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ABSTRACT

Neural Networks have been successful in solving complex problems
across various fields. However, they require significant data to learn
effectively, and their decision-making process is often not transpar-
ent. To overcome these limitations, causal prior knowledge can be
incorporated into neural network models. This knowledge improves
the learning process and enhances the robustness and generalizability
of the models. We propose a novel framework RCINN that involves
calculating the inverse probability of treatment weights given a causal
graph model alongside the training dataset. These weights are then
concatenated as additional features in the neural network model. Then
incorporating the estimated conditional average treatment effect as
a regularization term to the model loss function, the potential in-
fluence of confounding variables can be mitigated, leading to bias
minimization and improving the neural network model. Experiments
conducted on synthetic and benchmark datasets using the framework
show promising results.

Keywords Neural Networks · Causal graphs · Prior knowledge · Causal inference ·
Propensity score weighting · Regression

1 Introduction

Despite the promising results of Neural Networks (NNs) across various fields, they still
face unresolved challenges [17]. A key issue is their limited performance when there is
a lack of training data, which affects their ability to generalize [27]. Additionally, the
black-box nature of NNs prevents a precise explanation of their mechanism [27]. While
they excel at uncovering concealed features and their co-occurrences within the input
data, they struggle to uncover and clarify any underlying causal relationships between
those features. To address these challenges, it’s critical to incorporate causality into
machine learning frameworks [26, 19].

Incorporating NN models with causality enhance their robustness and ability to general-
ize [27]. Furthermore, such frameworks can accurately model shifts in data distributions
by concentrating on causal relationships, which are based on a sequence of cause and

https://orcid.org/0000-0002-7697-4456
https://orcid.org/0009-0009-4323-9656


Regression via Causally Informed Neural Networks

effect rather than correlation, which simply observes patterns without implying direction.
Therefore, causality provides NN with the capability to properly reason beyond its
training data [26].

The adoption of deep learning in manufacturing systems is still in its early stages [15].
This could be attributed not only to its exclusive reliance on data-driven techniques
but also to the lack of research conducted on incorporating domain experts’ causal
knowledge into deep learning models. Recent research is focused on improving model
performance and explainability by integrating prior knowledge into the learning process
[6, 1].

The methodologies to incorporate prior knowledge within NNs are varied and innovative
[31, 5]. This involves embedding prior knowledge into NNs by transforming the input
data [12, 9], imposing informed constraints on the loss function to direct the optimization
process towards solutions that respect established relationships and theoretical frame-
works [20, 8], and the integration into the architecture of NNs itself or constraining
model parameters [3, 12]. The ongoing studies aim to combine different methods to
ensure that the incorporated prior knowledge effectively guides the learning process,
while still allowing the NNs to uncover new insights based on the data. However, the de-
velopment of models that incorporate causal prior knowledge continues to be a challenge
[27].

The subsequent sections of the paper are structured in the following manner: Section
2 provides an overview of causal inference, and section 3 addresses related work. In
section 4 we present the proposed framework, followed by the experimental results in
section 5. We conclude with section 6 outlining some major unsolved challenges and
provide insight into potential directions for future research.

2 Causal Inference

Causal inference determines cause-and-effect relationships between variables based
on observational data. It aims to estimate the causal effects of a specific treatment
or intervention on an outcome of interest while considering potential factors that may
introduce bias or influence the relationship [24].

2.1 Causal Graphs

Causal graphs, that do not contain any cycles between variables, can be represented as
Directed Acyclic Graphs (DAGs). Such a DAG can be defined as G = (V,E), where
the causal graph G depicts the causal relationships between variables, nodes, V , with
directed edges E between the nodes depicting the direction of cause and effect [32].

When estimating causal effects, it is important to consider two types of variables:
Confounders and instrumental variables (IVs) [22]. As shown in figure 1, a confounder
C ∈ V is a variable that influences both the treatment X ∈ V and the outcome Y ∈ V ,
which implies that any observed correlation between the treatment and the outcome
might be due to the confounder’s spurious correlations rather than a causal relationship.
On the other hand, the instrumental variable Z ∈ V is a variable that only affects the
treatment and is not directly linked to the outcome.

2.2 Conditional Average Treatment Effect

Conditional Average Treatment Effect (CATE) measures the causal effect of the treatment
on the outcome, conditioned on confounding variables or covariates [18]. The backdoor
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Figure 1: Causal Graph, X → Y indicates that the treatment node X is the cause of the
outcome node Y . Node C is a confounding variable with an effect on X and Y , and
Node Z is an instrumental variable with effect on X .

criterion introduced by Pearl [24] controls for confounding variables to obtain a more
precise estimation of the causal effect. It identifies and blocks potential paths that might
introduce bias between the treatment and outcome variables. The CATE is then defined
by,

τCATE = E[Y | do(X = x)] = ECE[Y | X = x,C = c], (1)

where E[Y |do(X = x)] represents the expectation of the outcome Y under the inter-
vention do(X = x). The do-operator allows for the identification and estimation of
causal effects from observational data under certain conditions. C represents the set of
confounders of variables X and Y .

The instrumental variable method [10] estimates the effect of the instrument on the
treatment and the outcome to estimate the effect of the treatment on the outcome. The
CATE is then defined by,

τCATE = E[Y | do(X = x)] =
E[Y | Z = z]

E[X | Z = z]
, (2)

where Z represents the set of IVs. It helps in identifying causal effects where the
backdoor method fails [18].

2.3 Inverse Probability Weighting

Inverse Probability Weighting (IPW) [22] is a statistical technique that can reduce bias
and provide more accurate estimates of causal effects. It involves assigning weights for
each observation based on their estimated propensity scores e(C), which represent the
probability of receiving a particular treatment given a set of observed confounders, and
it is represented as

e(C) = P (X = x | C = c). (3)

IPW is a method for controlling the confounders by constructing pseudo-populations
within the data and weighing them based on the inverse of their propensity scores αIPW
in order to decounfounded the data

αIPW =
1

P (X | C)
. (4)

Pseudo-populations are created by upweighting the underrepresented and downweighted
the uprepresented groups in the dataset [18]. This weighting aims to balance the dis-
tribution of covariates between the treatment and untreated groups, making them more
comparable, and thereby reducing potential confounding effects.
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3 Related Work

Deng et al. [7] present a deep learning framework for forecasting societal events
that leverage causal inference. Their approach utilizes Individual Treatment Effects
(ITE) to estimate the impact of different treatments or events on societal outcomes
within spatiotemporal environments. The model integrates causal information into event
predictions, by predicting potential outcomes for different treatment scenarios.

The work by Richens et al. [25] discusses the use of Structural Causal Models (SCM)
as a means to encode the relationships between diseases, symptoms, and risk factors,
enabling more accurate diagnostic reasoning. The authors develop algorithms that
prioritize causal inference and highlight the importance of addressing confounding
issues and the necessity of causal knowledge in the diagnostic process.

Kyono et al. [13] show how causal graphs can be used as prior knowledge to improve
model selection and enhance the reliability of NN performances. They propose incorpo-
rating this knowledge into a Structural Causal Model to calculate a score that evaluates
how well a model’s predictions align with the SCM and input variables.

Teshima et al. [30] introduce a model-independent method for data augmentation that
leverages the conditional independencies relations in the data distribution, encoded in
causal graphs, to enhance supervised learning.

In a recent study Terziyan et al. [29] proposed a novel framework for enhancing
Convolutional Neural Networks (CNNs) by incorporating causality-awareness into
their architecture. An additional layer of neurons is introduced to the architecture
that is specifically designed to estimate asymmetric causality in images by leveraging
convolutional layers to extract features from images and then using these features
to estimate conditional probabilities, effectively improving image classification and
generation.

The expanding number of research emphasizes the importance of integrating causal
regularization strategies into the framework of predictive modeling to address the issue
of confounding variables in causal inference. By regularizing the model to consider
causal relationships, it can provide more reliable and interpretable results [11, 14].

4 Method

We propose the novel framework RCINN that combines the strengths of causal inference
and neural networks in regression tasks. The initial step involves encoding domain
knowledge into a causal graph. If a causal graph is unavailable, causal discovery
methods can be utilized to learn it from the data [16]. However, in this work, we are
assuming that the causal graph is known.

Figure 2 shows the structure of our proposed, causally informed neural network frame-
work RCINN for integrating causal prior knowledge into a neural network. Besides the
usual training data (D, Y ), where D are input features and Y are the true labels, the
framework leverages additional prior knowledge from an independent source given by
the DAG G.

In order to identify the CATE using either the backdoor criterion or the IV method
discussed in 2.2, by using the Dowhy library for causal inference from Microsoft [28] to
conduct an analysis of the given causal graph G regarding confounders and IVs.

Each observation in the training dataset is assigned a weight based on its corresponding
inverse probability weight αIPW as shown in equation 4. This weighting approach
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Figure 2: The proposed causally informed neural network framework RCINN.

prioritizes observations that are less likely, based on covariates, to receive the treatment
they actually received. Adding these weighted feature values as an additional feature
to the training dataset generates a new input features Dnew that implies increasing the
initial weights of the features with causal relationships when inputting them into the
neural network model.

To estimate the causal effect τCATE, if the graph contains confounders, the CATE is
estimated using the backdoor equation 1. On the other hand, for IVs, equation 2 is used.
We scale the outcome by IPW to get an unbiased non-parametric CATE estimator

τCATE = E[αIPW · τCATE]. (5)

To make sure that we have controlled for variables that contribute to bias. By using
one of the refutation tests from Dowhy which is used to validate the causal estimates.
It adds randomly generated covariates to the data, then reruns the estimator to return
a tested causal estimate β and check if the causal estimate changes or not. The robust
causal estimate should not change much with a small effect of the unobserved common
cause. The neural network model is then trained with the new input features, by learning
a function from the data (Dnew, Y ). The loss function of the regression neural network
learning model is then computed as

LPred = L(Y,Ŷ ) + λ ·W 2, (6)

where L(Y,Ŷ ) is the label-based loss that can be represented by the mean squared

error, Y, Ŷ are the actual labels and predicted values respectively. λ · W 2 is the L2
regularization function used to control model complexity. It adds the squared values of
the model weights W to the loss function and thereby encourages smaller weights and
helps to prevent overfitting.

On top of the predictive loss, we added a regularization term causal loss LCausal that
penalizes the deviations from the causal estimate during neural network training. This
is done by squaring the difference between the predicted outcomes and the estimated
causal effect. The causal loss encourages the neural network to make predictions that
are consistent with the causal relationships and robust to unobserved confounding, and it
is defined as

LCausal = (Ŷ − τCATE)
2 + (τCATE − β)2, (7)

By incorporating the causal loss term LCausal, we can mitigate the potential influence of
confounding variables that may affect both the treatment and the outcome. We train the
NN model by minimizing the following loss function

LTotal = LPred + µ · LCausal, (8)
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by multiplying LCausal with the regularization hyperparameter µ, we control the strength
of the regularization term. Higher values of µ increase the regularization effect, encour-
aging the model to respect the causal graph more strongly.

5 Experiments

We evaluate our method on both linear and non-linear regression datasets. The datasets
include Linear, a linear synthetic dataset with three confounders and two IVs. Nonlinear,
a non-linear synthetic dataset with three confounders. A benchmark Infant Health and
Development Program (IHDP) dataset [28] with 25 confounders.

For a fair comparison, we adopt the same training setting and the same NN architecture
for all models. For each task, we report the model loss with a standard deviation
calculated over 5 different testing data. The data is divided into training, validation, and
testing sets with proportions of 60%, 10%, and 30% respectively. The neural network
architecture consists of two layers, with the first layer having 128 neurons and the second
layer having 64 neurons. The output layer is the final layer of the neural network. During
training, we adopt the Adam optimizer [2]. The training batch size is 32. We set λ as 0.1
and µ as 0.01 for all datasets.

Table 1: Performance of Regression tasks on three different datasets: Linear, Nonlinear,
and IHDP. RF represents a Random Forest algorithm, Baseline_NN model is the neural
network without causality and RCINN utilizes causal prior knowledge.

Datasets RF Baseline_NN RCINN

Linear 0.227 ± 0.006 0.425 ± 0.006 0.152 ± 0.002
Nonlinear 34.853 ± 0.759 25.329 ± 0.593 20.913 ± 0.145
IHDP 1.95 ± 0.43 2.52 ± 0.11 1.7 ± 0.14

The results are reported in Table 1. We observe that our method demonstrates promising
performance on both the synthetic datasets as well as on the benchmark dataset.

Overall, this approach allows us to leverage the strengths of both causal inference and
neural networks, leading to a reduction in bias and an improvement in the performance
of the neural network model.

6 Future Prospects

Much potential lies in exploring new combinations of approaches, that have not yet been
investigated. One such example is merging causal prior knowledge with the architecture
of NNs using the attention mechanism [23]. This allows the model to iteratively process
knowledge by selecting only relevant content in each step. The inclusion of a knowledge-
based attention layer improves prediction and overall model performance.

Another promising framework involves integrating a causal graph model in the form
of an embedding graph layer, which can then be used as input for Bayesian Neural
Networks (BNNs) [21]. This integration aims to enhance the incorporation of causal prior
knowledge by refining the prior distribution during model training. Such a probabilistic
approach takes the uncertainties in the model’s predictions into account, recognizing that
understanding the confidence level of a prediction is equally important as the prediction
itself.
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Recent research primarily focuses on data-driven approaches that assume independent
and identically distributed (IID) data. However, when working with spatiotemporal data
that deviates from this IID assumption, it becomes challenging [4]. Future work will
be directed towards incorporating causal models capable of handling highly correlated
values over time.
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