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Abstract: X-ray diffraction (XRD) is commonly used to an-
alyze phase compositions of crystalline samples. Medical ap-
plications include the analysis of biotechnological materials
and gall- and kidney stones, where composition can inform
pathology assessment. XRD analysis methods like Rietveld re-
finement requires expert knowledge, and multi-phase sample
analysis is especially challenging and time consuming. Large-
scale medical and biotechnological experiments can therefore
be hindered by the need to perform analysis tasks using XRD.
Here, we present preliminary results on an automated con-
volutional neural network (CNN) based method for sample
composition analysis using XRD patterns. It can aid experts’
analysis using initial estimations, and enable basic judgements
for non-experts. Furthermore, we confirm the intuitive notion
that analysis performance degrades with sample complexity
through systematic investigation using a synthetic dataset.
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networks, deep learning

1 Introduction

In medicine and medical technologies, X-ray diffraction
(XRD) is used to characterize crystalline biological samples
(human teeth and gall-/kidney stone samples [1]), but appli-
cations extend to the analysis of bioceramics [2] and implant
surface coatings [3]. X-ray diffraction methods measure in-
teractions between radiation and the sample’s crystal struc-
ture. They produce characteristic patterns containing reflec-
tions corresponding to crystal lattice planes in the sample, with
multi-phase samples producing more — possibly overlapping
— reflections. Analysis of these patterns using methods like
Rietveld refinement can be difficult and time-consuming, im-
peding larger studies.
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Recent advances in machine learning have enabled high-
throughput experiments in medical and biological research by
taking advantage of automated image processing [4, 5]. These
effects can also be harnessed by development of neural net-
work based methods for automated XRD pattern analysis. As
with medical image processing, only limited quantities of la-
beled XRD data are available. Therefore, many methods use
fully [6–9] or partially synthetic training data [10, 11].

Qualitative XRD pattern analysis deals with categoriza-
tion of XRD patterns including phase identification [7–12]
and more general classification tasks [6]. Dataset sizes vary
greatly, ranging from less than 100 experimental samples [12]
to datasets exceeding one million simulated XRD patterns
[11]. Conventional machine learning methods like k-nearest-
neighbors perform similarly to shallow neural networks (ac-
curacies higher than 90%) [12] when trained on small (exper-
imental) datasets. Larger and more complex datasets enable
neural networks to perform better than conventional alterna-
tives, achieving classification accuracies of upwards of 80%
[10]. Later work reaches accuracies of 90–95% [6, 7].

Estimating phase fractions from XRD patterns (quanti-
tative analysis) has proven more challenging. Recent liter-
ature on kidney stone analysis [12] and geological sample
classification [13] suggests that conventional methods like k-
nearest-neighbors regressors slightly outperform shallow neu-
ral networks when trained on small datasets. Hosein et al. [14]
achieve similar performance to Greasley et al. [12] on the same
dataset using an optimization-based approach. Kim et al. [15]
train deep neural networks for composition analysis on small
augmented geological datasets, but their model performance
varies strongly with the analyzed mineral.

Lee et al. [16] employ a two-stage method of phase iden-
tification and subsequent dispatch to 1540 different models
for composition analysis to achieve near perfect model per-
formance. However, their method relies on a very large model
and a dataset of more than 107 2–3 component mixtures of 21
phases, making training and distribution unwieldy.

Here, we present a proof of concept for automated CNN-
based XRD composition analysis and a training method im-
plemented on a subset of the Crystallography Open Database
(COD) [17]. Furthermore, we examine the effects of material
pool size and the number of coexisting phases per sample on
model performance.
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2 Method

Data Preparation
Supervised machine learning algorithms require large quan-
tities of examples (training data) which map model inputs to
desired outputs. Due to the lack of sufficient labeled data, we
create a synthetic training dataset by simulating XRD patterns
using the pymatgen software package [18].

We sampled 50 random structures from a subset of the
COD [17] crafted to remove crystalline polymers from the
dataset. Following previous work from our group (Schuetzke
et al. [6, 8]), 500 strain conditions with random amplitudes less
than 0.05 were applied to the materials’ unit cells. Our bench-
mark dataset of 50 · 500 = 25000 single-phase XRD patterns
was simulated from these strained unit cells.

Storing a sufficiently sized dataset of multi-phase XRD
patterns is unfeasible due to the size of the configuration space.
Instead, they are constructed during training by linear combi-
nation of single-phase patterns. The complexity of the con-
structed patterns depends on the maximum number of coexist-
ing phases per sample 𝐾 and the total number of different ma-
terials in the dataset 𝑁 . Strain conditions applied to the same
material count as distinct phases for the purposes of 𝐾, but are
mapped to the same model output during training.
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Fig. 1: The training data pipeline: single-phase XRD patterns from
a batch are weighted and combined. The mixed pattern’s peak
positions are discretized, peak shapes are placed. Finally, the
pattern is augmented using noise and background signals before
being input into the model.

Figure 1 shows the training data pipeline. Batches of
512 single phase XRD patterns are drawn from a dataset of
size 𝑁 · 500 during training. After combination using random
phase fractions, the peak positions are discretized. Pseudo-
Voigt profiles with random mixing parameters for the Gaus-
sian and Lorentzian (𝜂 ∈ [0.1, 0.9]) are placed at the dis-
cretized peak positions (like Schuetzke et al. [6]). We deter-

mine their full width at half maximums according to the Scher-
rer equation, similar to Park et al. [19], using uniformly ran-
dom crystallite sizes (10 nm to 100 nm) like Schuetzke et al.
[6]. For simplicity, device-specific peak broadening and pre-
ferred crystal orientations are ignored. After peak placement,
the patterns are normalized to the range [0, 1] before Gaussian
noise (3 to 7% of maximum signal magnitude) and random
background signals (exponential curve) are added.

Model Architecture
As shown in Figure 2, our model consists of a convolutional
(Conv-) and fully connected (FC-) stage. The convolutional
stage is comprised of 3 blocks containing batch normalization,
convolutional and pooling layers. After each convolutional
block, copies of the data are passed through convolutional re-
duction layers (R1-R3) to adjust their sizes. Then, they are
concatenated (similar to Yuan et al. [20]) and passed through
the fully connected stage to produce the predicted phase frac-
tions 𝜙𝑖 ∈ [0, 1]. In total, the proposed model architecture has
about 30·106 parameters. Table 1 shows the convolutional lay-
ers’ hyperparameters.

X
R

D
S

ca
n

2
0
4
8
×

1

2
5
0
×

1
2
8

58 × 512
14 × 1024

R1: 484

R2: 540

R3: 704

𝜙𝑖
1
7
2
8
×

1

2
0
0
0
×

1

2
0
0
0
×

1

1
0
0
0
×

1

𝑁
×

1

co
nc

atreduction

layers

Conv-Stage FC-Stage

XRD Scan 𝜙𝑖Model

Model

Fig. 2: The model architecture used in this paper. It is comprised
of a convolutional (Conv-) and a fully connected (FC-) stage. Data
shapes are represented in blue. R1, R2 and R3 indicate data
shapes after passing through the respective reduction layers.
Filter sizes are displayed in Table 1.

Batch normalization is applied before each layer except
the first. Where specified in Table 1, convolutional layers are
followed by Max pooling with a kernel size and stride of 2. All
layers except the last one use leaky rectified linear unit activa-
tions with a negative slope of 0.01. In the last layer, softmax
activation ensures that the outputs sum to one.
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Tab. 1: Layers used in the convolutional blocks / reduction layers
of the model architecture. All convolutions used a stride of 1 and
no padding. R indicates reduction layers. Kernel size is indicated
by 𝐾.

block filters 𝐾 pool

1 64 7 yes
64 7 yes
128 7 yes

R1 4 9 yes

2 256 7 yes
512 7 yes

R2 20 5 yes

3 1024 7 yes
1024 7 no
1024 7 no

R3 64 4 no

Loss Function
During training, model parameters are adjusted using the
ADAM optimizer [21]. This requires a loss function to eval-
uate model performance. Both the model prediction 𝑃 and tar-
get model output 𝑇 must sum to one, because they are compo-
sitions. Therefore, they can be interpreted as probability dis-
tributions. A sensible loss formulation is a distance between
probability distributions, such as the total variation distance
TVD (see Equation 1). The TVD can be interpreted as the av-
erage material portion of a given physical sample assigned an
incorrect phase.

TVD =
1

2

𝑁∑︁
𝑖=1

|𝑇𝑖 − 𝑃𝑖|
(︂
=

𝑁

2
MAE

)︂
;

𝑃𝑖, 𝑇𝑖 ∈ [0.0, 1.0];

𝑁∑︁
𝑖=1

𝑇𝑖 = 1;

𝑁∑︁
𝑖=1

𝑃𝑖 = 1; (1)

Additionally, using TVD enables comparison of losses be-
tween models of different output lengths, which is especially
useful when analyzing the influence of sample complexity.

3 Experiments and Results

We use a 60/40 training/validation split, and train all our mod-
els for 3000 epochs using ADAM [21] with a learning rate of
2 ·10−4. This amounts to 0.6 ·3000 ·500 = 9 ·105 ·𝑁 different
samples per training. Our test dataset was constructed from the
same 50 components as described in Section 2, but with 200
different strain conditions. They are combined with different
ratios during testing. We measure model performance using
the mean TVD (see Equation 1) on the test dataset (TVDtest).

We explored the effects of sample complexity by vary-
ing the parameters 𝑁 (material pool size) and 𝐾 (coexisting
phases per sample) as described in Equation 2. The number
of epochs was kept constant to compare the effects of sample
complexity on training after similar time scales. To account for
variances in training and initialization, we trained and evalu-
ated 3 models for each configuration (𝑁,𝐾). Training took
between 50 (𝑁 = 5) and 160min (𝑁 = 20) on an NVIDIA
Titan RTX GPU with 24GB of VRAM.

𝑁 ∈ {5, 10, 15, 20} 𝐾 ∈ {3, 5, 7} (2)

An increase in dataset and sample complexity through 𝑁

and 𝐾 increases TVDtest. Figure 3 shows the relationship be-
tween the TVDtest and 𝑁 for different 𝐾. Model performance
deteriorates by a factor of 5.4 when comparing the simplest
(𝐾 = 3, 𝑁 = 5) and most complicated cases (𝐾 = 7, 𝑁 =

20). The training loss did not converge for 𝑁 > 10 and 𝐾 > 5,
indicating that these configurations require more than the pro-
vided 9 · 105 · 𝑁 samples for convergence. Sample complex-
ity therefore not only affects model performance, but also in-
creases computational and data requirements.
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Fig. 3: Total variation distance on the test dataset TVDtest for the
models trained on a dataset with given 𝑁 and 𝐾. Each data point
represents the mean of three runs. Except for the (𝑁 = 5,𝐾 =

3)-case (𝜎 ≈ 0.08𝜇), standard deviations are less than 2%. All of
them are therefore omitted.

Training of models for XRD pattern composition analysis
is greatly influenced by the complexity of the material system.
Especially if the number of coexisting phases can be assumed
low, lower training times are required for acceptable precision
of TVD ≈ 0.1.

Our model performs worse compared to the 400 times
larger model presented in Lee et al. [16], which is expected
given the size difference. It performs better than the mod-
els presented in Greasley et al. [12], reaching TVDs of 0.10

309



REFERENCES

(𝑁 = 10,𝐾 = 3) and 0.06 (𝑁 = 5,𝐾 = 3) in com-
parable test cases. Their traditional machine learning algo-
rithms reach MAEs between 0.048 (TVD = 0.168) and 0.083
(TVD = 0.291) for 𝑁 = 7 and 𝐾 = 2.

4 Conclusion and Future Work

The presented model architecture and training framework con-
stitute a possible starting point for automated XRD pattern
composition analysis. Our model can aid specialists by pro-
viding initial guesses for sample compositions. With further
improvements, it could facilitate automation of analysis steps
needed in drug discovery or materials screening processes.
While preceding publications have produced lightweight but
imprecise or unwieldy but accurate models, our model delivers
a tradeoff between those extremes. Downsizing and increasing
parameter efficiency reduce training times and make models
easier to distribute. This enables on-demand training of neural
networks for problem-specific XRD analysis solutions.

While training on synthetic data generally cannot be
avoided, our future work should include testing on experimen-
tal XRD patterns to validate the synthetic training data, as done
in Lee et al. [16]. For randomly chosen material components,
this data generally does not exist and testing requires the se-
lection of a real material system more specific to the end use
caes. This likely requires further tweaks to the augmentation
process, such as the modeling of device-specific inaccuracies
related to monochromator and collimator properties.

Additionally, effects of dataset and sample complexity on
other network architectures could be examined to gain a more
thorough understanding of the requirements on network archi-
tecture for XRD composition analysis.
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