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Abstract—Traceability Link Recovery (TLR) is an enabler
for various software engineering tasks. One important task
is the recovery of trace links between Software Architecture
Documentation (SAD) and source code. Here, the main challenge
is the semantic gap between the two artifact types. Recent
research has shown that this semantic gap can be bridged by
using Software Architecture Models (SAMs) as intermediates.
However, the creation of SAMs is a manual and time-consuming
task. This paper investigates the use of Large Language Models
(LLMs) to extract component names as simple SAMs for TLR
based on SAD and source code. By doing so, we aim to bridge the
semantic gap between SAD and source code without the need for
manual SAM creation. We compare our approach to the state-
of-the-art TLR approaches TransArC and ArDoCode. TransArC
is the currently best-performing approach for TLR between
SAD and source code, but it requires SAMs as an additional
artifact. Our evaluation shows that our approach performs
comparable to TransArC (weighted average F1 with GPT-4o:
0.86 vs. TransArC’s 0.87), while only needing the SAD and source
code. Moreover, our approach significantly outperforms the best
baseline that does not need SAMs (weighted average F1 with
GPT-4o: 0.86 vs. ArDoCode’s 0.62). In summary, our approach
shows that LLMs can be used to make TLR between SAD and
source code more applicable by extracting component names and
omitting the need for manually created SAMs.

Index Terms—Traceability Link Recovery, Large Language
Models, Software Architecture, Model Extraction

I. INTRODUCTION

In software development, numerous artifacts are produced,
each representing different levels of abstraction and address-
ing distinct aspects of the system. Challenges for architects
and developers arise because the relationships between these
artifacts are often unclear, preventing their effective use. To
address this, traceability link recovery (TLR) techniques are
used to establish, maintain, and manage explicit trace links
between artifacts. Improving software quality is closely tied
to the creation and management of trace links [1], [2].

One challenge in linking artifacts is the semantic gap be-
tween different types of artifacts. Bridging this gap is difficult
and automated approaches often misinterpret the underlying
semantics. To address this, some methods suggest using inter-
mediate artifacts to reduce the semantic gap, making it easier
to link related artifacts [3]–[6]. For example, the descriptions
in design documentation are semantically closer to design
artifacts like software architecture models (SAMs) than to
code, and SAMs in turn are closer to code. Consequently,
specialized approaches can more easily establish links between

software architecture documentations (SADs) and SAMs, or
between SAMs and code [7], [8]. Based on these insights,
transitive approaches like Transitive links for Architecture
and Code (TransArC) [6] have been developed. TransArC
recovers trace links between SADs and source code based on
manually created SAMs as intermediate artifacts. However,
these methods are not always applicable, as intermediate
artifacts are often unavailable.

We propose a novel approach to address this challenge for
TLR between SAD and source code. Since, in practice, SAMs
are often not available, we aim to recover trace links between
SAD and code without the need for manually created SAMs.
To achieve this, we leverage the strength of large language
models (LLMs) in understanding natural language and code.
We design an approach that uses LLMs to recover SAMs in the
form of component names from SAD and/or code. Component
names contribute the required information to apply TransArC
without manually creating SAMs. In doing so, we bridge the
semantic gap between SAD and code and empower TLR be-
tween these artifacts. We emphasize that the component names
define a simple SAM that provides exactly the information for
TLR. In contrast to the research field of architecture recovery
that aims to recover more detailed architecture models, we
focus on information needed to enable state-of-the-art SAD to
code TLR approaches such as TransArC.

Consequently, we have the following research questions:

RQ1 Is the performance of architecture TLR with LLM-
extracted component names as intermediate artifacts
comparable to using manually created SAMs?

RQ2 Does our approach perform better than state-of-the-
art TLR between SAD and code without SAMs as
intermediates?

RQ3 Is the performance of current open-source LLMs com-
parable to the performance of closed-source ones?

RQ4 How does the performance of the approach differ when
using different artifacts to generate the SAMs?

The main contribution of this paper is our novel approach
to extract architecture component names for transitive TLR
between SAD and code, removing the need for manually cre-
ated SAMs. Moreover, we provide an exhaustive evaluation of
our approach with different LLMs, projects, modes, and state-
of-the-art approaches for TLR. We provide code, baselines,
evaluation data, and results in a replication package [9].
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We structure the remainder of the paper as follows: Related
work is examined in Section II. Our approach is presented
in Section III including a description of how we incorporated
TransArC [6] in Section III-C. In Section IV, we describe
our experimental design. Section V presents the results of our
experiments, analyzes the LLMs’ errors, and discusses threats
to validity. Lastly, we conclude this paper in Section VI.

II. RELATED WORK & FOUNDATIONS

In this section, we first discuss the ideas and benefits of
transitive links, comparing previous works with ours. After-
ward, we focus on the application of LLMs for TLR. Here,
we concentrate on the information extraction ability of LLMs
that also motivates our use of LLMs. Finally, we discuss
architecture recovery and its differences from our component
name recovery approach.

A. Transitive Trace Links

Automated TLR approaches primarily involve comparing
different terms across textual artifacts, to find terms referring
to the same concept. Consequently, researchers have leveraged
semantic similarity techniques developed within the Natural
Language Processing (NLP) field to facilitate this process.

Among those techniques, methods like vector space model
(VSM) and latent semantic indexing (LSI) are commonly
used [10]. However, software artifacts exist at various levels of
abstraction. This complexity challenges NLP models, as they
often struggle to handle cross-level artifacts effectively, limit-
ing their accuracy in recovering trace links. Thus, researchers
have explored different techniques to address this challenge.
Approaches include incorporating fine-grained information
[11], considering dependencies [12], [13], and using enriched
vocabularies [14]. More recently, transitive linking through
intermediate artifacts has shown to be promising in bridging
those semantic gaps [6], [15].

The underlying idea of transitive links is that intermediate
artifacts can find implicit tracing relationships [16]. An early
work by Nishikawa et al. [4] showed the importance of choos-
ing suitable intermediate artifacts for transitive link recovery.
Their approach focuses on establishing transitive links between
two artifacts using a third artifact [4]. It uses VSM to generate
initial trace links between various pairs of artifacts. These links
include pairs between use cases, interaction diagrams, code,
and test cases. The experiment was conducted under various
settings, including scenarios with no intermediate artifacts and
with different artifacts used as intermediates. Their findings
highlight that suitable intermediate artifacts can significantly
influence TLR performance. For example, interaction diagrams
are better intermediates than use cases when recovering trace
links between code and test cases. Instead of only using VSM
to generate initial links for later transitive linking, various NLP
techniques can be combined [15], [16]. COMET [16] uses a
Bayesian inference framework to treat the recovery process
from a probabilistic view. It uses multiple similarity scores
to estimate the model’s parameter. In contrast to COMET,
Rodriguez et al. [15] first combines multiple scores from

different sources into a single score, and then evaluates the
link based on the final score.

So far, previous works mainly focused on traceability
in requirement [10]–[12], [14]–[16] or test cases [4], [13],
[16], leaving architectural traceability [6], [8] less explored.
TransArC [6] has achieved the best performance in the
architectural traceability benchmark. It leverages SAMs as
intermediate artifacts to recover trace links between SAD
and code. Although it achieves significant improvement, its
reliance on the existence of well-maintained SAMs limits its
application to a wider range of projects.

Transitive approaches have shown promising results but can-
not work when the intermediate artifacts are missing. There-
fore, it remains a challenge how to leverage transitive links
when the intermediate artifacts are not completely present. To
enable transitive trace link recovery of SAD and source code
in more settings, we explore using LLMs to recover the needed
information of a SAM for TLR.

B. LLMs for Traceability

With the rich general knowledge obtained from pretraining,
LLMs have been effective at knowledge-intensive software
engineering tasks [17]–[19]. Besides, LLMs have been used
for various architecture and modeling tasks [20], [21], includ-
ing supporting design decision making [22], [23], modeling
tasks [24], [25], and software architecture analysis and gener-
ation [26], [27]. In the following, we discuss the role of LLMs
in advancing traceability research.

T-BERT is an early adoption of LLMs for TLR in an issue-
commit setting [28]. The BERT language model was tested
using three variants of neural architecture: Twin, Siamese, and
Single. They demonstrated that T-BERT outperforms previous
VSM and recurrent neural network approaches.

With the rise of decoder-only LLMs like GPT, prompt
phrasing greatly influences the language model’s output [29].
Rodriguez et al. [29] explored the performance of those
LLMs on recovering links with different types of prompts:
classification (two artifacts are linked or not), ranking (rank all
related artifacts), and Chain-of-thought (recovery step-by-step
while giving reasons). Besides, they showed that LLMs can
understand domain-specific terms from the general knowledge
obtained by pre-training. Motivated by this understanding
abilities, we explore LLMs to extract intermediate structures
from architecture documents and source code to help TLR.

Hassine [30] explored LLMs’ zero-shot ability to trace
security-related requirements to goal models. The prompts are
tailored to the Goal-oriented Requirements Language’s pecu-
liarities. Although achieving positive results, the approach’s
high dependence on the task and data limits its further
application to our architectural TLR task. North et al. [31]
considered that using requirements-to-code links helps LLMs
generate code by iteratively reformatting prompts. They use
the gradients between generated code and requirements sen-
tences to identify which part of the requirement is overlooked.
This overlooking link is later used to reformat the prompt.
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Fig. 1. Overview of the Approach for TLR. Artifacts in Orange, Prompting in Blue, Extraction of Features in White, and TransArC in Purple.

Existing LLM approaches for TLR show that LLMs can
have the software knowledge needed for our task. However,
our task is different from the tasks already tackled, so these
approaches can’t be directly applied. Our key contribution is
leveraging the information extraction capabilities of LLMs in
zero-shot mode within a tailored approach for SAD to source
code traceability.

C. Architecture Recovery

Our approach’s generation of component names is con-
ceptually related to software architecture recovery research.
Therefore, we give a brief overview of architecture recovery
approaches and describe the differences. In the end, we discuss
the difference between ours and previous approaches.

Structural information, including system dependencies [32]
and folder structure, is an important source for architecture
recovery. An early approach, ACCD [33], uses folder and de-
pendency information gathered through static analysis. Build-
ing upon ACCD, dynamic dependency information has been
shown to help recovery in some cases [34]. Lutellier et al. [32]
examined the impact of code dependency in detail, finding
that symbol dependencies yield better recovery accuracy than
include dependencies. In addition to structural information,
textual information can also help. The primary idea is that
artifacts belonging to the same component may have similar
variable names. ARC [35] recovers architecture using system
concerns, which are application specific features extracted
from software corpora. Corazza et al. [36] studied the impact
of six different types of identifier names. They found it would
be better to treat identifiers separately by their types and
assign suitable weights than to treat them equally in a big
vocabulary. Structural and semantic information can also be
combined. They can be integrated to build weighted call
graphs [37], create recovery patterns [38], and be combined
using information fusion models [39]. Rukmono et al. [40]
showed architecture could also be recovered deductively. They
start from a reference architecture and iteratively use LLMs
to refine it with implementation details.

Although our approach shares similar ideas to architec-
ture recovery, its purpose and final result are different from
those of previous works. We aim to recover a high-level
architecture that serves as intermediate between architecture
documentation and code for the purpose of TLR. So we

recover the simple SAM with only component names without
any behavior definition. In contrast, previous approaches focus
on recovering detailed software architecture for more general
purposes, like understanding the system’s functionality or
performance prediction.

III. APPROACH

This section describes our approach to generate a simple
SAM from SAD and source code to enable transitive TLR.

Figure 1 provides an overview of our approach. The ap-
proach consists of two main parts: Generating the component
names for a SAM and recovering trace links. The input for
the approach is the SAD and the software project’s source
code. Since the whole source code is typically too large to
be used as input for an LLM, we extract features from the
source code. We then use prompting strategies to extract and
generate component names for the intermediate SAM. Using
these SAMs, we apply the TransArC [6] approach to recover
trace links between the SAD and the source code. In the
following, we describe the individual steps in detail.

A. Feature Extraction for Source Code

This section describes the feature extraction process for
generating component names from source code. We extract
features from the source code to reduce the input size. Since
we aim to recover component names from the source code,
we do not need to maintain all the information.

In object-oriented programming languages like Java, the
package structure can provide valuable information about the
architecture of a system [41]. Thus, we extract the package
structure from the source code. Our approach is not limited
to this feature, but the feature extraction in this paper focuses
only on providing a list of non-empty source code packages.

B. Prompting Strategies

This section describes the prompting strategies we use to
generate the SAM. We consider three modes for this paper:
First, we extract the component names only from the SAD.
Second, we extract the component names only from the source
code. Third, we incorporate both to generate the simple SAMs.



a) Extract Component Names from Documentation: We
use Chain-of-thought prompting to generate the simple SAM
from the architecture documentation. We use two prompts:

Prompt 1: Documentation to Architecture (1)
Your task is to identify the high-level components
based on the software architecture documentation. In
a first step, you shall elaborate on the following doc-
umentation: {Software Architecture Documentation}

Prompt 2: Documentation to Architecture (2)
Now provide a list that only covers the component
names. Omit common prefixes and suffixes in the
names in camel case. Output format:
- Name1
- Name2

Prompt 1 queries the LLM to identify high-level compo-
nents based on the architecture documentation. We also in-
struct the LLM to elaborate on the architecture documentation.
Thus, the LLM is not restricted to generating output in a
defined format. In the second step, we use Prompt 2 to generate
a list of component names. Here, we instruct the model to only
provide a list of component names without common prefixes
and suffixes. We want to ensure that the component names
only contain the name, not prefixes or suffixes like Component.
We aim to reduce the complexity to facilitate the retrieval of
component names by defining an output format.

b) Generate Component Names from Source Code: We
also use Chain-of-thought prompting to generate the simple
SAM from the source code in two prompting steps.

Prompt 3: Code to Architecture (1) You get the
{Features} of a software project. Your task is to
summarize the {Features} w.r.t. the high-level ar-
chitecture of the system. Try to identify possible
components. {Features}: {Content}

Prompt 3 queries the model to summarize the features of
a software project w.r.t. the system’s architecture. Here, we
instruct the model to identify possible components based on
the features extracted from the source code. In this paper, we
used ’Packages’ as the feature. This feature names all non-
empty packages. We then re-use Prompt 2.

c) Generate Component Names from SAD and Source
Code: Lastly, we consider a combination of the SAD and the
source code to generate the simple SAM. Here, we decided to
use two modes for the combination.

First, if we extract the SAM from the documentation and
the source code, we can aggregate the results by using LLMs.
For this purpose, we use the following prompt:

Prompt 4: Aggregation You get a list of possible
component names. Your task is to aggregate the
list and remove duplicates. Omit common prefixes
and suffixes in the names in camel case. {Output
Format (cf. Prompt 2)} Possible component names:
{Possible Component Names}

In Prompt 4, we ask the model to aggregate the list of
possible component names and remove duplicates. Afterward,
we use the same statements regarding prefixes, suffixes and
output format as in the other prompts.

In the second mode, we aggregate the results using word
similarity metrics. We calculate the similarity between the
component names generated from the documentation and the
source code. To merge the component names, we process
them sequentially, starting with the component names from
the documentation. The normalized Levenshtein distance is
already known from TLR tasks [8], [42]. We use this Lev-
enshtein distance [43] to calculate the similarity between the
possible component names. If the similarity is above a certain
threshold, we consider the component names as equal and omit
the new one. Since we assume that the SAD is closer to the
actual SAM than the source code, we start aggregation with
the extracted component names from SAD. In doing so, we
want to complement the component extracted from SAD with
component names extracted from the source code. Moreover,
this also merges similar component names.

d) Interpretation of Responses: Among the most chal-
lenging aspects of using LLMs is interpreting the generated
responses because there is no guarantee that they adhere to
the requested output format. In our approach, the final output
of the LLM should generate a list of component names. This
output is determined by the final prompt in each mode (cf.
Prompt 2). To parse the responses, we consider every line
of the final response. First, we check that the trimmed line
starts with the character ‘-’. If this is the case, we consider
the line as a component name. We remove the occurrences of
’components’ and ’component’ from the component names.
Thus, we aim to only get the actual component names. Third,
we remove any space from the component’s name, as we
requested the component names to be in camel case. Finally,
we remove any duplicates from the list of component names.

C. TransArC Approach

To be able to analyze the effect of LLM-extracted intermedi-
ate models on transitive TLR between SAD and code, we make
use of the TransArC approach by Keim et al. [6]. TransArC
links SAD to source code by using SAMs as intermediate
artifacts to bridge the semantic gap. The approach consists of
two linking phases: linking documentation to SAMs, and the
models to source code. The remainder of this section gives a
brief overview of them.

In the first phase, TransArC uses the existing ArDoCo
approach [8] to create trace links between SAD and SAMs.
ArDoCo employs NLP techniques to analyze the SAD to



identify architectural elements such as components. ArDoCo
uses various similarity measures and heuristics to link the
sentences in the SAD and components in the SAM.

In the second phase, TransArC uses ARchitecture-to-COde
Trace Linking (ArCoTL) to establish trace links between
SAMs and the source code. ArCoTL first transforms the input
artifacts into intermediate representations. For SAMs, this in-
cludes identifying components, while for code, it involves ex-
tracting elements like classes, methods, and packages. ArCoTL
then applies a series of heuristics to identify correspondences
between architectural elements and code entities. A com-
putational graph combines these heuristics to aggregate the
confidence levels of candidates to form the final trace links.

Combining the results from both phases, TransArC gen-
erates transitive trace links between SAD and source code.
It uses the intermediate SAMs to enhance the accuracy of
trace link recovery, effectively reducing the semantic gap
between the documentation and code. The evaluation of (cf.
[6]), demonstrated its high performance in recovering trace
links (weighted average F1-score of 0.87).

We use the TransArC approach to create trace links between
the SAD and the source code. Therefore, we use the compo-
nent names generated by our approach as SAM to enable trace
linking between architecture documentation and source code
without needing a manually created component model.

IV. EXPERIMENTAL DESIGN

In this section, we present the evaluation setup, including the
dataset, evaluation metrics, and the used LLMs. Additionally,
we present the baselines to which we compare our approach.

A. Evaluation Setup: Data and Metrics

This section describes the datasets and evaluation metrics,
we use for evaluation. We use the same setup as in the original
TransArC publication [6], i.e., we use the same dataset and
evaluation metrics to compare the results. As our approach
generates SAMs, we do not use the manually created SAMs.

a) Benchmark Dataset: The TransArC approach uses a
benchmark dataset from Fuchß et al. [42] comprising SAD
to SAM trace links. Keim et al. [6] extended the dataset
with trace links between SAD and source code. The dataset
consists of five open-source projects, each differing in size
and domain. The projects are MediaStore (MS), TeaStore (TS),
TEAMMATES (TM), BigBlueButton (BBB), and JabRef (JR).
The dataset contains the artifacts themselves and the ground
truth for trace links. Table I provides an overview of the
dataset. Every project has, at most, 14 components. The
number of source code files ranges from around 100 to roughly
2, 000, and the SADs comprise 13 up to 198 sentences.

b) Evaluation Metrics: We use commonly used metrics
for TLR tasks [44], [45]: precision, recall, and their harmonic
mean F1-score (see Equation 1 and Equation 2). This way,

TABLE I
NUMBER OF ARTIFACTS PER ARTIFACT TYPE AND NUMBER OF TRACE

LINKS IN THE GOLD STANDARD FOR EACH PROJECT BASED ON [6].

Artifact Type MS TS TM BBB JR

Arch. Docs # Sentences 37 43 198 85 13
Arch. Model # Components 14 11 8 12 6
Source Code # Files 97 205 832 547 1,979

Docs-Code # Trace links 50 707 7,610 1,295 8,240

we can compare our approach’s performance to the reported
results of other state-of-the-art approaches.

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
(1)

F1 = 2× Precision × Recall
Precision + Recall

(2)

We define the following: True positives (TPs) are found
trace links between the SAD and the source code that are also
contained in the gold standard. False positives (FPs) are found
trace links that are not contained in the gold standard. False
negatives (FNs) are trace links contained in the gold standard
but not identified by the approach.

Additionally, we use two different averaging methods. First,
we report the overall (macro) average across all projects
without considering their size. This average provides useful
insights into the expected performance on a per-project basis.
Second, we calculate a weighted average based on the number
of expected trace links in the gold standard [6]. This weighting
offers more in-depth insights into the anticipated effectiveness
of the approach for each trace link.

c) Large Language Models (LLMs): We use various
LLMs to generate the simple SAMs. We decided to use both,
closed-source models by OpenAI and locally deployed open-
source models. For OpenAI, we use the following models:
GPT-4o mini, GPT-4o, GPT-4 Turbo, GPT-4, and GPT-3.5
Turbo. As local models, we use Codellama 13b, Meta AI
Llama 3.1 8b, and Meta AI Llama 3.1 70b.

B. Baselines
We reuse the baseline approaches of Keim et al. on

TransArC [6]. Thus, we can directly compare their results to
ours. The descriptions of the baselines are based on [6].

TAROT [14] and FTLR [46] are both recent, state-of-the-
art IR-based solutions designed for linking requirements to
code. CodeBERT [47] is an LLM trained to find the most
semantically related source code for a given natural language
description. Consequently, all three methods show promising
results for similar TLR problems.

Keim et al. [6] also introduced the ArDoCode approach that
uses heuristics to recover trace links between SAD and source
code without using intermediate artifacts, that is based on the
ArDoCo approach [8]. Keim et al. reported that, on average,
ArDoCode was the best-performing approach that does not
need SAMs. Thus, this approach is one of the important
baselines. Lastly, we compare to the original TransArC ap-
proach [6] using (manually created) SAMs (cf. Section III-C).



TABLE II
RESULTS FOR TLR BETWEEN SAD AND CODE (SAM DERIVED FROM SAD)

MS TS TM BBB JR Avg. w. Avg.

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

TAROT .09 .24 .13 .19 .44 .27 .06 .32 .11 .07 .18 .10 .32 1.0 .49 .15 .44 .22 .19 .63 .29
FTLR .15 .26 .19 .19 .25 .21 .06 .30 .10 .04 .42 .07 .32 .93 .48 .15 .43 .21 .19 .59 .28

CodeBERT .29 .12 .17 .26 .57 .36 .09 .22 .12 .07 .49 .12 .49 .83 .61 .24 .45 .28 .28 .53 .36
ArDoCode .05 .66 .09 .20 .74 .31 .37 .92 .53 .07 .57 .13 .66 1.0 .80 .27 .78 .37 .47 .92 .62
TransArC 1.0 .52 .68 1.0 .71 .83 .71 .91 .80 .77 .91 .84 .89 1.0 .94 .87 .81 .82 .81 .94 .87

GPT-4o mini .49 .52 .50 .94 .63 .75 .71 .90 .80 .71 .69 .70 .89 1.0 .94 .75 .75 .74 .80 .92 .85
GPT-4o .49 .52 .50 .96 .67 .79 .71 .90 .80 .74 .75 .75 .89 1.0 .94 .76 .77 .76 .81 .93 .86

GPT-4 Turbo .49 .52 .50 .96 .71 .82 .71 .90 .80 .58 .68 .63 .89 1.0 .94 .73 .76 .74 .80 .92 .85
GPT-4 .49 .52 .50 .96 .71 .82 .71 .90 .80 .71 .64 .68 .89 .99 .94 .75 .75 .75 .81 .92 .85

GPT-3.5 Turbo .87 .40 .55 .96 .67 .79 .71 .90 .80 .75 .52 .62 .89 1.0 .94 .84 .70 .74 .81 .91 .85
Codellama 13b .81 .52 .63 .96 .67 .79 .66 .49 .56 .07 .46 .11 .89 .99 .94 .68 .63 .61 .73 .73 .71

Llama 3.1 8b .49 .52 .50 .21 .71 .33 .66 .34 .45 .72 .49 .58 .89 1.0 .94 .60 .61 .56 .75 .67 .68
Llama 3.1 70b .49 .52 .50 .95 .71 .81 .62 .31 .41 .73 .49 .59 .89 1.0 .94 .74 .61 .65 .77 .66 .69

V. EMPIRICAL RESULTS

This section presents the results of our empirical evaluation
on the effect of our LLM-extracted architecture component
names on TLR between SAD and source code. We present the
results to answer our research questions, including significance
tests. Afterward, we discuss the results and analyze the errors
of the LLMs. Finally, we discuss threats to validity.

A. Extracting Component Names from SAD

This section presents the results of our approach if we only
use the SAD to generate the component names of a SAM.
Table II provides a detailed overview of the results.

The table shows the precision, recall, and F1-score for each
project and the average values. The table consists of two
sections, one for the baseline approaches and one for our
approach using different LLMs. We highlight the overall best
results per project in each section. In the first section, we
took the results of the approaches as presented in the work
of Keim et al. [6]. Here, TransArC uses the manually created
SAM, while the other baseline approaches only use the SAD
and source code. Overall, the best-performing baselines are
ArDoCode and TransArC.

The second section of the table presents the results of
our approach using different LLMs. We can see that the
performance varies across the projects. We observe that for
the weighted average F1-score, the models by OpenAI perform
particularly well. Furthermore, we can see that they perform
similarly to TransArC without the need for manually created
SAMs. The best model w.r.t. weighted average F1-score is
GPT-4o with a weighted average F1-score of 0.86 compared
to 0.87 of TransArC. The other OpenAI models perform
similarly. According to the classification of Hayes et al. [44],
our approach excellently recovers trace links between SAD and
code (GPT-4o). We can highlight that all models outperform
the baseline approaches that also do not use manually created
SAMs, and thus, require the same input as our approach.

Significance Tests: In this section, we present the results
of the significance tests. We use Wilcoxon’s signed-rank test
(one-sided) to calculate the statistical significance of our
approach’s F1-score compared to the other baselines. Since our

TABLE III
RESULTS OF A ONE-SIDED WILCOXON SIGNED-RANK TEST REGARDING

IF OUR APPROACH (GPT-4O) USING SAD FOR RECOVERY PERFORMS
BETTER THAN THE BASELINE APPROACHES (SIGNIFICANCE LEVEL
α = 0.05, P-VALUES WITH * CANNOT BE CALCULATED EXACTLY.)

Approach / Hypothesis Requires SAM p-value Significant

TAROT No .031 Yes
FTLR No .031 Yes
CodeBERT No .029* Yes
ArDoCode No .031 Yes
TransArC (ours better) Yes .970* No
TransArC (ours worse) Yes .091* No

approach works best using GPT-4o as LLM, we only compare
the results of this configuration to the baselines. We present the
results in Table III. We mark those p-values with an asterisk
that cannot be calculated exactly due to ties in the data. The
table shows that our approach significantly outperforms all
baselines that only use SAD and code. Yet, our approach does
not outperform TransArC using manually created SAM (p =
0.97). At the same time, TransArC is also not significantly
outperforming our LLMs-based approach (p = 0.09). This
shows that our approach performs comparably to TransArC
without the need for manually created SAMs.

Conclusion RQ1: Applying TransArC with LLM-
extracted SAMs produces similar results as with
manually created SAMs.

Conclusion RQ2: Our approach significantly outper-
forms state-of-the-art TLR approaches between SAD
and code that do not use SAMs as intermediates.

Conclusion RQ3: On average, OpenAI’s closed-
source LLMs perform better than the open-source
Llama-based models in this task.



TABLE IV
RESULTS FOR TLR BETWEEN SAD AND CODE (SAM DERIVED FROM CODE)

MS TS TM BBB JR Avg. w. Avg.

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GPT-4o mini .19 .52 .28 .92 .35 .50 .67 .91 .78 .19 .28 .22 .88 1.0 .93 .57 .61 .54 .74 .88 .80
GPT-4o .22 .52 .31 .61 .80 .69 .68 .91 .78 .13 .11 .12 1.0 .18 .31 .53 .50 .44 .78 .51 .51

GPT-4 Turbo .19 .52 .28 .91 .27 .42 .67 .23 .34 1.0 .00 .00 .38 .01 .03 .63 .21 .21 .57 .11 .17
GPT-4 .22 .52 .31 .79 .20 .32 .46 .91 .61 1.0 .00 .00 .83 .67 .74 .66 .46 .40 .68 .70 .61

GPT-3.5 Turbo .14 .52 .22 .58 .80 .67 .28 .18 .22 .07 .06 .06 .39 .02 .03 .29 .32 .24 .32 .12 .14
Codellama 13b .85 .34 .49 .00 .00 .00 .34 .02 .03 .53 .55 .54 .89 .99 .94 .52 .38 .40 .60 .51 .49

Llama 3.1 8b .81 .26 .39 .85 .31 .45 .43 .02 .04 .00 .00 .00 .89 .99 .94 .60 .32 .37 .63 .48 .47
Llama 3.1 70b .07 .28 .11 .54 .80 .64 .70 .80 .75 .36 .64 .46 .89 1.0 .94 .51 .70 .58 .76 .88 .81

TABLE V
F1 -SCORE FOR TLR BETWEEN SAD AND CODE (SAM DERIVED FROM

SAD & CODE - AGGREGATED VIA PROMPT)

Approach MS TS TM BBB JR Avg. w. Avg.

GPT-4o mini .07 .56 .79 .35 .84 .52 .77
GPT-4o .06 .58 .78 .46 .94 .56 .82

GPT-4 Turbo .50 .70 .80 .52 .94 .69 .84
GPT-4 .31 .80 .61 .62 .94 .66 .77

GPT-3.5 Turbo .44 .64 .74 .43 .93 .64 .80
Codellama 13b .44 .56 .42 .13 .94 .50 .65

Llama 3.1 8b .43 .34 .00 .41 .94 .42 .48
Llama 3.1 70b .10 .64 .71 .56 .94 .59 .80

B. Generate Component Names from Source Code

This section focuses on RQ4 and presents the results of
our approach if we only use the source code to generate the
component names. Table IV provides a detailed overview of
the results. As described in Section III, we provide a list of
all non-empty packages as features for the prompts. We argue
that the packages can be a good representation of the high-
level structure of a software project. Nevertheless, comparing
the results to our approach using the SAD to extract the
component names, the average performance using only source
code is lower. Especially, the performance for the projects JR
and BBB is bad, i.e., for many models, the F1-score is 0 or
close to 0. The overall best model is Llama 3.1 70b with a
weighted average F1-score of 0.81. Notably, this performance
is better than its performance when using the SAD-extracted
SAMs. Nevertheless, the overall average F1-score is worse.

Since, on average, all other models perform worse than with
SAD, we conclude that the packages alone are insufficient to
generate SAMs for TLR. Moreover, this mode’s performance
is worse than the mode that only considers documentation.
Further, the results vary even more across projects and LLMs.

C. Generate Component Names from SAD and Code

This section presents the results of our approach if we
use both the SAD and the source code to generate the
component names of the SAM. Here, we consider the two
different aggregation strategies described in Section III-B: the
LLM-based strategy and the similarity-based one. We use a
similarity threshold of t = 0.5 in the experiments for the
normalized Levenshtein distance. Nevertheless, this threshold
can also be adjusted to the specific needs of a project.

a) Aggregation via Prompting: We present our results in
F1-score regarding the aggregation via prompting in Table V.
The data shows that the best-performing model is GPT-4 Turbo
with a weighted average F1-score of 0.84. The results are
worse, especially in macro average, compared to the mode
that only uses the SAD but mostly better than the mode that
only uses the source code.

b) Aggregation via Similarity: Next, we present the
results of our evaluation of the aggregation via similarity. As
described in Section III-B, we use the normalized Levenshtein
distance to aggregate common names.

We present our results in Table VI. The aggregation is
better than the results when the code is used only. The best-
performing model is GPT-4 Turbo with a weighted average
F1-score of 0.85. Nevertheless, the aggregation via similarity
also performs worse than the mode that only uses the SAD,
particularly when considering the non-weighted average F1-
score. However, on average, the performance is often better
than the aggregation via prompt.

Conclusion RQ4: On average, using only the SAD
to generate the simple SAM performs best.

Overall, we conclude that to extract performing component
names for TLR, the SAD is a better source than the source
code. LLMs promise to have great language comprehension
capabilities. Thus, we assume that the task of summarizing
and extracting component names based on SAD is easier for
the LLMs than inferring component names from source code.

D. Discussion & Error Analysis

This section discusses our results and analyzes some errors
of the LLMs. First, we discuss exemplary differences between
the extracted SAMs from the SAD using different LLMs.
Second, we analyze exemplary differences between extracted
SAMs from SAD and source code. Finally, we discuss the
traceability from the SAD to the generated SAM.

a) Differences between extracted SAMs from SAD using
different LLMs: As seen in Section V-A, the performance
of the different LLMs varies across the projects. To provide
insights into the reasons for that, we perform a detailed
analysis on the MediaStore project with a particular focus
on the difference between the results of Codellama 13b and



TABLE VI
RESULTS FOR TLR BETWEEN SAD AND CODE (SAM DERIVED FROM SAD & CODE - AGGREGATED VIA SIMILARITY (t = 0.5))

MS TS TM BBB JR Avg. w. Avg.

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GPT-4o mini .19 .52 .28 .94 .63 .75 .67 .91 .78 .37 .83 .51 .88 1.0 .94 .61 .78 .65 .76 .94 .83
GPT-4o .22 .52 .31 .61 .80 .69 .68 .91 .78 .42 .71 .53 .81 1.0 .89 .55 .79 .64 .72 .93 .81

GPT-4 Turbo .19 .52 .28 .96 .71 .82 .71 .90 .80 .58 .68 .63 .89 1.0 .94 .67 .76 .69 .79 .92 .85
GPT-4 .22 .52 .31 .93 .71 .80 .46 .91 .61 .69 .56 .62 .89 1.0 .94 .64 .74 .66 .70 .92 .77

GPT-3.5 Turbo .14 .52 .22 .58 .80 .67 .51 .92 .66 .36 .55 .43 .89 1.0 .94 .50 .76 .59 .68 .92 .77
Codellama 13b .81 .52 .63 .70 .47 .56 .65 .49 .56 .08 .59 .14 .89 .99 .94 .63 .61 .57 .72 .73 .71

Llama 3.1 8b .81 .52 .63 .22 .75 .34 .64 .36 .46 .42 .49 .45 .89 1.0 .94 .60 .62 .57 .73 .68 .68
Llama 3.1 70b .12 .52 .19 .54 .80 .64 .67 .91 .78 .35 .64 .45 .89 1.0 .94 .51 .77 .60 .74 .93 .82

GPT-4o. We picked this example because they show a rather
large gap in precision (Codellama 13b with 0.81 vs 0.49 of
GPT-4o) while having the same recall. The first column of
Figure 2 shows the SAM extracted by Codellama 13b, the
second column the component names of the original, manually
created SAM, and the third column the SAM extracted by
GPT-4o. While the SAMs are not the same, they share similar
component names. The connections between the names indi-
cate that we treat them as being similar. The highlighting of
nodes indicate whether they are matched (green), not matched
(red), or related (yellow). Both generated SAMs are missing
components like Cache that are part of the manually created
SAM but not described in the SAD. Besides that, the difference
is that Codellama 13b generates a component PersistenceTier
and GPT-4o generates a component called DataStorage. This
small difference causes the drop in precision from 0.81 to
0.49 in the performance for the TLR task. Therefore, we also
emphasize that according to model theory, the purpose of a
model (e.g., an SAM) is important [48]. Codellama 13b creates
component names that are more suitable for the considered
TLR task. However, this does not mean that they are better
for other tasks, and we do not assume that these SAMs can
be directly used in reverse engineering tasks, as these tasks
would require more details.

b) Differences between extracted SAMs from SAD and
Code: In particular, we are interested in the actual differences
between the extracted SAMs from the SAD and the source
code. Since this requires manual analysis, we only focus on
the projects with fewer components according to the manually
created SAMs (cf. Table I), JabRef and TEAMMATES.

First, we analyze the differences between the extracted
SAMs for the project JabRef using Llama 3.1 70b. Our eval-
uation shows that the performance regarding TLR is the same
as TransArC using the manually created SAM. In Figure 3, we
show the component names Llama 3.1 70b extracts. The first
column defines the components extracted using only SAD,
the second column the components of the manually created
SAM, and the third column the components extracted from
the source code. We use the same color scheme as in the
previous sections. The names for the matching components
of the modes only differ in their letter case, globals is
missed by both modes, the SAD-extracted SAM additionally
includes EventBus, and the Code-extracted adds Networking.
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Fig. 2. Comparison of extracted SAMs for MediaStore using SADs

The similar results in TLR suggest that these differences do
not matter for the specific TLR task.

Second, we analyze the differences between the extracted
SAMs for the project TEAMMATES using GPT-4 Turbo. Here,
our evaluation shows that using SAD, the performance is
comparable to TransArC, while using the source code, the
performance is worse.

In Figure 4, we show the component names GPT-4 Turbo
extracts. We can see that our extracted SAM from SAD is
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Fig. 3. Comparison of extracted SAMs for JabRef using Llama 3.1 70b
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Fig. 4. Comparison of extracted SAMs for TEAMMATES using GPT-4 Turbo

only missing the GAE Datastore component. The extraction
from the source code diverges more. Also, many components
are correctly extracted, some components are abbreviated in
the manually created SAM, while the LLM extracts the full
name from the source code (e.g., UserInterface). However,
the LLM also extracts additional components that are not
present in the manually created SAM. The component Archi-
tectureandMainEntryPoint originates from the LLM’s output
“Architecture and Main Entry Point”. Since we instructed
the LLMs to provide component names in camel case, the
final component name is as described. While there are the
packages teammates.architecture and teammates.main in the

source code, the LLM could not identify that these pack-
ages should not be mapped to a new component. The first
package contains an architecture test and the second package
contains the application’s main entry point. The component
LoadandPerformanceTesting is also absent in the manually
created SAM. While the source code contains packages for
performance test cases, these are not part of the manually
created SAM. We mark the components that are related to
the manually created SAM with dashed lines. We assume that
the testing-related components extracted via code belong to
Test Driver component from the manually created SAM. This
example shows that if we consider source code for extracting
simple SAMs, distinguishing between code for production and
code for testing is challenging.

c) Traceability from SAD to generated SAM: To discuss
the performance of our approach, we briefly analyze the
performance of the TLR approach from SAD to the generated
SAM. Since we do not have a gold standard for this task, we
decided to analyze our results using the following steps: First,
we identify the components generated by the LLMs. Second,
we manually match the components that are also present in
the original SAM. Those components are assigned the same
unique identifier as in the original SAM. All other components
are assigned a new unique identifier. By doing so, we can use
the evaluation of ArDoCo [8] to analyze the TLR from SAD to
the generated SAM. Since we want to do this to get insights
into the overall performance from SAD to source code, we
only selected some projects and LLMs for analysis, based on
our evaluation results in Table II.

We first analyze the SAD-generated SAM for MediaStore
by GPT-4o (see Figure 2). We selected this model because the
LLM is the overall best performing. Compared to the original
SAM, the generated SAM contains 11 components, while
the original SAM contains 14 components. It also contains
two components that are not present in the original SAM:
AudioAccess and DataStorage. Running ArDoCo with the
generated SAM increases recall for the TLR between SAD
and SAM from 0.62 to 0.79 compared to running with the
manually created SAM. The precision decreases from 1.0 to
0.68. Our results for TLR from SAD to code also reflect this.

We then analyze the generated SAM for BigBlueButton by
Codellama 13b. We selected this model because this is the
best-performing open-source LLM, except for BBB. Compar-
ing the generated SAM to the original SAM, the generated
SAM contains 10 components, while the original SAM con-
tains 12. The LLM additionally generates a component called
BigBlueButton. Also, it slightly renamed the components Apps
and FSESL to AppsAkka and FSESLAkka. The LLM could
not generate the components BBB web and Recording Service.
Thus, the recall of the TLR from SAD to the generated SAM
is 0.51 and the precision is 0.60. With the original SAM, the
recall is 0.83 and the precision is 0.88. If we consider the
package names of the code, one problem can be the generation
of the BigBlueButton component. Since all Java packages of
the project start with org.bigbluebutton, the component can
lead to many false positive trace links that decrease precision.



E. Threats to Validity

In this section, we address potential threats to validity,
drawing upon the guidelines provided by Runeson et al. [49].
We also consider the work of Sallou et al. [50], which
discusses threats specific to experiments involving LLMs in
the context of software engineering.

Regarding construct validity, one potential threat is dataset
bias. To mitigate this, we use the same datasets as those
employed in state-of-the-art approaches for TLR. By doing
so, we ensure coverage of various domains and project sizes.
Moreover, our study does not emphasize prompt engineering,
meaning we do not extensively modify or compare different
prompts. As a result, the selection of prompts potentially
threatens the validity of our findings regarding our research
questions. Another concern is the possible bias in metric
selection. To address this, we employ commonly used metrics
in TLR research. Overall, we strive to minimize confounding
factors that could hinder our ability to address our research
questions effectively.

Concerning internal validity, there is a risk that other factors
influence our evaluation, potentially leading to incorrect inter-
pretations or conclusions. We adhere to established practices
for risk mitigation, utilizing datasets and projects from state-
of-the-art approaches. We also clearly document the origins of
these projects and the associated ground truths. Project quality
and consistency variations may still impact the performance
of our approach.

There are also potential threats concerning external validity.
First, our evaluation is limited to a small number of projects
and TLR tasks, which may affect the generalizability of the
results to other projects and tasks. We utilize an established
dataset covering various domains and project sizes to reduce
this threat. However, these datasets mainly consist of open-
source projects, which may differ from closed-source projects
in key characteristics. Second, we evaluate the approach using
only a limited set of LLMs, which may limit the robustness
of our conclusions. Nonetheless, we evaluated our approach
using various LLMs to show the performance of fixed prompts
using different LLMs. A third concern is the use of closed-
source models in evaluation. Since the training data of these
models is unknown, we cannot entirely rule out data leakage.
To ensure transparency, we provide our code, prompts, and
LLM responses in a replication package [9]. Furthermore, we
also use locally deployed models. Finally, the non-determinism
of LLMs poses another threat. To mitigate this, we set the
LLMs’ temperature to zero and used the same fixed seed for
each run. By doing so, we make sure that future research can
replicate our results.

By conducting our evaluation on established datasets and
using widely accepted metrics, we address the reliability of our
research. Therefore, we do not introduce a threat regarding the
manual creation of the gold standards or datasets. However,
the existing gold standards might be imperfect.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this paper investigated the use of LLMs
to bridge the semantic gap between SAD and code. The
approach combines the strengths of LLMs and the TLR ap-
proach TransArC. Utilizing SAMs as intermediates TransArC
is effective in TLR from SAD to code. Since SAMs are
often unavailable, our approach leverages LLMs to extract
component names from SAD and code. Thereby, we make
approaches like TransArC more applicable in practice.

We have evaluated three modes for the generation and
extraction of component names. We found that the extraction
based on SAD performs best for the investigated TLR task.
On weighted average, our approach performs comparably to
TransArC using manually created SAMs (GPT-4o 0.86 vs.
0.87 TransArC) without the need for these provided SAMs.
Additionally, our approach significantly outperforms baselines
that use the same inputs, i.e., only SAD and code. On average,
the best baseline without SAMs achieves an F1-score of 0.37,
while our approach achieves 0.76 (GPT-4o). We also identified
that extracting component names for TLR performs better
from SAD than from code. We show that simple SAMs
recovered with smaller LLMs can enable TransArC to perform
better than many state-of-the-art approaches. We assume that
the semantic gap between component names and SAD is
smaller and, thus, easier to bridge for the LLM. In particular,
LLMs can internally perform some kind of named entity
recognition on the SAD to identify the component names.
This is not possible in the code, as the component names
are not always directly visible. Future work may have a
look into improving the code-based extraction of SAMs by
using more sophisticated techniques from the research field
of architecture recovery. We think that especially information
fusion techniques [39] could help here.

In future work, we plan to investigate additional context for
the LLMs to improve the TLR performance. This includes ad-
ditional project artifacts, such as architecture decision records,
architecture diagrams, or other parts of the SAD. Moreover, we
want to analyze how separating tests from source code could
improve the extraction of component names from the code.
We also want to research how a different preprocessing of
code artifacts can improve the extraction of SAMs for TLR.
Here, code summarization techniques are one example that
could be used to provide more context about the projects to
the LLMs. Finally, future work could investigate how LLMs
with integrated Chain-of-thought prompting like OpenAI o1
perform on this task.

DATA AVAILABILITY STATEMENT

We provide our code, baselines, evaluation data, and results
in a replication package [9].

ACKNOWLEDGEMENTS

This work was funded by Core Informatics at KIT (KiKIT)
of the Helmholtz Assoc. (HGF) and the German Research
Foundation (DFG) - SFB 1608 - 501798263 and supported
by KASTEL Security Research Labs.



REFERENCES
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[49] P. Runeson and M. Höst, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, 2008. DOI:10.1007/s10664-008-9102-8

[50] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence:
the threats of using llms in software engineering,” in Proceedings
of the 2024 ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results, ser. ICSE-NIER’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
102–106. [Online]. Available: https://doi.org/10.1145/3639476.3639764.
DOI:10.1145/3639476.3639764

https://doi.org/10.1145/3661167.3661261
https://doi.org/10.1145/3661167.3661261
https://www.sciencedirect.com/science/article/pii/S0950584916301951
https://www.sciencedirect.com/science/article/pii/S0950584916301951
https://doi.org/10.1145/3611643.3616285
https://doi.org/10.1145/3611643.3616285
https://doi.org/10.1145/3639476.3639776
https://doi.org/10.1145/3639476.3639764

	Introduction
	Related Work & Foundations
	Transitive Trace Links
	LLMs for Traceability
	Architecture Recovery

	Approach
	Feature Extraction for Source Code
	Prompting Strategies
	TransArC Approach

	Experimental Design
	Evaluation Setup: Data and Metrics
	Baselines

	Empirical Results
	Extracting Component Names from SAD
	Generate Component Names from Source Code
	Generate Component Names from SAD and Code
	Discussion & Error Analysis
	Threats to Validity

	Conclusion and Future Work
	References

