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Abstract: Extracting structured information from scientific
works is challenging as sought parameters or properties are
often scattered across lengthy texts. We introduce a novel it-
erative approach using Large Language Models (LLMs) to
automate this process. Our method first condenses scientific
literature, preserving essential information in a dense format,
then retrieves predefined attributes. As a biomedical applica-
tion example, our concept is employed to extract experimental
parameters for preparing Metal-Organic Frameworks (MOFs)
from scientific work to enable complex and information-rich
applications in the biotechnology-oriented life sciences. Our
open-source method automates extracting information from
verbose texts, converting them into structured and easily navi-
gable data. This considerably improves scientific literature re-
search by utilizing the power of LLMs and paves the way for
enhanced and faster information extraction from extensive sci-
entific texts.

Keywords: Metal-Organic Frameworks, Large Language
Models, Information Extraction, Automation

1 Introduction

Rapid advancements in Deep Learning (DL) during the last
decades have transformed the modern science landscape. In
particular, recent developments in Large Language Models
(LLMs) revealed extensive capabilities that gain far-reaching
recognition in all research domains, biomedical engineering
being no exception [8].

LLMs excel in clinical and educational applications, aid-
ing experts in answering patient queries and generating med-
ical tests automatically [9]. They are also widely utilized in
predictive chemistry [5], synthesis prediction [6], and drug de-
sign [4]. In addition to the multitude of applications for educa-
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tion and experiment design, LLMs are predestined for analyz-
ing scientific works due to their text-based nature. Extracting
knowledge from these texts is particularly valuable, given the
scattered nature of information such as synthesis conditions
and experiment designs across lengthy documents.

The automated extraction of experimental attributes for
Metal-Organic Frameworks (MOFs) from scientific texts with
LLMs is particularly interesting, as they are ideal candidates
for applications ranging from drug delivery and bioimaging to
biosensing and biocatalysis [13]. MOFs offer properties that
are useful in biomedical engineering, such as their large sur-
face area, tunable pore size, biocompatibility, and ability to
create controlled microenvironments that allow precise manip-
ulation of biochemical reactions and interactions in biologi-
cal systems. MOFs consist of metal ions and linker molecules
that form compact, regular crystals through ionic interactions.
Enzymes can also be incorporated into these as biological
cargo, resulting in biohybrid enzyme-MOF composites. All
this makes the experiment design with MOFs parameter-rich
and complex. Hence, several approaches use LLMs to accel-
erate and automate literature research concerning experiment
design with MOFs. These include, among others, building
knowledge graphs for MOFs [1], extracting experimental de-
tails from abstracts of scientific papers [3], and distilling syn-
thesis information from scientific literature [6, 14]. All these
approaches simplify and speed up work with MOFs remark-
ably, but can only be employed for short texts, as LLMs are
generally limited in the amount of input they can process at
once. A usual limit is 4.096 tokens (roughly 3.000 words)
[10]. This shortcoming is critical if the experimental param-
eters for MOFs are to be identified automatically, as they are
usually distributed throughout long scientific texts and supple-
mentary information. While there are LLMs designed to pro-
cess vast inputs simultaneously [7], such solutions require far
more resources and often struggle with maintaining coherence
and consistency across lengthy texts [11].

Our latest research introduces a concept that uses LLMs
to analyze lengthy and complex scientific texts effectively, pre-
serving all important information by iterative condensing and
summarizing. Our concept is illustrated through the automated
extraction of MOF attributes. With our approach, we strive to
relieve domain experts by automating the process of extracting
specific information from lengthy scientific texts. Our open-
source method, is available at https://osf.io/nhegv/.
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Fig. 1: Overview of our concept: A scientific work (paper) 𝒲 is converted to plain text with Optical Character Recognition (OCR), split
into sections 𝒯 , and summarized by an LLM, keeping all relevant information. The shortened sections 𝒯 ′

are then merged into one,
redundancy-free and information-dense paragraph 𝒫. This paragraph is then used to extract predefined relevant information (attributes)
𝒜 and converted into a structured format for output.

Tab. 1: The Attributes 𝒜 to be extracted from the scientific works
𝒲, sorted by Complexity.

Attribute 𝒜 Complexity

Name of the formulated MOF composite Intermediate
Enclosing MOF name Intermediate
Name of the linker salt used for incorporation Intermediate
Name of the metal salt used for incorporation Intermediate
Name of the incorporated enzyme Intermediate
Organism name of the incorporated enzyme Advanced
Concentration of the used metal salt solution Advanced
Concentration of the used linker salt solution Advanced
Concentration of the used enzyme solution Advanced
Educts of the enzymatic reaction Hard
Products of the enzymatic reaction Hard
Sequence of components for the composite Hard

2 Concept

Fig. 1 provides an overview of the presented concept. We ex-
tract and condense the information of a scientific work 𝒲
(typically a paper) to extract a set of pre-defined attributes
𝒜, specified by the human expert. Since LLMs cannot pro-
cess texts of arbitrary lengths, finding a solution to process
texts longer than the maximum input size is particularly es-
sential. Hence, 𝒲 is converted into plain text and split at sec-
tion headings to obtain a list of self-contained, shorter texts
𝒯 = {𝒯1, 𝒯2, ..., 𝒯𝑛}, where 𝑛 is the number of sections in 𝒲 .
Each element 𝒯𝑖 is then compressed by an LLM only to re-
tain information related to the attributes 𝒜, resulting in a list
of shortened sections 𝒯

′
= {𝒯

′

1 , 𝒯
′

2 , ..., 𝒯
′
𝑛}, where 𝒯

′

𝑖 repre-
sents a condensed version of 𝒯𝑖 that is reduced to the sought in-
formation: |𝒯

′

𝑖 | < |𝒯𝑖|, where | · | denotes the length. The com-
pressed sections 𝒯

′
, until now only considered in isolation,

are now iteratively combined into one short and redundancy-
free paragraph 𝒫 , that contains all relevant information regard-
ing the defined attributes 𝒜. 𝒫 is expanded iteratively, putting
the individual sections of 𝒯

′
in context with each other. First,

an initial summary 𝒫1 is generated from the first section 𝒯
′

1 .

For each subsequent section 𝒯
′

𝑖 , the previously generated sum-
mary 𝒫𝑖−1 is used as a knowledge base and expanded with 𝒯

′

𝑖

to obtain 𝒫𝑖. With this approach, the last paragraph 𝒫𝑛 en-
compasses a summary of the entire content of 𝒲 . Using our
approach, the final paragraph 𝒫𝑛 effectively summarizes the
entirety of 𝒲 , with a focus on the predefined attributes 𝒜 and
processible at once by common LLMs. In the last step, 𝒫𝑛 is
used to first extract the attributes 𝒜 and then output them in a
structured format so that they can be processed automatically
by other applications.

3 MOF Parameter Extraction

Our concept is exemplified for the extraction of MOF parame-
ters but is applicable to arbitrary applications (e.g. the extrac-
tion of small molecule potencies in oncology).

Definition of Structured Information
The experimental attributes 𝒜 to be extracted from the scien-
tific papers 𝒲 are displayed in Tab. 1. We have identified these
parameters as important since they are highly relevant for the
classification, formulation, or characterization of the described
biohybrid enzyme-MOF composites. The first five parameters
are the most accessible due to their key roles and prominent
semantic positions in the text. The organism name and concen-
trations are more complex as they require not only the local-
ization and extraction of the corresponding parameter but also
the associated attributes. The final three parameters are chal-
lenging due to their complex definition. The LLM must make
multiple distinctions for the parameters educts and products.
This includes identifying reactants or products and their link-
age to enzyme catalysis reactions while excluding metal ions
and linker molecules of the enzyme incorporation into MOF
reaction that is also linked to the same enzymes. The sequence
of components requires an understanding of the time and pro-
cess of enzyme incorporation into MOF.
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Dataset
To evaluate our concept, we generate a dataset in which we
ask a domain expert to manually extract the defined MOF pa-
rameters 𝒜 from four scientific papers conducting experiments
involving MOFs. Each paper stems from a different journal
to ensure diversity in the data. Further, the papers contain a
main text and may have Supplementary Information. Not ev-
ery sought attribute is necessarily mentioned in every paper.
Further details regarding the dataset are provided at our repos-
itory: https://osf.io/nhegv/.

Experiment Design
We evaluate our compression approach regarding extraction
quality of the defined attributes against an LLM model capa-
ble of processing very long inputs [7]. The comparison model
receives the same prompt for generating the attributes as our
method in the last step. Since there may be deviations in the
generated answers, which are not necessarily incorrect, a hu-
man expert is consulted to assess whether the found parame-
ters are valid or not. Further, we report the compression rate
of our model from the initial scientific work parsed with OCR
to the most compressed version to evaluate how much the text
has been condensed.

4 Results

Architecture and Implementation
We employ nougat [2] for OCR parsing. We do not modify the
generated text, except by removing the references and author
lists by hand. Sections too long to be fed into our LLM model
are split in half. A Llama-2 [10] model with 70 billion param-
eters is used for both the scientific text compression, as well as
for the extraction of the attributes from the compressed para-
graph 𝒫𝑛. The long-input model we compare our approach
to is Yarn-Llama-2-13b-128k [7], a modified Llama-2 trained
for long inputs. We optimized the output of the models via
prompt-engineering. The final prompts used are accessible at
https://osf.io/nhegv/. All models are implemented in PyTorch
with the use of the HuggingFace [12] platform. The text gen-
eration is performed on a system with two NVIDIA GeForce
RTX A6000 GPUs.

Experiments
Tab. 2 lists the accuracy for the sought attributes for both
our compression method (Ours) and the comparison model
[7] (Direct). Our model achieves high accuracy for interme-
diate attributes, with only metal salt presenting occasional er-
rors. The result for the comparative model regarding the inter-

Tab. 2: The accuracy of our Compression approach compared to
a Direct [7] evaluation of the scientific texts. The accuracy is cal-
culated as the number of correct predictions against the number of
scientific papers.

Attribute 𝒜 Ours Direct
[%] [%]

Name of the formulated MOF composite 100 75
Enclosing MOF Name 100 75
Name of the linker salt used for incorporation 100 0
Name of the metal salt used for incorporation 75 0
Name of the incorporated enzyme 100 75
Organism name of the incorporated enzyme 100 100
Concentration of the used metal salt solution 75 25
Concentration of the used linker salt solution 50 50
Concentration of the used enzyme solution 50 50
Educts of the enzymatic reaction 50 25
Products of the enzymatic reaction 100 0
Sequence of components for the composite 50 0

Tab. 3: The lengths of the Intial texts, the Compressed Sections,
and the Dense Paragrahs for each scientific paper. All lengths are
given as the sum of words.

Paper Num. Length Length Compressed Length Dense
Original Sections Paragraphs

1 3.767 2.335 538
2 6.229 2.921 474
3 4.920 3.124 897
4 5.043 3.527 756

mediate attributes is strikingly less precise. No attribute was
always found and neither the the linker salts nor the metal
salts could be determined in any paper. The name of the in-
corporated enzymes could always be found by our method
and in 75% of cases for the comparison model. However,
the other advanced attributes, particularly concentration de-
terminations, pose challenges for both methods. Our approach
demonstrates superiority, achieving 75% accuracy for metal
salt solutions and 50% for linker salt solutions and enzyme
concentrations. In contrast, the comparison model determines
25% of the metal salt solutions correctly, and 50% of the en-
zyme and linker salt solutions. The educts are also difficult to
determine, but here our method with 50% accuracy still has
an advantage over the comparison method with 25%. Remark-
ably, our approach consistently identifies enzymatic reaction
products, a task the comparison model could never do cor-
rectly. Finally, our model successfully identifies the sequence
of components in 50% of cases, whereas the comparison model
again fails entirely.

Tab. 3 displays the compression rates for both steps of our
concept. The results show a substantial reduction in the length
of the texts. Initially, the papers had varying lengths, ranging
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from 3.767 to 6.229 words. After compression, the lengths of
the sections were notably reduced, with the compressed sec-
tions containing between 2.335 and 3.527 words. Moreover,
the dense paragraphs, the final most reduced text, demonstrate
significant condensation, with lengths ranging from 474 to 897

words. The compression rate results combined with the supe-
rior identification of the relevant attributes compared to direct
extraction show that our approach is capable of distilling the
relevant information regarding the searched attributes in a min-
imum of words. In addition, our results illustrate that current
LLMs are not suitable for processing very long texts to extract
information, even if this is technically possible.

5 Discussion

Our presented concept is a leap in the direction of automated
retrieval of structured information from scientific papers. This
is especially valuable in the biomedical field, where domain
experts have little time to spare, and searching for specific at-
tributes in texts may require a considerable amount of time.
The superiority of our method over an approach optimized for
long texts that processes the whole scientific works at once,
confirms the potential of our approach, even though some pa-
rameters are not identified correctly. However, this result is
to be expected, as we deliberately chose the challenging task
of MOF parameter retrieval including attributes of different
difficulty levels to demonstrate the potential and limitations
of our method in extracting structured information. Although
our system cannot yet be used completely autonomously, the
workload for domain experts searching for information in sci-
entific texts is already significantly reduced using our ap-
proach, since most attributes can be found with substantially
less effort, as we were able to show.

6 Conclusion

We recognize the problem that extracting structured informa-
tion from scientific works is labor-intensive and error-prone.
Hence, we build upon the recent developments in the field of
LLMs and present a concept that automatically distills prede-
fined attributes from lengthy scientific texts. In contrast to the
evident solution to increase the amount of text processable by
the LLM, we iteratively condense the contained information
to break down complex texts to the most significant informa-
tion regarding the respective challenge. Thus, we can employ
the condensed text to well-established methods and exploit the
full potential of state-of-the-art technologies. Our experiments
confirm the superiority of our method over an approach opti-

mized for long texts that processes the whole scientific work
at once.

Potential enhancements to our prototypical concept in-
clude fine-tuning network parameters, employing human-in-
the-loop approaches, or providing biomedical databases using
techniques like Retrieval-Augmented Generation (RAG) when
the model is uncertain. Expanding our method to more com-
plex datasets will assess its effectiveness in handling a broader
range of scientific literature. Further, subsequent steps may in-
volve developing our experimental findings into a fully em-
ployable product. This may include engaging multiple domain
experts in concept evaluation and determining the extent to
which they find the extracted MOF attributes useful, helping
to refine and optimize the information extraction process.
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