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ABSTRACT

The self-guided learning of causal relations may contribute to the
general maturity of artificial intelligence in the future. To develop such
learning algorithms, powerful metrics are required to track advances.
In contrast to learning algorithms, little has been done in regards to
developing suitable metrics. In this work, we evaluate current state
of the art metrics by inspecting their discovery properties and their
considered graphs. We also introduce a new combination of graph
notation and metric, which allows for benchmarking given a variety
of learned causal graphs. It also allows the use of maximal ancestral
graphs as ground truth.

Keywords causal graph · metric · causal discovery · ground truth · bayesian network
structure learning · causal structure learning · ancestral graph · acyclic graph

1 Introduction

Causal Discovery (CD) is a domain of artificial intelligence, that targets the identification
of cause-effect relationships in data [12]. For the evaluation of CD algorithms, it has
become a standard approach to perform novel algorithms on popular benchmarking
datasets, for which the ground truth is known [9, 18]. By choosing the metric with
desired properties, the learned graph can be compared against the ground truth and the
discovery capabilities of the algorithm can be assessed by the resulting score [4]. In
this style of evaluation, the metrics and its properties play a vital role. This is why in
this work, we will investigate current metrics of CD by assessing their applicability on
different graph types learned by algorithms. We highlight desired criteria and inspect
how different state of the art metrics facilitate these. Finally, we propose a new metric
called the normed causal edit distance metric (nCED).

In Section 2, we give a basic introduction to CD. In Section 3, we first introduce a new
graph notation to unify the several established causal graph types before proposing our
new metric. In Section 4, we cover related work in the field of CD metrics and prior
metric evaluations. In Section 5, we take a closer look into the general topic of metric
evaluation. Finally, Section 6 concludes the paper.
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Figure 1: Depicted are examples of common types of causal graphs in their established
representation.

2 Fundamentals of Causal Discovery

2.1 Causal Graphs

In general, it is defined that a causal relation is present from variable a to b written as
a → b, if the value of b depends on the value of a. If there is no such causal influence
present in either direction, they are independent a ⊥⊥ b.

Networks of such causal relations are represented as graphs G = (V, E) with nodes V
and edges E . Nodes are random variables, representing chosen events or states, while
edges indicate the causal relations. In our definition, two variables a, b can be connected
by a total of two edges ea,b ∈ E and eb,a ∈ E .

In this work, we employ two different classes of causal graphs. Their main difference
is the class of acyclic graphs and the corresponding learning algorithms assume causal
sufficiency, the absence of latent variables. Ancestral graphs on the other hand do not.
Each class has two representatives as depicted in Figure 1.

Starting with the class of acyclic graphs, Directed Acyclic Graphs (DAGs) [19] allow
edges to be either present, indicated by an arrowhead pointed at the caused variable, or
absent indicated by missing arrowheads or by the absence of any representation. Cycles
in the directed edges are forbidden. This forbids minimal cycles like a ↔ b.

Complete Partial Directed Acyclic Graphs (CPDAGs) may contain besides present and
absent edges, also undirected edge pairs like a− b. In this case, it is a causal relation
exists between a and b but its direction, ea,b or eb,a, is unknown. Under the constraint
that no cycles are created, a− b may be oriented in either direction to gain DAGs. These
DAGs form a Markov equivalence class for given CPDAG [17].

For the class of ancestral graphs, we consider Maximal Ancestral Graphs (MAGs). They
allow one-directed and bidirected edges, but forbid any cycles formed by a combination
of bidirected and directed edges. In ancestral graphs, bidirected edges a ↔ b imply the
presence of a latent variable l with l → a and l → b. DAGs are a subset of MAGs which
do not contain any bidirected edges [33]. Similar to CPDAGs, a Partial Ancestral Graph
(PAG) [23, 24, 25] may additionally include unknown edges represented by circular
arrowheads, implying a Markov equivalence class of several MAGs. These unknown
edges may be present in single and opposing edges. As CD algorithms for MAG learning
have not been developed yet, they will be of less importance in this work.

2.2 Established Metrics

Several metrics that use a ground truth for the evaluation of the discovered graph are
currently established in literature.
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To explain them, we make use of the following definitions. The count of True Positives
edges (TP) is the number of discovered present edges that are also present in the ground
truth. The count of True Negatives (TN) is the number of all edges that are neither
present in the discovered graph and the ground truth. The count of False Positives (FP)
is the number of discovered edges that are not present in the ground truth, and the False
Negatives (FN) is the number of edges in the discovered graph that are not present
but are missing in the ground truth [13]. We specify FN and FP as undirected, if only
the presence of the edge is considered to be compared to the ground truth, but not its
orientation.

The first metric, we introduce is the F1 score [28]. It considers only the present edges
and calculates the harmonic mean of precision and recall when comparing the inferred
graph to the ground truth.

F1 score =
2TP

2TP + FP + FN
(1)

The Receiver Operator Curve Area Under Curve (ROC AUC) metric [10, 21] measures
the True Positive Rate (TPR) on the False Positive Rate (FPR) several times to plot a
curve.

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

The ROC AUC is measured once for an ’empty’ graph with a TPR and FPR of zero,
for the actual discovered graph, and also for a graph with maximized TPR and FPR to
100 percentage points. Then, the area under this curve is calculated. A ROC AUC of 1
indicates a discovered causal graph that is identical to the ground truth with a TPR of
hundred percent and an FPR of zero percent. A ROC AUC of fifty percentage points
indicates a discovery performance similar to a random guesser. Zero percentage points
indicate the inverse of a successfully CD. The Precision Recall Curve Area Under Curve
(PRC AUC) [7] operates similar. Instead of TPR and FPR, it uses precision and recall to
calculate the area under curve. The Structural Hamming Distance (SHD) [31, 2] counts
the overall number of changes in edges that are required to transform the discovered
graph into the ground truth. In the established definition, the allowed changes include
only the addition and the deletion of edges.

SHD = FN + FP (4)

The adapted version for CPDAGs [31] converts the ground truth and the predicted graph
to CPDAGs and then counts the operations required.

SHD CPDAG = undirected FN + undirected FP + FN + FP (5)

No version of SHD is available for MAGs and PAGs.

3 Causal Edit Distance Metric

3.1 Universal Causal Graph Representation

To make all the various graph types comparable, we transfer them to a unified repre-
sentation. Consider causal graphs G = (V, E) with variables V and edges E . The
edges E can be represented as an adjacency matrix E. Each edge ei,j ∈ E represents
knowledge about a present causal relation from variable i to j and also has a counterpart
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Figure 2: To compute the nCED, the example graphs of Figure 1 are adapted to match
the new universal notation described in Section 3.1.

ej,i pointing in the opposite direction. Edges may take on the values ei,j ∈ {−1, 0, 1}.
ei,j = 0 indicates the absence of a causal relation from i to j. This is represented by ×
arrowheads in the universal representation. ei,j = −1 indicates the edge is undirected.
This is represented by the arrowhead ◦ in the universal graph representation. ei,j = 1 in
the adjacency matrix or → in the universal graph representation represent the presence
of a causal relation. Hence, for N = |V|, the adjacency matrix is E ∈ {−1, 0, 1}N×N .
The adjacency matrix representation allows cyclic causal relations if such graphs are not
actively prohibited. Causal self-references of variables, the smallest possible cycles, are
excluded ∀i ∈ V, ei,i = 0.

3.2 Calculating the Causal Edit Distance

The causal edit distance (CED) between two graphs G and G∗ is using a comparison
between the corresponding adjacency matrix elements ei,j ∈ E and as e∗i,j ∈ E∗ follows.

CED(G,G∗) =
∑

(i,j)∈V 2

i ̸=j

f(ei,j , e
∗
i,j) (6)

For its computation, we require the following function f using the parameter 0 < k <
0.5.

f(ei,j , e
∗
i,j) =


0 if ei,j = e∗i,j
k if ei,j ̸= e∗i,j ∧ ei,j = −1

1 else
(7)

The normalized variant of the Causal Edit Distance metric is called in short nCED. It
requires the division of the CED with the maximum possible editing costs N(N − 1)
given N = |V| variables.

nCED(G,G∗) =
CED(G,G∗)

N(N − 1)
(8)

3.3 Analysis on Choosing the Parameter k

Due to the function f , the algorithm punishes each TP and TN with 0, each undirected
FP and FN with k and each FP and FN with 1. Given 0 ≤ k ≤ 1, k can be freely chosen.
Consider, that k ≤ 1 is required for the normalization step to be valid and 0 ≤ k for
edges to be scored independently.

In the following, we propose our own preferences in the choice of k. As undirect TP
edges correctly imply the presence of a TP edge, they should be evaluated better than
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Figure 3: Overview of the nCEDs behavior for varying k on stepwise graph transforma-
tions of a five variable DAG.

FN edges, but worse than TP edges as they do not imply it with certain orientation.

f(ei,j = 1, e∗i,j = 1) < f(ei,j = −1, e∗i,j = 1) < f(ei,j = 0, e∗i,j = 1) (9)

Likewise, undirected FP edges should be scored worse than TN edges, as they imply
faulty information, but they should be evaluated better than FP edges, since the certain
discovery of a FP edge is more severe.

f(ei,j = 0, e∗i,j = 0) < f(ei,j = −1, e∗i,j = 0) < f(ei,j = 1, e∗i,j = 0) (10)

Accordingly, the score of an undirected graph nCED(Gu, G
∗) should be better than the

score of an empty graph nCED(Ge, G
∗) and better than the score of a graph with flipped
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Figure 4: The ground truth DAG and the created MAG for the Asia dataset. By
eliminating the variable smoking, we create a hidden confounder between the lung
infection and the bronchitis variable. The resulting graph is a ground truth MAG.
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(a) Example DAG learned by
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(c) Example PAG learned by
FCI algorithm

Figure 5: Example graphs as they were created by the different learning algorithms on
application on the adapted Asia dataset.

edges nCED(Gi, G
∗), but worse than nCED(G∗, G∗). This should hold for undirected

graphs with individual undirected edges Gu,1 (as is possible in PAGs), but also where
opposing edges are undirected Gu,2 (as is the case in CPDAGs).

We observed the behavior of the metric for different k by stepwise transforming Ge,
Gi and G∗ into Gu,2, which results in the plots shown in Figure 3. One observes
nCED(G∗, G∗) < nCED(Gu,2, G

∗) and nCED(Gu,2, G
∗) < nCED(Gi, G

∗) to hold
true for any k. But while nCED(Ge, G

∗) < nCED(Gu,1, G
∗) is valid for any k, we see

in Figure 3f that nCED(Ge, G
∗) < nCED(Gu,2, G

∗) only holds if k < 0.5. This is why
we propose to choose 0 < k < 0.5.

Alternate desired choices of k might include k > 0.5, so that the algorithm treats
undirected edges worse than FN and FP. It may be of use if the consideration of undirected
edges is to be punished and only the learning of TP and TN is desired.

For k = 0, the nCED does not differ between TP and undirected TP edges. This might
be of use if the orientations of an edge matters less than the knowledge of its presence.

3.4 Maximum Ancestral Graphs as Ground Truth

As the nCED may evaluate DAGs, CPDAGs, MAGs and PAGS because of the universal
representation, and DAGs are a subclass of MAGs, we can also allow G∗ to be a MAG
instead of a DAG. As the edge representations of DAGs and MAGs are identical in the
universal representation, this does not require an adaptation of nCED’s definition. To
our knowledge, nCED is the only metric that is capable of this. As a consequence, if
k > 0 and a bidirected edge is present in the ground truth PAG, the nCED does not allow
DAG-learning CD algorithms to achieve the optimal score anymore.
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Table 1: Results of the nCED with a MAG as ground truth for graphs learned on the
adapted Asia dataset. The lower the score, the better performed the structure learning
algorithm.

nCED (ours)
k = 0 k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5

HCS 0.17 0.17 0.17 0.17 0.17 0.17
PC 0.12 0.13 0.14 0.15 0.17 0.18
FCI 0.12 0.14 0.14 0.15 0.17 0.18

In the following, we demonstrate how the novel nCED metric is able to evaluate results
of structure learning algorithms using a PAG as ground truth. Regarding CD learning
algorithms, we employed the Peter-Clark (PC) [30] algorithm, which delivers as re-
sult a CPDAG, the Fast Causal Inference (FCI) [34] algorithm delivers a PAG, while
the hillclimb search (HCS) algorithm [15] delivers a DAG. For independence test the
Fisher Z-test was used, and for score-based CD the Bayesian information criterion.
Unfortunately, we know of no algorithm which is able to learn MAGs.

As a benchmark, we used the Asia dataset. It describes the causal relations of visits
to Asia and smoking to the corresponding lung diseases and the medical options for
identifying the disease. We created a ground truth MAG, by eliminating the smoking
variable from the dataset as shown in Figure 4. In its place, it has a bidirected edge
implying a latent variable between the bronchitis and the lung infection variable. After
learning ten graphs using the introduced learning algorithms, including the example
graphs shown in Figure 5, we calculated the averaged nCED scores for different k using
the created MAG. The results are depicted in Table 1.

4 Related Work

4.1 Metric Types in Causal Research

In CD research, two different approaches exist to evaluate the learned causal graphs [5].
We focus on metrics, which inspect graph elements to compare the discovered graph
against a provided ground truth.

As an alternative, scoring functions, which are commonly used as objective functions
for score-based structure learning, can be used to evaluate the fit of a provided graph to
given data. Established is for example the use of the Minimum Description Length [26],
the Bayesian Information Criterion [29] and the Bayesian Dirichlet equivalence [14] for
the score-based learning of causal graphs [3].

4.2 Evaluations of Metrics for Structure Learning

Several publication investigated the use of metrics using ground truth for the purpose of
causal discovery.

De Jongh et al. [8] applied the Greedy Thick Thinning CD algorithm and the Greedy
Equivalence Search algorithm on three datasets and inspected the resulting CPDAGs
and DAGs. The examined metrics included the number of FN edges, the number of FP
edges, the sum of undirected and directed TP edges, the number of TP edges, the number
of TP edges with correct orientation, the number of edges with incorrect orientation, a

7



Metrics for the Evaluation of Learned Causal Graphs

weighted sum of FN, FP and undirected and directed TP edges, a weighted combination
of FN, FP, TP , and finally the Structural Hamming Distance (SHD) as the sum of TP
and FN. They identified the SHD as a useful metric, but they also advise against the use
of a single metric, as the choice on a single metric leads to information loss.

Constantinou et al. [5] did a general inspection of causal discovery metrics by inspecting
and comparing the different types of metrics described above. The inspected metrics
such as the TP, FP, TN, FN, Precision, Recall, the F1 measure, the SHD and the DAG
Dissimilarity Metric (DDM) [6] and discovered imbalances in the metric scores. The use
of metrics based on scoring functions may be biased due to the scoring function itself.
Metrics using ground truth are reported to be biased by imbalances in the number of
edges or independencies in the ground truth. TP, FP, TN, FN as well as Precision and
Recall were reported to be biased as each does not integrate enough TP, FP, TN and FN
values sufficiently to be independently meaningful.

Of the described publications, none investigated the use of current methods such as the
Precision Recall Curve and the Receiver Operator Curve Area under Curve [22, 20].
Additionally, neither of them investigated metrics for ancestral graphs.

4.3 Metrics for Graph Comparison

In graph theory, there exists related literature regarding the comparison of graphs [11, 32].
Popular is for example, the graph edit distance (GED) metric [1] to compare the fit of
two given graphs G1 and G2. It is the sum of costs over all required edge and node
insertions, substitutions and deletions to transform G1 into G2. Since commonly, the
nodes are fixed in CD, exact matching algorithms may be used as CD metrics.

As the GED itself is not in use in current CD, it was not part of our investigation. Instead,
we investigate the SHD. It is a descendant of the GED, but other than the GED, it only
computes the summed costs for the substitution, insertion and deletion of edges, since
the nodes are expected to be fixed in CD. Additionally, its costs for each operation are
set to one.

5 Metric Evaluation

5.1 Overview of Causal Discovery Metric Criteria

We pose a specific set of criteria on any metric m with a corresponding score s that uses
solely the ground true graph G∗ to evaluate the goodness of fit to any discovered causal
graph G.

Lower and upper bound criterion We prefer s to be bound by maximum and minimum
values. While the use of one bound is common to indicate a perfect match between G
and G∗, the use of a second bound is helpful for orientation.

G∗ identity criterion The criterion of G∗ identity assumes if m(G∗, G∗) = m(G∗, G)
holds, then G = G∗ holds.

TP sensitivity criterion and FP / FN sensitivity criterion Since the true causal graph is
assumed to contain only present and absent edges, a metric is required to be sensitive to
changes regarding TP and FN edges given the present edges of the ground truth, and also
to be sensitive to changes in TN or FP edges regarding the absent edges of the ground
truth.
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Scoring consistency criterion We try to assure consistent scoring for variations in
TP / FN edges and for TN / FP edges by performing the required changes on G and
checking for consistent linear changes in scores. For the TP and FP edges, this entails
the continuous increase or decrease of absent edges in G and for the TP and FP edges the
continuous increase or decrease of directed edges in G. This criterion holds if TP = 0.
This allows comparability between different ’wrong’ learned graphs.

Finally, we prefer metrics to handle any of the currently established graph types to make
the causal discovery metrics comparable. This includes DAGs, PDAGs, MAGs and
PAGs.

5.2 Investigation on Metric Applicability

To illustrate the applicability of the existing and the novel metric, we demonstrate their
use on two example datasets. One is the established Asia dataset [16] with 10.000
data entries with 8 variables each. The second one is the popular Sachs datasets [27]
containing 10.000 data entries with 11 variables each. For both, the ground truth is
known. Three different CD algorithms were exercised on given datasets. MAGs were
excluded as no respective discovery algorithm exists. Again the HCS, the PC Algorithm
and the FCI algorithm were employed. All of the examined metrics were calculated
for the resulting graphs. The scores were collected for 10 learned graphs each. In
Table 2, we depict the resulting score average. We can observe that most metrics are
primarily defined for DAGs. Several metrics such as the ROC AUC, PRC AUC, F1

score, TPR and FPR do not consider undirected edges and only evaluate TP, FP, FN, and
TN directed edges even if G∗ contains an edge at this location. As PAGs and CPDAGs
may contain directed edges as well, these metrics can be transferred without considering
the undirected edges. Besides our own metric, only the CPDAG version of the SHD is
defined for CPDAGs. As its definition deviates from the SHD for DAGs, we list it in a
separate column. In our investigations, we did not find existing custom designed metrics
for MAGs and PAGs.

5.3 Experiment on Scoring Consistency and Sensitivity

For this experiment, we considered a generic DAG with N = 5 and containing the
maximum number of allowed directed edges resulting in seven directed edges and thus
seven possible random structure changes. To inspect the metric behavior regarding
TP - FN consistency, we stepwise changed the true DAG G∗ into an empty DAG Ge

randomly eliminating a TP and adding a FN one by one. Regarding consistency in TN
/ FP direction, we stepwise changed an empty graph Ge into an ’inverse’ graph Gi by
randomly adding FP directed edges directly opposing the edges of the ground truth. The
score results are shown in Figure 6.

We observe in Figure 6a the PRC AUC to be sensitive, but to not perform consistent
linear regarding constant changes in TP and FN edges. The zero gradient of the FPR
proofs it to not be sensitive to said changes. Regarding sensitivity in TN and FP edges
in Figure 6b, the TPR, F1 and PRC AUC show non-responsive by having a gradient of
zero.The only metrics sensitive for changes in both individual trials show to be the ROC
AUC, the SHD and the nCED.

5.4 Elaboration on Metric Bounds and Normalization

To inspect the bounds of each metric, we inspected the definition of the metrics. The
overview is presented in Table 3. The SHD metric only comes without an upper bound.
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Table 2: Example on how the examined metrics perform in an actual application scenario.
The higher the scores of the ROC AUC, PRC AUC, F1, TPR and FPR metrics, the better
performed the causal structure learning algorithm. For each SHD and nCED variant,
lower scores are better.

(a) Asia dataset

ROC PRC F1 TPR FPR SHD SHD nCED nCED
AUC AUC score (DAG) (CPDAG) (k = 0.2) (k = 0.4)

HCS 0.62 0.19 0.33 0.38 0.12 12 - 0.20 0.20
PC 0.47 * 0.13 * 0.06 * 0.06 * 0.12 * - 11 0.11 0.15
FCI 0.49 * 0.14 * 0.12 * 0.12 * 0.13 * - - 0.11 0.15

* The metric only considers present and absent directed edges, unaware of other edges types.

(b) Sachs dataset

ROC PRC F1 TPR FPR SHD SHD nCED nCED
AUC AUC score (DAG) (CPDAG) (k = 0.2) (k = 0.4)

HCS 0.72 0.33 0.51 0.53 0.09 17 - 0.21 0.21
PC 0.47 * 0.13 * 0.06 * 0.06 * 0.12 * - 10 0.22 0.26
FCI 0.57 * 0.16 * 0.25 * 0.29 * 0.16 * - - 0.23 0.26

* The metric only considers present and absent directed edges, unaware of other edges types.
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Figure 6: Overview of the metrics behavior given the sequential use of random structure
changes on a five variable DAG. The scale of the SHD is shown on the plots right side.
We observe some metrics to have a gradient of zero and thereby to be not responsive for
the induced changes. Of the responsive metrics, we observe most perform consistently
indicated by a linear increase or decrease.

All other metrics come with an upper and lower bound and are therefore considered
to be normalized. While most metrics use sums of FN, TP, FP or TN, but never all of
them together, the nCED uses the number of graph variables for normalization. Mind,
that N = TP + TN + FN + FP holds and that is why the nCED considers each for
normalization.
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Table 3: Bounds and normalizability of the metrics described in Section 2.2

Lower bound Upper bound Normalization Normalizing factor

ROC AUC ✓ ✓ ✓ TP + FN and FP + TN
PRC AUC ✓ ✓ ✓ TP + TN and FP + TP
F1 score ✓ ✓ ✓ TP

TP+TN and TP
FP+TP

TPR ✓ ✓ ✓ TP + FN
FPR ✓ ✓ ✓ FP + TN
SHD (DAG) ✓ ✗ ✗ -
SHD (CPDAG) ✓ ✗ ✗ -
nCED (ours) ✓ ✓ ✓ N(N − 1)

5.5 Elaboration on G∗ identity

The criterion states that besides G∗ no other graph G should exists for which the
inspected metric evaluates m(G,G∗) = m(G∗, G∗). For this investigation, we inspected
if we were able to find evidences for each metric contradicting the criterion.

SHD for CPDAGs transforms the ground truth DAG to its CPDAG representation. This
transformation is commonly surjective as unambiguous edge orientations are removed
from the graph and thus several DAGs can share the same CPDAG representation.
This is why the G∗ identity criterion does not hold for the DAGs sharing the CPDAG
representation with G∗.

Several metrics, such as the F1 score, PRC AUC, ROC AUC, TPR and FPR, do not
consider undirected edges and they count them as absent edges. This is why the criterion
does not hold for graphs identical to G∗, but with undirected edges instead of TN edges.

For k = 0, the nCED metric evaluates undirected edges like TP edges. Thus the criterion
does not hold for graphs with arbitrary undirected TP and TP edges.

6 Conclusion

In this paper, we performed several inspections on established metrics for the use
with ground truths. We proposed a new graph notation and a novel metric called the
normalized Causal Edit Distance (nCED) that allows benchmarking of MAGs, PAGs,
CPDAGs and DAGs. Additionally, we investigated if current causal discovery metrics
fulfill a proposed set of criteria and found several peculiarities which should be taken
into account before their application. Also, we found deficiencies in the applicability of
current metrics as many perform on DAGs, but few perform on CPDAGs and even less
on PAGs.
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