and write to y and z, respectively. Finally, 𝑡4 reads

from y and z and writes the result of the workflow to a.
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(a) Petri net with token in place 𝑝1, enabling transition 𝑡1 (marked green).
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(b) Petri net after transition 𝑡1 fired, placing tokens in places 𝑝2 and 𝑝3 which

enables transitions 𝑡2 and 𝑡3 (marked green).

Figure 2.9.: Marked Petri nets before and after firing of 𝑡1 with tokens visualized as black dots.
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Figure 2.10.: WFD-net with transitions 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} and places 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑}.
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3. Experiment Design for Automatic
Performance Modeling

� Literature: This chapter is based on our following publication:

L. Schmid, M. Copik, A. Calotoiu, D. Werle, A. Reiter, M. Selzer, A. Kozi-

olek, and T. Hoefler. “Performance-Detective: Automatic Deduction of Cheap

and Accurate Performance Models”. In: Proceedings of the 36th ACM In-
ternational Conference on Supercomputing. ICS ’22. Virtual Event: Associa-

tion for Computing Machinery, 2022. doi: 10 . 1145 / 3524059 . 3532391
Implementation and replication package: 10.5445/IR/1000146001

M. Copik helped with required changes to apply the Perf-Taint system analysis. A. Calotoiu

helped with refining the idea. Both helped along with D. Werle with the writing and presenta-

tion of the original paper. A. Reiter and M. Selzer helped with setting up valid configurations

of Pace3D. A. Koziolek and T. Hoefler served as advisors for this work.

In this chapter, we introduce Performance-Detective, a novel white-box modeling method-

ology that significantly lowers experimentation costs for creating performance models

while maintaining the accuracy of the resulting models (Figure 3.1). In contrast to previous

sampling optimizations that used imprecise heuristics, we use program information to

deduce an optimized, minimal experiment design, removing measurement points that do

not affect known interactions between non-functional parameters. We use parametric
performance models obtained from the taint-based analysis [37] to understand the impact

of parameters on program functions. Through a step-by-step analysis of parameter inter-

actions, we derive conclusions on parameter interactions in the program’s control flow.

Applying the deduced conclusions to the experiment design removes measuring points

unnecessary to model parameter interactions. Thus, Performance-Detective can reduce

the dimensionality of experiments from exponential to polynomial while avoiding the

risk of excluding parameter dependencies from the experiment. The experiment design

of Performance-Detective is orthogonal to the modeling approach and can be used with

black-box and white-box performance modeling.

The deduced experiment design makes performance modeling more affordable and is

easily applicable alongside modern performance modeling systems. To quantify the

increased efficiency and validate model correctness, we empirically evaluate Performance-
Detective using a multi-physics solver and a particle transport application (see Figure 3.1).

Performance-Detective maintains an accuracy of 91.4% and 89.2%, respectively, while

reducing the costs of measurements by a factor of up to 34 times, compared against both

the Extra-P empirical performance modeling tool [32, 123] and Performance-Influence

Models [141].
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This chapter thus constitutes our contribution C 1, the white-box measurement methodol-

ogy Performance-Detective, composed of the following contributions:

• A novel deductive analysis that uses the results of performance tainting to derive

an optimized minimal subset of required measurements out of a multi-dimensional

configuration space.

• We identify main loops within applications using our deductive analysis, and leverage

this to reduce the cost of experiments even further, in essence applying classical ana-

lytical performance modeling techniques to modern automatic modeling approaches.

• An extensive evaluation against state-of-the-art modeling workflows, proving high

accuracy and reduced experiment size.

• Two case studies of modeling and evaluating applications using extrapolated and

interpolated test points.
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(a) Multi-physics solver Pace3D.
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(b) Particle transport application Kripke.

Figure 3.1.: Cost and accuracy of Performance-Detective vs Extra-P [32] and Performance-Influence Models

(PIM) [141].
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3.1. Limitations of Existing Modeling Frameworks

Approach Measurements

Lst. 3.1 Lst. 3.2

Extra-P 125 125

Perf-Taint 125 125

Performance-Detective 25 5

Table 3.1.: Measurements needed by Extra-P, Perf-Taint, and Performance-Detective.

We focus on systems that operate primarily as batch jobs, where computations are initi-

ated and run from start to finish without requiring user intervention. This assumption

excludes interactive systems or those designed to provide on-demand services and support

concurrent users, which are outside the scope of our approach.

3.1. Limitations of Existing Modeling Frameworks

The state-of-the-art modeling approaches do not allow for efficient modeling of computing

applications with many parameters and numerical options.

Performance-Influence Models (PIMs) [159], as introduced in Section 2.2.2.2, can derive

performance models on the function level, but they do not use parameter dependencies

and require expensive tracing instead of profiling. Other White-Box PIMs, as introduced

by Velez et al. [153, 154], do not support numerical options. Though numerical options

can be encoded and discretized, the approach presented by Velez et al. [154] does not use

a learning method and, therefore, can not predict configurations inter- or extrapolating

training configurations.

Extra-P [32], as introduced in Section 2.2.1.1, relies on the full-factorial experiment design

where all parameter combinations must be considered, leading to a combinatorial explosion

of the number of measurements. To overcome this issue, heuristics have been proposed

to optimize the experiment design [123], but they introduce a risk of missing parameter

interactions and thus negatively affecting model quality. Furthermore, modeling with

more than three parameters is particularly challenging due to the impact of noise present

in measurements making it difficult to detect the impact of all configuration parameters

simultaneously.

Finally, Perf-Taint [37], as introduced in Section 2.2.2.1, does not use parameter knowledge

to reduce the sampling set, and it does not propose a deterministic and effective method-

ology for manual user analysis of the experiment design. While Perf-Taint detects that

there is no function depending on both x1 and x2 for the example in Listing 3.1, it does

not make use of this knowledge to decrease the number of required experiments.

In Listing 3.2, all functions are called from a main loop. If the main loop is executed often

enough, repetitions of experiments are not necessary as the repetition of the calculations

already accounts for measurement noise. However, Perf-Taint does not make use of this to
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void f(int x) {

for (int i = 0; i < x; i++) {

calculate();

}

}

void g(int x) {

for (int i = 0; i < x; i++)

calculate();

}

}

f(x1);

g(x2);

Listing 3.1: Parameters x1 and x2 influence distinct functions.

for (int i = 0; i < iters; i++) {

f(x1);

g(x2);

}

Listing 3.2: Parameter iters influences total runtime linearly.

suggest fewer experiments. Even though 25, respectively 5, measurements are sufficient

to model the performance of the examples in Listing 3.1 and Listing 3.2, Extra-P and

Perf-Taint still require and suggest 125 measurements in both cases (cf. Table 3.1).

While heuristics for sampling can lower required measurements, they do so at the cost

of lowering model accuracy. While more samples can increase the accuracy, there is no

strategy on how to select them, leading back towards a full-factorial experiment design.

3.2. Approach

Figure 3.2 depicts the overall workflow of performance modeling, that we will detail

in the following subsections, as compared to the modeling workflows of Extra-P [29,

123] (Section 2.2.1.1) and Weber’s PIMs [159] (Section 2.2.2.2). The deduction process of

Performance-Detective is based on a program’s parametric profile obtained with taint-based

performance modeling provided by Perf-Taint (Section 2.2.2.1). Performance-Detective
overcomes the limitations of existing performance modeling tools (Section 3.1), enabling

efficient and reliable white-box modeling.
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Figure 3.2.: Modeling workflow of Performance-Detective compared to Extra-P [29, 123] and Weber’s

PIMs [159]. Based on the system analysis, Performance-Detective deterministically reduces the experi-

ment design.

We start with the system analysis to trace the influence of configuration options on

single functions (Section 3.2.1). Performance-Detective then uses the insights about which

parameter influences the performance of which function to deduce a minimal experiment
design that exploits insights about the interplay of options (Section 3.2.2). After executing

the instrumented experiments (Section 3.2.3), any learning methodology can be utilized for

modeling the performance of the system (Section 3.2.4).

As motivated in Section 3, our approach targets systems that operate as batch jobs. Our

assumption is that the system’s performance varies in functions that contain non-constant

loops, i.e., a configuration option determines how often they are executed and how many

iterations they include. As introduced in Section 2.1, we classify configuration options

along the two dimensions functional and non-functional, and performance-relevant and

performance-irrelevant. In modeling, we aim to ignore options that affect neither the result

nor the performance of a program, i.e., options that are non-functional and performance-
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irrelevant. However, the exact distinction between functional and non-functional options

is subjective and domain-specific [154].

We will use the example program in Figure 3.3 as a running example. It takes the three

parameters x1, x2, and iters as configuration options and does calculations based on

them.

3.2.1. System Analysis

In the first step, we analyze the system to find out how configuration options influence its

performance. We do this on a function level using the Perf-Taint approach introduced in

Section 2.2.2.1. The Perf-Taint analysis outputs dependencies of functions to annotated

parameters. Variables that are computed based on annotated parameters are considered

to be dependent on all annotated parameters used for computing them. A function is

always dependent on the variables that determine the number of iterations of loops in the

function. If a function is called from within a loop, its performance is also dependent on

the variables influencing the number of iterations in that loop. Additionally, the analysis

gives us a list of performance-relevant functions.

While the user has to manually add the registration of variables corresponding to configu-

ration options in the source code, the subsequent analysis is automated.

Example. In the running example in Figure 3.3, we manually add the registration of

the input parameters x1, x2, and iters. The analysis then automatically determines the

dependencies of the functions as shown in the colored boxes and Table 3.2: As y and z are

calculated based on the annotated parameters x1 and x2, respectively, they are dependent

on them. The function preCalculate is not influenced by the configuration options and is

identified as constant. foo is dependent on x1. bar and baz iterate over the parameter z

and are therefore dependent on x2. We observe that iters has a multiplicative influence

on the runtime of all functions and deduce that it linearly affects all computations. We do

not consider foo to depend on x2 because we exclusively measure time spent in functions,

therefore separating time spent in foo and bar and baz (cf. Section 3.2.3).

Function Dependent on

foo x1, iters

bar x2, iters

baz x2, iters

preCalculate – (constant)

Table 3.2.: Dependencies of the running example in Figure 3.3

36



3.2. Approach

void baz(int z) {
  int flag = preCalculate(z);
  for (int i = flag; i < z; i++) {
    //calculate something 
  } 
}

int preCalculate(int z) { 
  if (z < 10) return 0;
  return 1; 
}

void foo(int y, int z, int iters) {
  for (int i = 0; i < iters; i++) {
    for (int j = 0; j < y; j++) {
      //calculate something
    }
    bar(z);
    baz(z);
  }
}

void bar(int z) { 
  for (int i = 0; i < z; i++) {
    //calculate something 
  } 

time(foo) = f(x1, iters)

time(baz) = f(x2, iters)

time(preCalculate) =
constant

time(bar) = f(x2, iters)

int main(int argc, char ** argv) {
  int x1 = atoi(argv[1]);
  int x2 = atoi(argv[2]);
  int iters = atoi(argv[3]);

  register_variables(x1, x2, iters) 

  y = x1 * 5;
  z = x2 / 7;

  foo(y, z, iters); 
}

System: Parameters x1, x2, and iters

y depends on x1

z depends on x2

Figure 3.3.: Running example. The system takes the configuration options x1, x2, and iters.
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Full Experiment
Design Space
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Figure 3.4.: Deduction of experiment design for the running example.

3.2.2. Experiment Design

Based on the derived dependencies from the system analysis, Performance-Detective de-
duces the minimal experiment design. We illustrate the approach of obtaining the experi-

ment design in Figure 3.4. From a black-box view of the system, Performance-Detective
starts with a full-factorial experiment design of the three parameters x1, x2, and iters.

Since Performance-Detective detects that iters influences the runtime of foo, bar, and baz

linearly, measuring variations of iters will not provide us additional insights into the

performance of the system. Therefore, Performance-Detective can exclude this parameter

from the experiment design.

While the linear influence is easy to see in the example, this may not be the case for more

complex real-world programs. To verify that the influence of the iters parameter is linear

in such a case, we can measure execution times of loop iterations while executing the

system for some value of iters. If the runtime does not change significantly between the

iterations, i.e., the coefficient of variation is sufficiently small between iterations, we verify

that the influence of the iters parameter is indeed linear.

Furthermore, we observe that x1 and x2 influence the performance of distinct functions

and do not interact with each other. This means that changing the value of x1 will only

affect the runtime of foo, but not the runtime of the other functions. The same is true for

x2: Changing its value will only change the runtime of bar and baz, but not the runtime

of foo. Therefore, additional samples measuring their interactions will not provide further

insights for performance modeling, and Performance-Detective can exclude them from the

experiment design.

In general, we assume that if options influence different sets of functions, they do not

interact with each other. Thus, Performance-Detective does not have to regard combinations

of them for the experiment design and can vary them simultaneously. Also, Performance-
Detective does not have to consider options linearly influencing system runtime, such as

the number of iterations of the main loop. Performance-Detective derives both of these

insights automatically based on the results of the system analysis.

As mentioned in Section 3.1, Extra-P requires a full-factorial measurement setup as of

now [29]. Even the sparse modeling approach using heuristics to reduce the number of

required measurements [123] requires at least five measurements per parameter. This
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requirement is to capture interactions between parameters. In contrast, Performance-
Detective can detect the lack of interaction and strike out measurement configurations

where only one parameter is changed, and the others are kept constant. This improvement

reduces the dimensionality of the experiment compared to a full-factorial setup and

provides further savings when compared to sparse modeling.

In the example above, Performance-Detective deterministically reduces the number of mea-
surements from 125 in a full-factorial experiment design to only five measurement points
without sacrificing accuracy.

3.2.3. Instrumented Experiments

We use an instrumentation-based approach to capture the total time spent in a function

during one execution of the program. We do not separate different calls to the function

for the same call stack but take the sum of all time spent inside the function during the

execution. We measure time spent in a function exclusively, i.e., not including time spent

in calls to other instrumented functions. Time spent in called, but not instrumented

functions will be added to the calling function. We instrument all functions identified

as performance-relevant by Perf-Taint, i.e., containing loops dependent on configuration

options. Additionally, we instrument the main function executing the calculations to

capture the total runtime of the program. This means that we do not instrument functions

identified as constant.

Previous works suggested repeating each sample five times to account for measurement

noise. However, when Performance-Detective identifies a linear dependency of parameter

on the main calculation, we can skip the repeated measurements and even halt execution
after gathering at least five iterations of the main calculation loop. While this approach

is common in analytical modeling, it has been outside the reach of automated modeling

due to the difficulty of identifying configuration parameters that control the number of

executions of the main loop.

Example. In Figure 3.3, Performance-Detective disregards the function preCalculate for

instrumentation, as Perf-Taint identified it to be constant and we thus do not expect its

performance to change. We instrument foo, bar, and baz, as they depend on annotated

input parameters, and main to capture the total runtime of the application. In exclusive

measurement, the time obtained for foo does not include the time spent in bar. However,

the time of baz includes the time spent in preCalculate. As Performance-Detective identi-
fied that all functions depending on annotated input parameters linearly depend on iters,

each configuration needs to be executed only once, using a value of five or greater for

iters.
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3.2.4. Modeling

Performance-Detective is orthogonal to the actual instrumentation and learning method-

ology, and it can be applied to reduce the costs of experiments in different performance

modeling toolchains. The only requirement is that the modeling methodology is able to

create a performance model based on empirical measurements of the software. In our

evaluation (cf. Section 3.4), we consider two state-of-the-art modeling workflows: the

black-box, empirical Extra-P performance modeling tool (Section 2.2.1.1) and Weber’s

Performance-Influence Models (Section 2.2.1.2). In both workflows, we create a perfor-

mance model for each occurrence of a function within the call stack. To get a prediction

of the overall performance of the entire program, we then sum up the estimates of each

function.

3.2.5. Limitations

If all parameters are intertwined, no pruning of parameter combinations to measure is

possible. Also, we do not regard binary options as switching between them results in

performance jumps. By using Perf-Taint for the system analysis, we take on its assumption

that performance-relevant behavior is located in computational loops and MPI commu-

nication routines. While for the applications in the evaluation it was possible to exclude

the number of iterations, other applications may have a bigger co-variance across loop

iterations or if-conditions that define the way loop iterations work. In the latter case, we

rely on the output of the system analysis including information on tainting of control-flow

branches. In both cases, Performance-Detective is conservative and includes the num-

ber of iterations as a parameter. Modeling of recursion is not supported, but recursive

computations are rare in High-Performance Computing [37].

3.3. Case Studies

We illustrate the deduction process of Performance-Detective presented in Section 3.2 with

two case studies: Kripke, a 3D discrete-ordinates (Sn) particle-transport proxy application,

and a real-world case study from Pace3D (Parallel Algorithms for Crystal Evolution) [80],

a multi-physics framework. For both case studies, we only consider the execution of the

main calculation loops as this is where most of the work happens.

Pace3D: Pressure calculation with projected conjugate gradient method. Pace3D is devel-

oped at Karlsruhe Institute of Technology and University of Applied Sciences, Karlsruhe,

since 2009. It encompasses around 550,000 lines of code and is used for digital materials re-

search to simulate how a material reacts to outside influences, e.g., pressure or temperature.

Performance is a key concern for the developers, as simulations can easily take multiple

days [80, 136]. For our evaluation, we fix all functional parameters and model the pressure
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calculation with the projected conjugate gradient method. The calculation consists of

two steps: First, an approximate solution is calculated on a coarse grid. This approximate

solution is then used to calculate the real solution on the fine grid. The grids represent the

material, with each cell corresponding to one cube of the material. The solver iterates until

it reaches a convergence criterion or a given maximum number of iterations. We consider

the number of processes and the number of coarse grid cubes as non-functional parameters.

We also use the size of the material to predict how much material each process should

get to achieve the best performance. Additionally, we consider the maximum number of

iterations.

Kripke. Angular fluxes are calculated using different numbers of directions and groups.

Kripke was built to research how different data layouts, programming paradigms, and

architectures influence the performance of Sn solvers [97]. It enables exploring new

programming paradigms and architectures in a lightweight fashion, allowing an evaluation

how the data layout should look like and later adapting larger codes according to this

evaluation. Therefore, it is important to thoroughly understand Kripke’s performance.

Moreover, Kripke has been used as case study for performance modeling in previous

work [29, 31]. We consider the number of direction sets as well as the number of processes

as parameters. Additionally, we are interested in the number of iterations.

3.3.1. System Analysis

We analyze both scenarios with Perf-Taint [37]. The only necessary modifications to the

source code are annotating and registering the variables corresponding to the parameters

of interest when they are read from the user-provided configuration. We run the analysis

on a small problem size using only a few iterations, assuming that the computations and

analysis results are representative, and validate the results with larger measurements in

Section 3.4.2.

3.3.1.1. Pace3D

We annotate variables in the code corresponding to the number of processes (procs), mate-

rial size (vol), coarse grid size (cubes), and spacing of the coarse grid (spacing). Additionally,
we annotate the number of iterations for the fine as well as for the coarse grid. This results

in a total of 21 lines of code added.

The coarse grid spacing is a dependent parameter, i.e., not linearly independent, and is

calculated by dividing the material size by the coarse grid size:

spacing = vol/cubes

Hence, we can replace the spacing with vol/cubes, substituting it with the independent

parameters it is defined by. While we do this replacement manually for our case study,
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for (int i = 0; i < cubes; i++) {

//spacing = vol / cubes

for (int j = 0; j < spacing; j++) {

//complexity = cubes * spacing

//complexity = cubes * (vol / cubes)

//complexity = vol

}

}

Figure 3.5.: Program iterating over the spacing

Constant:
12

vol: 20

cubes: 28

procs: 26
cubes and
procs: 4

vol and
procs: 18

(a) Pace3D

Constant:
19 dirsets: 33

procs: 2
(b) Kripke

Figure 3.6.: Number of functions depending on the annotated parameters per case study as Venn diagrams.

this could easily be automated. Figure 3.5 shows an example where we can then conclude

automatically that the material size determines the performance of the loops: In the outer

loop, the program iterates over the size of the coarse grid, whereas in the inner loop, it

iterates over the spacing to finally access each of the fine grid cells. Replacing spacing
with vol/cubes, we get:

complexity = cubes · spacing = cubes · (vol/cubes) = vol

Thus, we can conclude that it is the material size that determines the performance of the

loops.

From the results of the system analysis, Performance-Detective automatically identifies that

the maximum number of iterations on the fine grid determines the runtime of the main

calculation. To verify that the influence is linear, we trace the iterations of the loop for one

execution of the program and check whether the runtime of a single loop iteration changes.

To do so, Performance-Detective calculates the coefficient of variation between them. In

our scenario, the coefficient of variation is 0.05 for 100 loop iterations. We conclude that

the influence of iters is indeed linear.
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Insight 1: 
iters influences
computations

linearly

Parameters:  
vol - total volume 
cubes - coarse grid size 
procs - number of processes 
iters - number of iterations 
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Figure 3.7.: Deducing the minimal experiment design for Pace3D.

Furthermore, the analysis results show that 12 functions are constant, and 54 are dependent

on the annotated parameters. For the 2 functions dependent on the spacing, we can

automatically assess that they in fact depend on the total volume, using replacement as

shown in the example in Listing 3.5. The results, as shown in Figure 3.6a, show that the

material size vol and the coarse grid size cubes influence different functions. However,
both interact with the number of processes procs.

3.3.1.2. Kripke

We annotate the number of processes (procs) as well as the number of direction sets (dirsets)
and iterations (iters). This results in adding a total of five lines of code. Using the results

from the system analysis, Performance-Detective analyzes that the number of iterations

determines the runtime of the main calculation. As before, to verify that the influence

is linear, we trace the loop iterations of one program execution. As the coefficient of

variation between the measured 10 iterations is 0.0067 , we conclude that the influence of
iters is in fact linear.

Moreover, the analysis shows that 19 functions are constant and 35 are dependent on

the annotated parameters, with 33 depending on dirsets and 2 on procs. The number of

processes influences different functions than the number of direction sets. We visualize

the results in Figure 3.6b.

3.3.2. Minimal Experiment Design

Figure 3.7 shows the process of Performance-Detective deducing the experiment design

for Pace3D based on the insights gained from analyzing the system. From a black-box

view at the system, Performance-Detective starts with four parameters and a full-factorial

experiment design, leading to 625 measurement points. To account for measurement noise,

each point has to be executed five times, leading to a total of 3125 experiment executions.
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Aswe know that iters linearly influences the runtime of themain computation, Performance-
Detective can exclude iters from the parameter space (Insight 1). Also, we can skip repeti-

tions of the execution of measurement points and choose a sufficiently high value (≥ 5) for

iters instead. This reduces the experiment design to 125 points that need to be executed

only once. We also know that the functions affected by the coarse grid size are distinct

from those affected by the total size. Thus, Performance-Detective can strike out config-

urations aiming to find interactions between them from the experiment design (Insight
2). This means that Performance-Detective varies 𝑣𝑜𝑙 and 𝑐𝑢𝑏𝑒𝑠 simultaneously. As procs
interacts with vol and cubes according to the analysis, Performance-Detective includes procs
as interacting parameter into the experiment design and varies procs independently from

vol and cubes. Figure 3.8 (Section 3.4.2) shows the resulting training data points for Pace3D

as crossed circles: While we only measure the combinations (vol, cubes) = (216000, 1000),
(432000, 1728), (864000, 3375), (1728000, 8000), (2592000, 27000), we have to measure these

combinations for all five numbers of processes procs = (8, 16, 32, 64, 128).

For Kripke, Performance-Detective deduces the experiment design similarly: As iters has
a linear influence on the runtime of the main computation, Performance-Detective can
exclude iters from the parameter space (Insight 1) and we can skip repetitions of experi-

ments. Furthermore, Performance-Detective can remove configurations aimed at finding

interactions between 𝑝𝑟𝑜𝑐𝑠 and 𝑑𝑖𝑟𝑠𝑒𝑡𝑠 , as they influence distinct sets of functions (In-
sight 2). Thus, Performance-Detective varies 𝑝𝑟𝑜𝑐𝑠 independently of 𝑑𝑖𝑟𝑠𝑒𝑡𝑠 , resulting in 5

measuring points with (p, dirsets) = (8, 8), (16, 16), (32, 24), (64, 32), (128, 64).

Performance-Detective reduced the full experiment design space of 3125 experiment execu-

tions to only 25 executions needed for Pace3D, and from 625 to 5 for Kripke.

3.4. Evaluation

To evaluate Performance-Detective, we assess the accuracy of the performance models gen-

erated for the case studies presented in Section 3.3. As Performance-Detective is orthogonal
to the instrumentation and learning methodology, it can be applied to reduce the costs

of experiments in different performance modeling toolchains. We consider two state-of-

the-art modeling workflows: the black-box, empirical Extra-P performance modeling tool

(Section 2.2.1.1) and Weber’s Performance-Influence Models (Section 2.2.2.2).

We evaluate the reduction of repetitions by inclusion of iterations and variation of in-

dependent parameters individually. Therefore, we formulate the following sub-research

questions to RQ 1:

RQ1 How can the cost of automatic performance modeling be decreased while determin-

istically maintaining accuracy of the resulting models?

RQ1.1 What is the model accuracy when generating it from a single measurement

with a high number of iterations?
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CPU Intel Xeon Gold 6230 2.1GHz

Cores 40 on 2 sockets

Memory 96 GB

GCC 10.2 (Pace3D), 11.2 (Kripke)

MPI OpenMPI 4.0.5 (Pace3D), OpenMPI 4.1.2 (Kripke)

Software Score-P 7.0 [93] (Pace3D), Score-P 7.1 (Kripke),

Perf-Taint, Extra-P

Table 3.3.: Measurement environment

RQ1.2 What is the model accuracy when generating it from a minimal experiment

design by varying independent parameters simultaneously?

To answer the RQs, we compare our models with models generated following the con-

ventional experiment and sampling designs. The expected outcome of the evaluation is

maintained accuracy while reducing the dimensionality of experiment design and not re-

peating experiment executions, resulting in significantly decreased cost for measurements.

For assessing the accuracy of the models, we evaluate them with testing configurations

that inter- and extrapolate the training configurations. We measure cost of a model in core

hours needed for executing the measurements required for creating it.

3.4.1. Instrumented Experiments

Table 3.3 shows the hardware and software systems used for measuring. We instrument

the application using the list of important functions generated by Perf-Taint and repeat

the measurement of each configuration five times to assess RQ1 and RQ2 separately. The

coefficient of variation between the repetitions of the same configuration is 0.1 or less

for all configurations. We always use a filter file containing important functions gained

from system analysis to instrument only relevant functions to compare the predictions

of all models. Otherwise, the evaluation would be less meaningful because the models

generated when instrumenting all functions cannot predict the actual execution time as

they have more profiling overhead that we cannot remove from the measurements.

3.4.2. RQ1.1: Modeling Using a Single Measurement

To evaluate whether the inclusion of iterations in the model can simplify the experiment

design, saving us repetitions of the measurements, we generate a model from a single

execution of each measurement and compare the predictions of this model with test points.

For evaluating the accuracy, we use the mean time of the five repeated executions of each

test measurement point. To obtain a prediction of the total execution time, we sum up the

predictions for the single functions and evaluate them against the execution time of the

evaluation configurations.
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Figure 3.8.: Overview of training and test points used for Pace3D on logarithmic scales. Training data

Performance-Detective: , training data full-factorial: and . Test data interpolated: , test

data extrapolated: .

We use two testing sets, containing either inter- or extrapolated measurement points.

Figure 3.8 shows an overview of the test data sets used for Pace3D. For the interpolated test

data of both case studies, we measure configurations in between the training data points.

For Pace3D, we do not interpolate the number of processes as this would not provide

insight into the quality of the minimal experiment design: We still treat the number of

processes as a separate parameter and vary it separately from vol and cubes, as it interacts
with both according to the analysis. For the respective independent parameters, we use

points between each vol and cube value used for training, as shown in Figure 3.8. This

results in 80 measuring points for Pace3D and 16 for Kripke with the interpolated values

procs = (12, 24, 48, 96) and dirsets = (12, 20, 28, 48).

For testing how well the model predicts extrapolated configuration points, we extrapolate

parameters identified as independent and measure them together with the respective

other parameter using a value used for the training set. This means that we measure the

extrapolated values 54,000 and 108,000 for cubes together with the extrapolated values

3,456,000 and 5,184,000 for vol as well as with all the values for vol and cubes used for

the training set, shown in Figure 3.8, for Pace3D. Following this approach results in 119

measuring points for the extrapolated test data set of Pace3D and 24 for Kripke, for which

we extrapolate procs to 256 and 512 and dirsets to 96 and 128.

The results in Table 3.4 show that the accuracy remains about the same when using only

one execution as for the models generated from the mean times of five repetitions. This

suggests that it is sufficient to execute the measurement of each configuration point only

once if the main calculation is executed sufficiently often. For Pace3D, we set the number

of iterations of the main calculation to 100, and to 10 for Kripke. However, even five
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Modeling

approach

#executions Mean error Pace3D Mean error Kripke

interpolate extrapolate interpolate extrapolate

Extra-P 5 8.31 % 9.31 % 4.56 % 18.32 %

Extra-P 1 8.05 % 8.74 % 4.33 % 15.17 %

Decision Trees 5 21.61 % 60.15 % 21.79 % 25.68 %

Decision Trees 1 22.62 % 62.80 % 22.38 % 25.31 %

Table 3.4.: Mean error of models generated from Performance-Detective experiment design using a single

application execution vs five repetitions.

Experiment Design Modeling approach Perf-Taint? Cost Pace3D Mean error Pace3D

core hours #experiments test set test set

interpolated extrapolated

Performance-Detective Extra-P ✓ 10.9 25 8.05 % 8.74 %

Full-factorial Extra-P [Cal16] ✓ 367.55 625 9.5 % 10.7 %

Full-factorial Extra-P [Cal16] – 367.55 625 6.2 % 6.3 %

Sparse Extra-P [Rit20] ✓ 5.54 80 8.9 % 17.7 %

Sparse Extra-P [Rit20] – 5.54 80 15.0 % 31.8 %

Performance-Detective Decision Trees ✓ 10.9 25 22.6 % 47.7 %

Plackett-Burman Decision Trees [Web21] ✓ 164.37 245 20.1 % 45.4 %

Plackett-Burman Decision Trees [Web21] – 164.37 245 27.0 % 44.2 %

Table 3.5.: Mean error of different models for Pace3D for interpolated and extrapolated test points.

iterations per application run should be enough compared to one iteration per repetition

of the experiment. While the total time measured in the main calculation stays the same

for both variants, we can save the initialization overhead by executing it more often in

only one execution.

Experiment Design Modeling approach Perf-Taint? Cost Kripke Mean error Kripke

core hours #experiments test set test set

interpolated extrapolated

Performance-Detective Extra-P ✓ 5.3 5 4.3 % 15.2 %

Full-factorial Extra-P [Cal16] ✓ 85.9 125 7.3 % 17.0 %

Full-factorial Extra-P [Cal16] – 85.9 125 6.7 % 11.2 %

Sparse Extra-P [Rit20] ✓ 8.8 50 24.6 % 34.2 %

Sparse Extra-P [Rit20] – 8.8 50 7.7 % 16.7 %

Performance-Detective Decision Trees ✓ 5.31 5 22.4 % 25.3 %

Plackett-Burman Decision Trees [Web21] ✓ 35.66 50 15.8 % 35.1 %

Plackett-Burman Decision Trees [Web21] – 35.66 50 21.8 % 31.2 %

Table 3.6.: Mean error of different models for Kripke for interpolated and extrapolated test points.
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Figure 3.9.: Accuracy of models for the Pace3D case study for excerpts of the interpolated data set with 64

processes.
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Figure 3.10.: Accuracy of models for the Pace3D case study for excerpts of the extrapolated data set with 64

processes.
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Figure 3.11.: Accuracy of models for the Kripke case study for excerpts of the interpolated data set.
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Figure 3.12.: Accuracy of models for the Kripke case study for excerpts of the extrapolated data set.

49



3. Experiment Design for Automatic Performance Modeling

3.4.3. RQ1.2: Varying Independent Parameters Simultaneously

The central question in our evaluation is whether we can maintain accuracy of the model

when generating it from a minimal experiment design. To answer this, we compare

the accuracy of our Performance-Detective model to models created with conventional

experiment or sampling designs.

For the Extra-P multi-parameter modeler [29], this means using a full-factorial setup with

125 measuring points for Pace3D and 25 for Kripke. For the Extra-P sparse modeler [123],

we use 5 values for each parameter while keeping the others constant and one interac-

tion point for each parameter combination, resulting in 16 points for Pace3D and 10 for

Kripke.

To learn PIMs, we use the extended Plackett-BurmanDesign [157] with 49 samples (Pace3D)

or 10 samples (Kripke) and five levels, effectively being a subset of the full-factorial

measuring points. We use the script of Weber et al. [159] to learn PIMs on a function

level based on known parameter dependencies. However, we do not use their two-step

process but only one profiling step using compiler instrumentation. We think this can

even be beneficial for the quality of the resulting models: Because they use sampling in

the first step, periodically interrupting system execution, they have a statistical chance

of missing function calls. The second step uses tracing to learn more accurate models of

performance-relevant functions that could not be learned from the sampling step. However,

tracing imposes a significant overhead on the executions, possibly distorting the quality of

the performance model learnt from them. In contrast to Weber et al., we use mean values

derived from the repetitions of the experiment for modeling. They build a separate model

for each repetition of the experiment.

As we showed in Section 3.4.2 that the accuracy of the models generated from a single

application execution per measurement point is comparable to the accuracy of the model

generated from repeating measurements five times for each point, we will continue with

these models for Performance-Detective.

Table 3.5 and Table 3.6 show the required number of measurements of each approach and

the cost in total core hours for Pace3D and Kripke, respectively. The cost of individual

samples are not uniform across the configuration space, as the impact the parameters have

on performance can mean that some samples are orders of magnitude more expensive

than others. We therefore consider the total core hours to be the more important metric.

To evaluate the predictions’ accuracy, we use the same test configurations as in Section

3.4.2, inter- and extrapolating the training data points. Table 3.5 depicts the mean error of

the models from the different approaches for the Pace3D case study, and Table 3.6 for the

Kripke case study.

3.4.3.1. Interpolated Test Data

Figure 3.9 and Figure 3.11 show the comparison of prediction error for an excerpt of the test

data among models learned using Extra-P (depicted as [Cal16] and [Rit20]) and Decision
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Trees (depicted as [Web21]) both with and without the information about dependencies

from Perf-Taint. We compare our approach to the full-factorial setup and the sparse mod-

eling approach, and show configurations where the parameters identified as independent

by Performance-Detective are varied independent of another. Table 3.5 and Table 3.6 show

the mean prediction error for each model.

One would expect all approaches to be reasonably effective at predicting configuration

options within the range of measurements already available. In the case of Extra-P, using

the full set of measurements leads to accurate models, with model errors seldom passing

10%, and the use of Perf-Taint has a relatively small impact on results. The results of the

sparse modeler are worse overall, but for Pace3D, they are overall improved by the use

of Perf-Taint, decreasing the average prediction error from 15.0% to 8.9%. Performance-
Detective achieves results comparable to the full factorial experiment design of Extra-P,

while requiring only a fraction (2.9% and 6.18%, respectively) of the cost.

The performance-influence models, however, show a consistently higher model error

rate of over 20%. When using Performance-Detective, the quality of the models remains

approximately the same, while the cost is reduced by a factor of 15 for Pace3D and 7 for

Kripke.

3.4.3.2. Extrapolated Test Data

Figure 3.10 and Figure 3.12 show an overview of the accuracy of the different Extra-

P (depicted as [Cal16] and [Rit20]) and PIM models ([Web21]) for an excerpt of the

extrapolated test data points, both using information about dependencies from Perf-Taint

and without it. Table 3.5 and Table 3.6 show the mean prediction error for each model.

When extrapolating, predicting the runtime is more challenging as any errors are quickly

magnified. Overall, we observe the same trends as for interpolated evaluation points,

with a couple of differences. For Pace3D, the sampling approach of Extra-P generates

significantly higher errors when not used in conjunction with Perf-Taint, increasing the

average prediction error from 17.7% to 31.8%. However, for Kripke, the errors of the

sampling approach are increased from on average 16.7% to 34.2% when used together with

Perf-Taint.

The performance-influence models show a larger model error rate, this time of over 40%

for Pace3D and over 30% for Kripke when using the Plackett-Burman sampling design.

However, the approach for learning performance-influence models does not extrapolate,

as we can see in our data: It only predicts the time measured for the highest training value

of the respective extrapolated parameter.

While providing information about the dependencies derived by Perf-Taint can be beneficial

to the accuracy of the sparse Extra-P modeler, it decreases accuracy for the full-factorial

experiment design. This is because with a full-factorial design, there is a lot of measurement

data and Perf-Taint only removes wrong dependencies that model noise. Therefore, while

the models learned without using the dependencies derived by Perf-Taint provide a better
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prediction, they may not be best suited for users to understand the performance behavior

of an application, as they achieve these predictions by modeling measurement noise. The

accuracy of the sparse modeler increases because it has less measurement data and very

few information about parameter interplay.

3.4.3.3. Discussion

For both case studies, we can maintain the accuracy of the model generated with the

experiment design deduced by Performance-Detective (25 and 5 experiment executions)

as compared to a full-factorial design (625 and 125 experiment executions) and Plackett-

Burman sampling (245 and 50 experiment executions). While for Pace3D, the sparse

modeler is even less expensive than Performance-Detective, it has a lower accuracy than

Performance-Detective (mean accuracy of 85.9% and 74.9% with and without Perf-Taint as

compared to 91.5%) with especially worse predictions for extrapolated test points (mean

accuracy of 17.7% and 31.8% with and without Perf-Taint compared to 9.3%).

For the PIMs, we observe a generally significant prediction error in both evaluation sets,

which does not change much depending on using our minimal experiment design or

sampling, and usage of Perf-Taint. This indicates that decision trees are not well-suited to

model the performance of these applications.

Across evaluation scenarios, we observe that Performance-Detective always considerably
decreases the cost of experiments, while not meaningfully degrading model quality.

3.4.4. Threats to Validity

A threat to external validity is that we ran the taint analysis on a small problem size.

This was possible for the scenarios shown because the calculations are the same and

still representative. However, this is not guaranteed in the general case, as sometimes

different branches can be active depending on problem size. We can detect this by using

control-flow tainting, provided by Perf-Taint. The only impact this scenario would have is

that the taint analysis will have a higher cost.

Regarding internal validity, not inlining functions defined as inline is a potential issue.

Functions are not inlined if we detect them as being performance-relevant. This could

distort the measurements, as not inlining might incur a performance penalty on the

applications as a whole. The overhead introduced by the profiling itself is a further source

of distortion. We mitigate this by only instrumenting functions detected as performance-

relevant, and keep the overhead as low as possible.
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3.5. Related Work

In the following, we discuss related research in the areas of performance-influence mod-

eling in Section 3.5.1, HPC performance modeling in Section 3.5.2, and auto-tuning in

Section 3.5.3.

3.5.1. Performance-Influence Models

The difficulty of modeling modern software systems with a high degree of configurability

has been addressed by Performance-Influence Models (PIMs) [141]. There, the machine

learning and heuristic methods are used to iteratively learn models representing the

influences and interactions of various application parameters. To overcome the difficult

trade-off between measurement costs and accuracy, the models have been extended with

a white-box approach [153, 154]. Unfortunately, the improved accuracy of white-box

models comes with the limitation of modeling only binary and binary-encoded parameters.

This limits the applicability of their approach, as for example modeling the scalability

of a software is not possible. In contrast, our approach supports numerical parameters

only. Function-level PIMs by Weber et al. [159] support modeling numerical parameters,

but they require expensive trace measurements. Other methods of learning performance

models efficiently for highly configurable systems use Fourier transformations to reduce

the number of samples and parameter combinations [72, 168]. While they rely on heuristics

for sampling, we use the results obtained by the system analysis to deduce an experiment

design. An extended discussion of PIMs can be found in Section 2.2.1.2 and Section 2.2.2.2.

3.5.2. HPC Performance Modeling

Analytical performance models of an application can be created manually through source

code inspection and guidance by performance engineers [78, 90]. Unfortunately, such

models require significant time effort and expert guidance. Furthermore, the exclusion of

empirical data makes the models prone to underestimate the effects of hardware congestion

and network performance.

Extra-P [32] is the state-of-the-art tool for empirical and parametric performance mod-

eling. Extra-P supports multi-parameter modeling [29] and uses learned heuristics to

reduce the experiment design [123]. The work has been extended with dedicated mod-

eling approaches validating high-performance libraries [140] and prototyping hardware

requirements for HPC applications [31]. Perf-Taint [37, 39] improves the black-box in-

strumentation and modeling of Extra-P with program information. We present a wider

discussion of capabilities and limitations of Extra-P and Perf-Taint in Sections 2.2.1.1 and

2.2.2.1, respectively.
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Hoisie et al. [148] proposed PALM, a divide-and-conquer approach for constructing per-

formance models from annotated application source code, and enhances them with user-

provided insights, program analysis, and measurement data. Vetter et al. [144] introduced

Aspen, a domain-specific language for the manual specification of program operations.

With an abstract machine model, the tool is capable of generating analytical models based

on the provided descriptions. ASPEN has been extended with automatic performance

modeling in COMPASS [101] to generate full application models statically, but it requires

user intervention in the case of situations that are ambiguous for the compiler, caused by,

e.g., non-scalar variables in control structures. While the user intervention is supposed to

be an optional step, all benchmarks analyzed in the evaluation have been enriched with

manually inserted ASPEN annotations. In contrast, Performance-Detective does not require
any user input and manual analysis steps.

Online learning has been used to improve the accuracy of purely static and compiler-based

performance models [20, 21]. In addition, machine learning methods have been applied

successfully to model performance [81, 100, 147] and to decrease the negative effects

of measurement noise [124]. Performance-Detective provides a complete and white-box

workflow that applies neither heuristics nor approximations to construct performance

models, and we provide validated parametric dependencies of models.

3.5.3. Auto-Tuning

Auto-tuning methods apply an optimization method to achieve one or more goals, such

as minimizing runtime [2] or floating point operations per second [152]. The scope of

applying them can range from specific kernels over libraries to complete applications [13].

While online auto-tuning approaches dynamically execute the application and measure the

metrics to be optimized, therefore requiring repeated runs of the software specifically for

tuning purposes, offline auto-tuning approaches use data that was collected beforehand.

The search space can span from different variants of low-level implementation details

to achieve performance portability across different hardware, loop unrolling, and data

transformations to different available solvers for a given problem [13].

To find the best configuration among the search space, global or local search methods

are employed, such as genetic algorithms [14], differential evolution [86], or the Nelder-

Mead algorithm [116]. Solutions are often limited to specific types of applications, system

architectures, or programming language [108].

In summary, auto-tuning approaches aim at finding the best configuration for a given

optimization goal. In contrast, Performance-Detective enables efficient modeling of the

whole configuration space and interactions among configuration options. The resulting

performance models can be used not only for optimizing performance, but also for explor-

ing the performance of other configurations and guiding performance optimizations by

unveiling performance bottlenecks.
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3.6. Summary

Wehave shown that we can significantly lower the cost of automatic performancemodeling

of applications with multiple configuration parameters. We deduce a minimal experiment

design with Performance-Detective by exploiting automatically derived insights about

parameter interplay and main loops and thus reduce the number and cost of required

measurements while achieving comparable accuracy to methods costing more than an

order of magnitude more compute hours. With Performance-Detective, we model the

Pace3D real-world multi-physics solver using 25 rather than 3125 measurements, require

34 times fewer core hours and achieve and still maintain a model accuracy of 91.5%

compared to 93.8% when all measurements are used. Furthermore, we model Kripke,

reducing needed measurements from 125 to 5, leading to 16 times fewer core hours needed,

while maintaining an accuracy of 89.2% compared to 90.6% using all measurements.

While we validated Performance-Detective with software from the scientific domain, we

expect that the methodology is applicable to software from other domains as well. The

key requirement for applying our approach is the availability of a system analysis that can

output the dependencies of configuration options on specific functions. This generality

suggests that Performance-Detective can be applied to other types of software beyond

scientific applications. However, this broader applicability still needs to be validated, and

the effectiveness of Performance-Detective in other domains may depend on the charac-

teristics and nature of the system being analyzed: While scientific software usually has

a main loop driving the computation, this is not necessarily the case in other domains,

potentially lowering the possible savings in measurement cost. Moreover, the assumption

imposed by Perf-Taint that the performance-relevant behavior of a system is located in

computational loops and MPI communication routines may not hold true for software

from other domains. However, we could mitigate that by using another system analysis

that can take other performance-relevant behavior into regard.
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T. Sağlam helped with the writing and presentation of the original paper. M.

Selzer helped with setting up valid configurations of Pace3D, and answering

the evaluation questionnaire. A. Koziolek served as advisor for this work.

P. Uhrich worked on this topic during their master thesis. In this scope, they conducted the

measurements and created the performance models based on them used in the evaluation.

Performance models for configurable software show the influence of configuration options

on software performance. However, as discussed in Section 2.1, not all configuration

options are performance-relevant. Therefore, the challenge to select which parameters to

include in the performance modeling process arises. While for some parameters, such as

the problem size, it is usually clear that they are performance-relevant, others are more

difficult to categorize: The impact of each option can vary significantly depending on the

scenario computed, and the interplay between options can create complex dependencies.

Tools for system analysis such as Perf-Taint [37], as presented in Section 2.2.2.1 and

utilized in Chapter 3, and Comprex [154] extract performance influences of options based

on static and dynamic analysis automatically but cannot quantify their influence. As

Performance-Detective deduces the experiment design based on the results of the system

analysis, pruning of experiments is only possible if options have a linear performance

impact or no impact at all [134]. In other cases, it is necessary to rely on heuristics to

reduce the experiments, potentially compromising model accuracy, or to use an expensive

full-factorial experiment design – taking 368 core hours for an application with only three

options already, as we showed in Section 3.4.2.

To further guide domain scientists with the parameter selection for performance mod-

eling, we introduce a novel approach to ease the modeling process by introducing a

pre-processing step that automatically determines performance-irrelevant configuration

options and removes them from the remaining modeling process. This chapter thus

describes our contribution C 2.

As previously in Chapter 3, we focus on modeling systems that operate as batch jobs and

run without the possibility for user intervention during their execution.
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Figure 4.1.: Modeling workflows for black-box Performance-Influence Models (PIMs) and white-box models

using Performance-Detective.

4.1. Limitations of Existing Modeling Frameworks

As presented in Section 2.2, there are many different black-box and white-box modeling

workflows for performance modeling of configurable software. Black-box approaches treat

the application as black-box, only learning the performance models from the correlation

between measurement data and configurations executed. White-Box approaches leverage

knowledge about the application and how the configuration options impact performance

for performance modeling.

Figure 4.1 shows the modeling workflows of black-box performance-influence models

and Performance-Detective for an exemplary configuration space with parameters 𝑝𝑎𝑟𝑎𝑚1

to 𝑝𝑎𝑟𝑎𝑚𝑁 , with some parameters being performance-relevant and others performance-

irrelevant (cf. Section 2.1). Both modeling workflows have to consider all options selected
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during the system analysis for their experiment design. For black-box modeling, an expert

selects these options based on intuition and their understanding of the software [67].

However, this can lead to selecting more parameters than necessary [89] for modeling,

as illustrated in the example: The expert selected not only the performance-relevant

parameters 𝑝𝑎𝑟𝑎𝑚1 and 𝑝𝑎𝑟𝑎𝑚3 for modeling, but also 𝑝𝑎𝑟𝑎𝑚2, 𝑝𝑎𝑟𝑎𝑚7, and 𝑝𝑎𝑟𝑎𝑚𝑁 ,

necessitating sampling over all of them to detect potential performance influences, even

though the final model does not contain the performance-irrelevant parameters.

Tools such as Perf-Taint [37] and Comprex [154] extract possible performance impacts

of options automatically based on static and dynamic analysis in white-box modeling.

However, these analyses cannot quantify the performance impact of configuration options.

An option influencing only small parts of the execution could have a critical impact, while

it could also just change minor things. In the latter case, again, samples not necessary to

model the system performance have to be taken.

We give two examples that are inspired by real-world occurrences in the multi-physics

solver Pace3D. The first example is shown in Listing 4.1: The configuration option y

influences the control-flow of the program by determining the result that is returned

by the function branch. However, the only change in computation is a single addition,

making the expected performance impact of yminimal. This can occur, for example, when

physical constants are added or changed, depending on another configuration option

y. Listing 4.2 shows another example: While the variable global_offset does impact

the number of iterations via the local_offset variable in the loop, it only changes the

iteration count by one. Scenarios like this can occur when the local area of material that

each process gets contains overlaps with other processes, which should or should not

be taken into account for the computation. On the other hand, x directly impacts the

number of iterations. Given a high value for x, we can assume that global_offset does

not significantly impact the performance. Therefore, we do not have to model the impact

of the global_offset configuration option on performance. Nevertheless, state-of-the-art

tooling does not provide a way to gain and utilize this knowledge.

As the tooling does not provide a strategy to guide the user in selecting the parameters

that significantly impact performance, users have to collect samples that consider all

configuration options, resulting in high costs for performance modeling.

4.2. Approach

The general idea for improving the empirical performance modeling processes for high-

performance software applications is to use small-scale experiments in order to identify

performance-irrelevant configuration options. We therefore improve the parameter selec-

tion for the system analysis phase with our approach.

Figure 4.2 shows our addition to the performance modeling process: Instead of directly

starting the modeling workflow, we first employ our optimization process that identifies

and removes performance-irrelevant configuration options. After that, the usual modeling
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int branch(int result, bool y) {

if (y == true) {

return result + 1;

}

else {

return result;

}

}

Listing 4.1: Example computation using the configuration option y: While y influences the control-flow of

the program, its performance impact is expected to be minimal.

void calculateAll(int global_offset, int x) {

int local_offset;

if (global_offset % 2 == 0) {

local_offset = 0;

} else {

local_offset = 1;

}

for (int i = local_offset; i < x; i++) {

calculate();

}

}

Listing 4.2:Example computation using configuration options global_offset and x: While x directly influences

the amount of loop iterations, global_offset changes the amount of loop iterations by one only.

workflow can be employed with a reduced parameter set, starting with further system

analysis for white-box approaches to trace the influences of options to functions more

precisely or directly with the experiment design for black-box approaches.

Our optimization process involves three additional steps: Considering all available con-

figuration options, we first collect samples in a cheap way by conducting small-scale

experiments. We then build a preliminary performance prediction model from the col-

lected samples using a preexisting performance modeling method. Based on this perfor-

mance model, we can classify all configuration options as either performance-relevant
or performance-irrelevant. We create the filtered configuration space containing only

performance-relevant configuration options based on this classification. This filtered

configuration space then serves as input configuration space for the further modeling

process.
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Our approach allows users to select options from a reduced set of only performance-

relevant configuration options without losing predictive power in the resulting perfor-

mance model. We identify two key benefits: First, knowledge about the internal structure

of the examined application or expert knowledge about performance engineering is not

required anymore, as our approach classifies the options into performance-relevant and

-irrelevant. Second, in addition to saving a significant amount of time by modeling fewer

parameters during the actual performance modeling, we argue that we can execute the

parameter identification experiments on cheaper compute infrastructures, such as con-

sumer desktop computers or workstations, even if the final performance model utilizes

high-performance systems for measurement acquisition. We hereby build on results of

previous studies [82] that have shown that if a configuration option or interaction between

configuration options is measured to have an influence on performance on one hardware,

this property is typically preserved across differing environments.

In the following, we elaborate on our approach in detail: First, Section 4.2.1 explains how

we keep the sampling process for our small-scale experiments cheap yet extensive enough

to collect meaningful samples. Section 4.2.2 details our requirements for a performance

modeling method used to identify the performance-irrelevant options based on the col-

lected samples. Finally, Section 4.2.3 presents how configuration options can be filtered

based on the preliminary performance model.

4.2.1. Small-Scale Measurements

As our identification process adds three pre-processing steps to the performance modeling

pipeline, we must ensure that it decreases cost in the later stages of performance modeling,

outweighing the additional cost incurred. To reduce the number of measurements for

the optimization step, we only measure two different values for numeric configuration

options because, for the identification of relevant options, we only need to detect a

leap in the runtime when changing option values. For non-binary and non-numeric

configuration options, such as selection options, however, we have to analyze every

possible configuration value as we cannot assume a (partial) order.

However, not only the number of samples but also their cost is important. To keep the

cost of the individual samples low, we use small, yet realistic problem sizes and value

ranges of configuration options. It is the responsibility of the user to select these values

carefully using domain knowledge, ensuring that the computation to be modeled is still

representative of the computation at larger scale. Note that we do not require the user

of our approach to have knowledge about the internals of the application or expertise in

performance engineering. However, we do assume them to be familiar with the domain

of the application. That means that they can configure the application according to the

problem they want to compute using functional options.
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Figure 4.2.: Our pre-processing determines performance-irrelevant configuration options from the modeling

process, enabling the exclusion of them in the further modeling process.

62



4.2. Approach

4.2.2. Create Preliminary Performance Model

Our proposed process can leverage any performance modeling method. The sole pre-

requisite is the availability of an empirical performance model derived from runtime

measurements. Ideally, it should swiftly produce preliminary models that offer a realistic

representation of application performance based on small-scale measurements. As our

process is a pre-processing step, we prefer black-box models learned from measuring

the end-to-end runtime of the application, as white-box models include instrumentation

overhead.

We select DECART [70], as introduced in Section 2.2.1.3, as the exemplary performance

modeling method to build the preliminary performance models and illustrate our approach.

We choose DECART as it promises to build performance models from random samples with

the number of samples only linear in the number of options. The resulting performance

models have a decent prediction accuracy in the 90% range [70] and take only a few

seconds to learn.

4.2.3. Filter Performance-Irrelevant Options

In this last step, we examine the created performance model regarding the options it uses

for modeling the system performance and creating its performance prediction. In the case

of DECART, the models contain a list of configuration options used within the model.

Inherently, only the configuration options integrated into the models can impact its perfor-

mance prediction. Therefore, we classify every option in that list as performance-relevant

and all other options, which do not appear in the model, as performance-irrelevant.

4.2.4. Assumptions and Limitations

Our approach relies on several assumptions and has certain limitations. We aim at detecting

the performance influence of an option with a limited set of training measurements.

Thereby, we risk to not capture all possible scenarios in which an interaction between

options may lead to a performance impact of one of them, particularly those involving

rare or corner-case interactions. This is a principal limitation of all black-box modeling

approaches. Systematically exploring these interactions and their performance impact

for a given system will require further research and could integrate other techniques like

SafeTune [76] that aim at extracting performance influences from software documentation.

Moreover, for the benefit of using cheaper compute infrastructures for the parameter

identification experiments, we rely on the assumption that the impact of configuration

options on performance remains consistent across different environments, as shown by

Jamshidi et al. [82]. While they use four subject systems from different domains for their

study, none of them is a scientific application and thus may exhibit different characteristics.
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Therefore, the applicability of the findings from the study has yet to be validated for

scientific software, e.g., by repeating their study with subject systems from this domain.

Additionally, we assume that insights on the performance-irrelevance of options gathered

from small-scale experiments are representative of large-scale computations. We thereby

rely on the domain knowledge of users of our approach and their ability to downscale

computations.

4.3. Case Study

We illustrate our approach presented in Section 4.2 with a real-world case study based on

Pace3D [80], a multi-physics framework for digital material research that we also used for

the evaluation of Performance-Detective in Chapter 3. Pace3D is highly configurable, offer-

ing more than 170 tools for pre- and post-processing of computations alone. Consequently,

the flexibility offered by the software system introduces many configuration options.

This makes it challenging for the domain scientists using the software to understand the

performance impacts of the many options and consequently choose a configuration that

will lead to good performance. However, the immense number of configuration options

and their interactions make building performance models for the whole application with

current approaches impractical due to the high costs associated.

For our case study, we set fixed values for options influencing the physics of the material

to simulate to keep the workload and resulting computations constant, and consider only

non-functional options that do not change the final result of the simulation. It is common

practice to consider the values of some configuration options as fixed [154], with mostly

options influencing the workload being considered fixed. This is because modeling them

not only requires significantly more measurements, but also a deep knowledge of the

domain in order to characterize them [111]: For example, one property of a material may be

described by several options, makingmodeling them in isolation less meaningful. Moreover,

changing this property may result in performance changes that can not necessarily be

modeled mathematically [111].

We consider 34 non-functional configuration options that can be set for the chosen compu-

tation scenario, a phase-field computation. These options consist of 9 binary options, two

binary vector options with two elements each, three selection options, 19 numeric options,

and one numeric vector with three elements. The reduced set includes, among others,

the simulation volume, number of preprocessing steps, simulation coefficients, number of

time steps, random generator settings, numeric scaling factors, and the number of MPI

processes.

4.3.1. Small-Scale Measurements

As DECART only supports binary options, we map every non-binary option to a binary

representation. We employ two predefined values (low/high) for numeric configura-
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Model
No.

No. of
Experiments

Validation
Error (%)

Generalization
Error (%)

Model
Time (s)

1 330 6.17 6.43 5.26

2 660 7.21 6.67 7.13

3 990 6.34 8.05 8.74

4 1320 8.06 8.93 10.10

5 1650 8.31 7.80 13.62

6 1980 8.23 9.53 12.14

7 2310 9.09 9.87 12.43

8 2640 8.63 9.35 15.24

9 2970 9.11 9.95 14.83

10 3300 7.82 10.51 13.86

Table 4.1.:Our preliminary performance models for PACE3D, each with an increasing number of experiments

used. Validation and generalization error are calculated based on the respectively supplied experiments.

tion options to reduce the number of required measurements. For example, we measure

only the values 10 and 100 for the writeTimesteps option instead of multiple more val-

ues in-between, mapping the numeric writeTimesteps option to two binary options

writeTimesteps_100 and writeTimesteps_1000. Thus, the 34 considered options are rep-

resented as 66 binary options. DECART uses a feature-size heuristic to prescribe the

number of required samples. Therefore, our simple model will have 𝑁 = 66 options. We

generate samples randomly.

As mentioned in Section 2.2.1.3, the DECART modeling process is iterative. This means

that the sampling and modeling process should be repeated until the learned model has a

validation error below 10%. However, this recommendation is given for models to reach

high accuracy for being able to predict the performance of the whole configuration space

of the software. In contrast, we want to identify performance-irrelevant options. As we do

not know how many samples and resulting model prediction accuracy we need to identify

performance-irrelevant options, we repeat the sampling process ten times. With these

measurements, we can create models with an increasing number of samples from 𝑁 to

10𝑁 that we can evaluate separately.

Performing Measurements. We run our experiments on an on-premise cluster with nodes

with an AMD Opteron 2378 8-Core processor @ 2.4 GHz and 16 GB memory. This cluster

is regularly used for simulation runs of Pace3D, thus a realistic execution environment for

such a simulation. We repeat each measurement five times, observing a mean coefficient

of variation of 4.84% between repetitions of the same configuration.
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4.3.2. Create Preliminary Performance Model

In the small-scale measurement step, we repeated the sampling process ten times (see

Section 4.3.1). Using these small-scale measurements, we create ten inputs for DECART,

each with 66 samples more than the one before. We supply each measurement individually

to DECART, meaning that the first input file contains 66 ∗ 5 = 330 measurements, as we

repeated each measurement five times. We choose 10-fold-cross-validation as resampling

and grid search as a parameter optimization algorithm as these values proved best [70].

DECART generates multiple performance models for every input with an increasing

number of samples used in the training set, requiring the user to review and select the

models to accept. Guo et al. [70] recommend selecting a model with a validation error

below 10%. If there is no such model, the sample size should be increased, and new sample

measurements added. However, as our identification process is only a preprocessing step,

we will still proceed with a model that has a higher validation error.

Table 4.1 shows an overview of our models. It lists the number of measurements used

for creating each model, the time for creating it, and validation and generalization errors.

While validation and generalization errors are below 10% for nine out of ten models, with

only the generalization error of model ten being slightly above 10%, their explanatory

power is inherently limited to the number of experiments conducted for the respective

model.

4.4. Evaluation

We evaluate our approach based on the case study from Section 4.3. To evaluate our

approach with the previously detailed case study, we assess if our approach accurately

classifies options as performance-irrelevant. Second, we evaluate if our approach can save

costs for creating an exhaustive performance model despite the additional pre-processing

steps introduced. We formulate the following sub-research questions to RQ 2 as stated in

Section 1.3:

RQ2 How can performance-irrelevant configuration options be identified automatically?

RQ2.1 Can we identify performance-irrelevant configuration options by reusing a

performance modeling method with small-scale samples?

RQ2.2 Can we reduce the cost of performance modeling by introducing our identifica-

tion process of performance-irrelevant configuration options as a pre-processing

step?

We address these questions by first evaluating if our approach can accurately classify

configuration options as performance-irrelevant. Second, we evaluate if applying our

approach can save costs during creation of the principal performance model, despite the

additional pre-processing step introduced.
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Table 4.2.: Identified irrelevant options and the runtime deviation (%) when changing them. Checkmarks

indicate that the respective option is identified as irrelevant, while Dashes indicate that the respective option

is identified as relevant.
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Table 4.3.: Expert assessment of the identified irrelevant options: Assessments that match the models’

classification are marked with a Checkmark (✓). Assessments that do not match are marked with a cross (×)
if they are relevant according to the expert and with a circled cross (⊗) if irrelevant according to the expert.
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4.4.1. RQ2.1: Accurate Identification

We created ten performance prediction models with increasing sampling sizes (see Sec-

tion 4.3.2) and analyzed the models by inspecting which configuration options they use.

Table 4.2 and Table 4.3 show the results: Our model analysis classifies six to sixteen op-

tions out of 34 as irrelevant to the performance. We evaluate whether this classification is

correct by first measuring the relative runtime deviation when changing the considered

option. Second, we interview the lead developer of Pace3D to state his assessment on the

performance relevance of all considered options.

4.4.1.1. Measuring Performance Impact

To measure the performance impact of options identified as irrelevant, we measure the

relative runtime deviation when changing the considered option. All other options are

activated or set to a default value. We repeat each measurement five times.

Table 4.2 shows our results, indicating that the identified options are indeed performance-

irrelevant. We show the deviation of runtime in percent when changing the respective

option. Cells with dashes indicate that the respective option has been identified as relevant

by the model. The biggest deviation caused by one of the performance-irrelevant options

in runtime is 5.1%. In contrast, options that strongly impact performance often cause a

performance difference of over 100%. Notably, some options are identified as performance-

irrelevant by all models, while others are flagged by only some or even only one model.

Model one, which uses the smallest number of samples, identifies most options as

performance-irrelevant. While this could also be due to the samples not catching the

performance impact of some of the options, our evaluation shows that only one of the

options, precond.smear.iterations, could be judged as performance-relevant with an

impact on the runtime of 5.12%.

4.4.1.2. Developer Statement

We asked one of the main developers of Pace3D who has been working on the software for

a long time to fill out a questionnaire, indicating if they think that a specific configuration

option has no, minor, or a major impact on performance. We also gave the possibility to

indicate that they were unsure about the impact of the option.

Table 4.3 shows how our expert classified the options and what options the respective

model classified as irrelevant. The expert identified eleven options to be performance-

irrelevant. Six of them were classified as irrelevant by all models. Model one

further identified RNG.ManualSeed and model one, three, seven, and nine identified

Settings.SIscalingfactor.mol as being performance-irrelevant, while the other three

(FunctionH, Phasefield.Eps, and Settings.RandomGenerator.Type) were not identified

as irrelevant by any model.
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The expert further identified nine options as having a major performance impact. Seven of

them were classified as relevant by all models, with the other two being misclassified by

model one (DynamicMemory) and model one, four, and eight (ControlOutput), respectively.

However, he further stated that ControlOutput would have a major impact only for

configurations that have a short runtime which will become minor for long-running

simulations. As simulations used to simulate real-world scenarios are usually longer-

running, we deem this misclassification to be tolerable. Ten other options identified as

irrelevant by some models are classified as having a minor impact on performance by our

expert. Five of them were misclassified exclusively by model one.

Overall, model one has the most misclassifications according to the expert statement. This

is to be expected as it had the fewest training data.

Few models misclassified options with a major performance impact as being performance-

irrelevant. Moreover, up to including model eight, some options are being classified as

irrelevant while having a minor impact on the performance according to our expert.

4.4.1.3. Discussion

The results in Section 4.4.1.1 imply that using model one, which is the cheapest preliminary

performance model, is already sufficient for pruning performance-irrelevant configuration

options. However, according to our expert statement presented in Section 4.4.1.2, it

misclassifies some options with a minor performance impact as being irrelevant. Crucially,

it misclassifies an option that has a major impact on performance according to our expert.

As model one uses only a very limited number of samples, it likely did not see enough

data to capture their performance influence.

Models nine and ten have the least misclassifications according to our measurements and

the expert statement: They identify seven and six, respectively, out of eleven performance-

irrelevant options. Moreover, the do not misclassify any performance-relevant options as

irrelevant, which would compromise the accuracy of the principal performance model, as

critical performance influences could not be modeled.

No model identified all eleven performance-irrelevant options pointed out by the expert.

While not identifying all performance-irrelevant reduces potential savings by not being

able to exclude them from the principal modeling, it does not impact the quality of the

principal performance model. Moreover, as only model one classified an option having a

major impact also in large-scale settings as irrelevant, we can conclude that our approach
can save costs while not compromising model quality.

However, as we only evaluate our approach with one case study, we can not give a

general recommendation on how many samples to use based on our data. For this, further

experimentation is needed.
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4.4.2. RQ2.2: Cost of Performance Modeling

We estimate the costs saved for creating principal performance models using black-box

and white-box approaches separately, as their strategies for selecting samples differ and

are, subsequently, affected in different ways by filtering performance-irrelevant options.

4.4.2.1. Black-Box Modeling

Black-box performance modeling techniques do not require a set number of samples, but

instead rely on heuristics to estimate the required number of samples. This results in a

hard-to-quantify trade-off between number of samples and model accuracy [66, 94]. Some

techniques iteratively use more samples, as proposed also by DECART [70]: In each step,

a model is trained with part of the data and validated with the rest. If the error exceeds

a given threshold, more samples need to be added to the training data. Thus, it is hard

to quantify the costs saved by our approach. However, it will still prove helpful to prune

options from the configuration space, as we can ensure that the remaining options have a

performance impact that is worth modeling. Samples that only vary configuration options

not relevant to performance cannot give insight into the performance behavior of the

system. By eliminating such samples and collecting meaningful samples that vary options

relevant to performance instead, we expect the model to converge faster. In other words,

the same amount of samples will result in better model quality.

4.4.2.2. White-Box Modeling

White-Box Performance-Influence Models [153, 154] are limited to modeling only binary

and binary-encoded parameters. However, numerical parameters, such as the number of

processes or the problem size, are common in scientific applications and would be tedious

to encode.

The white-box modeling workflow of Extra-P with Perf-Taint [37] requires a full-factorial

experiment design with 5 measured values per configuration option. Performance-Detective
can only prune configurations to measure if options do not interact at all or if they linearly

affect system runtime [134]. However, Performance-Detective cannot quantify the impact

of a configuration option, requiring the user to either model all configuration options

or exclude them solely based on the number of functions they are influencing, not their

actual impact. Moreover, the modeling of Extra-P does not support binary configuration

options. In order to capture the influence of a binary configuration option, we would

thus need to create two separate performance models and compare them to assess the

performance impact of the binary option. Capturing performance impacts of all binary

options would thus mean creating performance models for any combination of binary

configuration options.

In our case, model 10 identified six numerical configuration options as performance-

irrelevant. Following a full-factorial experiment design, measuring these six options would
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require 78125 experiments. For each performance model, we save 78125 experiments by
pruning the six numerical configuration options identified by model 10, which translates to
30482 core hours, assuming an average runtime of 0.39 core hours we observed during our

small-scale sampling. This estimate does not even consider that users would likely opt

for measuring larger problem sizes and value ranges during the principal measurements.

Gathering all of our samples took 1288 core hours.

4.4.3. Threats to Validity

After discussing our findings, we discuss threats to validity regarding the internal and

external validity of our evaluation.

Internal Validity. Our evaluation indicates that the identified configuration options in

later models indeed do not have a performance impact. However, the potential impact

of filtering them on the prediction accuracy of resulting performance models remains

uncertain. Nevertheless, the consistency observed in the measured scenarios and the

expert statement reinforces our confidence in the overall findings.

External Validity. Our evaluation is currently limited to a single case study application.

While our selected application is a real-world HPC application, an assessment of the

generalizability of the approach requires further research. However, we are confident

in the generalizability of our approach, as we designed it to be applicable to any batch

application.

4.5. Related Work

In the following, we discuss related research regarding performance modeling of config-

urable systems in Section 4.5.1, experiment design strategies in Section 4.5.2, and selection

of performance-relevant parameters in Section 4.5.3.

4.5.1. Performance Modeling of Configurable Software

There exist many approaches for creating performance models of configurable software [29,

94, 114, 141]. CoMSA [166] is an iterative modeling approach where the sample selection

process and the performance model influence each other: By explicitly modeling the

uncertainty in the prediction of configurations, the next sample to take is determined by

the configuration with the highest uncertainty. Instead of reducing the amount of samples

to take, they focus on achieving better model quality with the same number of samples. Ha

et al. [71] create models using deep neural networks. Shu et al. [139] present PERF-AL that

uses neural networks with adversarial learning. Other approaches [72, 168] use Fourier
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transformations to reduce the number of samples and parameter combinations, but are

limited to binary configuration options. Han et al. [74] focus on finding performance

bugs by ranking configuration options regarding their performance impact. They all

require sampling across the whole configuration space and do not consider systematically

decreasing the configuration space before creating the experiment design by filtering

performance-irrelevant options. Our approach is orthogonal and can be used as pre-

processing to any performance modeling approach for creating the principal performance

model.

4.5.2. Strategies for Experiment Design

Sarkar et al. [129] propose heuristic strategies for the cost-effective sampling of con-

figurations but do not consider reducing the configuration space by pruning options.

Velez et al. [154] use program analysis to identify which configuration option influences

control-flow statements in a code region. They use this knowledge to select option values

for configurations that allow the exploration of all paths. However, this considers only

binary configuration options. Nair et al. [112] use dimensionality reduction to reduce

the configuration space and the number of required performance measurements. This

approach assumes that all the options are equally important and only works for numeric

options. With Performance-Detective (cf. Chapter 3), we reduce the number of required

experiments by using parameter interaction knowledge gained through a taint analysis.

This approach considers only numeric configuration options. In contrast, our approach in

this chapter works for any option type. Dominguez-Trujillo et al. [45] aim at reducing the

amount of data needed to analyze performance variation in HPC applications (as caused

by, e.g., operating system management activites or inconsistent system cooling patterns)

by focusing on maxima distributions.

4.5.3. Selection of Performance-Relevant Parameters

SafeTune [76] extracts the potential performance relevance of parameters from software

documentation, hence requiring the presence of extensive and accurate documentation.

DiagConfig [36] uses taint tracking to compute the so-called performance property of an

option by counting the number of performance-related operations. They train a Random

Forest model to predict the performance-relevance of options with labeled data from

systems, and then apply the model to predict the performance-relevance of options in

other systems. This limits the applicability of the approach to domains within the training

systems. Moreover, relying on counting performance-related operations causes misclas-

sifications, as a count is not necessarily an accurate reflection of runtime performance

behavior. Cao et al. [33] identify the three parameters most important to the performance

of storage systems to optimize performance tuning. They do not aim at identifying all

performance-relevant parameters and only consider the amount of samples required and

not their cost. Kanellis et al. [89] studied howmany parameters need to be tuned to achieve

well-performing configurations in database systems. While they show that only some
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parameters are important to performance and can thereby accelerate auto-tuning, they

manually pre-selected the tested parameters they believed to be performance-relevant out

of all parameters. Moreover, they do not propose an approach as to how to identify the

performance-relevant parameters at a low cost out of the complete configuration space.

4.6. Summary

In this chapter, we presented an approach to systematically identify performance-irrelevant

configuration options. By excluding these options from the performance modeling process,

costs for constructing performance models can be reduced. Domain scientists can use

our approach to filter performance-irrelevant options specific to a certain problem they

would like to simulate. Our approach is easily applicable by domain scientists, as users are

neither required to have knowledge about the internal structure of the application nor

performance engineering expertise.

Our evaluation shows that we can identify performance-irrelevant options while not

incorrectly filtering performance-relevant options. The cost saved by filtering the perfor-

mance-irrelevant options from the principal modeling is expected to be much higher than

the cost incurred by the additional small-scale measurements needed for our approach.

While we validated our approach with an application from the scientific domain, we

believe that our methodology can be applied to software from other domains as well.

However, the effort required to create a detailed performance model may not always be

justified. Scientific software is typically long-running, meaning that optimizations can

lead to significant performance gains over time. In other domains, where applications

may have shorter runtimes or less sensitivity to configuration, the benefits of performance

modeling may not outweigh the costs of building such a model.
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� Literature: This chapter is based on our following publication:

L. Schmid, M. Copik, A. Calotoiu, L. Brandner, A. Koziolek,

and T. Hoefler. SeBS-Flow: Benchmarking Serverless Cloud Func-
tion Workflows. 2024. doi: 10 . 48550 / arXiv . 2410 . 03480
Implementation: github.com/spcl/serverless-benchmarks

Supplementary material: github.com/spcl/sebs-flow-artifact

The authors contributed to the original paper as follows: M. Copik, A. Calotoiu, and T.

Hoefler conceived the initial idea and L. Schmid, M. Copik, A. Calotoiu, and T. Hoefler designed

the study; L. Brandner implemented the initial model, and L. Schmid extended and formalized

it; L. Brandner implemented the benchmarks and L. Schmid and M. Copik extended and

improved the implementation; L. Schmid and M. Copik collected data; L. Schmid, M. Copik,

and L. Brandner analyzed and interpreted the results; L. Schmid and M. Copik conducted the

literature study; L. Schmid and M. Copik wrote the draft manuscript; and L. Schmid, M. Copik,

A. Calotoiu, A. Koziolek, and T. Hoefler reviewed and revised the manuscript.

The emergence of workflows led to significant research activity, with many examples

of optimizations and new systems developed to improve the performance and efficiency

of stateless and stateful workflows. We examined 72 different research contributions to

determine the similarity of their evaluation baselines and present the results in Table 5.1.

We found that publications use different applications to benchmark the performance of

new ideas, do not cover the same classes of workloads, and do not always compare against

the same subset of platforms. Without a consistent baseline, comparing research results

and establishing the most promising ideas becomes impossible. While established bench-

mark suites exist for CPU [145], databases [149], and specific workloads like machine

learning [18] and microservices [55], serverless is a relatively new paradigm. Bench-

marking suites and systems have been proposed for FaaS [40, 91, 104, 143], but as of

today, a benchmarking suite for serverless workflows has remained an open problem. A

comprehensive, consistent, platform-independent, and portable benchmarking suite will

support the ongoing research work [113, 131], enable software developers to differentiate

between alternative solutions, and determine the future road to improved workflows.

We propose the first serverless workflows benchmarking suite to support developers

in choosing a platform as well as the quickly growing research activity in serverless

workflows. Our work provides a baseline and benchmarking methodology that can be

used to evaluate and compare the optimizations and systems developed to improve the

performance and efficiency of workflows.

As highlighted in Section 2.5, serverless workflows platforms differ in their programming

models and implementation. We therefore begin by establishing a unified and portable
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Analysis 14 7 1 4 2 4 2 8 4 3 3 3 5

Optimization 17 8 3 4 4 5 6 9 0 2 2 7 4

Application 18 1 4 1 4 1 7 15 5 5 2 3 9

Prog. Model 23 10 6 5 8 11 8 10 3 1 2 16 11

Table 5.1.: Analysis of 72 research papers on serverless workflows with benchmarks. For each category, we

show how many papers use which types of benchmarks and platforms. Note that one paper can use multiple

benchmarks and platforms.

workflow model to abstract away the differences between different commercial, open-

source, and research platforms (Section 5.1). We base our formal definition on Petri

Nets [115] since they highlight control-flow dependencies and have already defined se-

mantics. We extend Petri Nets with components needed to represent the full spectrum of

workflows. With a cloud-agnostic workflow definition, we design the benchmarking suite

(Section 5.2) and implement it on top of SeBS, an established serverless benchmarking

suite [40]. Then, we implement six workflow benchmarks based on solutions common

in research and industry (Section 5.3). Selected benchmarks represent different compu-

tational patterns and cloud services, covering machine learning, multimedia processing,

and scientific applications. Applications are implemented in our unified workflow model,

providing an identical benchmark structure for each platform. We evaluate SeBS-Flow in

Section 5.4 by evaluating the expressiveness of our model and the overhead of transcribing

it to the native platform representations.

Then, we comprehensively evaluate the three major cloud workflow services (Section 5.5)

using SeBS-Flow. We measure the performance of each application and analyze the poten-

tial overhead sources. We examine the cost difference between platforms and investigate

cold startups and parallel scalability as well as suitability for scientific workflows. Finally,

we compare the results obtained across several months to analyze long-term performance

stability trends of serverless workflows in commercial settings. We follow the FAIR princi-

ple [164] and release our benchmark suite on an open-source license. Our experiments can

be repeated automatically in the cloud, allowing for reproducible results and measuring

performance changes in clouds over time.

This chapter thus constitutes our contribution C 3, SeBS-Flow, composed of the following

contributions:

• We introduce a platform-agnostic workflow definition to model control- and data-

flow, automatically transcribe the application into a cloud’s proprietary presentations,

and enable developers to run near identical workloads on different systems.

• We propose a benchmark suite with six real-world application benchmarks and four

microbenchmarks.
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• We evaluate the expressiveness and overhead of our model by reviewing the literature

on serverless workflows.

• We extensively analyze performance, cost, scaling, and stability of our benchmarks

by deploying them to three major cloud platforms.

A first version of the serverless workflows benchmarking suite has been described in a

Master thesis [24]. We extend this version by expanding and formalizing the proposed

workflow model, extending and improving the implementation, collecting measurement

data, conducting a literature study to evaluate the workflow model, and publish the

resulting version of SeBS-Flow [133]. For reasons of readability, we only describe SeBS-
Flow in this work and shortly outline relevant differences to prior work in Sections 5.2

(Implementation of Workflows Benchmark Suite) and 5.3 (Benchmark Applications).

5.1. Serverless Workflows Model

We define a model for serverless workflows that allows us to implement and analyze a

workflow application independent of the platform it will run on. The model should encode

the control flow and task parallelism. Furthermore, it should clearly display the flow of

data between functions, which aids the user in detecting scalability bottlenecks and errors,

such as inconsistent or missing data. Therefore, we opt for defining our model on top of

workflow nets with data (WFD-nets) [150] (see Section 2.6) and extend them to be able to

express the orchestration by the platform and how data is passed between functions.

While basing the model on WFD-nets is only one possibility among alternatives such as

state machines, we opt for WFD-nets due to their advantages as modeling formalism, such

as their graphical nature, formal semantics, and analysis defined. WFD-nets already have

different analyses defined on them related to control-flow correctness and verification of

the flow of data through the workflow. This allows analyzing, e.g., whether a workflow

terminates, whether a specific task will ever be executed, whether data to be read is missing,

and whether data is strongly redundant, i.e., never read after it is written. Analyzing this

aids users in the process of defining correct workflows. However, serverless workflows

are orchestrated by the platforms which impose time limits on execution and schedule

tasks. Moreover, it is important to model how in- and output data is passed between tasks.

Modeling both of this is not supported by WFD-nets currently.

5.1.1. Transitions

The set of transitions 𝑇 is composed of two types, the coordinators 𝐶 and serverless

functions 𝑆𝐹 , 𝑇 = 𝐶 ∪ 𝑆𝐹 . A function transition 𝑠 𝑓 ∈ 𝑆𝐹 represents the execution of a

serverless function. All function transitions that can run in parallel without any precedence

dependencies and their immediate predecessor and successor places make up a workflow

phase 𝑆 . There are different possible token routing constructs within one phase of the

workflow:
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Sequential Routing. A task phase is a sequential routing consisting of one function

transition only. Figure 5.1 shows an example: Once a token is in its input place, the task

transition will fire, executing the generate function.

Parallel Routing. For parallel routing, there are two alternatives: First, a parallel phase
can consist of any number of sub-phases that will be executed concurrently. For example,

Figure 5.2 shows a parallel phase with the Task transitions compute and sort. Second,
the map phase. Similar to the parallel phase, it can consist of any sub-phases, but each

sub-phase is executed concurrently on different elements of an input array. Figure 5.3

shows an example: The map functions compute 𝑦𝑖 = map (𝑥𝑖) simultaneously for all 𝑖 , i.e.,

all transitions inside the bounding box fire simultaneously.

Conditional Routing. A switch phase uses conditional routing based on data values by

annotating guarding functions to transitions. Figure 5.5 shows an example: add is invoked

only if [pred(x)] evaluates to true; otherwise, subtract will be invoked. This represents

an XOR-split depending on the data in 𝑥 .

The first transition of a workflow in our model is always a coordinator 𝑐 ∈ 𝐶 that initializes

the workflow and schedules functions for execution. Additional coordinator transitions

take place between phases, meaning that the coordinator awaits the termination of the

currently running functions and then schedules the functions of the next phase, explicitly

modeling the orchestration of the workflow by the platform.

Figure 5.4 shows an example with 𝐶 and 𝑆𝐹 as follows:

𝐶 = ⟨𝑐0, 𝐸𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒1𝑐0, 𝐸𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒2𝑐1⟩

𝑆𝐹 = ⟨𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒,𝑚𝑎𝑝1,𝑚𝑎𝑝2, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠⟩
For readability, we do not show the coordinator transitions when they can be skipped

while preserving the control flow between function transitions, i.e., whenever a sequential

phase is the next phase. This is because the sequential function already serves the purpose

of the AND-join, otherwise realized by the coordinator transition. In Figure 5.4, this means

we can leave out all coordinator transitions after the initial 𝑐0 transition.

Task
compute 
r: input 
w: x1

Function transition place

Figure 5.1.: Task function transition.
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Parallel

Enter
Phase 1 

c0

Enter
Phase 2 

c0

Function transition Coordinator transition place

Task
compute 
r: input 
w: y

Task
sort 
r: input 
w: z

Figure 5.2.: Parallel function transition.

Map

map1 
r: x1 
w: y1

map2 
r: x2 
w: y2

Enter
Phase 1 

c0

Enter
Phase 2 

c0

Function transition Coordinator transition place

Figure 5.3.: Map function transition.

5.1.2. Resource Annotations

Data labeling functions indicate the required inputs and provided outputs of a transition.

However, for the performance of serverless workflows, it is important to know where

the data resides and how it is provided, as performance could vary greatly depending on

that. Therefore, we extend the notation of WFD-nets by annotating how read and write

operations on data are performed using the following resource annotations:

TaskTask

Map

start c0

map1 
r: x1 
w: y1

map2 
r: x2 
w: y2

process 
r: y1, y2 
w: z1

generate 
r: input 
w: x1, x2

Enter Phase 1 
c0

Enter Phase 2 
c0

Enter Phase 3 
c0

end

Function transition Coordinator transition place

Figure 5.4.: Example workflow using our model based on WFD-nets.
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Task

Switch

c0
compute 
r: input 
w: x

add 
r: x 
w: x

subtract 
r: x 
w: x

[pred(x)]

[not pred(x)]
Start Phase 2

c0
start end

Function transition Coordinator transition place

Figure 5.5.: Switch phase: If pred(x) is true, the add transition fires. Otherwise, subtract fires.

• Object storage. Data is saved in cloud storage in the same region. While this

provides high capacity, cloud storage suffers from limited I/O bandwidth and high

latency.

• NoSQL. Data stored in NoSQL key-value storage provides low-latency data

storage.

• Invocation Payload. Small input data can be transferred by protocols such

as HTTP and gRPC. However, the exact size limit is subject to the protocol and

platform.

• Transparent. The type of transmission used when returning a payload is up to

the provider and can change given the payload size.

• Reference. Some functions only need the reference to an object in the object

storage rather than the object itself.

Formally, we define the set of resource annotations 𝐴 = {𝑜, 𝑛, 𝑝, 𝑡, 𝑟 } as additional element

of the tuple of a WFD-net, with 𝑜 representing data passing via the object storage, 𝑛 via

NoSQL, 𝑝 via the invocation payload, 𝑡 transparently, and 𝑟 via reference. We define the

corresponding resource annotation functions for reading and writing data as 𝑟𝑎 and 𝑟𝑤 as

follows and also add them to the tuple of a WFD-net:

ra : {(𝑡, 𝑑) ∈ 𝑇 × 𝐷 | 𝑑 ∈ 𝑟 (𝑡)} → 𝐴

rw : {(𝑡, 𝑑) ∈ 𝑇 × 𝐷 | 𝑑 ∈ 𝑤 (𝑡)} → 𝐴

This means that each pair of a transition and a data element (𝑡, 𝑑), with 𝑑 being read or

written by 𝑡 , respectively, is assigned a resource annotation 𝑎 ∈ 𝐴. By adding resource

annotations, we do not change the behavior of the WFD-net. However, we enable checking

the consistency of data accesses, for example, if the same data object is written and read

using the same resource annotation.

We annotate the data passing in workflows using the respective icon and show an example

in Figure 5.4. The function generate reads the data element input received via an invoca-

tion payload and writes its output to the object storage. The map functions each receive
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"phase_name": {

"type": "type_name",

"func_name": "serverless_function_name",

"next": "name_of_next_phase"

}

Listing 5.1: General format of our JSON definition for a workflow phase.

and read an array element containing 𝑥1 and 𝑥2, respectively, process it, and return their

resulting elements 𝑦1 and 𝑦2 through a protocol the cloud provider decides. Once both map

functions have finished execution, the process function receives and reads 𝑦1 and 𝑦2 as

input and, finally, uploads the final result 𝑧 of the workflow to the object storage.

5.2. Workflows Benchmark Suite

We now present the design and implementation of SeBS-Flow. To provide a reliable and

fair comparison of various workflow technologies, we need to execute the same bench-

mark implementation on many platforms. However, the platforms exhibit vast differences

in the programming model and API of their workflow services (Section 2.5). Thus, we

define a platform-agnostic workflow definition (Section 5.2.1) based on our workflow

model (Section 5.1). Then, we propose platform-specific generators that transcribe work-

flows to the respective proprietary definition of the desired platform (Section 5.2.2). We

add the workflow representation and implementation to a serverless benchmark suite

(Section 5.2.3).

While the preceding Master thesis [24] already proposed a platform-agnostic workflow

definition, we extend the definition and transcription by adding the Parallel state and
establishing the Map state as a higher-level phase able to contain multiple states and

passing common parameters to them.

"compute_phase": {

"type": "task",

"func_name": "compute"

}

Listing 5.2: Task Statement.
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5.2.1. Platform-Agnostic Workflow Definition

Our workflow model encodes the application as a Petri Net, as defined in Section 5.1.

To define workflows in SeBS-Flow conforming to our model, we use a JSON syntax and

show its general format for defining a single workflow phase in Listing 5.1. The phase

object is named with a phase_name that can be any string. Coordinator transitions encode

the order of phases, represented by the next field of phases describing the consecutive

workflow step. The next field refers to the phase name of the phase to be executed next.

The workflow will terminate if the next field is not set. Each phase receives the output

payload of the previous function as input. This means that the implementations of the

functions need to conform to the resource annotations as defined in the workflow model

and download and upload data as needed accordingly. The property func_name specifies

the filename of the function to be called. Every phase has a type, relating to one of the

available routing constructs introduced in Section 5.1.1. The type of a phase can refer to

one of the following supported types:

Task. A task executes a single serverless function, constituting a sequential routing.

Listing 5.2 shows an example with the compute_phase executing the function compute.
This encodes the task function transition as shown in Figure 5.1.

Repeat. A repeat phase executes a function a given number of times. This syntactic sugar

eases the modeling of a chain of tasks. The additional field count specifies how many times

the functions should be executed. Listing 5.4 presents an example where the function

process is invoked ten times, and the return payload of the 𝑖𝑡ℎ invocation is passed onto

the 𝑖+1𝑡ℎ execution.

Map. The map phase is a parallel routing construct and concurrently executes the phases

given as states one after another, starting with the phase given as root, on each element

of the given array and returns an array again. While by default, only the respective array

element is passed to the states as input, the phase can optionally define common_parameters

"process_names": {

"type": "map",

"array": "customers",

"root": "normalize",

"next": "accumulate_emails",

"states": {

"normalize": {

"type": "task",

"func_name": "normalize"

}

}

}

Listing 5.3: Map Statement.
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"process_10": {

"type": "repeat",

"func_name": "process",

"count": 10

}

Listing 5.4: Repeat Statement.

"send_if_enough_data": {

"type": "switch",

"cases": [

{

"var": "data.length",

"op": ">=",

"val": 1048576,

"next": "send_truncated"

},

"Break - each element is a separate case"

{ "var": "data.length",

"op": ">=",

"val": 1024,

"next": "send"

}

],

"default": "log"

}

Listing 5.5: Switch Statement.

that will be passed additionally. Listing 5.3 shows an example with the process_names

phase: for each element of customers, the function normalize is executed concurrently.

Only after all functions have terminated, the coordinator will transition to the next phase,

which in this case is named accumulate_emails.

Loop. The loop phase is similar to map but traverses the given input array sequentially.

Thus, loop encodes tasks that cannot be parallelized due to existing dependencies.

Switch. The switch phase is a conditional routing as the next phase is decided dynamically

at runtime depending on the given condition. Listing 5.5 presents a simple switch phase

where different functions are executed depending on the running variable data.length.

The different cases are evaluated one after another, with the first one fulfilling the condition

being executed.
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"compute_and_sort": {

"type": "parallel",

"parallel_functions": [

{

"root": "compute",

"states": {

"compute": {

"type": "task",

"func_name": "compute"

}

}

},

{

"root": "sort",

"states": {

"sort": {

"type": "task",

"func_name": "sort"

}

}

}

],

"next": "frequency_and_overlap"

}

Listing 5.6: Parallel Statement.

Parallel. This higher-level phase corresponds to a parallel routing and executes independent
sub-workflows concurrently. The sub-workflows can consist of any of the phases presented.

All sub-workflows receive the complete output of the previous phase as input. The outputs

of the sub-workflows are merged after all functions have completed execution. Listing 5.6

shows an example where the sub-workflows compute and sort are executed in parallel,

both consisting of one function each. After they both have finished, the next phase

frequency_and_overlap will be executed. This encodes the workflow phase as shown in

Figure 5.2.

We show an example of a complete workflow definition in Listing 5.7, encoding the same

workflow as shown in Figure 5.4. The root entry specifies the name of the phase that

should be executed first, in this case the generate_phase. The states entry then contains

all phases of the workflow. As mentioned above, each phase receives the output payload

of the previous function as input. It is therefore up to the implementation of the functions

to download and upload data as needed, and construct their output payload accordingly.

Only in the case of the map phase, we explicitly specify which array is used for distributing
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{

"root": "generate_phase",

"states": {

"generate_phase": {

"type": "task",

"func_name": "generate",

"next": "map_phase"

},

"map_phase": {

"type": "map",

"array": "x",

"root": "map",

"next": "process_phase",

"states": {

"map": {

"type": "task",

"func_name": "map"

}

}

},

"process_phase": {

"type": "task",

"func_name": "process",

}

}

}

Listing 5.7: Example workflow from Figure 5.4 encoded using our JSON syntax.

its elements to single functions. The level of parallelism is then decided dynamically at

runtime depending on the size of the given array.

5.2.2. Platform-Specific Transcription

We map the six phases building a serverless workflow to different modeling language

features on each platform, and we select different cloud language components to represent

our states. As we see, the mapping of our identified workflow constructs to platform

capabilities is not straightforward. This is why we believe a common workflow definition

will be helpful for developers as they do not have to account for these differences when

experimenting with multiple platforms.
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5.2.2.1. AWS

The most notable difficulty when transcribing our platform-agnostic definition to the

state machine definition of AWS Step Functions is the loop phase. Step Functions do not

inherently support sequential array iteration. Their official documentation suggests using

an additional serverless function that iterates over a given range [4], which is inefficient.

Thus, we use the AWS map state and configure it to traverse the given array sequentially,

yielding the semantics of a loop. A downside of this approach is that the input to each

function is the same, i.e., consecutively executed functions can observe the results of

computations of their predecessors only if uploaded to the object storage.

5.2.2.2. Google Cloud

Google Cloud Workflows do not natively support a task type. Instead, the recommended

approach for invoking Cloud Functions [61] is to create a state performing a POST request

and providing the trigger URL of the desired function as input. However, this requires

additional states for each task and map to parse the HTTP response of a function and

assign results. Moreover, the parallel map execution accepts only other workflows and not

states, which requires creating another sub-workflow, even if it contains only a single

function to be invoked. Finally, there is no mechanism for passing additional arguments

to a map function, which is necessary for us to track measurements. As a workaround, the

input array is zipped together with an array consisting of the additional parameter passed

by the benchmarking infrastructure.

5.2.2.3. Azure

Azure uses the dynamic model of Durable Functions instead of state machines. This means

that users have to write the orchestrator themselves as a separate function. Therefore,

we upload our workflow definition together with the function code and an orchestrator

function. Our orchestrator then parses the definition as input, decodes our definition,

and executes it by spawning new function executions. Sub-workflows within map and

parallel phases are executed by invoking sub-orchestrators.

5.2.3. Benchmark Suite

We follow standard design practices to build a new benchmark suite: it should be relevant,

extensible, easy to use, and reproducible [22, 40, 77, 92]. Our suite is relevant as we

include applications representing a variety of workloads in the industry and academia

(Section 5.3). The implementation is based on an abstract workflow definition and can be

extended to new platforms and programming models by implementing a single interface

that transcribes our model definition to the new platform. To ensure that we fulfill the two
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remaining criteria, we build our implementation upon SeBS [40], an established benchmark

suite for FaaS:

Easy to use. To ensure self-validation of benchmarks, they must be easy to deploy

and execute [92]. In the last few years, serverless platforms have been continuously

updated. In addition to deprecating old language runtimes and introducing new ones, cloud

operators upgrade their internal infrastructure. For example, AWS Lambda introduced

ARM functions based on Graviton CPUs in 2021 [5], Azure Functions migrated to the

fourth version of their serverless runtime in 2021 [11], while Google Cloud introduced

a second generation of serverless functions in 2022 [64]. The changes are not only an

opportunity to extend benchmarking experiments, but they often replace older solutions,

making old benchmark implementations no longer deployable. Thus, integration into a

maintained and up-to-date platform with an active community – such as SeBS – helps to

integrate new developments continuously and avoids pushing this task to the end user,

which would inhibit reproducibility.

Reproducible. SeBS-Flow is multi-platform, supports automatic deployment of functions

to the cloud, and integrates with services like storage and cloud logging, allowing develop-

ers to focus on the actual implementation rather than specifics of cloud providers, which

can be time-consuming [35, 121]. These features are critical to reproducing measurements,

as the user intervention is minimized, and the experiments are executed automatically

from a provided configuration.

Serverless functions need cloud-managed storage to access data and retain state across

invocations. To that end, SeBS automaticallymanages object storage instances and provides

functions with a multi-cloud API. To create realistic workflow representations of web

applications, we need to support low-latency data stores other than object storage. We

chose NoSQL key-value storage for this task and extended SeBS with a high-level interface

for creating, modifying, retrieving, and deleting items. The interface supports a partition

and an optional sorting key. Each benchmark function can use multiple tables managed by

the benchmark suite. We map the tables to DynamoDB on AWS, CosmosDB on Microsoft

Azure, and Firestore in Datastore mode on Google Cloud.

Tomeasure runtime and performance, we collect the following data points for each function

invoked during a workflow execution:

1. start: timestamp 𝑇
𝑠 𝑓

𝑠𝑡𝑎𝑟𝑡 at the start of function 𝑠 𝑓 ’s execution

2. end: timestamp 𝑇
𝑠 𝑓

𝑒𝑛𝑑
at the end of function 𝑠 𝑓 ’s execution

3. requestID: provider-internal identifier used to locate billing information

4. containerID: in all cloud providers, we detect container reuse and assign unique

container identifiers by using the temporary filesystem and global variables.
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To reason about the runtime of phases, we use the following notations:

𝑇 𝑆𝑠𝑡𝑎𝑟𝑡 = min
𝑠 𝑓 ∈𝑆

(𝑇 𝑠 𝑓𝑠𝑡𝑎𝑟𝑡 ) 𝑇 𝑆
𝑒𝑛𝑑

= max
𝑠 𝑓 ∈𝑆

(𝑇 𝑠 𝑓
𝑒𝑛𝑑

)

𝑠 𝑓 ∈ 𝑆 is defined as all functions 𝑠 𝑓 executed within a single workflow phase 𝑆 . For

example, the map phase invokes multiple functions simultaneously, and its beginning and

end are defined by the earliest and latest functions, respectively. These values are sent to

a Redis [118] instance deployed in the same cloud region. We chose an in-memory cache

as it provides sub-millisecond latencies, reducing the risk of distorting the performance

measurements.

5.3. Benchmark Applications

In SeBS-Flow, we implement six benchmarks covering various real-life workloads where a

distributed computation is a natural fit. In addition, we implement four microbenchmarks

used in the evaluation: function chain, object storage performance, parallel invocations

(Section 5.5.3.1), and selfish detour (Section 5.5.3.2). The selected benchmarks cover

various domains that use workflows (Table 5.2) and correspond to previous findings on

the characterization of workflow use cases [48, 49] regarding control-flow, number of

functions, parallel invocations of the same functions, and longer runtimes: While 33% of

workflows include complex control flow, 50% are sequential, which we cover with Trip

Booking and the function chain microbenchmark. 72% of workflows use fewer than ten

different functions, 52% involve parallel invocations of the same function, and 25% contain

functions with an estimated runtime of over one minute, which is also included in our

benchmark suite.

In addition to the benchmarks introduced in the preceding Master thesis [24], we add

the scientific benchmark 1000Genome and the web application Trip Booking. Moreover,

we improve the implementation of the Video and ExCamera benchmarks by fixing the

data-flow between functions and ensuring different files are used per workflow invocation,

respectively.

Benchmark #functions Parallelism Critical path Download [MB] Upload [MB]

Video 4 2 3 238.83 7.48

Trip Booking 7 1 4/7 0.0 0.0

MapReduce 9 5 4 0.02 0.04

ExCamera 16 5 6 302.07 17.49

ML 3 2 2 7.82 3.91

1000Genome 19 12 4 273.54 3.47

Table 5.2.: Key features of different benchmarks.
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TaskTask

Map

c0

decode 
r: video 
w: x1,...,xn

...

detect1 
r: x1, model 
w: y1

detectN 
r: xN, model 
w: yN

acc 
r: y1,...,yN 
w: Y

start end... ...

Function transition Coordinator transition place

Figure 5.6.: The Video Analysis benchmark.
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c0
book_hotel 
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w: trip_id, booking_id
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Function transition Coordinator transition place

Task

book_rental 
r: rental_details, trip_id 
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Task

book_flight 
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w: flight_id

Task

confirm 
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   rental_id, flight_id 
w: status

Task

cancel_rental 
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Task
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r: trip_id, booking_id 
w: status

Task

cancel_flight 
r: trip_id, flight_id 

[failure]

Enter
Phase 4

c0

end

[failure][failure]

Figure 5.7.: The Trip Booking benchmark.

Video Analysis In this analysis benchmark, based on a parallelized version of the sequen-

tial benchmark in vSwarm [156] (Figure 5.6), we detect all specified objects in a video.

Functions decode video frames and perform detection with the Faster R-CNN model [120].

The video and the model are uploaded to the object storage before. The decode function

first downloads the video, decodes 𝐹 frames, and then uploads 𝑁 = ⌈ 𝐹
𝐵
⌉ batches of size

𝐵. 𝑁 parallel detect functions compute 𝑌𝑖 , all detections with the model’s confidence

𝑝 > 0.5. Finally, all detections are accumulated in acc, which returns the final payload 𝑌 .

Throughout our experiments, we fixed the number of frames 𝐹 = 10 and batch size 𝐵 = 5,

yielding two parallel functions in the map phase.

Trip Booking The benchmark represents web applications, and it mocks a common

example of reserving a hotel, car rental, and flight [107, 146]. We show the workflow in

Figure 5.7. The workflow is a pipeline of functions mocking the reservation system by

storing trip data in a shared NoSQL database. It implements the SAGA pattern of long-

running transactions [57] where a failure triggers the reversal of prior changes. For testing,

we simulate failure in the last confirm function, which is followed by three consecutive

functions to reverse the booking.

MapReduce Figure 5.9 shows our example of a MapReduce job, which is based on prior

implementations [106, 156] and performs the standard problem of word counting. First,

the split function partitions the input text containing𝑀 different words into 𝑁 batches.
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Task

Map

c0

gen 
r: N, M, c1,...,ck 
w: X, Y

...

train1 
r: X, Y      c1 
w: s1

traink 
r: X, Y      ck 
w: sk

... ...
Start Phase 2

c0start end

Function transition Coordinator transition place

Figure 5.8.: The Machine Learning benchmark.

𝑁 parallel map functions count how often each word occurs in their text chunk next and

return these counts separately for each word, denoted as 𝑌𝑀,𝑖 in Figure 5.9. Next, shuffle

flattens the resulting array 𝑌𝑀,𝑖 |𝑖 < 𝑀 . Finally, 𝑀 reducers count the total number of

occurrences for their respective word in parallel, yielding 𝑍𝑖 . The benchmark has two

parameters that influence the amount of work: the number of mapping functions 𝑁 , and

the total number of words𝑊 . We set 𝑁 = 3 and𝑊 = 5000, containing 𝑀 = 5 different

words. MapReduce frameworks typically execute fully in parallel. However, the available

workflow primitives of the platforms necessitate the shuffle function, not relying on

the array 𝑌𝑖 itself but flattening it to ensure that reduce achieves the desired level of

parallelism.

ExCamera ExCamera [54] uses interdependent video-processing tasks to encode videos

efficiently in parallel. A video with𝑀 total frames is processed in chunks of 𝑁 frames by
𝑀
𝑁
= 𝑇 parallel functions. First, each frame is encoded, yielding one key frame and 𝑁 − 1

interframes. Decode decodes all 𝑁 frames again, calculating the final state. The final state

from the first frame of the chunk is used for reencoding the other frames, resulting in one

final state and 𝑁 − 2 interframes. Lastly, the interframes are rebased sequentially based

on the previous result. We derive our implementation from the original description of

ExCamera [54] and the available implementation [53] (Figure 5.10). We use𝑀 = 30 total

frames and a chunk size of 𝑁 = 6, resulting in five parallel functions.

Machine Learning This workload represents a typical training pipeline (Figure 5.8). The

workflow starts with gen generating a dataset, accepting the number of samples 𝑁 and

the number of features𝑀 as input. Then, we train 𝐾 different classifiers 𝐶𝑖 in parallel. In

our tests, we generate 𝑁 = 500 samples and𝑀 = 1024 features. We train 𝐾 = 2 classifiers:

a Support Vector Machine [117], and a Random Forest [25], creating two concurrent

functions.

1000Genomes This scientific workflow identifies mutational overlaps using data from

the 1000 Genomes project to provide a null distribution for rigorous statistical evaluation of

potential disease-related mutations. It consists of five tasks and three phases (Figure 5.11):

First, 𝑁 individuals functions parse the data for their chunk of the input file of size𝑀
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and then upload their results to the cloud storage. While individuals_merge merges the

results into one, sifting computes the SIFT scores using the SNP_variants file uploaded

to the cloud storage prior to workflow execution. In the last phase, mutation_overlap

measures the overlap in SNP variants among pairs of individuals, and frequencymeasures

the frequency of mutation overlapping. Both functions are executed once per population 𝑃 .

The benchmark has the number of lines in the input file𝑀 , number of parallel individuals

functions 𝑁 , and number of populations 𝑃 as input variables. Each individuals function

receives
𝑀
𝑁
lines as input. We change the original workflow, written for a cluster environ-

ment, to let the individuals functions download only their respective chunk of the input

file from cloud storage. We use𝑀 = 1250 lines in the input file, 𝑁 = 5 parallel individuals

function, and 𝑃 = 6 populations.

91



5. Benchmarking of Serverless Workflows

Ta
sk

Ta
sk

M
ap

c 0
sp

lit
 

r: 
te

xt
w

: x
1,

...
,x

N

...

de
te

ct
1 

r: 
x 1

 
w

: y
M

,1

de
te

ct
N

 
r: 

x N
 

w
: y

M
,N

sh
uf

fle
 

r: 
y M

,1
,..

.,y
M

,N
 

w
: y

1,
...

,y
M

...

M
ap

re
du

ce
1 

r: 
y 1

 
w

: z
1

re
du

ce
2 

r: 
y 2

 
w

: z
2

re
du

ce
M

 
r: 

y M
 

w
: z

M

...
...

En
te

r P
ha

se
 4

c 0
st

ar
t

...
en

d
...

Fu
nc

tio
n 

tra
ns

iti
on

C
oo

rd
in

at
or

 tr
an

si
tio

n
pl

ac
e

Figure 5.9.: The MapReduce benchmark.
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Figure 5.10.: The ExCamera benchmark.
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Figure 5.11.: The 1000 Genomes benchmark.
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5.4. Evaluation of Workflow Model

We want to ensure that software engineers and researchers can use our model and work-

flows. For this, it needs to be capable of expressing the workflows used. Furthermore,

our transcription should not add overhead to the workflow, obstructing from finding the

fastest platform for a given workflow. We therefore review existing literature on serverless

workflows to evaluate whether our model is general enough to express applications of

workflows in academia, and if the transcription from our platform-independent representa-

tion to the platform-specific representations of workflows can add overhead compared to

their native implementation. We do so by using the meta-search engine Google Scholar to

find peer-reviewed publications containing the keywords cloud, orchestration, and server-
less workflow or serverless DAG. We exclude papers that are not in English, do not use

a workflow benchmark, or were published before 2017, the year of the first serverless

workflows in the cloud. This results in 72 papers analyzed papers (see Table 5.1, p. 76 for

their categorization). We provide the complete list of papers and analysis results as part of

the supplementary material
1
.

5.4.1. Expressiveness of our Model

We analyze the workflow benchmarks used in the literature and evaluate whether our

model can represent the control flow within the workflows without adding unnecessary

dependencies between their tasks. We distinguish between the capabilities of our model

(Section 5.1) and our implementation (Section 5.2).

Out of the 72 papers, 14 did not provide sufficient detail on the workflows used and their

dependencies to judge if we can express them. Benchmarks used in two papers are not

presentable by our model (Section 5.1), as they introduce new programming models to

support communication between functions during their execution and orchestration based

on the current load of the system, which is out of scope for us. Benchmarks used in

three more papers can be modeled but not transcribed to platform-specific representa-

tions (Section 5.2). For two of them, cloud platforms are the limitations, such as ending

the workflow as a result of a switch state (not possible on AWS) and using multi-stage

inputs, i.e., using the output of a previously executed function as input without passing

it to the functions invoked in-between. The third one uses a switch state requiring two

conditions to be true. While we do not support transcribing this currently, transcription

can easily be added to the implementation. We fully support modeling and transcribing

the workflows described in 53 of the 58 analyzed papers. Therefore, we conclude that

our model does not have general limitations within the scope of programming models

not allowing for communication between functions and using orchestration based on

dynamic characteristics of the system and can be used to model and execute workflows

on serverless platforms.

1
https://github.com/spcl/sebs-flow-artifact
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5.4.2. Overhead of our Model

To check if our model and transcription create overhead compared to a native implemen-

tation, we evaluate available benchmark implementations used in the analyzed papers and

compare them to our transcription of their workflows. Only 10 of the 72 papers include an

artifact containing workflow implementations or show their implementation as part of the

paper for any of the platforms we support. None of them uses Google Cloud Workflows.

In total, we find eleven AWS Step Functions state machines. One of them uses the AND
choice type. We currently do not transcribe this choice type and are therefore not able

to generate the same state machine. However, if we would add the transcription, the

resulting state machine would look similar. Another state machine adds fail and success
states before ending the workflow, which only introduces overhead as compared to just

ending the workflow. The other nine state machines use the same states with the same

parameters in the same order as the state machines we transcribe, except for the fact that

they specify each parameter explicitly as part of the state machine while we wrap them

within a single payload entry, which does not affect the overhead.

Four of the papers provide implementations for a total of six workflows using Azure

Durable Functions. While one paper only provides an implementation using stateful entity

functions, as opposed to the stateless activity functions targeted by us, the other five

workflow implementations use activities to orchestrate tasks similar to our transcription.

Since we parse our platform-independent representation within the orchestrator, this could

introduce an overhead during the execution of the orchestrator. However, the evaluation

of the 1000Genome benchmark, the benchmark with the most functions, shows that the

average duration of the orchestrator function is only 13.6 milliseconds.

We conclude that SeBS-Flow does not introduce noteworthy overhead in the workflows

compared to their native implementation.

5.4.3. Threats to Validity

We only used one search query to find relevant works to include in our evaluation, bear-

ing the risk of missing some results. We mitigated this by evaluating different queries

beforehand, evaluating the relevance of papers found, and checking if the results included

relevant papers we knew as a gold standard [44]. Moreover, the analyzed papers already

show a variety of workflows from different domains, which makes us confident that

our evaluation of the expressiveness of our model can generalize to workflows used in

other works. For the evaluation of the overhead, a threat to the external validity of our

evaluation is the limited number of artifacts available, with none available that uses GC

Workflows. While our transcription follows best practices and tutorials as provided by

the cloud providers and matches the artifacts we found, usage in other projects may be

different.
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5.5. Evaluation of Cloud Services

We use SeBS-Flow to evaluate and compare three major cloud workflow services – AWS

Step Functions, Google Cloud Workflows, and Azure Durable functions. We first evaluate

the overall runtime of the benchmarks from Section 5.3. Next, we break the runtime into

the runtime of the critical path and overhead between function invocations, investigating

different causes for their variation. This enables detailed insights into how different

characteristics, such as level of parallelism throughout the workflow, impact the runtime

of a workflow. Using these insights, developers can estimate which platform may be

well-suited for their workflow based on its characteristics.

Moreover, we are interested in how the execution of scientific workflows on cloudworkflow

services compares to execution in a cluster environment: There is rising interest in the

scientific community to use serverless solutions [49], accompanied by experimentation

with serverless offerings of the platforms [105] and management systems for serverless

execution of scientific workflows [83, 85, 126, 127]. However, they do not consider the

workflow orchestration systems the cloud platforms offer.

Next, we compare the pricing of the workflows on the different cloud workflow platforms.

Finally, we look at the long-term stability and evolution of performance by comparing

the overall runtime of benchmarks from 2022 and 2024. To sum up, we investigate the

following research questions:

RQ3 How can workflows be modeled and transcribed to different platforms to enable

comparative evaluation of their performance?

RQ3.1 What are the major runtime differences between platforms?

RQ3.2 What causes runtime and stability differences?

RQ3.2.1 What are overhead sources between function invocations?

RQ3.2.2 What causes variations in the critical path?

RQ3.3 How well can serverless workflow orchestration support scientific workflows?

RQ3.4 How does the pricing compare between platforms?

RQ3.5 How did the performance and stability of the platforms evolve over time?

5.5.1. Methodology

We deploy benchmarks on Azure to the europe-west region, on AWS to us-east-1, and on

Google Cloud to us-east1. We use the lowest common memory configuration that success-

fully executes the workflow on AWS and Google Cloud, at least 256 MB for computational

functions and 128 MB for simple web applications. We invoke the application benchmarks

in burst mode, triggering 30 executions at once and accepting all successful workflow
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executions, as other work suggests that most serverless applications have potentially

bursty workloads [48].

We check how often we should repeat experiments by computing non-parametric confi-

dence intervals on the results for the MapReduce benchmark. We aim for being within

a 5% interval of the median with a 95% confidence interval. For the burst mode with 30

executions triggered at once, this results in 1, 2, and 6 repetitions on AWS, GCP, and

Azure, respectively. We opt to execute and repeat all experiments 6 times, resulting in 180

executions. However, we could only obtain 30 executions of the 1000Genome benchmark

on Azure due to frequent timeout issues.

5.5.2. RQ3.1: Runtime Differences among Platforms

We first compare the total runtime of each benchmark on selected platforms. We calculate

the runtime by subtracting the first start timestamp from the last end timestamp, 𝑆 ∈𝑊
denoting all phases 𝑆 in a workflow𝑊 :

𝑇𝑅 = 𝑇𝑊
𝑒𝑛𝑑

−𝑇𝑊𝑠𝑡𝑎𝑟𝑡 = max
𝑆∈𝑊

(𝑇 𝑆
𝑒𝑛𝑑

) −min
𝑆∈𝑊

(𝑇 𝑆𝑠𝑡𝑎𝑟𝑡 )

The runtime results presented in Figure 5.12 do not yield a single fastest platform among

all our benchmarks. AWS is the fastest platform for three of the six benchmarks – Video

Analysis, ExCamera, and 1000Genome – while performing relatively well for the other

three. While Google Cloud’s performance is comparable to AWS, it is 1.55-1.97x slower on

the three benchmarks and the slowest platform for MapReduce and Machine Learning.

Azure Durable functions, however, perform very well on the MapReduce and Machine

Learning benchmarks, showing the shortest median runtime, but are the slowest platform

for the Video Analysis, the ExCamera, and the 1000Genome benchmark. For Trip Booking,

Azure also achieves the best median performance but suffers from large outliers. We

investigate the potential causes of slowdown in the next section. All platforms demonstrate

variable performance, with Azure showing the largest variance.

5.5.3. RQ3.2: Causes for Runtime and Stability Differences.

According to our benchmarking results, AWS and Google Cloud provide a mostly

performance-reliable workflow service, whereas Azure has considerably higher runtime

variability across all benchmarks. To investigate the causes for the slowdown, we split the

runtime into two components: the critical path𝑇𝐶 computed as the sum of all states’ maxi-

mum runtime within one phase, and the overhead 𝑇𝑂 caused by the scheduling and data

movement conducted by the cloud workflow service. We calculate the absolute overhead

by subtracting the critical path from the total runtime as follows:
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Figure 5.12.: Runtime of benchmark applications on AWS Step Functions, GC Workflows, and Azure Durable,

burst invocations.
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𝑇𝑂 = 𝑇𝑅 −𝑇𝐶 = (𝑇𝑊
𝑒𝑛𝑑

−𝑇𝑊𝑠𝑡𝑎𝑟𝑡 ) −
∑︁
𝑆∈𝑊

(𝑇 𝑆
𝑒𝑛𝑑

−𝑇 𝑆𝑠𝑡𝑎𝑟𝑡 )︸                ︷︷                ︸
critical path

Figure 5.13 presents the duration of the critical path opaque and the overhead shaded for

all benchmarks. We summarize the results as follows: Azure’s runtime is significantly im-

pacted by scheduling overhead. For instance, in the ExCamera benchmark, the scheduling

overhead averages 495.5 seconds, which is more than 36× the length of its critical path

of 13.5 seconds. The Machine Learning benchmark exhibits the least overhead, at 5× the

length of its critical path. For the 1000Genomes benchmark, the scheduling overhead on

Azure averages 3754.94 seconds, which is over 10 times the critical path duration of 371.47

seconds. Despite the high overheads, Azure achieves very low critical path durations

across all benchmarks, recording the fastest critical paths for ExCamera, MapReduce, and

Machine Learning. Google Cloud demonstrates the slowest critical path throughout the

entire benchmark suite. While it experiences less overhead than Azure, the overhead is

bigger than on AWS for all benchmarks. AWS shows the smallest overheads throughout

the benchmarks and the shortest critical path for the Video Analysis and 1000Genome

benchmarks.

To summarize, orchestration overhead causes long runtimes and performance variances

on Azure. For AWS and Google Cloud, however, the runtime of the critical path varies.

5.5.3.1. RQ3.2.1 Sources of Overhead

To further analyze the reasons for the different amounts of overhead between the platforms

and benchmarks, we analyze three common sources of overhead: object storage I/O, parallel

schedule, and function return payload.

Cloud Storage I/O. The size of data downloaded from the object storage differs between

benchmarks (Table 5.2, p. 88), with hundreds of megabytes in ExCamera, 1000Genomes,

and Video Analysis. These benchmarks experience the highest relative and absolute

overheads on Azure, with a duration of 495.5s, 3743.8s, and 609.7s, respectively. To verify

that this correlation is indeed causation, we execute a microbenchmark evaluating the

cloud storage I/O performance. We invoke 20 functions in parallel, each attempting to

download a file of size 𝐷 from the storage. Figure 5.14 shows the results. The overhead 𝑇𝑂
remains stagnant for AWS at around one second and nearly stagnant on Google Cloud

at around five seconds, increasing a bit for downloads larger than 1MB. On Azure, the

overhead shows the largest variance and increases for downloads larger than 1MB, from

4.9 seconds for 1 MB files up to 148.9s for 128 MB. However, the overhead decreases to

29.01s for 256 MB, possibly due to optimizations. Still, the overhead is 6.5× and 40.2×
higher than for Google Cloud and AWS for 256 MB, respectively. We conclude that the

data downloads can account for a significant part of the large overhead measured on Azure

Durable.
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Figure 5.13.: Mean duration of critical path (opaque) and overhead (shaded) of different benchmarks on

considered platforms, burst invocations.
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Parallel Scheduling. Another potential source of overhead are parallel invocations within

a benchmark. Benchmarks with the highest degree of parallel computation – ExCamera and

1000Genomes – show the largest overheads of Azure. We test that hypothesis by executing

a microbenchmark that spawns a generate function that spawns 𝑁 sleep functions in

parallel in the following workflow phase, each one sleeping for 𝑇 seconds. We execute

30 invocations of the microbenchmark concurrently, once for each possible combination

of 𝑇 = {1, 5, 10, 15, 20} and 𝑁 = {2, 4, 816}. Figure 5.15 shows the relative overhead of the

actual runtime of the benchmark compared to the execution time of the generate and

sleep functions. We calculate the relative overhead𝑇𝑟𝑂 as𝑇𝑟𝑂 = 𝑇𝑅 ÷𝑇𝐶 . This means that a

value of one indicates no overhead, and a value of two already indicates that the overhead

doubles the total runtime of the workflow. Figure 5.16 shows the absolute overhead 𝑇𝑂 in

seconds.

AWS functions (see Figure 5.15b) demonstrate modest relative overhead 𝑇𝑟𝑂 , with largest

values of 1.6 and 1.5 for the shortest duration. The relative overhead decreases with

increasing duration, resulting in very low relative overheads of 1.02 to 1.04 for the durations

of 15 and 20 seconds. However, the absolute overhead 𝑇𝑂 (see Figure 5.16b) incurred for a

certain number of parallel functions remains relatively constant, with the highest overhead

of around 0.63 seconds for 16 parallel functions and lowest of around 0.52s for two parallel

functions.

GC functions (see Figure 5.15c) present a more considerable relative slowdown that in-

creases with the number of parallel tasks. There, the system puts a cap on scaling up and

reuses containers, as 30 invocations with 𝑁 = 2,𝑇 = 1 start 60 different function containers

on AWS, but only 30 on Google Cloud. As for AWS, the relative overhead on Google Cloud

also increases for shorter durations, ranging from 3.2 to 5 for one second and only from
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Figure 5.15.: The relative overhead of the parallel sleep microbenchmark, 2 ≤ 𝑁 ≤ 16, 1 ≤ 𝑇 ≤ 20, 256MB,

burst invocations.

1.1 to 1.2 for 20 seconds. The absolute overhead (see Figure 5.16c) incurred for a certain

number of parallel functions varies a bit more than for AWS, not consistently decreasing

or increasing with the duration. The highest absolute overhead is 5.0s for 𝑁 = 16,𝑇 = 5,

lowest 1.3s for 𝑁 = 2,𝑇 = 20.

Azure (see Figure 5.15a) experiences an order of magnitude larger relative overhead that

increases with the parallelism factor, but does not seem to be correlated to the function

runtime. Azure shows the highest relative overhead of 42 for 𝑁 = 16,𝑇 = 5, and the lowest

relative overhead of 8 for 𝑁 = 2,𝑇 = 20𝑠 . Also, the absolute overhead (see Figure 5.16a)

is not consistently correlated to the number of parallel functions: While the absolute

overhead increases with the number of parallel functions for 𝑇 = 2, 𝑇 = 4, and 𝑇 = 20,

this does not hold true for 𝑇 = 10 and 𝑇 = 15. However, we can correlate the absolute

overhead with the function runtime as it increases for longer runtimes.

To better understand the impact of limited parallel scalability on our benchmarks, we

measure the number of distinct sandboxes allocated at any given time until the last

function execution has terminated. We invoke 30 concurrent executions of our workflow

benchmarks and display the scaling behavior in Figure 5.17. We do not show results for
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Figure 5.16.: The absolute overhead of the parallel sleep microbenchmark, 2 ≤ 𝑁 ≤ 16, 1 ≤ 𝑇 ≤ 20, 256MB,

burst invocations.

the 1000Genomes benchmark, as we were not able to obtain 30 concurrent successful

executions on Azure due to frequent timeout issues.

Throughout the benchmarks, AWS spins up most containers for each of the benchmarks,

putting almost every function execution in a new container and reusing very few containers.

The transitions between the different phases of the workflows are clearly visible. Google

Cloud exhibits similar scaling behavior, showing the same local maxima for the Video

Analysis, ExCamera, and Machine Learning benchmark. However, it also spins up new

containers more slowly, showing a less steep curve, and reuses containers more, as for

example for the MapReduce benchmark. Azure produces a much more constant curve that

remains similar throughout the benchmarks, never allocating more than ten containers

simultaneously and even scaling down to zero containers during workflow executions.

The transitions between the phases of the workflows are not visible.

In conclusion, parallel function executions cause high overheads on Azure. In contrast,

AWS and GC Functions experience less overhead and spin up more containers to exe-

cute functions in parallel, making them better suited for workflows with a high level of

parallelism.

104



5.5. Evaluation of Cloud Services

0 200 400 600 800
Time [s]

0
8

16
24
32
40
48
56

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(a) Video Analysis

0 100 200 300 400 500 600
Time [s]

0
20
40
60
80

100
120
140

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(b) ExCamera

0 5 10 15 20 25
Time [s]

0
20
40
60
80

100
120
140

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(c) MapReduce

0 5 10 15 20 25
Time [s]

0
4
8

12
16
20
24
28

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(d) TripBooking

0 5 10 15 20 25 30 35
Time [s]

0
8

16
24
32
40
48
56

#C
on

ta
in

er
s

Google Cloud
AWS
Azure

(e) Machine Learning

Figure 5.17.: Scaling profiles: the number of distinct containers used for 30 consecutive workflow invocations.

Return Payload. How data is transmitted when returning a payload is transparent to

the user (cf. Section 5.1.2), and may change depending on the payload size. Therefore,

we evaluate the overhead resulting from the function return payload size. We use a

microbenchmark consisting of a function chain, where functions return𝑀 bytes of result

sent to the consecutive function. Each function returns a unique payload. We deploy the

chain with ten functions and test the varying input size until the limit of𝑀 = 2
18 − 1000𝑏
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on Google Cloud, invoking the chain 30 times simultaneously and using results from warm

invocations only. Figure 5.18 shows that Google Cloud exposes the shortest latency of

the three platforms: The latency on Google Cloud remains relatively constant at around

0.15s, showing no consistent increase for larger payloads. The latency on AWS is a bit

higher and remains almost constant for payloads from 2
5
bytes (0.17s) to 2

16
bytes (0.24s)

only. For𝑀 = 2
18 − 1000𝑏, it increases up to 0.43s, almost doubling the latency. On Azure,

however, the latency is considerably higher for 𝑀 = 2
5𝑏 already with 0.82s, increasing

dramatically from 1.38s for𝑀 = 2
14𝑏 (16 kB) to up to 7.53s for𝑀 = 2

18 − 1000𝑏, suggesting

an influence of remote storage or queue. While this may present a significant source of

overhead in certain applications, our benchmarks do not return payloads larger than 1MB.

Therefore, this overhead can only account for a part of the slowdown.

Conclusions. The microbenchmarks demonstrate that a significant part of the overhead

observed on Azure originates from the parallel schedules and object storage I/O. Another

potential source which is out of scope of our study could be dynamic orchestration: A

statically scheduled system could optimize function placement, data prefetching, and

scalability by using a priori knowledge. However, as Azure is dynamically orchestrated,

the scheduler does not knowwhich functions will be executed and is thus unable to execute

any of the optimizations outlined before.

5.5.3.2. RQ3.2.2 Critical Path Discrepancy

The runtime of benchmarks across platforms shows that in addition to varying overhead,

the critical path of computation can be significantly different. To understand the reasons
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behind this difference, we analyze how the critical path duration is impacted by three

factors: data downloads, the varying CPU allocation, and frequency of cold starts.

Data Downloads. We reuse the measurements from the parallel download microbench-

mark presented in 5.5.3.1, this time looking at the time spent in the download functions (see

Figure 5.19). All platforms show a relatively constant critical path for downloads up to

2
20
bytes but demonstrate slowdowns for larger downloads up to 2

27
bytes. All platforms

seem to have optimizations in place that reduce download times again for downloading

2
28
bytes. Azure demonstrates the fastest download time of the three platforms, starting

at 0.05s for downloading 2
10
bytes and showing a maximum critical path of 3.95s. AWS

and Google Cloud, on the other hand, already take 1.16s and 1.27s for downloading 2
10

bytes, respectively. The maximum time of 4.43s on AWS is comparable to Azure. However,

Google Cloud takes 11.43s at the longest, 2.58×more than AWS and 2.89×more than Azure.

While Google Cloud demonstrates the slowest critical path throughout all benchmarks,

only some benchmarks download a considerable amount of data, accounting for part of

the slowdown. Thus, the duration of data downloads can only account for part of the

overhead.

OS Noise. The cloud provider controls the CPU allocation to a serverless function, either

in relation to the memory configuration on AWS and GCP [60, 98] or in an undisclosed

fashion on Azure. We use the selfish detour benchmark to quantify OS noise [79]. This

allows us to estimate how long the function is suspended by the OS, which in turn

approximates the vCPU timeshare. The benchmark runs a tight loop and records the event

that one iteration took significantly more cycles. It stops once it recorded this event 𝑁
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times. The magnitude and frequency of these events characterize the suspension and

noise. We deploy a workflow with a single function executing the benchmark, invoke

it 30 times concurrently, collect 𝑁 = 5000 events, and sample warm invocations only to

obtain consistent results. Figure 5.21 compares the relative to the expected suspension

time according to the cloud documentation. We observe generally less noise on Google

Cloud when compared to AWS, with more than 20% difference on 1024MB of memory.

While the noise on Google Cloud is less than suggested by the documentation except for

configurations with 2048MB of memory, the noise on AWS is consistently higher than

suggested by the documentation. We normalize the critical path per platform using the

following approximation: given a function with memory configuration𝑀 , we represent

the relative duration of function suspension as 𝑆𝑀 and compute the normalized critical

path 𝑇 ′
𝐶
as follows:

𝑇 ′
𝐶 = 𝑇𝐶 ∗ (1 − 𝑆𝑀 )

We observe the largest relative discrepancy on two benchmarks, MapReduce (Figure 5.22a)

and Machine Learning (Figure 5.22b). The overall trend observed in Section 5.5.2 re-

mains unchanged: Google Cloud demonstrates the longest critical path duration. The

suspension time explains the shorter critical path on Azure as compared to AWS and GCP

for benchmarks with low-memory configurations: Azure functions receive larger CPU

allocations.

Cold Starts. Cold invocations add significant overhead to the function execution [40].

Table 5.3 presents the frequency of cold starts encountered when executing 30 workflow

invocations simultaneously, with cold starts identified using the containerID (see Sec-

tion 5.2.3). AWS shows the most cold starts, with 100% cold starts for the MapReduce

and Machine Learning benchmark and only down to 73.58% cold starts for the ExCamera

benchmark. Google Cloud also shows a high percentage of cold starts, ranging from

68.17% for the MapReduce benchmark up to 99.26% for the Machine Learning benchmark.

Azure Durable exhibits significantly less cold starts with a maximum of 7.72% for the

1000Genome benchmark, likely because function apps on Azure can hold many invocations

concurrently [40]. While the low scalability causes high orchestration overheads on Azure,

it benefits the actual computations by putting them in warm containers. Due to the high

percentage of cold starts in our measurement data on AWS and Google Cloud, we collected

another 60 workflow invocations for AWS and GCP, where at least one function is warm,

and plotted the critical path for the resulting completely warm invocations. Figure 5.20

shows the impact of cold starts on the critical path and overhead of the Machine Learning

and MapReduce benchmark. Google Cloud and AWS functions perform up to 7.9× and

12.7× better, respectively, achieving almost the same performance measured on Azure.

Thus, cold starts are a major factor influencing the slowdown and performance instability

observed in many benchmarks.
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Cold starts

Benchmark AWS GCP Azure

Video 86.94% 68.61% 3.89%

MapReduce 100% 68.17% 1.0%

Trip Booking 100% 38.24% 0.6%

ExCamera 73.58% 69.34% 0.94%

ML 100% 99.26% 2.60%

1000Genome 98.16% 72.40% 7.72%

Table 5.3.: The relative number of cold starts per benchmark.
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Figure 5.20.: Critical path (opaque) and overhead (shaded) of completely warm and cold invocations.
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Figure 5.21.: Analysis of OS noise: Relative suspension time of functions, 𝑁 = 5000, warm invocations. Light

area shows the 95% confidence interval.
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Figure 5.22.: Analysis of OS noise.
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Figure 5.23.: Scalability of the 1000Genome workflow.

Conclusions. The microbenchmarks demonstrate that the shorter critical path on Azure

for low-memory function configurations is explained by larger CPU allocations, and that

the time spent within a function for downloading data explains longer critical paths on

Google Cloud for benchmarks with high data downloads. Moreover, we show that cold

starts are a major factor influencing the critical path of benchmarks.

5.5.4. RQ3.3: Usability for Scientific Workflows

We use the scientific benchmark 1000Genome to compare cloud services and the HPC sys-

tem Ault using nodes equipped with Intel(R) 6154@3.00GHz CPU, repeating measurements

five times.
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First, we compare the runtime of the total workflow, as shown in Figure 5.23a. While the

workflow execution time is, on average, 457.7s and 259.8s on GCP and AWS, respectively,

the execution takes only 7.7s on Ault. GCP exhibits a coefficient of variation of 12.2%,

while AWS has a coefficient of variation of only 3.3% - even lower than 4.1% on Ault.

Interestingly, I/O takes less than one second on AWS, meaning that the computation is

slower in the cloud
2
.

Then, we compare the scaling behavior of the different platforms for the individuals task

of the workflow. We employ strong scaling, i.e., adding more jobs while keeping the size

of the input file the same, resulting in smaller chunks per job. Therefore, optimal scaling

would halve the execution time for double the amount of tasks. Figure 5.23b shows the

speedup of 1.96 and 1.95 on AWS, 1.91 and 1.95 on GCP, and 1.51 and 1.24 on Ault for 10

and 20 jobs, respectively. The cloud platforms achieve a nearly optimal speedup, which is

not surprising given the high overhead for the baseline execution. Still, the execution time

of the complete workflow takes at least 33.8× more time than on Ault, showing that the

performance of the cloud platforms’ workflow orchestration is not competitive with the

performance of HPC systems.

While it is not surprising that serverless workflow orchestration is slower than executing

the same workflow on an HPC system, this result highlights the need for specialized

solutions, such as scientific workflow management systems optimized for serverless

environments. Despite the slower execution, serverless computing remains appealing

to domain scientists due to its pay-as-you-go billing model, flexibility, and the ability to

scale resources infinitely, making it accessible to users who lack on-site computational

infrastructure.

5.5.5. RQ3.4: Pricing

We compare the average cost of executing the workflows and estimate the prices, as

shown in Table 2.2, p. 25. Functions invoked during the execution of a workflow are

billed based on the integral of memory and duration. For state machine workflows,

as on AWS and Google Cloud, additional costs per state transition apply. Figure 5.24

visualizes the average cost per 1000 workflow executions split into two groups: function

execution (opaque) and the cost of orchestrating the state machine (shaded). Note that,

due to Azure’s billing and measurement system, we could only retrieve an average cost

value over all workflow invocations. Even though the Trip Booking benchmark is a

simple pipeline with error catching, running it with workflow orchestration still adds

significant state transition costs. Azure is the most expensive service for the 1000Genome

benchmark. Google Cloud is the most expensive for MapReduce due to the high number

of state transitions required. AWS Step Functions are the most expensive solution for the

other four benchmarks because functions cost 6.7× more for computation than Google

Cloud Functions. Azure is the cheapest platform for the Trip Booking, Machine Learning,

2
Note that the parallelism during the data download is less than during our parallel download micro-

benchmark, which makes the I/O times not directly comparable.
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Platform Video MapReduce Trip Booking ExCamera ML 1000Genome

AWS 7 14 9 21 6 26

GCP 20 54 16 73 18 96

Table 5.4.: The number of state transitions for AWS and GCP per benchmark.

MapReduce, and ExCamera benchmarks, while Google Cloud is the cheapest platform

for the remaining two benchmarks, Video Analysis and 1000Genome. The cost for state

transitions is nearly identical between AWS and Google Cloud, even though AWS charges

2.5× more per transition: the AWS state language requires fewer states to implement the

benchmarks (Table 5.4).

In addition to execution and orchestration costs, workflows can generate charges when

accessing the object and NoSQL storage. In all three clouds, the prices of read and write

operations on the object storage are exactly the same. However, the billing models for key-

value storage differ: DynamoDB charges for operations according to the amount of data

read and written in strictly defined size increments; CosmosDB applies the same pricing to

request units but does not explicitly define expected consumption; and Datastore has higher

costs per operation but makes the cost independent of the item size. To understand the

impact of price differences, we analyze the full execution of the Trip Booking benchmark.

One workflow invocation requires three insertions and three deletions, with all items

taking at most a few hundred bytes. While the estimated storage costs are similar on each

platform, between ¢0.68 and ¢1.08 for one thousand executions, they impact the final cost

differently. NoSQL operations add only 2.74% and 6.72% of the total price on AWS and

GCP, respectively. The total execution cost on Azure is just ¢2.4. There, the estimated cost

of CosmosDB request units is equal to ¢0.68 and adds 28.5% of workflow price.

5.5.6. RQ3.5: Evolution of Performance

Finally, we assess the performance stability over time by comparing measurements from

July 2022 and January 2024. The executions from 2022, conducted as part of the preceding

master thesis [24], contain 30 invocations per workflow using Python 3.7, in cloud regions

europe-west for Azure, europe-west-1 for GCP, and us-east-1 for AWS. We run the 2024

invocations in the same regions, except for GCP in us-east1, and use Python 3.8, as the

platforms already deprecated Python 3.7. Figure 5.25 shows the results. The critical path

and overhead of the MapReduce and ML benchmark are approximately the same on Google

Cloud. The runtime on AWS is relatively stable without any notable differences between

2022 and 2024. Azure has a stable duration of the critical path. While the overhead

for MapReduce on Azure is the same in 2024 as in 2022, the overhead of ML has been

approximately halved from 2022 to 2024.
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Figure 5.24.: Price per 1000 workflow executions: function costs are opaque and state transition costs are

translucent.
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Figure 5.25.: Comparison of critical path (opaque) and overhead (shaded) between 2022 and 2024, burst
invocations.

5.5.7. Threats to Validity

A threat to the external validity is our choice of benchmark applications. We mitigate this

by using applications from different domains that correspond to previous findings on the

characterization of workflow use cases [48, 49].

For the internal validity, the quality of our measurements is important. Here, the different

geographical regions and weekdays on which we conducted our measurements could

have an impact. First experiments showed that there is performance variability on Google

Cloud Functions depending on the time of day [132]. While systematically investigating

this is beyond the scope of our work, we are confident that our measurements can provide

a reliable base for characterizing the performance of the different platforms: As detailed

in Section 5.5.1, we repeat each application measurement six times to obtain stable results,

resulting in 180 workflow executions. We conduct the repetitions directly after another

and update the functions in-between repetitions to enforce a realistic distribution of cold

and warm starts, and avoid order effects between repetitions. Also, the results from

RQ3.5 in Section 5.5.6 showed that the measurement results from 2022, conducted on

different weekdays and times of days as our 2024 measurements, are mostly comparable

and therefore reassure our confidence in the reliability of our measurements.

5.6. Related Work

Multiple benchmark suites have been proposed to cover different aspects of serverless

computing, from microarchitecture to the application level [12, 40, 50, 91, 104, 138, 151].

However, all of them consider only the execution of single functions. Das et al. [41]

benchmark serverless edge computing platforms. Other performance studies of server-

less applications focus on non-workflow orchestration systems, e.g., using cloud storage

and queue triggers [65, 75, 130, 143]. Grambow et al. [65] propose BeFaaS, providing
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an application benchmark modeling an online shop where the functions communicate

using synchronous and asynchronous calls. In contrast, we target serverless workflow

orchestrations with SeBS-Flow.

ServerlessBench [167] considers a function chain microbenchmark orchestrated by AWS

Step Functions, but only measures runtime of the workflow and time in between function

invocations for varying payload sizes. Kousiouris et al. [95] use microbenchmarks to

estimate the overhead of orchestration in OpenWhisk. López et al. [56] investigate the

orchestration overhead with microbenchmarks of function chains and parallel functions.

Shahidi et al. [137] evaluate the performance and cost of two stateful workflows on AWS

and Azure. Barcelona-Pons et al. [15] use a microbenchmark to test the performance of

fork-join parallelism in workflow orchestrators. With SeBS-Flow, we provide not only
microbenchmarks, but also six applications from different domains that can automatically

be deployed to different cloud platforms. Based on these benchmarks, we present a broader

evaluation of the performance of cloud platforms.

Wen et al. [162] conducts a performance investigation of serverless workflows using two

applications and microbenchmarks with varying numbers of functions, payload size, and

parallelism. They measure the execution time and estimate overhead. They show that

while AWS Step Functions achieves a shorter total runtime for their applications, Azure

Durable Functions has a shorter critical path and its runtime is dominated by overhead.

This is consistent to our findings. However, for their micro-benchmarks, they find that

Azure Durable Functions has a lower total runtime for parallel function executions. In

our experiments, Azure Durable Functions experiences an order of magnitude higher

overhead when executing functions in parallel. As they conducted their measurements in

2020, this difference in observations could be caused by evolution of the platforms. Wen et

al. do not investigate different sources of overhead, and do not evaluate scalability nor

billing. In contrast to them, we focus on a wider collection of applications and propose a

unifying model that allows us to deploy and evaluate a single implementation across many

cloud platforms. Furthermore, we make all benchmark codes available and integrated

into an established benchmarking suite for easy deployment and reproducibility. Finally,

we evaluated serverless Google Cloud Workflows instead of the non-serverless Google

Cloud Composer. XFBench [96] provides chaining of different functions and deploying

them to AWS Step Functions and Azure Durable Functions, while we focus on realistic

and complete applications. Moreover, they do not consider cloud-native data movement

between functions via cloud storage, do not evaluate the overhead of their platform

transcription, and can not compare pricing between platforms.

Other authors analyzed the productivity of workflow languages and proposed alterna-

tive models. AFCL [122] is a custom and provider-independent orchestration language

for serverless workflows. Their goal is to speed up the definition of workflows and to

replace the workflow orchestration provided by the platforms by scheduling the functions

themselves, while our workflow definition transcribes to the workflow representations of

different platforms. Burckhardt et al. explore the semantics of Durable Functions [27] and

propose Netherite [26], a new engine to replace Azure Durable Functions. Their goal is to

increase the efficiency of workflow engines, while we aim to benchmark their performance.
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Versluis et al. [155] investigate the support for annotating non-functional requirements in

different workflow formalisms. Moreover, they compare the different formalisms regarding

their suitability for extension to support non-functional requirements. Different to them,

we are not interested in annotating non-functional requirements but want to express

control-flow and data-flow of workflows.

5.7. Summary

We propose SeBS-Flow, the first benchmark suite for serverless workflows. We follow

the established benchmark design principles: introduce a platform-agnostic workflow

model, propose a collection of six representative applications, and integrate them into an

existing benchmark suite to ensure reproducibility and ease of use. We support the three

major cloud providers AWS Step Functions, Google Cloud Workflows, and Azure Durable

Functions, and offer extension possibilities: Benchmarks can be ported to other services by

implementing a single interface transcribing our model to the cloud-specific interface.

We first evaluated our workflow model regarding its expressiveness and the introduced

overhead when transcribing it to different cloud providers by reviewing existing literature

on serverless workflows. We found that our model does not have general limitations in

expressiveness and does not introduce noteworthy overhead compared to native imple-

mentations, both with regard to the workflows used in literature.

Then, we use SeBS-Flow to conduct a comprehensive and long-term evaluation of the

performance and cost of the proposed benchmark applications, investigating factors

influencing the runtime and variance: cold startups, noise, scheduling overhead, and

the storage I/O. With the new benchmark suite, we enable benchmarking of the same

workflow on different platforms, providing software developers and researchers with

valuable insights regarding their different behaviors and properties.
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6. Conclusions

In this chapter, we conclude the thesis. We summarize our contributions and their val-

idation in Section 6.1. Section 6.2 presents the benefits of our contributions for various

stakeholders. We then recap the most important assumptions and limitations in Sec-

tion 6.3.

6.1. Summary

In this thesis, we presented three validated contributions that answer the research questions

defined in Section 1.3. In the following, we summarize the contributions, the corresponding

research questions, and the evaluation.

6.1.1. Experiment Design for Automatic Performance Modeling

We introduce Performance-Detective, a new white-box measurement method that uses

deductive analysis based on the results of a taint analysis to find an optimized, minimal

set of required measurements from a complex configuration space (C1). Unlike traditional

methods that use heuristics, Performance-Detective uses program information to precisely

remove unnecessary measurement points. We use two central insights to reduce mea-

surement points, answering RQ1: First, if parameters influence distinct sets of functions,

we do not need to measure configurations aimed at finding interactions between them.

Second, we not only do not need to include parameters in the experiment design that

influence the computation linearly, but can also skip repetitions of experiments. This

reduces the dimensionality of experiments, making performance modeling more affordable

without losing accuracy. Our evaluation with the Pace3D multi-physics solver and the

particle transport application Kripke show that Performance-Detective can reduce the cost

of required measurements significantly while maintaining the model accuracy, making it

a powerful tool for efficient performance modeling in scientific applications.

6.1.2. Identification of performance-irrelevant options

Contribution C2 addresses the complexity of performance modeling by introducing a

new pre-processing step that automatically finds and removes performance-irrelevant

configuration options, answering RQ2. This is a three-step process: After conducting
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small-scale measurements, we build a preliminary performance model. Examining this

model, we can identify which options it uses to make predictions and which options are

not used and therefore do not have a performance impact. By filtering out performance-

irrelevant options, our method reduces the cost and effort needed to create performance

models. Our evaluation shows that this approach can effectively distinguish into relevant

and irrelevant options without mistakenly excluding important ones, thus simplifying the

modeling process by making it more accessible and less costly.

6.1.3. Benchmarking of Serverless Workflows

Contribution C3 offers SeBS-Flow, the first benchmark suite designed specifically for

serverless workflows. To answer RQ3, we propose a workflow model based on the Petri

Net formalism that shows control- and data-flow explicitly and can be transcribed to the

interfaces of multiple cloud platforms. This allows users to seamlessly run nearly the

same workloads across different systems. Reviewing existing publications on serverless

workflows with benchmarks, we show that our transcription to the provider-specific imple-

mentations adds no substantial overhead. Our benchmarking suite includes six real-world

application benchmarks and four microbenchmarks, covering a range of computational

tasks such as machine learning, multimedia processing, and scientific applications. With

SeBS-Flow, we provide a consistent and reproducible method for evaluating and comparing

the performance, cost, scalability, and stability of serverless workflows platforms. Our

evaluation highlights key factors that affect runtime and variability, such as cold startups,

noise, scheduling delays, and storage I/O, offering valuable insights into the performance

of serverless programming models and cloud systems.

6.2. Benefits

The contributions presented in this thesis offer numerous benefits tailored to the needs of

domain scientists and software engineers, easing performance modeling, optimization,

and benchmarking across diverse computing platforms.

Increased Efficiency and Reduced Costs. The automatic identification and exclusion of

performance-irrelevant configuration options streamline the performance modeling pro-

cess, reducing both time and computational costs. This makes advanced performance

modeling techniques more accessible to domain scientists, even those without deep exper-

tise in performance engineering. By utilizing deductive analysis to minimize the number

of required measurements, Performance-Detective considerably reduces experimentation

costs. This efficiency enables domain scientists to allocate more resources to their core

research activities, making the performance modeling process less resource-intensive and

more cost-effective.
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Ease of Use and Accessibility. Building on existing tools for automatic performance

modeling, the contributions of this thesis simplify the performance modeling process,

therefore making it more user-friendly for domain scientists. By removing the need

for performance engineering knowledge, the use of advanced performance modeling

techniques is democratized, allowing a broader range of scientists to benefit from these

tools. Moreover, we built a ready-to-use benchmarking platform for the performance

analysis of serverless workflows, hiding the complexity associated with benchmarking

from developers and scientists.

Comprehensive Benchmarking. By abstracting differences between various cloud plat-

forms away, our workflow model allows for seamless benchmarking and comparison

of workflow performance across different serverless platforms. Our benchmark suite

for serverless workflows provides a standardized and reproducible way to evaluate and

compare serverless platforms.

6.3. Assumptions and Limitations

Drawing from the discussions about assumptions and limitations in Section 3.2.5 and

Section 4.2.4, as well as about the respective threats to validity in Section 3.4.4, Section 4.4.3,

Section 5.4.3, and Section 5.5.7, we recap the most important assumptions and limitations

of our contributions.

Representative computation for small problem instances. For both contributions C1

and C2, we assume that the problem size can be scaled down while the computation is

still representative. For C1, the cost of the taint analysis depends on the input, as the

dynamic part of the analysis executes the software to derive the parametric profile. If it is

not possible to scale down the problem size without affecting the computation, the taint

analysis will have a higher cost. For C2, the cost of our small-scale measurements depend

on the input size, therefore affecting the total cost of our pre-processing step. However, if

measurements are taken with bigger problem sizes for our pre-processing step, they could

also be re-used for the principal performance modeling, therefore balancing the additional

cost incurred.

Location of Performance-Relevant Behavior. A limitation of Performance-Detective is in-
troduced through its reliance on Perf-Taint for the system analysis. As Perf-Taint assumes

that performance-relevant behavior is located in computational loops and MPI communi-

cation routines, the parametric profile created only contains parameter dependencies for

these cases. Moreover, this means that we do not regard binary parameters, such as the

choice of algorithm.
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Selection of Benchmarks. One limitation of SeBS-Flow is the choice of benchmarks. Even

though we offer six benchmarks from different domains and with different characteristics,

this selection can affect the results. It may not fully reflect the variety and complexity

of real-world workflows, which could limit how general our findings are. Therefore,

while our benchmarks aim to provide a broad evaluation, they may not cover all the

details and performance traits found in actual serverless workflows. A limitation of the

evaluation of the overhead of our workflow model is the overall low number of available

implementations of workflows and the absence of implementations using Google Cloud

Workflows in the reviewed literature. While we follow best practices as provided by

the cloud providers, we can not rule out the possibility of projects orchestrating their

workflows differently.
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In this chapter, we discuss possible directions for future research regarding each of our

contributions.

Experiment Design for Automatic Performance Modeling. An interesting direction for

future work is to demonstrate how more than three parameters can be modeled effectively

by using taint analysis and our experiment design deduction. Previous studies have

indicated that modeling four or more parameters can be difficult due to noise, which makes

it hard to model parameter dependencies accurately except for the most important effects.

This modeling of noise can lead to misrepresentations about how different parameters

interact. By isolating the influence and interactions of parameters, we can improve our

ability to model more parameters and gain a clearer understanding of their relationships.

Additionally, an interesting extension of Performance-Detective could be the support of

binary parameters. As binary parameters usually determine if a specific piece of code is

executed and switching between them results in performance jumps. This means that

different performance models need to be created for the numerical options influencing

the performance of the (de-)activated piece of code. Nevertheless, by using an analysis

that can work with binary parameters, such as the analysis used by Velez et al. [154], we

could locate the area influenced by a specific binary parameter and deduce a minimal

experiment design for creating performance models incorporating the effect of the binary

parameters.

Identification of Performance-Irrelevant Options. In future work, the evaluation of our

approach with more case studies will provide more insights about its general applicability.

Moreover, different performance modeling methods can be compared to see how well they

are suited to identify performance-irrelevant options using small samples. For example,

DeepPerf [71] and PERF-AL [139] use deep neural networks. These methods may need

fewer samples even though they take longer to train than DECART.

Additionally, building black-box principal performancemodels iteratively with andwithout

filtering the options identified as performance-irrelevant by our approach for the sampling

designs can provide further insight on the advantages of our approach. By building

performance models from both sets of samples, we can quantify how much faster the

predictive quality of the model improves by ignoring irrelevant options. Moreover, in

conjunction with the extension of Performance-Detective to handle binary parameters, we
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can also evaluate how much we can save by filtering performance-irrelevant options as

compared to the experiment design deduced by Performance-Detective.

Another direction is leveraging monitoring data from production runs of the system to

identify performance-irrelevant options instead of our dedicated small-scale experiments.

This would require the monitoring data to contain not only measurement data, but also

the provided configurations and hardware used for different runs. Also, the problem of

missing repetitions of the same configuration could arise, which are important to ensure the

reliability of the end-to-end measurements. Combining this approach with results derived

by documentation-based approaches like SafeTune [76] to specifically evaluate options

identified as important by them can further reduce the cost of performance modeling.

Benchmarking of Serverless Workflows. Future work can add transcription of our work-

flow model to more serverless platforms. This will help developers to understand the

strengths and weaknesses of additional platforms better and enable comparison between

them.

Also, including more benchmarks could help in generalizing our findings. Especially

benchmarks from different scientific fields would be interesting to further investigate

differences in platform suitability for these types of workloads. Additionally, our workflow

model could be used for transcription to the representation of different scientific workflow

management systems to enable fair comparisons between them.

Moreover, to further evaluate our workflow model, repositories on GitHub and gray

literature could be searched to analyze more existing implementations and unpublished

studies to compare our model and transcribed workflows with.
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