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Abstract: With growing interest in laboratory automation
and high-throughput systems, the amount of generated exper-
imental data is rapidly increasing while analysis methods still
require many manual work hours from experts. This is preva-
lent in X-ray photoelectron spectroscopy (XPS), where quan-
tification is a complex, time-consuming, and error-prone task.
We therefore propose a neural network-based workflow to
make this process more approachable. As training data avail-
ability ranges from insufficient to non-existent, our workflow
creates a synthetic dataset containing XPS signals and corre-
sponding area percentages based on binding energies supplied
by the user. As a result, no previous measurements are needed.
After training on the synthetic data, the neural network can
predict area percentages of the known binding energies with
high confidence. This workflow can therefore be adapted for
XPS quantification tasks to filter significant data and supervise
processes. Moreover, this enables non-experts to analyze spec-
tra and can help experts to reduce focus on important spectra.

Keywords: XPS, Quantification, Machine Learning, Syn-
thetic Dataset

1 Introduction

X-ray photoelectron spectroscopy (XPS) is a state-of-the-art
method in material science to gain information about elemen-
tal compositions as well as chemical and electronic states of
elements. By exciting photoelectrons with X-rays, the surface
of samples is measured as spectra that show intensities of said
photoelectrons over their respective binding energies [1, 2].
XPS is used in different research fields like development of
batteries or thin-films [3, 4]. Another important field is med-
ical science, where analysis of implants, medical equipment
and alloys regarding aging processes, biocompatibility and an-
timicrobiality are important [5-7].
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To obtain the desired information about occurring ele-
ments and their atomic percentages at.%, each spectra is an-
alyzed by hand. This task is very time demanding, requires
highly skilled experts and is quite error prone due to its com-
plexity [8, 9]. With the rise of high-throughput systems and
lab automation gaining importance, the amount of measure-
ments and resulting data is drastically increasing. To prevent
bottlenecks in new processes, analyzing methods need to be
scaled accordingly. Especially for XPS, where each measure-
ment needs to be thoroughly examined by hand, tools for eas-
ier access for non-experts and preliminary decisions based on
complex systems without the need for experts are vital.

There has been limited research into the quantification of
XPS data using neural networks, although this has been fo-
cused on survey spectra over a larger energy range. The work
by Drera et al. [10] uses training data based on binding ener-
gies from a database, which gives users a possibility to select
contained elements. This is a limiting factor, as binding en-
ergies can vary and a more detailed quantification of for ex-
ample orbitals of one element is not considered. Pielsticker
et al. [11] use linear combinations of real measurements to
create training data. Therefore, a user needs measurements of
each element in its pure form and without impurities to not
introduce any bias into the dataset. These approaches suffice
for broader quantification of given elements. The breakdown
of signals into peaks associated with orbits need more pre-
cise data in the form of narrow or detail scans as well as spe-
cific binding energies that can change between setups [12]. As
these are the major works concerning XPS, looking at other
spectroscopy methods, Li et al. [13] have presented tools for
analyzing 1D-Nuclear Magnetic Resonance (NMR) spectra,
that include peak fitting solutions using neural networks. This
can give insights on improving the network approach for XPS
analysis, although differing data generation is a limiting factor.

Therefore, we introduce an approach based on synthetic
data that focuses on detail scans. We only use given binding
energies and peak constraints to create datasets on which our
models are then trained and tested. This is our first application
of neural networks on XPS, while previous research focused
on X-ray Diffraction (XRD) with similarities in data gener-
ation and network architecture [14]. Consequently, this is a
proof-of-concept and validated on synthetic data.
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2 Method

For the deployment of our approach, we have created a work-
flow and split it into two paths. An exemplary overview of this
workflow is shown in Figure 1. The first path (solid arrows)
concerns the creation of synthetic data and training of the neu-
ral network. The second path (dashdotted arrows) is the appli-
cation of the neural network on supplied spectra.

An important difference to previous research is the dif-
ferent prediction goal of our network. Experts are commonly
interested in atomic percentages (at.%) for quantification of
contained elements. However, we train our network to predict
peak area percentages (pa.%). This is because atomic percent-
ages are calculated from peak areas using Relative Sensitivity
Factors (RSF). These differ for each element and instrument
manufacturers, who therefore often include RSF values with
their product or accompanying software. As the aim of this
approach is variability, we therefore do not include the RSF
conversion to atomic percentages within the data and network
workflow. If needed by the user, peak area percentages can be
converted to the actual peak area within the measurement and
using their respective RSF to the atomic percentages with

X = TAm / I ,12 N )
Zi Tim/1, zA !
Here, X 4 represents the atomic percentage of element A, I;,,,
the peak areas of each element 7 and 1{4” the corresponding
RSF [15]. This preliminary exclusion allows for a broader use-
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case and adaptability. In the following, we will discuss the syn-
thetic data generation and network architecture in more detail.

As a large amount of synthetic spectra is needed to train
our network, we generate synthetic peaks following the struc-
ture shown in Figure 1. First off, we require the input of bind-
ing energies of the contained elements. There are additional
parameters that can be tuned to a specific problem if there are
known constraints. For each synthetic signal and contained el-
ement a Full Width Half Maximum (FWHM) is randomly cho-
sen from a range (default [0.5 — 3] eV). Pseudo-Voigt profiles
are calculated with a given n, which shifts the profile towards
a pure Gaussian (n = 0) or pure Lorentzian (n = 1) shape.
Each profile is then normalized by its area, multiplied with a
predefined pa.% and combined to generate a synthetic signal.

First steps during XPS analysis is to calculate and remove
the underlying background. Three types are most common.
For very simple examples, fitting a linear background can be
sufficient. Shirley and Tougaard are more common and accu-
rate, but more complex to achieve a better fit [16]. Shirley is an
iterative process based on the assumption that the background
is proportional to the total number of photoelectrons starting at
the current binding energy. Tougaard introduces further com-
plexity by including effects of inelastically scattered electrons.
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There are many complex effects to consider when calculating
backgrounds from real measurements, which are also highly
dependent on the contained elements. As this approach aims
to not rely on specific element information, Tougaard can not
be applied and we chose a combination of Shirley and linear
for our approach to create synthetic backgrounds. The Shirley
background S(F) is calculated according to Vegh et al. [17],
using a simplified approximation of an integral over the mea-
surement y(E) based on the binding energy E
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This does not take into account or simulate effects like in-
elastically scattered electrons. As we are only considering de-
tail scans, this effect has less of an impact [18]. We approx-
imate the background in these smaller binding energy ranges
by a combination of a linear and the calculated Shirley back-
ground. The gradient of the linear background over the mea-
surement length is chosen from a parameter range that defaults
to [—0.2,0.2].

As last addition, we add Gaussian noise. Its maximum can
be changed as an input parameter of the workflow and defaults
to 10% of the standard deviation of the measurement. During
data generation, a uniform random value is created with the
given maximum for each signal and added onto our data. The
signal is then normalized to a range of [0, 1] and added to the
dataset with its pa.% and other necessary parameters. The next
step of our workflow is to build the neural network.

We use a model architecture based on Conv1D and Max-
Pooling1D layers to predict pa.%. This is partly derived from
current publications [10, 11] and previous findings while
working with XRD [14]. The dataset is split into three subsets
for training, validation and testing using a split of 80/10/10%.
The neural network is built and compiled using the Python
package TensorFlow. Its architecture is displayed and de-
scribed in Table 1. The input size of the first layer equals our

Tab. 1: Network architecture with input size of 200 signal points
(20 eV, 0.1 eV/step) and normalized output for 5 labels.

Layer Output Parameters #
Input 200, 1 0
ConviD 200, 12 192
MaxPoolingiD 199, 12 0
ConviD 199, 12 2127
MaxPoolingiD 198, 12 0
ConviD 198, 12 2127
MaxPoolingiD 197, 12 0
Flatten 2364 0
Dense 200 473000
Dense 5 1005
Output_norm 5 0




A. Orth et al., ML-Based XPS Quantification Supported by Synthetic Dataset Generation ==

Generation
Synthetic Dataset

User Input
Binding Energies
Constraints

[162, 150, 124,

BE

40, 25

XP Spectrum

Training/Testing Prediction
Neural Network Peak Area
Percentage
: \
. o [0.2,0.05, 0.25,
I pa.% 0.1, 0.4]

—p  \Norkflow Setup

==p Workflow Application

Fig. 1: A workflow overview with user input of binding energies, additional constraints and X-ray photoelectron (XP) spectra for quan-
tification. Based on binding energies and constraints, single peaks per binding energy are created and combined. Additional augmen-
tations (backgrounds and noise) are added to create the final synthetic signal. The resulting dataset is used to train the neural network.
The supplied XP spectra is then analyzed by the network (dashdotted arrows) to receive a prediction of the containing pa.%.

measurement size and output the amount of elements and their
given binding energies. The network consists of 478.541 train-
able parameters. We use Mean Absolute Error (MAE) as loss
and metric to supervise the training and validation as well as
comparing our test results. The Conv1D and first Dense layers
all use a ReLu activation. All Conv1D layers use a filter size
of 12 and kernel size of 15. The last Dense layer uses a lin-
ear activation and is followed by a normalization layer as it is
used by Drera et al. [10]. However, we do not use the same
multilevel convolution sub-net header [19]. This has shown
good results for survey scans but is not suitable for our ap-
proach on detail scans. Two additional tools are used during
training. To prevent plateauing, the TensorFlow callback Re-
duceLROnPlateau reduces the learning rate after 20 epochs of
no improvement. Moreover, if there is no further improvement
over 50 epochs, the training is terminated by EarlyStopping.

3 Results

For an exemplary test of the data pipeline as well as the net-
work architecture, we chose five binding energies within a 20
eV range, a Voigt shape with a set ratio of n = 0.5, the default
FWHM range of [0.5,3] eV and 10% noise. The background
consists of the Shirley adaption with an added linear compo-
nent in the default range. The binding energies were chosen
randomly under the following constraints. The distance be-
tween two peaks must be at least 1 eV. The distance to both
binding energy limits, in this case 0 and 20 eV, must be at least
2.5 eV. Of 500.000 created signals, we trained the network us-
ing 80% and validated on 10%. The training took 17 minutes
on an NVIDIA TITAN RTX and was ended by EarlyStopping
after 115 epochs. Testing the trained network on the remain-

ing 10% took 3.8 seconds and resulted in an MAE of 0.003319.
(Without learning rate reduction and early stopping, a similar
result was be achieved. However, this took over 400 epochs
during training and was therefore not a viable option.) A dis-
tribution of the maximum absolute errors is shown in Figure 2.
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Fig. 2: Distribution of maximum absolute errors in % of network
prediction

Here we can see that over 80% of the signals are pre-
dicted with a maximum error of less than 1%, while 49%
even fall below 0.5%. For further comparison, reproductions
of the two worst and two best predictions are displayed in
Figure 3. The signals are calculated from true and predicted
pa.% as well as FWHM and binding energies from the syn-
thetic dataset. Therefore, they are shown without background
or noise for easier comparison. Worse predictions occurred
for signals with noise levels above 8% while noise levels of
less than 1% resulted in more accurate predictions. The errors
mainly occur for peaks that are closer together, which is also
an error source during manual analysis.
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Fig. 3: Reproduction of the worst (a, b) and best (c, d) predictions

4 Conclusion

XPS analysis is a highly complex process that requires a high
level of experience and expertise. In parallel with other refer-
enced research, the aim of our approach is to ease the hurdle
of this complexity to non-experts and make tools accessible
to a wider audience. This can be used in the medical field to
improve accuracy for upcoming high-throughput and lab au-
tomated systems and simplify research and supervision of for
example aging processes. Therefore, also experts can benefit
by not needing to analyze every measurement.

We have presented a workflow that creates synthetic spec-
tra based on a wide array of changeable parameters and a
model architecture that is able to predict area percentages of
given elements with very low errors in short time. These tools
are still subject to approximations and simplifications due to
the complexity of the issue where an expert may outperform
the workflow.

A sensible step for future work is modeling backgrounds
closer to real measurements while at best staying independent
of element-specific information. As data availability is scarce,
validation of the model using a variety of real measurements
is another important goal which could not be included in this
work. A comparison between human and ML analysis results
can lead to further insights as to where current errors are made
and new technology is able to assist. For this, additional bench-
marks need to be created in collaboration with experts.
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