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Abstract
Machine learning models have gained popularity for environmental variable predic-
tions due to their capacity to capture complex relationships and automate learning.
However, incorporating spatial information as covariates into these models remains
a challenge, as they may struggle to recognize spatial structures or autocorrelation
without explicit training. In this study, we address this challenge by integrating spatial
information into a random forest model, enhancing nitrate concentration predictions
in groundwater. Using a dataset from 1,550 well locations in Baden-Wuerttemberg,
Germany, spanning 2016 through 2019, we consider various environmental covari-
ates including climate data, topography, land cover, soil properties, and hydrology.
To incorporate spatial information, we employ eight techniques leveraging spatial
coordinates (geographic coordinates, polynomial geographic coordinates, oblique
geographic coordinates) or distances (Wendland transformed coordinates, Euclidean
distance fields, Euclidean distance matrix, principal component analysis, eigenvec-
tor spatial filtering). Results are compared with a baseline model and a univariate
ordinary kriging benchmark, evaluated through leave-one-out cross validation, vari-
ous error metrics, and Moran’s I of residuals. Our findings highlight that integrating
spatial information significantly enhances random forest model accuracy in predict-
ing groundwater nitrate concentrations. Distance-based methods, like the Euclidean
distance matrix, outperform coordinate-based approaches, albeit with higher com-
putational requirements. Employing a dimension-reduced matrix strikes a balance
between performance and accuracy. This study advances groundwater management
and demonstrates the effectiveness of machine learning models in environmental
studies.
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Abbreviations
10-fold CV 10-fold cross-validation

B Bias
LUBW Baden-Wuerttemberg State Institute for the Environment, Survey

and Nature Conservation
ESF Eigenvector spatial filtering
EDF Euclidean distance fields
EDM Euclidean distance matrix
GC Geographic coordinates

GWR Geographically weighted regression
GW Groundwater
kNN k-nearest neighbors
LISA Local indicators of spatial association cluster map

LOO-CV Leave-one-out cross validation
IDW Inverse distance weighting
MAE Mean absolute error
ML Machine learning
OK Ordinary kriging

OGC Oblique geographic coordinates
PCA Principal component analysis
PGC Polynomial geographic coordinates
RBF Radial basis functions
R2 Coefficient of determination

RMSE Root mean squared error
RF Random forest

noinfo Random forest model without spatial information
SA Spatial autocorrelation

SVD Singular value decomposition
WTC Wendland transformed coordinates

1 Introduction

In numerous environmental disciplines, reliable and accurate spatial predictions of
continuous data are crucial for informed decision-making. These predictions often
depend on point measurements, making appropriate regionalization methods essen-
tial for estimating continuous data. For instance, in hydrogeology, measurements of
groundwater (GW) level and GW quality parameters can be taken only at monitoring
wells, but spatially continuous maps are imperative to derive important information,
such as groundwater flow direction.

Regionalization challenges have traditionally been tackled using interpolation
methods such as deterministic or geostatistical techniques such as kriging. These
methods use the values of neighboring sample locations and the spatial structure of
the data to estimate values at unsampled locations, assuming a level of spatial autocor-
relation where close values are more similar than distant ones. This concept is often
referred to as the first law of geography, as stated by Tobler (1970). However, common
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spatial interpolation methods like inverse distance weighting, spline interpolation, and
kriging (except for co-kriging and universal kriging) have limited capacity to account
for additional spatially correlated variables, as is the case for topography or land use,
for example, which may affect GW level or GW quality (Ohmer et al. 2017).

In geographically weighted regression (GWR), covariates can be considered,
allowing for the modeling of relationships between variables on a local level while
accounting for spatial variation. GWR is widely used for assessing spatial variations in
data relationships, particularly in spatial non-stationarity research like environmental
studies (Brunsdon et al. 1996). Extensions such as multi-scale GWR (Fotheringham
et al. 2017) enable modeling of spatial processes at different scales using a band-
width vector, while GWR assumes a uniform bandwidth parameter. Further extensions
include user-specified kernel functions based on spatial proximity (e.g., Liang et al.
2023), spatial weight kernels (e.g., Du et al. 2020), or the nonlinear relationship
between spatial proximity and nonstationary weights (e.g., Wang et al. 2022). How-
ever, compared to machine learning (ML), traditional GWR may not be as flexible
in capturing complex nonlinear relationships or handling large datasets. ML models
such as neural networks can often capture a wider range of data structures and pat-
terns, especially when relationships between variables are nontrivial or interactions
between variables are complex. ML models automatically extract features and iden-
tify interactions, whereas in GWR, users usually need to specify features and their
interactions, limiting its applicability when understanding of data and relationships
is limited. In contrast to classical interpolation methods, ML models utilize spatially
correlated input features (covariates), which exhibit spatial continuity and are consis-
tently available across the entire study area.By learning complex relationships between
these covariates and the target variable from the training data, these models can make
predictions at unsampled locations. However, without explicitly incorporating spatial
information, MLmodels may not fully account for the spatial autocorrelation of target
values.

Most recent studies that apply ML models for the regionalization of hydrogeo-
logical or environmental parameters do not analyze or discuss the consideration of
spatial autocorrelation. Some studies do not incorporate spatial information at all
(e.g., Ransom et al. 2022; Knoll et al. 2020), while others use only one method, such
as including XY-coordinates as predictors (e.g., Chowdhury et al. 2010; Kirkwood
et al. 2022; Tsangaratos et al. 2014; Wadoux 2019; Walsh et al. 2017; Zanella et al.
2017), without examining other potential alternatives or evaluating the plausibility of
the results.

Incorporating spatial dependencies in ML models is a subject of growing inter-
est. Different approaches have been developed to capture spatial relationships more
accurately than traditional geographic coordinates. These spatial covariates pro-
vide predictive utility by encompassing both environmental correlations and spatial
dependence in the prediction process (Behrens et al. 2018).

The incorporation of spatial lag features is another common approach for cap-
turing spatial relationships. These features aggregate target values from neighboring
observations using methods such as k-nearest neighbors (kNN) or inverse distance
weighting (IDW) (e.g., Credit 2022; Kiely and Bastian 2020; Leirvik and Yuan 2021;
Liu et al. 2022; Sekulić et al. 2020) to combine the aspects of spatial interpolation
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andML regression. Including spatial lag features from neighboring observations risks
data leakage and bias in the model. Direct data leakage occurs when the target variable
is used to derive features for the same target, leading to overfitting and inflated per-
formance. Indirect data leakage happens when the target variable influences features
for related variables, resulting in biased estimates. This can lead to overfitting and
poor generalization. Hence, we excluded the spatial lag features approaches from our
analysis.

After reviewing literature from various disciplines, we have identified several
methods for incorporating spatial information into ML models:

1. Geographic coordinates (GC)
2. Transformed coordinate-based input features, including (i) higher polynomial geo-

graphic coordinates (PGC) (e.g., Borcard and Legendre 2002; Li et al. 2011) and
(ii) oblique geographic coordinates (OGC) (e.g., Møller et al. 2020)

3. The use of radial basis function (RBF) methods such as Wendland transformed
coordinates (WTC) (e.g., Nychka et al. 2015; Chen et al. 2022)

4. Euclidean distance metrics including (i) Euclidean distance fields (EDF) (e.g.,
Behrens et al. 2018; Hengl et al. 2018) and (ii) pairwise Euclidean distance matrix
(EDM) (Ahn et al. 2020)

5. Dimensionally reduced representations of EDM including (i) principal component
analysis (PCA) (e.g., Ahn et al. 2020) and (ii) eigenvector spatial filtering (ESF)
(e.g., Borcard and Legendre 2002; Diniz-Filho and Bini 2005; Islam et al. 2022)

In this study, we methodically examined these different strategies for integrating
spatial data into an ML model, utilizing a random forest (RF) regression model and
a GW quality dataset focused on nitrate levels in Baden-Wuerttemberg, Germany, as
published in Karimanzira et al. (2023). We compared the proposed approaches to a
baselineRFmodel that lacks spatial information aswell as a univariate ordinary kriging
(OK) interpolation through a comparative analysis. Although OK does not incorporate
secondary information, we selected it as a benchmark because it remains one of the
most widely utilized interpolation techniques, thereby providing a straightforward and
effective basis for comparison.

The evaluation process involved assessing selected cross-validation error measures.
Additionally, we assessed the plausibility of the regionalization results, including the
identification of artifacts. To our knowledge, this is the first systematic comparison of
these approaches. While our study focused on hydrogeological data, we believe that
our findings can apply to other environmental disciplines as long as the data exhibit
spatial autocorrelation.

2 Theory and Background

2.1 Random Forest (RF)

The RF algorithm, developed by Breiman (2001), is a supervised learning method for
classification or regression problems that builds an ensemble of decision trees based on
a training dataset. The algorithm randomly selects a subset of features and observations
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for each tree, ensuring diversity in the decision trees. Each tree is constructed by
repeatedly splitting the data based on the selected features until a stopping criterion is
met. Thefinal prediction from theRF is then calculated as the average of the predictions
from all the individual decision trees. Mathematically, the RF model can be described
as

θ̂B(x) = 1

B

∑
b = 1Btb(x;Tb). (1)

In this equation, θ̂B(x) represents the predicted output for a given input vector x.
The prediction is obtained by averaging the predictions of B individual decision trees,
where t∗b represents the bth decision tree, and the average is taken over all the trees
in the forest. Each decision tree is constructed using a bootstrap sample Tb from the
original training data. RF is robust to dataset probability distributions and variable
correlations. Through construction of decision trees from random data subsets, it
effectively mitigates the impact of collinearity.

2.2 Ordinary Kriging (OK)

OK is awidely used geostatistical interpolationmethod for estimating unknown values
at unsampled locations from a set of sampled points. It is based on a semivariogram
model that describes the spatial autocorrelation of the variable of interest. The semi-
variogram model is then used to estimate the covariance between any two points as
a function of their spatial separation distance. The kriging estimate at an unsampled
location is a weighted average of the neighboring sampled values, where the weights
are determined by the covariance between each neighboring point and the unsampled
location. This estimate can be written as

ẑ(u) =
n∑

i=1

λi z(xi ), (2)

where ẑ(u) is the estimated value at location u, n is the number of sampled locations,
λi is the weight assigned to the i th sampled location, and z(xi ) is the known value
at the i th sampled location. The weights are determined by minimizing the kriging
variance, which is a measure of the uncertainty of the estimation

Var(ẑ(u)) = γ (0) −
n∑

i=1

λiγ (hi ), (3)

where γ (0) is the variance of the target variable, γ (hi ) is the spatial autocovariance
between the unsampled location u and the sampled location xi , and hi is the distance
between u and xi .
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2.3 Spatial Autocorrelation

Spatial autocorrelation refers to the tendency of nearby observations to exhibit sim-
ilarities, leading to a correlation pattern based on their spatial proximity. Positive
spatial autocorrelation indicates clustering of similar values, while negative spatial
autocorrelation suggests an inverse relationship (dispersion) between nearby values.
Conversely, the absence of spatial autocorrelation implies a random distribution of
values across space (Griffith and Peres-Neto 2006).

Spatial autocorrelation, described by Tobler’s first law of geography (Tobler 1970),
states that neighboring locations tend to have similar values in geographic data such as
temperature, groundwater level, or soil properties. Ignoring spatial autocorrelation in
statistical analysis can lead to biased estimates, inflated standard errors, and erroneous
conclusions. Accounting for spatial autocorrelation is therefore crucial in modeling to
ensure accurate and reliable results (Dormann et al. 2007).

Moran’s I is a widely used statistic in spatial statistics for measuring spatial auto-
correlation, indicating the level of clustering or dispersion in a dataset. It quantifies the
similarity between neighboring observations on a scale from −1 (perfect dispersion)
to +1 (perfect clustering), with 0 denoting no spatial autocorrelation. Moran’s I index
is computed using the formula

I = N

S0

∑N
i=1

∑N
j=1 wi j (xi − x̄)(x j − x̄)
∑N

i=1(xi − x̄)2
, (4)

where N represents the total number of units in the analysis, S0 is the sum of weights
(wi j ) for all possible unit combinations, xi denotes the value of the variable for unit
i , x̄ is the average value of the variable across all units, and wi j represents the weight
between units i and j signifying their spatial relationship.

The p value associatedwithMoran’s I statistic indicates the probability of observing
a Moran’s I value that is as extreme as or more extreme than the computed value,
assuming no spatial autocorrelation. The p value is calculated using the formula

p = n(Permuted Moran’s I values ≥ Observed Moran’s I value + 1)

�n(permutations) + 1
. (5)

In this formula, the numerator represents the number of permuted Moran’s I values
greater than or equal to the observedMoran’s I value, and the denominator refers to the
total number of permutations conducted during the permutation test. A smaller p value
indicates stronger evidence against the null hypothesis of no spatial autocorrelation
(SA), indicating higher statistical significance (Rey andAnselin 2010; Rey et al. 2023).
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Fig. 1 Overviewofmethods investigated to incorporate spatial information into a random forest (RF)model.
These methods aim to capture spatial dependencies and enhance the performance of the predictive model.
The matrices display the feature values generated from the X and Y coordinates of the sample dataset for
each approach

3 Methodology

3.1 Spatial Covariates

To introduce spatial autocorrelation into ML models and emulate established interpo-
lation techniques, several approaches for generating spatial covariates fromgeographic
coordinates or distance matrices can be used. These covariates play a crucial role in
enhancing the model’s capacity to capture spatial relationships. The study conducted
tests on three coordinate-based approaches and five distance-based approaches, which
are detailed below. All approaches are summarized in Fig. 1.

3.1.1 Coordinate-Based Approaches

Geographic Coordinates (GC)
Geographic coordinates provide a simple means of integrating the spatial reference

of the data into regression models, as shown by their widespread use in practice
(Chowdhury et al. 2010; Gilardi and Bengio 2003; Kirkwood et al. 2022; Langella
et al. 2010; Tsangaratos et al. 2014; Wadoux 2019; Walsh et al. 2017; Zanella et al.
2017). However, relying solely on geographic coordinates could restrict the model to
linear relationships and may not be sufficient to capture the full complexity of spatial
patterns and relationships in the data, leading to lower model accuracy and sharp
blocky artifacts (e.g., Hengl et al. 2018; Behrens et al. 2018).
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Polynomial Geographic Coordinates (PGC)
Polynomial geographic coordinates increase the complexity of regression models

by including higher-order terms of geographic coordinates. By using PGC, relation-
ships between the target variable and GC can be modeled as nonlinear, curvilinear,
or quadratic. This approach has been shown to improve the ability of the model to
capture complex spatial structures (e.g., patterns, gradients, hot spots) that cannot be
accounted for by simple linear models (Borcard and Legendre 2002; Li et al. 2011). In
PGC, geographical coordinates are converted into higher-order terms (e.g., x2, y2, x3,
y3, etc., and their combinations), which are then included as covariates in regression
models. However, a commonly cited drawback of this method is the high correlation
between the spatial covariates generated, leading to multicollinearity and a loss of
the model’s ability to identify independent structures (Borcard and Legendre 2002).
While this may result in high accuracy in the training data, the model may not be able
to accurately predict outcomes at unsampled locations (Meyer et al. 2019).

Oblique Geographic Coordinates (OGC)
Oblique geographic coordinates are synthetic coordinates calculated from known

geographic coordinates at different oblique angles relative to the geographic x-axis.
Incorporation of OGC increases the spatial complexity in the model, improving its
adaptation to more complex spatial structures. The calculation of OGC for a point
with geographic coordinates (a1, b1) is performed using the formula

OGC = b2 =
√
a21 + b21 · cos(θ − arctan(a1/b1)), (6)

where b2 is the oblique geographic coordinate of the point, a1 is the y-coordinate, b1
is the x-coordinate, and θ is the oblique angle between b2 and the x-axis. Møller et al.
(2020) calculated OGC along n axes at angles between zero and π((n − 1)/n), with a
distance of π/n between them. This method is relatively new and has only been tested
by the developers themselves.

3.1.2 Distance-Based Approaches

Wendland Transformed Coordinates (WTC)
Wendland transformed coordinates model spatial dependence using basis functions

(e.g., Nychka et al. 2015;Chen et al. 2022). This involves expressing the spatial process
Y (s) as a linear combination of known covariates x(s) and a random process v(s)with
a general nonstationary covariance function

Cov(v(s), v(s′)) = C(s, s′). (7)

To incorporate v(s) into ML models, the use of nonlinear basis functions is common.
One widely used option for spatial data is the Wendland compactly supported correla-
tion function. In a rectangular grid with grid points u j , the basis functions are given by

�∗
j (s) = �(||s − u j ||/θ), (8)
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where θ is a scale parameter that controls the support of the correlation function.
Nychka et al. (2015) suggested a rectangular grid model with varying resolutions to
achieve a large number of uniform basis functions. The number of basis functions per
grid is determined by Kh = (9 × 2h − 1 + 1)d, where h is the hth grid and d is the
spatial dimension. For instance, a two-dimensional model with four grids necessitates
K = 1, 830 basis functions. However, the use of the Wendland compactly supported
correlation function with a large dataset can result in computational difficulties due to
the significant number of basis functions that must be calculated for each geographic
coordinate.

Euclidean Distance Fields (EDF)
Euclidean distance fields provide a distance-based method of representing spatial

properties. In this approach, fixedpoints, usually the four corners (northwest, northeast,
southwest, and southeast) of the spatial range of the data points and the center, are
used to calculate the Euclidean distance from the sampled or unsampled locations.
This technique is independent of individual sample locations and provides information
about the location and spatial relationships in the study area. EDF can be used alone
or in combination with GC as covariates. Compared to a Euclidean distance matrix
(EDM) based on pairwise distances between the points, the resulting distance matrix
has fewer columns corresponding to the number of fixed points used. This leads to
significantly shorter computation times (Behrens et al. 2018).

Euclidean Distance Matrix (EDM)
Another way of using distance-based covariates to incorporate spatial information

into a model is to construct a Euclidean distance matrix D, which represents the
pairwise Euclidean distance of the data points

Di j =
√

(xi − x j )2 + (yi − y j )2, (9)

whereDi j represents the distance between data points i and j , and (xi , yi ) and (x j , y j )
are the spatial coordinates of the respective data points.

To populate the entire distance matrix, this equation can be applied for all pairs of
data points, resulting in amatrixD that contains the pairwise distances between all data
points in the dataset. Distance matrices are commonly used in geostatistical models
such as kriging. However, it is important to consider that the size of the distance
matrix scales linearly with the number of measurement points, which can result in
longer computation times for large datasets (Ahn et al. 2020; Hengl et al. 2018).

Principal Component Analysis of EDM (PCA)
Principal component analysis can be applied to the distance matrix D to reduce its

dimensionality while retaining the essential spatial information. PCA identifies the
directions (principal components) in the data that explain the maximum amount of
variance. By using the top k principal components, we capture the significant spatial
patterns while reducing the dimensionality of the distance matrix.

Eigenvector Spatial Filtering of EDM (ESF)
Eigenvector spatial filtering is another approach for capturing spatial patterns from

the distance matrix. ESF involves performing a singular value decomposition (SVD)
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on the distance matrix D, resulting in the decomposition equation

D = USVT . (10)

Here,U represents the matrix of eigenvectors, which capture distinct modes of spatial
variation, while S denotes the diagonal matrix of singular values, and VT is the trans-
pose of the matrix of eigenvectors. The resulting eigenvectors capture different modes
of spatial variation. Each eigenvector corresponds to a distinct pattern within the spa-
tial distribution of the data, sowe retain the top k eigenvectors to capture the significant
spatial structures. In this study, following the methodology introduced by Borcard and
Legendre (2002), we tested different maximum neighborhood distance thresholds for
the dataset. To accommodate points with a higher neighborhood distance, distances
exceeding the threshold were multiplied by a factor of 4. This multiplication aimed
to downweight the influence of distant points and mitigate their impact on the spatial
relationships under investigation. By amplifying the distances beyond the threshold,
the study sought to address potential long-range spatial dependencies while preserving
the overall spatial structure of the data.

4 Experimental Setup

4.1 Nitrate Observations in Baden-Wuerttemberg

This study uses mean nitrate concentrations measured from 2016 to 2019 at 1,550 well
locations in Baden-Wuerttemberg, Germany (Fig. 2a). The data are available through
the Environment, Survey and Nature Conservation (LUBW) groundwater data cata-
log (LUBW 2023). The dataset includes only wells in the uppermost and unconfined
aquifers. To eliminate significant outliers, the 1.5 IQR rule was applied. Any measure-
ments within the wells that exceeded a threshold of 1.5 times the interquartile range
(IQR) were removed, while the remaining measurements within the same wells were
retained. The nitrate concentrations exhibit strong positive skewness (Fig. 2b), with a
range of 0.28 to 78.99 mg/L and a median of 18.04 mg/L. The local Moran scatterplot
(Fig. 2c) is used to analyze clustering patterns of a variable, divided into four quadrants:
High-High (HH) for high values surrounded by high values, Low-Low (LL) for low
values surrounded by low values, and so on. The p value determines the significance
of the observed spatial patterns. In the local indicators of spatial association cluster
map (LISA), hot spots (high-value clusters surrounded by high-value neighbors) are
predominantly found in regions known for their wine production, while cold spots
(low-value clusters surrounded by low-value neighbors) are primarily located in the
Upper Rhine Graben and the Southwest German Basement (Black Forest) (Fig. 2d).
With a positive Moran’s I of 0.359 and a highly significant p value of 0.001, we
can conclude with strong confidence that there is a nonrandom spatial clustering of
the data. There is a statistically significant tendency for similar values to be grouped
together in geographic space.

123



Mathematical Geosciences

Fig. 2 a Spatial distribution of Nitrate measurements in Baden-Wuerttemberg, Germany; b histogram
illustrating the distribution of nitrate measurements; c Moran local scatterplot, and LISA highlighting hot
spots (red) and cold spots (blue), as well as outliers (orange and pale blue) at a significance level of p = 0.05.
d Hydrogeological spatial structure of Baden-Wuerttemberg (HYRAUM), as referenced in BGR and SGD
(2015)

4.2 Environmental Covariates

Environmental covariates, also known as predictors, encompass a range of variables
that characterize the physical, chemical, and biological attributes of an environment.
They serve as essential inputs formodels used to comprehend and forecast environmen-
tal phenomena. These covariates encompass climate data, topographical information,
land cover classification, soil properties, hydrological characteristics, remote sens-
ing data, and human-related factors. By integrating these covariates into models,
researchers gain valuable insights into environmental processes and make informed
decisions for sustainable management practices.

The environmental covariates listed in Table 1 were selected, taking into consid-
eration their conceptual understanding of their influence on nitrate in groundwater.
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Furthermore, these covariates underwent initial Bayesian input parameter optimization
tests, leading to their final selection.

Though multicollinearity poses challenges in regression, our approach tackled
it effectively with RF modeling. The ensemble learning of RF inherently handles
multicollinearity by constructing multiple decision trees on random data subsets.
This property eliminates the need for explicit mitigation measures (Dormann et al.
2013; Lindner et al. 2022). Nonetheless, verifying the method’s robustness against
collinearity and multicollinearity is vital, with corrective measures taken if necessary.

4.3 Cross-validation Strategies

In this study, we implemented two cross-validation strategies to evaluate the per-
formance of the tested approaches. Specifically, we employed a leave-one-out cross
validation (LOO-CV) technique to ensure comparability with the benchmark method
of OK, which commonly utilizes this form of cross-validation. This method involves
iteratively training the model on all data points except one, and then evaluating its
performance on the omitted data point. For the methods involving multiple hyperpa-
rameter options, namely OGC, WTC, PCA, and ESF, a preliminary step of 10-fold
cross-validation (10-fold CV) was performed to identify the optimal hyperparame-
ters. This two-step approach allowed us to effectively assess the performance of each
method while addressing computational challenges that would otherwise arise.

4.4 Model Performance Criteria

We employed the following error metrics to assess the performance of the models.
The mean absolute error (MAE) measures the average absolute difference between
the predicted and observed values, providing a measure of overall prediction accuracy

MAE = 1

n

n∑

i=1

∣∣yi − ŷi
∣∣ , (11)

where yi represents the observed values and ŷi represents the predicted values.
The root mean squared error (RMSE) calculates the square root of the mean

of squared differences between predicted and observed values, representing the
magnitude of prediction errors

RMSE =
√√√√1

n

n∑

i=1

(
yi − ŷi

)2
. (12)

Additionally, we utilized the R2 score, which measures the proportion of variance
explained by the model relative to the total variance in the data

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2
∑n

i=1 (yi − ȳ)2
. (13)

123



Mathematical Geosciences

The bias (B) measures any systematic deviation between the predicted and observed
values and provides insights into the model’s tendency to consistently overestimate or
underestimate the target variable. It can be calculated as

B = 1

n

n∑

i=1

(
yi − ŷi

)
, (14)

where yi represents the observed values and ŷi represents the predicted values. A B
close to zero indicates that the model predictions are on average unbiased.

In addition, we assessed spatial autocorrelation in the prediction errors using the
Moran’s I statistic for the residuals (Eqs. 4 and 5). This statistic provides insights
into the spatial structure and clustering of errors, with positive or negative values
indicating spatial autocorrelation and revealing regions of similarity or dissimilarity
in errors. Significant Moran’s I values highlight consistent over- or under-prediction
areas, helping assess model performance, identify spatial patterns, and understand the
relationships among prediction errors.

5 Results

The results section is structured as follows: Sect. 5.1 presents the results of the 10-
fold CV for the spatial information approaches, considering various hyperparameter
setting options described in Sect. 4.3. Subsequently, Sect. 5.2 provides an overview of
the LOO-CV results for all approaches, including the optimized variants discussed in
Sect. 5.1. Finally, Sect. 5.3 presents and discusses the results of the spatial predictions.

5.1 10-Fold Cross-Validation Results for Hyperparameter Optimization

Figure3 illustrates the results of the 10-fold CV for the approaches with various
hyperparameter setting options used in parameter optimization. The evaluationmetrics
usedwereMAE, RMSE, and R2. To expedite the process, a 10-fold CVwas conducted
prior to the more time-consuming LOO-CV. The purpose of this preliminary step was
to determine the optimal parameterization for the given dataset.

Step Size of Oblique Angle Rotation, OGC
The step size parameter (Fig. 3, top row) is crucial for calculating the OGC and

significantly impacts the model’s predictive accuracy for the dataset at hand. It des-
ignates the angular increments (in degrees), thereby defining the range and diversity
of angles employed in OGC data projections. For instance, employing a step size of
20◦ generates nine distinct angular projections, spanning from 20◦ to 180◦. With the
goal of minimizing RMSE and maximizing R2, a step size of 3◦ was chosen for sub-
sequent computations. This decision suggests an optimal trade-off between capturing
data complexity and avoiding overfitting at this increment. However, the observation
that the error tends to increase inconsistently as the step size extends beyond this
point hints at the possibility that larger step sizes, which correspond to fewer oblique
projections, may not sufficiently encapsulate the data’s inherent complexity.
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Fig. 3 Overview of 10-fold CV hyperparameter optimization for methods with multiple setting options
(OGC, WTC, PCA, and ESF). Rows: OGC errors versus rotation step size, WTC errors versus basis
functions, PCA errors versus principal components, and ESF errors versus eigenvectors and neighbor
distance

Number of Wendland Basis Functions, WTC
The relationship between the number of basis functions and the performance of the

WTCmodel is intricate, as depicted in Fig. 3, second row. Here, we conducted experi-
ments with a range of 3 to 16,000 functions. Generally, increasing the number of basis
functions leads to improved predictive accuracy. However, we found that the highest
accuracy was achieved with 2,541 basis functions. Beyond this point, further additions
may not consistently enhance accuracy, indicating the potential for overfitting. To
optimize the model, we carefully considered the trade-off between complexity and
accuracy. By selecting 2,541 basis functions, we aimed to strike a balance where the
model captured the underlying data structure without being overly sensitive to noise.
This decision was informed by the observation of an elbow point in the accuracy
trend, where the addition of more basis functions resulted in diminishing returns.

Number of Principal Components
Increasing the number of principal components generally reduces errors (Fig, 3,

third row), with the best performance within the tested range between 20 and 30
principal components.We have selected 28 principal components for subsequent tasks.
However, further increasing the number of components does not consistently improve
accuracy or capture the underlying data structure, potentially fitting themodel to noise.

Number of Eigenvectors and Maximum Neighboring Distance, ESF
The ESF algorithm incorporates two important parameters: the maximum neigh-

boring distance (dmax) and the number of eigenvectors (k) derived from the reduced
distance matrix (Fig. 3, last row). We conducted tests using a range of 1 to 30 eigen-
vectors and maximum neighboring distances (dmax) between 1 and 50km to evaluate
their influence on the model’s performance. Increasing the value of (dmax) improves
the predictive capabilities of the model by expanding the spatial neighborhood and
encompassing a wider array of spatial patterns and relationships. Similarly, including
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Fig. 4 Performance criteria (MAE, RMSE, R2-score, Moran’s I and calculation time) for the leave-one-out
cross-validation of the proposed spatial integration methods, the RF model without spatial information, and
the benchmark OK. The significance of the Moran’s I results was assessed using p values (*). Residual
Moran’s I coefficients with p values above 0.05 are considered statistically insignificant and are represented
by a gray box in the diagram

a higher number of eigenvectors (k) up to 30 improves the model metrics, such as
decreasing MAE and RMSE, and increasing R2. This improvement can be attributed
to the additional spatial information captured by the eigenvectors, representing distinct
spatial patternswithin the dataset. By exploring different combinations of eigenvectors
and assessing their effects on model performance, we gain insights into the optimal
selection of these parameters for the ESF algorithm in capturing the spatial variability
of nitrate concentrations.We achieved the best results with 17 eigenvectors and amax-
imum neighboring distance of 29km. These parameter settings resulted in the lowest
errors, including reduced MAE and RMSE, indicating improved model performance.

5.2 LOO Cross-validation Results

Figure 4 presents the detailed results of the leave-one-out cross validation for the
selectedmethods aiming to incorporate spatial information into anRFmodel. The eval-
uated metrics include mean absolute error (MAE), root mean squared error (RMSE),
coefficient of determination (R2), B, Moran’s I, Moran’s p value, and computation
time.

In terms of accuracy, the nonspatial RF model (referred to as “noinfo”) and the
geostatistical OK approach perform worst among all tested methods, with relatively
similar performance (MAE 10.56 mg/L and 10.35 mg/L). Considering the slightly
better accuracy and significantly shorter computation time of the OK approach, the
additional effort required for the RF model may not be justified, if only these two
approaches are taken into account.

As Fig. 4 shows, the inclusion of spatial information significantly enhances the
accuracy of the results.While all methods that include spatial information yield results
within a relatively narrow range (MAE ranging from 9.38 to 9.75 mg/L, and RMSE
ranging from 12.86 to 13.17 mg/L), a clear trend emerges, indicating the superiority
of distance-based methods over coordinate-based ones. Put differently, methods that
generatemore spatial information (EDMandWTC) features enable themodel to better
capture the underlying structure, albeit at the expense of increased computational time.
Notably, the PCA and ESF approaches, which utilize the first principal components or

123



Mathematical Geosciences

eigenvectors of EDM, strike a balance between accuracy and computational efficiency.
Here, PCA slightly outperforms ESF (MAE 9.40 vs. 9.46 mg/L) in our dataset.

OK exhibits the lowest bias among the methods evaluated. This can be attributed
to its utilization of a best linear unbiased predictor (BLUP) estimator. Among the
evaluated approaches, onlyWTC exhibits a positive bias, suggesting that the forecasts
tend to be, on average, overestimated. In contrast, the other methods demonstrate a
consistent, slightly negative bias ranging between −0.25 and −0.38 mg/L.

Analyzing the spatial autocorrelation of residuals, as measured by Moran’s I, pro-
vides insights into the performance of different modeling approaches. However, the
Moran’s I values for all methods range from −0.12 to 0.1, indicating a weak or negli-
gible spatial autocorrelation in the residuals. This challenges the ability to draw strong
conclusions based solely on Moran’s I values. Furthermore, the p values for PGC,
OGC, and EDF are above 0.05, indicating that their Moran’s I values are statistically
insignificant. This suggests that thesemethods donot exhibit significant spatial patterns
in the residuals. ThegeostatisticalOKresults exhibit the highest negativeMoran’s I val-
ues, suggesting their effectiveness in capturing spatial patterns accurately. In contrast,
the nonspatial RF show the highest positive Moran’s I values, indicating limitations
in capturing spatial variability. Coordinate-based methods demonstrate slight posi-
tive autocorrelation near zero, indicating some spatial similarity among neighboring
observations. Meanwhile, distance-based methods display a weak or slightly negative
autocorrelation, suggesting a less pronounced spatial structure in the residuals.

5.3 Regionalization Results

In addition to evaluating performance, we also analyzed the regionalization results
to assess their plausibility in relation to our conceptual understanding and to identify
any potential spatial artifacts. Figure5 depicts the spatial predictions generated by
different approaches, and while they may initially appear similar, closer examination
reveals distinct variations in finer details.

The benchmark method, OK, displays distinct bullseye artifacts characterized by
concentric rings surrounding the data points. These artifacts indicate an overfitting of
the spatial autocorrelation, potentially caused by the limited number of data points and
insufficient consideration of the spatial structure. Furthermore, the nitrate distribu-
tion demonstrates smooth transitions over considerable distances, which contradicts
hydrogeological principles. In reality, groundwater quality typically undergoes rapid
changes within short distances due to factors such as land use, hydrogeological pro-
cesses like transport or degradation, and impermeable boundaries between different
aquifers.

In contrast, the spatial predictions from the RF models demonstrate consistent
and plausible patterns across all methods, revealing greater spatial variability. The
predictions heavily rely on spatial covariates, particularly land use, soil and aquifer
properties, while the direct influence of spatial information appears more localized.
This observation aligns with the conceptual understanding that groundwater quality
is primarily influenced by local factors. However, it is crucial to complement the
analysis with domain knowledge regarding nitrate contamination in specific locations
for a comprehensive evaluation.
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Fig. 5 Spatial prediction of nitrate distribution in groundwater in Baden-Wuerttemberg using the spatial
random forest model without spatial information, eight investigated spatial information approaches, and
interpolation using univariate ordinary kriging

Among the approaches utilizing linear geographic coordinates as spatial informa-
tion, the GC method displays some pronounced linear artifacts, primarily observed
in the region of South German Bunter Sandstone and Muschelkalk, located approxi-
mately halfway between Strasbourg and Stuttgart. This phenomenon likely arises from
an exaggerated influence of the X -coordinate based on dominant trends along the east–
west axis. In approaches like PGC and OGC, incorporating higher-order polynomial
terms or employing new features from a rotated coordinate system, these artifacts are
observed to a lesser extent, although they may still be visible in certain areas.

Significant variations in predictions between the different approaches are observed
in areas where nitrate hot spots border nitrate low spots, particularly in the southern
region of South German Bunter Sandstone and Muschelkalk, east of Freiburg, and the
northern region, northeast of Heilbronn. In these localized areas, the application of
EDM with only important PCA or ESF components as input features, or the use of
WTC, leads to relatively lower nitrate predictions compared to other methods.

While all results from the distance-based approaches are generally plausible, it
is difficult to determine which regionalized pattern is more likely without further
investigations on-site or more detailed knowledge of the local situations. Additional
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information or field studies are necessary to gain a better understanding of the specific
factors influencing the nitrate distribution in these areas.

6 Conclusion

In this study, we explored different approaches to incorporate spatial information
into a random forest model for predicting nitrate concentrations in groundwater. We
compared the performance of these approaches using cross-validation techniques and
evaluated the accuracy and spatial patterns of the predictions among each other and
to a nonspatial RF and geostatistical univariate ordinary kriging approach. The results
of the cross-validation analysis demonstrated that the inclusion of spatial information
significantly improved the predictive accuracy of themodel compared to the nonspatial
RF and geostatistical ordinary kriging approaches.

Among the spatial approaches investigated in this study, methods that incorpo-
rated distance-based features, namely the EDM, WTC, PCA, and ESF, demonstrated
superior overall performance in terms of accuracy metrics and plausibility of spatial
predictions. Notably, the EDM and WTC methods emerged as the top performers.
However, it is important to consider that these methods can become computation-
ally intensive, particularly when dealing with large datasets, due to the creation of
numerous additional features. In contrast, the PCA and ESF approaches, which uti-
lized the principal components or eigenvectors of the EDM, strike a balance between
accuracy and computational efficiency, making them a favorable choice for practical
implementation.

The spatial predictions of nitrate concentrations displayed variations across the dif-
ferent approaches examined in this study. The RF models that incorporated spatial
information exhibited consistent and plausible patterns overall. However, in certain
regions, particularly at the boundaries between nitrate hot spots and low spots, arti-
facts and deviations were observed, specifically with the coordinate-based approaches.
These artifactsmay be attributed to the influence of the coordinates and their associated
spatial trends in these regions.

In conclusion, integrating spatial information distinctly improved nitrate concen-
tration predictions in groundwater using the RF model. Distance-based methods, such
as EDM, WTC, PCA, and ESF, performed well in capturing spatial patterns and
enhancing accuracy, without producing artifacts in regionalization.

While integrating spatial information holds promise for improving regionalization
of environmental parameters, our study encounters some challenges. The dataset may
not fully capture regional nitrate variability due to both high spatial and temporal
dynamics, as well as the inherently sparse data available from costly groundwa-
ter monitoring wells. Therefore, spatial predictions of groundwater parameters are
generally always subject to great uncertainty. Additional spatial predictors, particu-
larly those related to potential nitrate input pathways, are likely to enhance predictive
accuracy even further. Additionally, other data with different spatial resolutions and
autocorrelation levels could yield varied results. Using distance-based methods intro-
duces computational challenges, especially with large datasets. Addressing artifacts
in spatial predictions demands deeper spatial process understanding.

123



Mathematical Geosciences

While our analysis focused on a specific dataset, we hypothesize that the find-
ings can be extrapolated to other environmental data and regionalization problems
employing ML methods. Although the results may vary among different approaches
depending on the level of autocorrelation in the data, it is essential to consistently
consider the incorporation of spatial information into ML models. Furthermore, it is
advisable to employ cross-validation techniques and plausibility checks when testing
and comparing various approaches. By doing so, researchers can ensure robust and
reliable predictions in regionalization tasks related to diverse environmental datasets.
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Sekulić A, Kilibarda M, Heuvelink GB, Nikolić M, Bajat B (2020) Random forest spatial interpolation.
Remote Sens 12(10):1687

Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234
Tsangaratos P, Rozos D, Benardos A (2014) Use of artificial neural network for spatial rainfall analysis. J

Earth Syst Sci 123(3):457–465
Wadoux AMC (2019) Using deep learning for multivariate mapping of soil with quantified uncertainty.

Geoderma 351:59–70
Walsh ES, Kreakie BJ, Cantwell MG, Nacci D (2017) A Random Forest approach to predict the spatial

distribution of sediment pollution in an estuarine system. PLOS ONE 12(7):e0179473
Wang H, Huang Z, Yin G, Bao Y, Zhou X, Gao Y (2022) Gwrboost: a geographically weighted gradient

boosting method for explainable quantification of spatially-varying relationships

123

https://udo.lubw.baden-wuerttemberg.de/public/
https://udo.lubw.baden-wuerttemberg.de/public/
https://umweltdaten.lubw.baden-wuerttemberg.de/
https://umweltdaten.lubw.baden-wuerttemberg.de/
https://doi.org/10.5281/zenodo.8108637
https://doi.org/10.5281/zenodo.8108637


Mathematical Geosciences

Zanella L, Folkard AM, Blackburn GA, Carvalho LMT (2017) Howwell does random forest analysis model
deforestation and forest fragmentation in the Brazilian Atlantic forest? Environ Ecol Stat 24(4):529–
549

123


	Incorporating Spatial Information for Regionalization of Environmental Parameters in Machine Learning Models
	Abstract
	1 Introduction
	2 Theory and Background
	2.1 Random Forest (RF)
	2.2 Ordinary Kriging (OK)
	2.3 Spatial Autocorrelation

	3 Methodology
	3.1 Spatial Covariates
	3.1.1 Coordinate-Based Approaches
	3.1.2 Distance-Based Approaches


	4 Experimental Setup
	4.1 Nitrate Observations in Baden-Wuerttemberg
	4.2 Environmental Covariates
	4.3 Cross-validation Strategies
	4.4 Model Performance Criteria

	5 Results
	5.1 10-Fold Cross-Validation Results for Hyperparameter Optimization
	5.2 LOO Cross-validation Results
	5.3 Regionalization Results

	6 Conclusion
	Acknowledgements
	References


