
33rd International Conference on
Automated Planning and Scheduling

July 8 – 13, 2023, Prague (Czech Republic)

IPC 2023
Proceedings of the

Hierarchical Task Network (HTN) Track of the

11th International Planning Competition:

Planner and Domain Abstracts

Preface

Since its first edition in 1998, the International Planning Competition (IPC) has been an integral
event of the planning community. For more than 20 years, it established unified input languages
for planners and enabled a thorough comparison between them based on an accessible benchmark
set. The first two IPCs featured a track on hand-tailored planners in which the planners could
be provided with additional information or select their algorithms based on the input domain.
Among these planners, some used hierarchical planning. Many years later, the International
Planning Competition 2020 featured for the first time a track dedicated to hierarchical planning.
In contrast to the previous track on hand-tailored planners, the question was how well planners
can exploit a given hierarchical refinement structure. The HTN (Hierarchical Task Network)
track of the IPC 2023 directly succeeds IPC 2020 as a forum to assess the state of the art in
hierarchical planning—specifically, totally and partially ordered HTN planning.

For this iteration of the HTN track, we were able to benefit from the pioneering work made in
IPC 2020 that consolidated input languages and benchmark problems—requiring all planners
to parse problems in the HDDL (Hierarchical Domain Description Language) format. Since the
formalism has gained traction in the research community, we were pleased to receive a total of
eleven distinct planner submissions. We were consequently able to evaluate planners across six
different sub-tracks: (total order, partial order) × (satisficing, agile, optimal). While IPC 2020
only featured the agile evaluation scheme, which favors short running times over robustness, the
satisficing and optimal sub-tracks encourage to report high-quality and entirely optimal plans,
respectively (considering the number of primitive tasks / actions as the hierarchical solution’s
plan length). Employing these quality-focused evaluation metrics is only possible due to planners
adopting a common input language and the recent advances made in optimal HTN planning.

The results of this year’s HTN track highlight further interesting advancements. After IPC 2020
being dominated by lifted planners, now ground planners with efficient grounding algorithms
and well-informed search heuristics have consistently performed the best on the majority of
domains. In the partial order track, an approach that attempts to linearize problems to totally
ordered problems has shown promise. The planner abstracts assembled in the proceedings at
hand shed light on those and many further approaches and techniques. We congratulate the
winners of the 2023 HTN track and thank all authors for their participation and cooperation.

Ron, Gregor, and Dominik
Organizers of the IPC 2023 HTN track
July 2024

ii

Table of Contents

Overview . 1 – 6

Descriptions of Planners

Experimenting with Lifted Plan-Space Planning as Scheduling: Aries in the 2023
IPC

Arthur Bit-Monnot . 7 – 9

OptiPlan – a CSP-based partial order HTN planner

Oleksandr Firsov, Humbert Fiorino, and Damien Pellier . 10 – 11

The PANDA λ System for HTN Planning in the 2023 IPC

Daniel Höller .12 – 13

The PANDA Progression System for HTN Planning in the 2023 IPC

Daniel Höller .14 – 15

The TOAD System for Totally Ordered HTN Planning in the 2023 IPC

Daniel Höller .16 – 17

The PandaDealer System for Totally Ordered HTN Planning in the 2023 IPC

Conny Olz, Daniel Höller, and Pascal Bercher . 18 – 20

LTP: Lifted Tree Path

Gaspard Quenard, Damien Pellier, and Humbert Fiorino . 21 – 23

Grounded (Lifted) Linearizer at the IPC 2023: Solving Partial Order HTN Prob-
lems by Linearizing Them

Ying Xian Wu, Conny Olz, Songtuan Lin, and Pascal Bercher . 24 – 29

Descriptions of Domains

New HTN Domains in the 2023 IPC

Gregor Behnke, Jane Jean Kiam, and Dominik Schreiber . 30 – 31

iii

iv

Overview

Organizing Committee

Ron Alford MITRE, McLean, Virginia, USA
Gregor Behnke University of Amsterdam, Netherlands
Dominik Schreiber Karlsruhe Institute of Technology, Germany

Timeline of the Competition

Call for domains, participation October 2022
Domain submission deadline February 28, 2023
Demo problems provided February 10, 2023
Initial planner submission February 28, 2023
Feature stop (final planner submission) May 31, 2023
Planner abstract submission deadline May 31, 2023
Contest run June 2023
Results announced July 12, 2023
Result analysis deadline August 2023

Input and Output Format

We re-used the input and output specification of IPC 2020. Specifically, domains and problems
are formulated in HDDL [14], and the planner is expected to output a hierarchical plan in a
specific format that allows its automated verification.1 For further information, we refer to the
respective sections of the IPC 2020 proceedings [5].

Sub-Tracks

We decided to offer six different sub-tracks:

• Total order agile

• Total order satisficing

• Total order optimal

• Partial order agile

• Partial order satisficing

• Partial order optimal

A domain is totally ordered iff the subtasks in all methods and in the initial task network form
a sequence, i.e. the declared ordering arranges the tasks in a sequence. A domain is partially

1https://gki.informatik.uni-freiburg.de/ipc2020/format.pdf

1

https://gki.informatik.uni-freiburg.de/ipc2020/format.pdf

ordered iff it is not totally ordered, i.e. there is at least one method whose subtasks are not
totally-ordered or the initial task network is not a sequence. The subdivision into totally and
partially ordered HTN planning is well-established in the community—totally ordered HTN
planning is decidable and more straight forward to handle for heuristics and exploration. The
three evaluation schemes agile, satisficing, and optimal are directly taken from the IPC’s non-
hierarchical tracks [24]. The respective metrics are given in the Rules section below. We did
not offer a non-recursive track due to lack of interest and lack of domains in the last IPC.

Rules

Authors were allowed to submit an arbitrary number (within reason) of different planning sys-
tems per track. Two planning systems are considered different if the relevant codebase, i.e.,
the parts of the code that are actually being executed, differs substantially, as judged by the
organizers. (This allowed, e.g., for submitting different planning approaches as separate plan-
ning systems even if they are part of a common software.) For each planning system submitted,
authors were allowed to submit a maximum of three different configurations.

Across all tracks, each planner on each problem is executed on a single CPU core for up to
1800 s and is allowed to use up to 8GB of main memory. All produced plans were verified. If
an invalid plan is returned, all tasks in the domain are counted as unsolved. If that happens in
more than one domain, the planner is disqualified.

Agile tracks

In the agile tracks, planners are encouraged to find a plan as quickly as possible. Plan quality
is ignored; problems solved close to the time limit receive scores close to zero, as do entirely
unsolved problems. Specifically, the score of a planner on a solved task is 1 if the task was solved
within 1 second; 0 if the task was not solved; and otherwise, if the task was solved in t seconds
(1 ≤ t ≤ 1800), its score is min{1, 1− log(t)

log(1800)}. The score of a planner is the sum of its scores
for all tasks.

Satisficing tracks

The satisficing tracks put a focus on high-quality plans. Planners may return multiple plans (in
an anytime manner), but only the one with the lowest cost is counted. The score of a planner
on a solved task is the ratio C∗/C where C is the cost of the cheapest discovered plan and C∗

is the cost of a reference plan. The score on an unsolved task is 0. The score of a planner is the
sum of its scores for all tasks.

2

Optimal tracks

The optimal tracks require plans of minimal cost. A suboptimal plan in this track is treated
just like an invalid plan in the other subtracks. The score attributed to a planner is simply the
number of solved tasks.

Domains

We selected 22 TO planning domains and ten PO domains for evaluating planners. While
the majority of planning domains were already a part of IPC 2020 (namely 20 TO domains and
eight PO domains) [5], four new domains were introduced, namely Lamps, SharpSAT, Ultralight-
Cockpit, and Coloring. We dropped the former domains Childsnack, Entertainment, Elevators-
Learned, UM-Translog, and Blocksworld-GTOHP and generated more difficult problems for
the Snake domain. All benchmarks of IPC 2023 are available online at https://github.com/
ipc2023-htn/ipc2023-domains.

Total Order Track

• Assembly [4]
• Barman BDI [25]
• Blocksworld HPDDL [3]
• Depots [19]
• Factories simple [23]
• Freecell Learned [16]
• Hiking [19]
• Lamps [6] (page 30–31)
• Logistics Learned [16]
• Minecraft Player [26]
• Minecraft Regular [26]
• Monroe Fully [15]
• Monroe Partially [15]
• Multiarm Blocksworld [3]
• Robot [1]
• Rover GTOHP [19]
• Satellite GTOHP [19]
• SharpSAT [6] (page 30–31)
• Snake [17]
• Towers [2]
• Transport
• Woodworking [22]

Partial Order Track

• Barman BDI [25]
• Monroe Fully [15]
• Monroe Partially [15]
• PCP [13]
• Rover
• Satellite [21]
• Transport
• Ultralight Cockpit [6] (page 30–31)
• Woodworking [22]
• Colouring [6] (page 30–31)

3

https://github.com/ipc2023-htn/ipc2023-domains
https://github.com/ipc2023-htn/ipc2023-domains

Participants

We received a total of eleven distinct submissions with a varying number of configurations:
Aries [7] (page 7–9); LiftedLinear, LinearSimple, and LinearComplex [27] (page 24–29);
LTP [20] (page 21–23); OptiPlan [9] (page 10–11); PANDApro [11] (page 14–15);
PANDA λ [10] (page 12–13); PandaDealer [18] (page 18–20); SIADEX [8];
and TOAD [12] (page 16–17).
All planners are described in the proceedings at hand, except for SIADEX, which was submitted
to IPC 2020 before and has thus already been presented in the IPC 2020 proceedings.

Awards

Sub-track Winner Runner-up

Total order agile PandaDealer-agile-{1,lama} PANDA λ lm-cut
Total order satisficing PandaDealer-agile-lama PANDA λ ao
Total order optimal PandaDealer-optimal PANDApro {lm-cut,dof}
Partial order agile LinearSimple-agile-2 PANDA λ {ao,lm-cut}
Partial Order satisficing LinearComplex-satisficing-1 PANDA λ {ao,lm-cut}
Partial Order optimal PANDApro lm-cut ARIES

Resources

The webpage https://ipc2023-htn.github.io/ features full details of the competition, refer-
ences to all benchmark domains and planner repositories, and detailed results for all configura-
tions, including scores by domain.

The IPC 2023 journal article [24] features a chapter on the HTN track, where we provide some
further information and a brief discussion of results.

References

[1] Ron Alford. “HTN IPC-2020 Domain: Robot”. In: Proceedings of 10th International Planning
Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track
(IPC 2020). 2021, p. 32.

[2] Ron Alford. “HTN IPC-2020 Domain: Towers”. In: Proceedings of 10th International Planning
Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track
(IPC 2020). 2021, p. 33.

[3] Ron Alford. “HTN IPC-2020 Domains: Blocksworld-HPDDL and Multiarm-Blocksworld”. In: Pro-
ceedings of 10th International Planning Competition: Planner and Domain Abstracts – Hierarchical
Task Network (HTN) Planning Track (IPC 2020). 2021, p. 31.

4

https://ipc2023-htn.github.io/

[4] Gregor Behnke. “AssemblyHierarchical – Connecting Devices through Cables”. In: Proceedings
of 10th International Planning Competition: Planner and Domain Abstracts – Hierarchical Task
Network (HTN) Planning Track (IPC 2020). 2021, pp. 19–20.

[5] Gregor Behnke, Daniel Höller, and Pascal Bercher, eds. Proceedings of 10th International Plan-
ning Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning
Track (IPC 2020). 2021. url: https://ipc2020.hierarchical- task.net/publications/
IPC2020Booklet.pdf.

[6] Gregor Behnke, Jane Jean Kiam, and Dominik Schreiber. “New HTN Domains in the 2023 IPC”.
In: Proceedings of the Hierarchical Task Network (HTN) Track of the 11th International Planning
Competition (IPC 2023): Planner and Domain Abstracts. 2024, pp. 30–31.

[7] Arthur Bit-Monnot. “Experimenting with Lifted Plan-Space Planning as Scheduling: Aries in the
2023 IPC”. In: Proceedings of the Hierarchical Task Network (HTN) Track of the 11th International
Planning Competition (IPC 2023): Planner and Domain Abstracts. 2024, pp. 7–9.

[8] Juan Fernandez-Olivares, Ignacio Vellido, and Luis Castillo. “Addressing HTN Planning with Blind
Depth First Search”. In: Proceedings of 10th International Planning Competition: Planner and
Domain Abstracts – Hierarchical Task Network (HTN) Planning Track (IPC 2020). 2021, pp. 1–4.

[9] Oleksandr Firsov, Humbert Fiorino, and Damien Pellier. “OptiPlan – a CSP-based partial order
HTN planner”. In: Proceedings of the Hierarchical Task Network (HTN) Track of the 11th Inter-
national Planning Competition (IPC 2023): Planner and Domain Abstracts. 2024, pp. 10–11.

[10] Daniel Höller. “The PANDA λ System for HTN Planning in the 2023 IPC”. In: Proceedings of
the Hierarchical Task Network (HTN) Track of the 11th International Planning Competition (IPC
2023): Planner and Domain Abstracts. 2024, pp. 12–13.

[11] Daniel Höller. “The PANDA Progression System for HTN Planning in the 2023 IPC”. In: Proceed-
ings of the Hierarchical Task Network (HTN) Track of the 11th International Planning Competition
(IPC 2023): Planner and Domain Abstracts. 2024, pp. 14–15.

[12] Daniel Höller. “The TOAD System for Totally Ordered HTN Planning in the 2023 IPC”. In:
Proceedings of the Hierarchical Task Network (HTN) Track of the 11th International Planning
Competition (IPC 2023): Planner and Domain Abstracts. 2024, pp. 16–17.

[13] Daniel Höller et al. “From PCP to HTN Planning Through CFGs”. In: Proceedings of 10th Interna-
tional Planning Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN)
Planning Track (IPC 2020). 2021, pp. 24–25.

[14] Daniel Höller et al. “HDDL – A Language to Describe Hierarchical Planning Problems”. In: Pro-
ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020). AAAI Press, 2020,
pp. 9883–9891.

[15] Daniel Höller et al. “Plan and Goal Recognition as HTN Planning”. In: Proceedings of the 30th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2018). IEEE Computer Society,
2018, pp. 466–473.

[16] Damir Lotinac, Filippos Kominis, and Anders Jonsson. “Hierarchical Task Networks Generated
Using Invariant Graphs for IPC2020”. In: Proceedings of 10th International Planning Competition:
Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track (IPC 2020).
2021, pp. 26–30.

[17] Mauŕıcio Cećılio Magnaguagno. “Snake Domain for HTN IPC 2020”. In: Proceedings of 10th In-
ternational Planning Competition: Planner and Domain Abstracts – Hierarchical Task Network
(HTN) Planning Track (IPC 2020). 2021, pp. 37–38.

[18] Conny Olz, Daniel Höller, and Pascal Bercher. “The PandaDealer System for Totally Ordered
HTN Planning in the 2023 IPC”. In: Proceedings of the Hierarchical Task Network (HTN) Track
of the 11th International Planning Competition (IPC 2023): Planner and Domain Abstracts. 2024,
pp. 18–20.

5

https://ipc2020.hierarchical-task.net/publications/IPC2020Booklet.pdf
https://ipc2020.hierarchical-task.net/publications/IPC2020Booklet.pdf

[19] Damien Pellier and Humbert Fiorino. “From Classical to Hierarchical: Benchmarks for the HTN
Track of the International Planning Competition”. In: Proceedings of 10th International Planning
Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track
(IPC 2020). 2021, pp. 21–23.

[20] Gaspard Quenard, Damien Pellier, and Humbert Fiorino. “LTP: Lifted Tree Path”. In: Proceedings
of the Hierarchical Task Network (HTN) Track of the 11th International Planning Competition
(IPC 2023): Planner and Domain Abstracts. 2024, pp. 21–23.

[21] Bernd Schattenberg. “The Hierarchical Satellite Domain”. In: Proceedings of 10th International
Planning Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Plan-
ning Track (IPC 2020). 2021, pp. 40–42.

[22] Bernd Schattenberg and Pascal Bercher. “The Hierarchical Woodworking Domain”. In: Proceedings
of 10th International Planning Competition: Planner and Domain Abstracts – Hierarchical Task
Network (HTN) Planning Track (IPC 2020). 2021, pp. 43–44.

[23] Malte Sönnichsen and Dominik Schreiber. “The HTN Domain “Factories””. In: Proceedings of 10th
International Planning Competition: Planner and Domain Abstracts – Hierarchical Task Network
(HTN) Planning Track (IPC 2020). 2021, pp. 45–46.

[24] Ayal Taitler et al. The 2023 International Planning Competition. 2024. doi: 10.1002/aaai.12169.

[25] Max Waters, Lin Padgham, and Sebastian Sardina. “The Barman-HTN Domain for IPC 2020”.
In: Proceedings of 10th International Planning Competition: Planner and Domain Abstracts –
Hierarchical Task Network (HTN) Planning Track (IPC 2020). 2021, p. 39.

[26] Julia Wichlacz, Alvaro Torralba, and Jörg Hoffmann. “Construction-Planning Models in Minecraft”.
In: Proceedings of the Second ICAPS Workshop on Hierarchical Planning. 2019, pp. 1–5.

[27] Ying Xian Wu et al. “Grounded (Lifted) Linearizer at the IPC 2023: Solving Partial Order HTN
Problems by Linearizing Them”. In: Proceedings of the Hierarchical Task Network (HTN) Track
of the 11th International Planning Competition (IPC 2023): Planner and Domain Abstracts. 2024,
pp. 24–29.

6

https://doi.org/10.1002/aaai.12169

Experimenting with Lifted Plan-Space Planning as Scheduling:
Aries in the 2023 IPC

Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France

abitmonnot@laas.fr

Abstract

In this paper we give a high level overview of the ARIES plan-
ner at the time of its participation in the hierarchical track of
the 2023 International Planning Competition (IPC).
ARIES is an experimental solver whose aim is to jointly
evolve a combinatorial solver for scheduling-like problems
and an encoding of task planning that exploits it.

Overview
Focus The focus of ARIES is on optimization planning
problems with rich temporal and concurrency requirements,
driven by applications in robotics and logistics. As such,
the problems targeted by the 2023 IPC on hierarchical plan-
ning are certainly out of its comfort zone. Nevertheless, with
ARIES participation in the IPC we hope to highlight the rel-
ative weaknesses and hopefully strengths of its approach.

As HDDL is not its primary target, at the time of its sub-
mission, very little effort has been dedicated to improving
the performance of ARIES on a corpus of HDDL problems.
This participation is also the occasion of setting a milestone
and reference point to be used as a baseline for future im-
provements.

Search Space In terms of search space, ARIES pertains to
the family of lifted plan-space planners like IxTeT (Ghallab
and Laruelle 1994) and FAPE (Bit-Monnot et al. 2020). In
practice, it means that the solver does not construct snap-
shots of the entire state at various epochs but instead rea-
sons on the interactions and dependencies between individ-
ual actions (through threats and causal links, Ghallab, Nau,
and Traverso 2004). In addition, being lifted implies that the
problem is never grounded: instead each action of the plan
is parameterized with variables that must obey a set of con-
straints, notably reflecting the causal requirements of the ac-
tion. The solver must eventually impose a value for these
parameters that ensures that the plan is valid and achieves
the intended objectives.

Search Strategy Unlike IxTeT and FAPE, ARIES dele-
gates the responsibility of search to an independent solver.
We adopt the approach of generating a CSP of bounded
size that is submitted to a combinatorial solver, as common
in SAT-based planners such as Lilotane (Schreiber 2021).

ARIES uses in own specialized solver: a hybrid CP-SAT
combinatorial solver for optional scheduling.

At a very high level, the planner adopts the following pro-
cedure:

1. Parse HDDL problem files and translates them into
chronicles, where each chronicle consists of a collection
of timed conditions, effects and subtasks linked by shared
variables and constraints.

2. From the objective tasks of the problem, build the de-
composition tree with a maximum depth (initially 1).

3. Encode the decomposition tree into a Constraint Satis-
faction Problem (CSP)

4. Solve the CSP with the internal combinatorial solver
5. If the CSP was proven unsatisfiable, repeat from step 2

with an increased maximum depth.

Encoding HDDL
The planning model used internally by ARIES is based on
chronicles (Ghallab, Nau, and Traverso 2004), a formalism
to compactly represent requirements and effects of a pro-
cess in time. In planning, chronicles find their first usage in
IxTeT (Ghallab and Laruelle 1994) and have been then ex-
tended for hierarchical planning in FAPE (Bit-Monnot et al.
2020).

Translating HDDL to chronicles is fairly straightforward
as they are for the most part strictly more expressive. In prac-
tice, it mostly consists in assigning temporal semantics to a
non-temporal language. An example of a translation of an
HDDL method into a chronicle is given in Figure 1.

Given a problem representation as chronicles, we encode
it as a CSP using the formulae of Godet and Bit-Monnot
(2022). In spirit, this encoding corresponds to a lifted plan-
space representation. For each action/mehtod node of the
lifted decomposition tree, it introduces decision variables
representing (i) the presence of the action/method in the so-
lution plan, (ii) its parameters and (iii) its start and end times.
These decision variables are linked by a set of constraints,
notably:

• Decomposition constraints that force the refinement of
all tasks with exactly one method or action.

• Support constraints that require each condition to be ei-
ther absent or supported by an effect.

The 11th International Planning Competition – Planner and Domains Abstracts

7

(:method m8_send_soil_data
:parameters (
?x - rover
?from - waypoint
?l - lander
?w1 - waypoint
?w2 - waypoint)

:task (send_soil_data ?x ?from)
:precondition (and (at_lander ?l ?w2)

(visible ?w1 ?w2))
:ordered-subtasks (and
(t1 (do_navigate1 ?x ?w1))
(t2 (comm_soil_data1 ?x ?l ?from ?w1 ?w2))

))

(a) HDDL methods fo the rovers domain.

m8-send-soil-data

variables: x, from, l, w1, w2 (parameters)
ts, te, t

1
s, t

1
e, t

2
s, t

2
e (timepoints)

task: [ts, te] send-soil-data(x, from)

conditions: [tstart] at-lander(l, w2) = true
[tstart] visible(w1, w2) = true

subtasks: [t1s, t
1
e] do-navigate1(x,w1)

[t2s, t
2
e] comm-soil-data1(x, l, from, w1, w2)

constraints: ts = min(t1s, t
2
s)

te = max(t1e, t
2
e)

t1e < t2s (total order)

(b) Equivalent chronicle representation.

Figure 1: HDDL and chronicle representation of an HTN method of the rovers domains

• Coherence constraints that ensure that each state variable
is never given more than on one value at a time.

Compared to SAT-based encodings for HTN, the size of this
encoding is mostly independent of the size of the plan and
the number of predicates in the state. On the other hand,
it grows mostly quadratically with the size of the lifted de-
composition tree, because of the support and coherence con-
straints.

Matching PDDL semantics Despite the overall compati-
bility of chronicles with {HP}DDL, several peculiarities of
PDDL must be explicitly handled.

PDDL introduces the concept of mutex actions to forbid
interfering actions from been executed at the same time. This
is required in PDDL due to the instantaneous nature of ac-
tions but introduces an awkwardness for a temporal model as
the handling of a condition statement depends on the place
where it was asserted. To handle such cases, we extend the
constraints of Godet and Bit-Monnot (2022) with mutex con-
straints that forbid a condition’s interval to meet the start of
an effect from another action chronicle. Note that mutexes
induced by pairs of effects are already enforced by coher-
ence constraints.

For historical reasons, the delete-before-add semantics of
PDDL stipulates that if a single action assigns both true
and false to a common boolean state-variable, then only the
positive assignment should be considered. This violates the
principle that a state variable should not be assigned two
variables at the same time enforced by the coherence con-
straints. ARIES does not support this particular corner case
of the PDDL semantics as handling it properly in a fully
lifted representation would notably complexify the encoding
and may induce non-negligible runtime penalties. As a re-
sult, ARIES will consider inapplicable any action that relies
on the delete-before-add semantics, making it incomplete in
the presence of such problems. This is for instance the case
of the woodworking domain where ARIES is unable to find
a solution.

Finally, support for HDDL syntax remains partial. For
instance, the multiple inheritance of types exploited in the
UMTranslog domain of IPC 2020 is unsupported and ARIES

would refuse to parse the problem.

Combinatorial Solver
The encoding of Godet and Bit-Monnot (2022) is generic
and could in theory exploit any solver capable of represent-
ing disjunctions and reified difference constraints, which is
the case of most CP, SMT or MILP solvers. Our experience
with existing solvers for this encoding is however lukewarm.

Previous experiences
First let us state that the highly combinatorial structure of
the encoding does not appear to play well with the linear
relaxations of MILP solvers that were at difficulty even for
the simplest instances.

Experiments with the Z3 SMT solver (De Moura and
Bjørner 2008), showed interesting results with reason-
able performance on non-hierarchical domains (Bit-Monnot
2018). Most impressive in particular was the ability of
the activity-based search of SAT/SMT solver to robustly
converge to a solution or prove its absence without any
planning-specific knowledge. On the other hand, SMT-based
solvers remain hard to tune with limited support for opti-
mization. While Z3 excelled at proving unsatisfiability, the
runtime to a first solution remained very high even on simple
problems.

Our own experiments with CPOptimizer (Laborie et al.
2018), a leading CP solver for scheduling, showed that it
had complementary strength: fine-tuning and strong propa-
gation allowed it to quickly converge to a first solution and
incrementally improve it. A key feature for strong propaga-
tion was a native support of optional activities, that are ubiq-
uitous in task planning. CPOptimizer may however strug-
gle to prove unsatisfiability or escaping dead-ends in its
search space in situations that would be easily handled by
the conflict-directed clause learning of SAT/SMT solvers.

While our use of existing solvers clearly showed limita-
tions, FAPE provided an alternate model. FAPE uses best-
search in the space of lifted partial plans, with each partial
plan encoded as a CSP that is iteratively refined and con-
strained as search progresses. This CSP was handled with a

The 11th International Planning Competition – Planner and Domains Abstracts

8

custom propagation engine developed within the solver code
base. Our experience is that developing side-by-side a prop-
agation engine and the planner that uses it, allowed us to
identify and address fundamental limitations of the propa-
gation engines. For FAPE, this resulted in very strong prop-
agation engine and compact search space (Bit-Monnot et al.
2020).

ARIES Scheduler
Following a similar route, ARIES relies on its own combi-
natorial solver that could be captioned as a hybrid CP-SAT
solver for optional scheduling. Its most distinctive features
are the following:

• The core of a SAT solver, (clause learning, unit propa-
gation and activity-based search) integrated with finite-
domain constraint solver.

• Dedicated reasoner for difference logic (aka. Disjunctive
Temporal Networks), that notably enables conflict detec-
tion and explanations for temporal constraints.

• First-hand support of optional activities, enabling eager
propagation of the potential timing and parameters of ac-
tivities that are not yet part of the plan

While the solver is still in its early days, preliminary eval-
uation shows that it has state-of-the-art performance on dis-
junctive scheduling problems such as the jobshop and open-
shop scheduling problems (Bit-Monnot 2023).

Technical Remarks
ARIES is implemented from the ground up in Rust and is
freely available under the MIT license at https://github.com/
plaans/aries. Most of the code base is dedicated to the im-
plementation of our hybrid CP-SAT solver. Comparatively,
planning specific code only occupies a small fraction of the
code base, mostly dedicated to straightforward parsing and
encoding tasks.

Beside its partial support for HDDL, ARIES also provides
an integration as a backend for the unified-planning library
with richer modeling features. Direct encoding of planning
problems as chronicles or as a CSP is another way to exploit
ARIES in a more flexible way.

Acknowledgments
This work has been partially supported by AIPlan4EU, a
project funded by EU Horizon 2020 research and innovation
program under GA n.101016442.

References
Bit-Monnot, A. 2018. A Constraint-Based Encoding for
Domain-Independent Temporal Planning. In International
Conference on Principles and Practice of Constraint Pro-
gramming (CP).
Bit-Monnot, A. 2023. Enhancing Hybrid CP-SAT Search
for Disjunctive Scheduling. In Under review at ECAI.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning. arXiv:2010.13121.

De Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).
Ghallab, M.; and Laruelle, H. 1994. Representation and
Control in IxTeT, a Temporal Planner. In International Con-
ference on Artificial Intelligence Planning and Scheduling
(AIPS).
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice.
Godet, R.; and Bit-Monnot, A. 2022. Chronicles for Rep-
resenting Hierarchical Planning Problems with Time. In
ICAPS Workshop on Hierarchical Planning (HPlan).
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for Scheduling. Constraints.
Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research (JAIR).

The 11th International Planning Competition – Planner and Domains Abstracts

9

OptiPlan - a CSP-based partial order HTN planner

Oleksandr Firsov Humbert Fiorino Damien Pellier
Univ. Grenoble Alpes - LIG

Grenoble, France
oleksandr.firsov humber.fiorino damien.pellier @univ-grenoble-alpes.fr

Introduction
In this paper, we introduce OptiPlan, a planner that partic-
ipated in partial-order HTN track of IPC 2023. OptiPlan is
a hierarchical planner capable of solving partial-order prob-
lems by encoding them as CSPs [1] and generating partial
order solution plans.

Encoding resolution techniques, particularly SAT encod-
ings, have proved their worth in various IPC competitions.
Solving HTN problems via CSP was little studied [2] com-
pared to SAT [3]. These techniques, however, offer a num-
ber of advantages over SAT: (1) CSP encoding provides
a natural way of expressing numerical constraints, which
is not possible with SAT; (2) CSP encoding lets naturally
express constraints on method decompositions (logical or
numerical) and (3) CSP techniques are much more ma-
ture than SAT, and are covered my multiple industrial-level
solvers[4].

The most distinct, property of OptiPlan is its capability
to produce partial-ordered solution plans. The reasoning be-
hind this feature is twofold. First, in various contexts, of-
tentimes industrial, it is crucial to make plans as flexible as
possible, as it helps anticipate unforeseeable events [5][6].
A natural answer to this are partial-ordered solutions, which
allow shifting tasks without any impact on the quality of
the plan. Second, unlike deordering of total-order plans [7]
which cannot guarantee quality, or optimality, of the pro-
duced plans, OptiPlan can guarantee these properties.

Optiplan Principle
OptiPlan is based upon Task Decomposition Graph (TDG)
[8] structure and hybrid planning formalization [9], which
combines the concepts of HTN with POCL [10]. The differ-
ence being that our search space is a tree, instead of graph,
where:
• OR nodes represent possible method decompositions
• AND nodes represent abstract and primitive tasks

Only tasks can be leaves, and only primitive tasks are con-
sidered terminal leaves.

Constructing a complete search space is infeasible in
HTN planning[11], so OptiPlan operates using an iterative
deepening search. Initially, our tree consists of an artificial
root and its children: abstract tasks of initial HTN, as well

Figure 1: Example of TDG compression

as dummy primitive tasks t0 and t∞, that correspond to the
initial and goal states. Along with the tree, we keep track of
ordering constraints introduced by initial task network and
method decompositions.

In this search space, we attempt to find a subtree, such
that:

1. It has exclusively terminal leaves (i.e., plan is concrete)
2. Every precondition of the subtree has a causal link sup-

porting it (i.e., no open goals)
3. There are no threats on the causal links
4. There are no conflicting ordering constraints

If a solution can’t be found, it means that the search space
is not big enough to support it. So we update the search space
by expanding the non-terminal leaves of the tree, and try to
solve the problem again. This process is repeated until either
a solution is found, or failure termination conditions are met
(e.g., there are no abstract leaves left), in which case problem
is deemed unsolvable.

Implementation
As our planner requires a grounded instance of the problem,
we use PDDL4J[12] to parse, pre-process, and instantiate it.

To fully benefit from numeric variables, we perform a
compression procedure on the tree, where we attempt to
merge mutex nodes from the same depth level into a sin-
gle node. This can be best explained on a simple example
in Fig. 1, where we compress two methods m1, m2 of an
abstract task a.

To find the solution, OptiPlan uses Chuffed[13] as its CSP
solver.

The 11th International Planning Competition – Planner and Domains Abstracts

10

References
[1] S. C. Brailsford, C. N. Potts, and B. M. Smith,

“Constraint satisfaction problems: Algorithms and
applications,” European Journal of Operational
Research, vol. 119, no. 3, pp. 557–581, 1999.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221798003646

[2] P. Surynek and R. Barták, “Encoding htn planning as a
dynamic csp,” in Principles and Practice of Constraint
Programming-CP 2005: 11th International Confer-
ence, CP 2005, Sitges, Spain, October 1-5, 2005. Pro-
ceedings 11. Springer, 2005, pp. 868–868.

[3] I. Georgievski and M. Aiello, “Htn planning:
Overview, comparison, and beyond,” Artificial Intelli-
gence, vol. 222, pp. 124–156, 2015.

[4] J.-F. Puget, “Constraint programming next challenge:
Simplicity of use,” in Principles and Practice of
Constraint Programming–CP 2004: 10th International
Conference, CP 2004, Toronto, Canada, September
27-October 1, 2004. Proceedings 10. Springer, 2004,
pp. 5–8.

[5] D. Liu, H. Wang, C. Qi, P. Zhao, and J. Wang, “Hier-
archical task network-based emergency task planning
with incomplete information, concurrency and uncer-
tain duration,” Knowledge-Based Systems, vol. 112,
pp. 67–79, 2016.

[6] D. Liu, H. Li, J. Wong, and M. Khallaf, “Hierarchi-
cal task network approach for time and budget con-
strained construction project planning,” Technological
and Economic Development of Economy, vol. 25, pp.
1–24, 04 2019.

[7] C. Muise, S. McIlraith, and C. Beck, “Optimally relax-
ing partial-order plans with maxsat,” in Proceedings of
the International Conference on Automated Planning
and Scheduling, vol. 22, 2012, pp. 358–362.

[8] P. Bercher, G. Behnke, D. Höller, and S. Biundo, “An
admissible htn planning heuristic.” in IJCAI, 2017, pp.
480–488.

[9] S. Biundo and B. Schattenberg, “From abstract crisis
to concrete relief—a preliminary report on combining
state abstraction and htn planning,” in Sixth European
Conference on Planning, 2001.

[10] D. McAllester and D. Rosenblatt, “Systematic nonlin-
ear planning,” 1991.

[11] R. Alford, V. Shivashankar, U. Kuter, and D. Nau, “Htn
problem spaces: Structure, algorithms, termination,” in
Proceedings of the International Symposium on Com-
binatorial Search, vol. 3, no. 1, 2012, pp. 2–9.

[12] D. Pellier and H. Fiorino, “Pddl4j: a planning domain
description library for java,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 30, no. 1, pp.
143–176, 2018.

[13] G. Chu, P. J. Stuckey, A. Schutt, T. Ehlers, G. Gange,
and K. Francis. (2016) Chuffed, a lazy clause genera-
tion solver. https://github.com/chuffed/chuffed.

The 11th International Planning Competition – Planner and Domains Abstracts

11

The PANDA λ System for HTN Planning in the 2023 IPC

Daniel Höller
Saarland University, Saarland Informatics Campus,

Saarbrücken, Germany
hoeller@cs.uni-saarland.de

Abstract

The PANDA λ system is an HTN planning system that can
handle both totally ordered and partially ordered HTN mod-
els. It performs a progression search, i.e., it only processes
tasks without predecessor in the task network and is based on
the PANDA framework. PANDA λ uses a graph search and
guides search by using a combination of heuristics and land-
marks. These are combined by using a multi-fringe system.

Introduction
PANDA λ (Landmark-based PANDA) is a planning system
from the PANDA framework (Höller et al. 2021), which can
handle both totally ordered and partially ordered models.

Search-based systems in HTN planning can be divided
into plan space-based systems and progression-based sys-
tems (see Bercher, Alford, and Höller, 2019). The latter only
process tasks without predecessor in the task ordering of the
current task network. PANDA λ is based on the systematic
progression search introduced by Höller et al. (2020).

It uses the preprocessing stack of the PANDA framework:
HDDL (Höller et al. 2020) as input language and by the
grounding procedure introduced by Behnke et al. (2020).

During search, PANDA λ maintains a black-list of already
visited nodes and processes every node only a single time,
i.e., it uses a graph search. While this is (from a computa-
tional perspective) no problem in totally ordered HTN plan-
ning, it gets a task as hard as graph isomorphism in partially
ordered HTN planning. To do it efficiently, PANDA λ uses
the techniques introduced by Höller and Behnke (2021),
which apply several techniques for hashing search nodes,
and exploit certain special cases present in many models of
the commonly used benchmark sets.

PANDA λ guides its search by using a combination of
landmarks (Höller and Bercher 2021) and heuristics from
the family of Relaxed Composition (RC) heuristics (Höller
et al. 2018, 2019, 2020) to estimate the goal distance.

Similar to the LAMA system from classical plan-
ning (Richter and Westphal 2010), PANDA λ combines
these in a multi-fringe search, where one fringe is sorted
by a RC heuristic, and one by the LM-count heuristic com-
puted on the landmarks. The system extracts nodes from the
fringes in turn and each successor node is inserted into both
fringes with the respective heuristic estimate.

We next describe the RC heuristics and the used land-
marks afterwards. Each configuration of our overall system
combines one of the two RC heuristics with one of the two
landmark sets.

RC Heuristics
The family of RC heuristics (Höller et al. 2018, 2019, 2020)
uses classical heuristics to estimate the goal distance during
HTN search. To do so, it relaxes the HTN model to a clas-
sical model which is only used for heuristic calculation. It
is created in a way that the set of solutions increases com-
pared to the HTN model. HTN planning starts with the initial
task(s) and decomposes them until only actions are left. This
process can be seen as the building process of a tree. The
classical RC model maintains which tasks are part of that
tree, but in a bottom-up manner, compositing tasks. When
an action from the original HTN is applied in this model, it
is marked as part of the tree. Methods are represented in the
RC model by special actions. These are applicable when all
subtasks of the method are part of the tree. When they are
applied, the decomposed task is marked as part of the tree.
The goal of the overall problem is to mark the tasks in the
current task network as being part of the tree.

This encoding solves several problems when translating
HTN models to classical models. First, we always have a
state-based goal (which is not the case in HTN models):
adding the current tasks to the tree. Second, the model is also
informed about applicability of actions, since actions can
only be added when they are applicable. Like in other HTN
heuristics, the encoding allows for task insertion (adding
further actions apart from the decomposition hierarchy) to
make actions applicable that are needed elsewhere. How-
ever, what is interesting about our encoding when compared
to other heuristics (see e.g. Bercher et al., 2017), is that the
costs of these added actions are incorporated into the heuris-
tic value. In our implementation, we further restrict task in-
sertion to those actions still reachable via decomposing the
current task network. Third, our heuristic is – to some ex-
tend – informed about the decomposition process, because
the tree must be created up to the current tasks.

Practically, the model can be updated instead of recom-
puted. The only things that need to be changed are the initial
state and the goal condition of the RC model. The model is
linear in the size of the HTN model, and can be combined

The 11th International Planning Competition – Planner and Domains Abstracts

12

with any classical heuristic. However, the update of the goal
is not possible (efficiently) in every classical heuristic.

In the IPC, we combine it with the Add (Bonet and
Geffner 2001) heuristic and with the FF (Hoffmann and
Nebel 2001) heuristic.

Landmark Generation
In the IPC, we use two types of landmarks, RC-based and
AND/OR landmarks, which are described in this section.

RC-based Landmarks
The first type of landmarks computes the LM-Cut heuris-
tic (Helmert and Domshlak 2009) on the RC model of the
initial search node. The generated landmarks are stored and
tracked during search.

AND/OR Landmarks
The second type of landmarks is generated using the ap-
proach of Höller and Bercher (2021). It extends an ap-
proach from classical planning by Keyder, Richter, and
Helmert (2010), who represent a delete-free classical plan-
ning problem as AND/OR graph, and extract landmarks
from this graph afterwards. We extend the AND/OR graph
to also represents parts of the decomposition hierarchy, and
applies the unchanged extraction algorithm afterwards.

In contrast to the classical case, the HTN representation
comes with more relaxations than only delete-relaxation.
E.g., no ordering relations from the HTN model are repre-
sented in the graph.

We generate the landmarks on the initial search nodes and
track them afterwards during search.

References
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI), 9775–9784. AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), 6267–6275.
IJCAI organization.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An Admissible HTN Planning Heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI), 480–488. IJCAI organization.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.

Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In Proceedings of the 31st Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS). AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S.
2021. The PANDA Framework for Hierarchical Planning.
Künstliche Intelligenz, 30(1): 11–20.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883–9891. AAAI Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the 25th AAAI Confer-
ence on Artificial Intelligence (AAAI), 11826–11834. AAAI
Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On Guiding Search in HTN Planning with Classical Plan-
ning Heuristics. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), 6171–
6175. IJCAI organization.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR), 67: 835–880.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Proceedings
of the 19th European Conference on Artificial Intelligence
(ECAI), 335–340. IOS Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research (JAIR), 39: 127–
177.

The 11th International Planning Competition – Planner and Domains Abstracts

13

The PANDA Progression System for HTN Planning in the 2023 IPC

Daniel Höller
Saarland University, Saarland Informatics Campus,

Saarbrücken, Germany
hoeller@cs.uni-saarland.de

Abstract

The PANDA Progression System is an HTN planning sys-
tem that can handle both totally ordered and partially or-
dered HTN models. It performs a progression search, i.e.,
it only processes tasks without predecessor in the task net-
work. PANDA uses a graph search and guides search by us-
ing heuristics. The configurations for the IPC use the fami-
lies of Relaxed Composition (RC) heuristics and Delete- and
Ordering-Relaxation (DOR) heuristics. RC heuristics relax
the HTN model to a classical model and apply heuristics from
classical planning to compute heuristic values. This way, also
admissible heuristics for optimal planning can be created.
The family of DOR heuristics originally capture delete- and
ordering-free HTN planning as IP. This basic encoding can
be extended by other IP constraints, e.g. encoding landmarks.

Introduction
The PANDA progression (PANDApro) system is a planner
from the PANDA framework (Höller et al. 2021), which can
handle both totally ordered and partially ordered models.

Search-based systems in HTN planning can be divided
into plan space-based systems and progression-based sys-
tems (see Bercher, Alford, and Höller, 2019). The latter only
process tasks without predecessor in the task ordering of the
current task network. PANDApro uses the systematic pro-
gression search introduced by Höller et al. (2020).

It uses the common preprocessing stack of the PANDA
framework: HDDL (Höller et al. 2020) as standard input lan-
guage, followed by the grounding procedure introduced by
Behnke et al. (2020).

During search, PANDApro maintains a black-list of al-
ready visited nodes and processes every node only a sin-
gle time, i.e., it uses a graph search. While this is (from
a computational perspective) no problem in totally ordered
HTN planning, it gets a task as hard as graph isomor-
phism in partially ordered HTN planning. To do it efficiently,
PANDApro uses the techniques introduced by Höller and
Behnke (2021), which apply several techniques for hash-
ing search nodes, and exploit certain special cases present
in many models of the commonly used benchmark sets.

PANDApro guides its search by using heuristics estimat-
ing the goal distance (or the remaining costs in case of opti-
mal planning). For the IPC, it uses two families of heuristics,
which are described in the following.

RC Heuristics
The family of relaxed composition (RC) heuristics (Höller
et al. 2018, 2019, 2020) uses classical heuristics to estimate
the goal distance during HTN search. To do so, it relaxes
the HTN model to a classical model which is only used for
heuristic calculation. It is created in a way that the set of
solutions increases compared to the HTN model. HTN plan-
ning starts with the initial task(s) and decomposes them until
only actions are left. This process can be seen as the building
process of a tree. The classical RC model maintains which
tasks are part of that tree, but in a bottom-up manner, com-
positing tasks. When an action from the original HTN is ap-
plied in this model, it is marked as part of the tree. Methods
are represented in the RC model by special actions. These
are applicable when all subtasks of the method are part of the
tree. When they are applied, the decomposed task is marked
as part of the tree. The goal of the overall problem is to mark
the tasks in the current task network as being part of the tree.

This encoding solves several problems when translating
HTN models to classical models. First, we always have a
state-based goal (which is not the case in HTN models):
adding the current tasks to the tree. Second, the model is also
informed about applicability of actions, since actions can
only be added when they are applicable. Like in other HTN
heuristics, the encoding allows for task insertion (adding
further actions apart from the decomposition hierarchy) to
make actions applicable that are needed elsewhere. How-
ever, what is interesting about our encoding when compared
to other heuristics (see e.g. Bercher et al., 2017), is that the
costs of these added actions are incorporated into the heuris-
tic value. In our implementation, we further restrict task in-
sertion to those actions still reachable via decomposing the
current task network. Third, our heuristic is – to some ex-
tend – informed about the decomposition process, because
the tree must be created up to the current tasks.

Practically, the model can be updated instead of recom-
puted. The only things that need to be changed are the initial
state and the goal condition of the RC model. The model is
linear in the size of the HTN model, and can be combined
with any classical heuristic. However, the update of the goal
is not possible (efficiently) in every classical heuristic.

In the IPC, we combine it with the Add (Bonet and
Geffner 2001), the FF (Hoffmann and Nebel 2001), and the
LM-Cut (Helmert and Domshlak 2009) heuristic. We have

The 11th International Planning Competition – Planner and Domains Abstracts

14

shown that the combination of the RC model with an admis-
sible heuristic from classical planning results in an admissi-
ble HTN heuristic, so we use the latter (RC with LM-Cut)
for optimal planning.

DOR Heuristics
In HTN planning, finding a delete-relaxed solution as done
by many classical heuristics is still NP-hard (Alford et al.
2014). To make heuristic computation feasible, a common
additional relaxation made by HTN heuristics is task inser-
tion. As already discussed for RC heuristics, this means that
the planner (or heuristic) is allowed to add actions apart from
the hierarchy.

In our work on Delete- and Ordering-Free HTN plan-
ning (Höller, Bercher, and Behnke 2020), we introduce the
class of HTN models that do not include delete-effects nor
ordering constraints between tasks in the methods and in the
initial task network. We show that the resulting problem is
still NP-hard to solve. Then we show how to (exactly) en-
code this problem into an integer linear program (IP), com-
bining constraints describing the decomposition process and
constraints describing a relaxed planning graph (Imai and
Fukunaga 2015).

The heuristic used here builds on this line of work.
We combine (a further relaxed version of) the constraints
describing HTN decomposition with constraints encoding
HTN landmarks, and operator counting constraints (Pom-
merening et al. 2014). We use two configurations, one using
LM-Cut landmarks generated on the RC model, and one us-
ing the AND/OR HTN landmarks introduced by Höller and
Bercher (2021).

Instead of solving the IP, we further use the relaxation to
a linear model to make computation polynomial.

References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS.
AAAI press.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI), 9775–9784. AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), 6267–6275.
IJCAI organization.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An Admissible HTN Planning Heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI), 480–488. IJCAI organization.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In

Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In Proceedings of the 31st Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS). AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S.
2021. The PANDA Framework for Hierarchical Planning.
Künstliche Intelligenz, 30(1): 11–20.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883–9891. AAAI Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the 25th AAAI Confer-
ence on Artificial Intelligence (AAAI), 11826–11834. AAAI
Press.
Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and
Ordering-Relaxation Heuristics for HTN Planning. In Pro-
ceedings of the 29th International Joint Conference on Arti-
ficial Intelligence (IJCAI), 4076–4083. IJCAI organization.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On Guiding Search in HTN Planning with Classical Plan-
ning Heuristics. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), 6171–
6175. IJCAI organization.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR), 67: 835–880.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. Journal of
Artificial Intelligence Research, 54: 631–677.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-Based Heuristics for Cost-Optimal Planning. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS). AAAI press.

The 11th International Planning Competition – Planner and Domains Abstracts

15

The TOAD System for Totally Ordered HTN Planning in the 2023 IPC

Daniel Höller
Saarland University, Saarland Informatics Campus,

Saarbrücken, Germany
hoeller@cs.uni-saarland.de

Abstract

The TOAD system is a translation-based planning system for
totally ordered HTN planning. It translates a given HTN plan-
ning problem into a classical planning problem. To overcome
the differences in expressiveness, it does not bound the prob-
lem like other translation-based systems, but approximates
the problem instead by modifying the decomposition hierar-
chy such that the set of solutions increases. Then we encode
it as classical planning problem and solve it using classical
planners. To ensure that only solutions for the original HTN
problem are returned, we apply HTN plan verification.

Introduction
The TOAD (Totally Ordered HTN Approximation using
DFA) system (Höller 2021) is a translation-based planning
system for totally ordered HTN planning. It translates a
given HTN planning problem into a classical problem and
uses classical planners to solve it. While translation-based
systems from the literature bound the HTN problem to over-
come the differences in expressiveness (Alford, Kuter, and
Nau 2009; Alford et al. 2016; Behnke et al. 2022), TOAD
over-approximates the set of solutions. I.e., all solutions to
the HTN planning problem are also solutions for the classi-
cal problem, but the latter might have more.

The approach is inspired by our results on the expressive-
ness of planning formalisms (Höller et al. 2014, 2016). The
set of solutions to a totally ordered HTN planning problem
can be seen as the intersection of two languages: a context-
free language describing which action sequences can result
from the decomposition process, and a regular language de-
scribing which action sequences are applicable and lead to
a goal state in the transition system induced by the non-
hierarchical part of the HTN problem (actions/state). TOAD
uses techniques from the field of formal languages (Neder-
hof 2000a,b) to create a finite automaton (FA) accepting
the words of the context-free language (which might re-
quire approximation), which is then combined with the non-
hierarchical part of HTN problem.

The TOAD System
We use the preprocessing of the PANDA framework for hi-
erarchical planning (Höller et al. 2021), i.e., HDDL as input

language (Höller et al. 2020) and the PANDA grounder to
ground the model (Behnke et al. 2020).

Figure 1 illustrates the overall TOAD system, which is
described in the following.

Analysis. First, TOAD analyzes whether the HTN prob-
lem can be translated exactly or approximation is needed.
This is done based on a criterion from formal languages
called self-embedding (Chomsky 1959), which is checked
on the decomposition rules (i.e., the methods). We first con-
struct the decomposition graph, i.e., a graph with the tasks of
the problem as nodes in which two nodes ca and cb are con-
nected by a directed edge (ca, cb) when there is a method
decomposing ca into a task sequence including cb. We com-
pute the strongly connected components (sccs) of this graph.
A problem is self-embedding if there is a scc Ni such that

• there is a method (ca, αcbβ), ca, cb ∈ Ni and α ̸= ε and
• there is a method (ca, αcbβ), ca, cb ∈ Ni and β ̸= ε.

When a problem is not self-embedding, this is a sufficient
criterion that it describes a regular language, which for us
means that approximation is not needed.

Approximation. When approximation is needed, the
grammar rules (methods) are modified such that the set of
solutions increases. We use an approximation introduced by
Nederhof (2000a; 2000b).

Consider a grammar G = (C ,A,M , cI) with the non-
terminal and terminal symbols C = {A} and A = {a, b},
the production rules M = {(A, b), (A, aAa)}, and the start
symbol cI = A. It describes the context-free language
{an b an | n ≥ 0}. The approximation disconnects the part
left and right of the b, resulting in a grammar generating the
language {an b am | n,m ≥ 0}, which is regular.

Based on the method by Nederhof (2000a; 2000b) we
construct a finite automaton (FA) accepting action sequences
derivable via the (maybe modified) hierarchy.

Classical Encoding. Based on the FA and the non-
hierarchical part of the HTN planning problem (actions/s-
tate) we build a classical planning problem.

Solving. We use the Fast Downward (FD) planning sys-
tem (Helmert 2006) to solve the resulting problems. We use
a multi-fringe configuration similar to the classical LAMA
system (Richter and Westphal 2010) with two fringes. One

The 11th International Planning Competition – Planner and Domains Abstracts

16

HTN
model Analysis

Approximation

FA Classical
model

Classical
Planner Verification HTN

solution

Figure 1: Schema of the TOAD system (based on Figure 1 by Höller, 2021).

uses the FF heuristic (Hoffmann and Nebel 2001) and also
its helpful actions, and one uses a precomputed heuristic re-
turning the distance from the current state in the FA to the
nearest goal state in the FA as heuristic value.

Verification. To return only valid solutions for the origi-
nal HTN problem, HTN plan verification is applied as last
step. We use the verification system introduced by Höller
et al. (2022) in combination with the PANDA progression
planner (Höller et al. 2018, 2020).

We modified FD to verify a solution before returning it.
When it is not valid, search is continued.

Discussion
While the basic approach is sound and complete, the com-
bination with a graph search like used by FD leads to an in-
complete overall system. This is caused by the fact that such
a system does not (eventually) return every solution to the
underlying classical problem. Whenever a particular state in
the search space needs to be visited twice before a solution
for the HTN problem is found, TOAD will fail. However, at
least on the benchmark set of the last (i.e., 2020) IPC, this
seems not to be an issue. To the contrary, in this set most
problems can be translated without using the approximation.

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo,
S.; and Aha, D. 2016. Bound to Plan: Exploiting Classi-
cal Heuristics via Automatic Translations of Tail-Recursive
HTN Problems. In Proceedings of the 26th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 20–28. AAAI Press.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
1629–1634.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI), 9775–9784. AAAI Press.
Behnke, G.; Pollitt, F.; Höller, D.; Bercher, P.; and Alford, R.
2022. Making Translations to Classical Planning Competi-
tive with Other HTN Planners. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI), 9687–
9697. AAAI Press.
Chomsky, N. 1959. On Certain Formal Properties of Gram-
mars. Information and Control, 2(2): 137–167.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D. 2021. Translating Totally Ordered HTN Planning
Problems to Classical Planning Problems Using Regular Ap-
proximation of Context-Free Languages. In Proceedings of
the 31st International Conference on Automated Planning
and Scheduling (ICAPS), 159–167. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI), 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS), 158–165. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S.
2021. The PANDA Framework for Hierarchical Planning.
Künstliche Intelligenz, 30(1): 11–20.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883–9891. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR), 67: 835–880.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 32nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 145–150. AAAI Press.
Nederhof, M.-J. 2000a. Practical experiments with regu-
lar approximation of context-free languages. Computational
Linguistics, 26(1): 17–44.
Nederhof, M.-J. 2000b. Regular approximation of CFLs: A
grammatical view. In Advances in Probabilistic and other
Parsing Technologies, chapter 12, 221–241. Kluwer Aca-
demic Publishers.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research (JAIR), 39: 127–
177.

The 11th International Planning Competition – Planner and Domains Abstracts

17

The PANDADealer System for Totally Ordered HTN Planning in the 2023 IPC

Conny Olz1, Daniel Höller2, Pascal Bercher3

1 Ulm University, Ulm, Germany
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

3 The Australian National University, Canberra, Australia
conny.olz@uni-ulm.de, hoeller@cs.uni-saarland.de, pascal.bercher@anu.edu.au

Abstract
The PANDADealer system is an HTN planning system for
solving totally ordered HTN planning problems. It builds on
the heuristic progression search of the PANDApro system, and
extends it with a look-ahead technique to detect dead-ends
and inevitable refinement choices. The technique is based on
inferred preconditions and effects of tasks, or more precisely,
their decomposition methods.

Introduction
The PANDADealer (Dead-End Analysis with Look-Aheads
and Early Refinements) system is a progression search-
based planner that has been enhanced with a look-ahead
technique based on inferred preconditions and effects of de-
composition methods. It is specifically designed to solve to-
tally ordered HTN planning problems. The system is build
upon the PANDApro system and uses its pure heuristic
search-based configurations (Höller 2023b) and also those
using a combined heuristic- and landmark-based search
guidance (Höller 2023a).

Search-based systems in HTN planning can be divided
into plan space-based systems and progression-based sys-
tems (see Bercher, Alford, and Höller, 2019). The latter only
process the first task in the task ordering of the current task
network. PANDADealer is builds on the systematic progres-
sion search introduced by Höller et al. (2020) and uses the
graph search described by Höller and Behnke (2021), i.e.,
it maintains a black-list of already visited search nodes to
process every node only a single time.

The system uses the common preprocessing stack of the
PANDA framework: HDDL (Höller et al. 2020) as standard
input language, followed by the grounding procedure intro-
duced by Behnke et al. (2020).

The search is guided by using heuristics estimating the
goal distance (or the remaining costs in case of optimal plan-
ning), some configurations additionally exploit landmarks
for search guidance. Next we briefly describe the look-ahead
technique, followed by the used heuristics and landmarks.

Look-Ahead Technique
The look-ahead technique employed in PANDADealer is
based on inferred preconditions and effects of decomposi-
tion methods (Olz, Biundo, and Bercher 2021). These pre-
conditions and effects are derived from the primitive tasks

within the refinements of a method. Preconditions specify
the facts that must hold in the state before executing the re-
finements, while effects indicate the changes in the state (ad-
ditions or deletions) that occur after execution. Calculating
the exact sets of preconditions and effects is computationally
expensive; therefore, we only calculate a relaxed version in
a preprocessing step, which disregards the executability of
the refinements.

During the actual search, we treat the task network for
each search node as a sequence of primitive tasks, where the
compound tasks are enriched with their inferred precondi-
tions and effects. Starting from the first task, we check the
preconditions of its methods in relation to the current state.
For the “applicable” methods, we add all possible positive
effects and remove the guaranteed negative effects, result-
ing in a new state. The new state is then used to evaluate
the preconditions of the methods associated with the second
task, propagating their effects in a similar manner. This pro-
cess continues until the end of the task network. If the pre-
conditions of a primitive task are not satisfied or no method
of a compound task is applicable in its respective state, the
search node is pruned as it represents a dead-end. If this is
not the case but if a compound task has only one applicable
method, we immediately decompose that task to eliminate
future branching points. Further be aware that this “early
application” of methods might help getting better heuristic
estimates, because heuristics might not be able to detect that
there is only a single applicable method.

For a comprehensive and detailed explanation of the look-
ahead technique we refer to the respective paper by Olz and
Bercher (2023).

RC Heuristics
The family of relaxed composition (RC) heuristics (Höller
et al. 2018, 2019, 2020) uses classical heuristics to estimate
the goal distance during HTN search. This is done based on
a relaxation of the HTN model to a classical model. This
model is only used for heuristic calculation. It is created in
a way that the set of solutions increases compared to the
HTN model. HTN planning starts with the initial task(s) and
decomposes them until only actions are left. This process
can be seen as the building process of a tree. The RC model
captures (a relaxation of) the building process of that tree in
the state of the classical model, but in a bottom-up manner,

The 11th International Planning Competition – Planner and Domains Abstracts

18

track config landmarks search heuristic

agile agile-1 none GBFS rc(add)
agile-lama LM-Cut GBFS rc(add)

satisf. agile-lama LM-Cut GBFS rc(add)
optimal optimal none A⋆ rc(lmc)

Table 1: Overview over the winning configurations.

compositing tasks.
The RC model is computed once in a preprocessing step

and updated during search. It is linear in the size of the HTN
model and can be combined with arbitrary classical planning
heuristics. In the IPC, we combine it with the Add (Bonet
and Geffner 2001), the FF (Hoffmann and Nebel 2001), and
the LM-Cut (Helmert and Domshlak 2009) heuristic. Höller
et al. (2018) have shown that the combination of the RC
model with an admissible heuristic from classical planning
results in an admissible HTN heuristic, so we use the latter
(RC with LM-Cut) for optimal planning.

Landmarks
Similar to the LAMA system from classical plan-
ning (Richter and Westphal 2010), our configurations us-
ing landmarks combine heuristic-based and landmark-based
guidance in a multi-fringe search, where one fringe is sorted
by a heuristic, and one by an LM-count heuristic com-
puted on the landmarks. The system extracts nodes from the
fringes in turn and each successor node is inserted into both
fringes with the respective heuristic estimate. We combine it
with two approaches for landmark generation.

The first one computes LM-Cut heuristic on the RC model
of the initial search node. The generated landmarks are
stored and tracked during search.

The second one generates the landmarks using the
approach of Höller and Bercher (2021). It extends the
work from classical planning by Keyder, Richter, and
Helmert (2010), who represent a delete-free classical plan-
ning problem as AND/OR graph, and extract landmarks
from this graph afterwards. We extend the AND/OR graph
to also represents parts of the decomposition hierarchy, and
applies the unchanged extraction algorithm afterwards. We
again generate the landmarks on the initial search node and
track them afterwards during search.

Configurations
PANDADealer won all of the total-order HTN tracks of the
IPC 2023. In Table 1 we give an overview over the details of
the configurations.

References
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI), 9775–9784. AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete

Realizations. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence (IJCAI), 6267–6275.
IJCAI organization.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS). AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D. 2023a. The PANDA λ System for HTN Planning
in the 2023 IPC. In Proceedings of the 11th International
Planning Competition: Planner and Domain Abstracts – Hi-
erarchical Task Network (HTN) Planning Track (IPC 2023).
Höller, D. 2023b. The PANDA Progression System for HTN
Planning in the 2023 IPC. In Proceedings of the 11th Inter-
national Planning Competition: Planner and Domain Ab-
stracts – Hierarchical Task Network (HTN) Planning Track
(IPC).
Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In Proceedings of the 31st Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 168–173. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883–9891. AAAI Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the 25th AAAI Confer-
ence on Artificial Intelligence (AAAI), 11826–11834. AAAI
Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On Guiding Search in HTN Planning with Classical Plan-
ning Heuristics. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), 6171–
6175. IJCAI organization.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR), 67: 835–880.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In Proceedings
of the 19th European Conference on Artificial Intelligence
(ECAI), 335–340. IOS Press.
Olz, C.; and Bercher, P. 2023. A Look-Ahead Technique for
Search-Based HTN Planning: Reducing the Branching Fac-
tor by Identifying Inevitable Task Refinements. In Proceed-
ings of the 16th International Symposium on Combinatorial
Search (SoCS), 65–73. AAAI Press.

The 11th International Planning Competition – Planner and Domains Abstracts

19

Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI), 11903–
11912. AAAI Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research (JAIR), 39: 127–
177.

The 11th International Planning Competition – Planner and Domains Abstracts

20

LTP: Lifted Tree Path

Gaspard Quenard, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG
F-38000 Grenoble, France

gaspard.quenard humber.fiorino damien.pellier @univ-grenoble-alpes.fr

Abstract

In this paper, we present our planner named LTP which stand
for Lifted Tree Path aimed at solving Totally Ordered Hi-
erarchical Task Network (TOHTN) problems. Our planner
is based on the Satisfiability (SAT) planning paradigm and
builds upon the concepts of the Lilotane planner (Schreiber
[2021]), which has scored 2nd in the last IPC in the HTN
Total Order track.

Introduction
Satisfiability (SAT) planning is a widely-used planning
paradigm that employs Boolean satisfiability solvers to find
solutions for planning problems (Kautz et al. [1992, 2006]).
SAT solvers are efficient tools for solving propositional logic
problems. The main challenge in SAT planning lies in iden-
tifying and formulating the appropriate set of rules and con-
straints that effectively encode a given planning problem
into SAT clauses. Once the planning problem is encoded into
SAT clauses, the solution process relies on the underlying
SAT solver to efficiently search for satisfying assignments.

Several SAT planners have been developed to encode TO-
HTN problems (Behnke et al. [2018], Schreiber et al. [2019],
Schreiber [2021]). These planners utilize a structure referred
to as a hierarchical tree to represent the problem hierarchy
up to a certain depth. This hierarchical tree is subsequently
used to encode the set of relevant SAT clauses.

The difference between previous approaches and LTP
(Lifted Task Planning) is that the latter does not directly en-
code the entire hierarchy of the problem into propositional
logic. Instead, it selectively extracts only the primitives from
the hierarchical tree that may appear in valid plans and en-
codes them into propositional logic. It focuses solely on the
actions of the plan rather than the full hierarchy. Therefore,
LTP does not utilize boolean variables to encode tasks or
methods during the SAT clause encoding process.

Hierarchical Tree
LTP utilizes the same hierarchical tree structure as the
lilotane and TreeRex planners.

The hierarchical tree can be described as a sequence of hi-
erarchical layers, where each layer is an array of positions,
each containing a set of elements. These elements can be

facts, reductions, or actions. The layers are computed incre-
mentally, starting with an initial layer (L0) that includes the
initial reduction. Subsequently, each layer is defined by in-
cluding all operations that match a subtask of some opera-
tion from the previous layer.

Figure 1 illustrates an example of a hierarchical tree con-
taining three layers for a problem in the Transport domain,
as defined in the Lilotane paper. In this example, Lilotane en-
codes the entire decomposition tree into SAT clauses. How-
ever, LTP differs by keeping only the last layer of the de-
composition tree. From this layer, it encodes only the ac-
tions that may be part of a solution plan as illustrated in the
figure 2. The ordered constraints between these actions can
be inferred from the hierarchical tree, and the method’s pre-
conditions can be encoded to the relevant actions in their
first subtask.

Instantiation
The general planning procedure of LTP is similar to the other
SAT planners for TOHTN problems:

1. Initialize the first layer (l0) of the hierarchial tree follow-
ing the problem description.

2. Construct the next layer (l+1) of the hierarchical tree on
the basis of the layer l.

3. Use the current hierarchical tree to encode the SAT
clauses.

4. Launch the solver. If no solution is found, goto 2

References
Dominik Schreiber. Lilotane: A lifted sat-based approach

to hierarchical planning. Journal of artificial intelligence
research, 70:1117–1181, 2021.

Henry A Kautz, Bart Selman, et al. Planning as satisfiability.
In ECAI, volume 92, pages 359–363. Citeseer, 1992.

Henry Kautz, Bart Selman, and Joerg Hoffmann. Satplan:
Planning as satisfiability. In 5th international planning
competition, volume 20, page 156, 2006.

Gregor Behnke, Daniel Höller, and Susanne Biundo. totsat-
totally-ordered hierarchical planning through sat. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

The 11th International Planning Competition – Planner and Domains Abstracts

21

Figure 1: Example a hierarchial tree containing 3 hierarchical layers for a problem of the domain Transport as defined in the
Lilotane paper. The first subtask of the method m deliver ordering can be accomplish by the three methods reported in the
position P1,0)

Figure 2: Space of reseach encoded by LTP into SAT clauses

The 11th International Planning Competition – Planner and Domains Abstracts

22

Dominik Schreiber, Damien Pellier, Humbert Fiorino, et al.
Tree-rex: Sat-based tree exploration for efficient and high-
quality htn planning. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, pages 382–390, 2019.

The 11th International Planning Competition – Planner and Domains Abstracts

23

Grounded (Lifted) Linearizer at the IPC 2023:
Solving Partial Order HTN Problems by Linearizing Them

Ying Xian Wu1, Conny Olz2, Songtuan Lin1, Pascal Bercher1

1School of Computing, The Australian National University
2Institute of Artificial Intelligence, Ulm University

{yingxian.wu, songtuan.lin, pascal.bercher}@anu.edu.au, conny.olz@uni-ulm.de

Abstract

In this paper, we would like to present Grounded (Lifted) Lin-
earizer, a hierarchical task network (HTN) planning system
which won the Partial Order (PO) Agile and Satisficing tracks
of the International Planning Competition 2023 on Hierarchi-
cal Task Network (HTN) Planning. This system consists of
two parts. The first part is a preprocessor developed in house
which transforms a POHTN problem into a total order (TO)
one and which is the main contribution of this paper. The sec-
ond part is an existing HTN planner. The outstanding per-
formance of our assembled planning system thus serves as an
evidence for how our preprocessor can enhance the efficiency
of other existing planners.

Introduction
In this paper, we present Grounded and Lifted Linearizer, the
systems solving hierarchical task network (HTN) planning
problems (Bercher, Alford, and Höller 2019) which partici-
pated in the International Planning Competition (IPC) 2023
on HTN Planning and won the Partial Order (PO) Agile and
Satisficing tracks. Generally speaking, the systems work as
follows: they first transform an input POHTN planning prob-
lem into a total order (TO) one on the grounded (resp. lifted)
level while ensuring that a solution to the transformed prob-
lem is also a solution to the original one. After that, a third-
party HTN planner, which we call the inner planner, is in-
voked to solve the obtained TO problem. If this second step
fails, i.e., the inner planner reports that the TO problem is
unsolvable, a third-party HTN planner, called the outer plan-
ner, which might or might not be the same one used as the
inner planner, is called to solve the original PO problem.
Notably, the novelty of the systems is the linearization tech-
nique, and the actual process of solving an HTN problem is
still done by other existing HTN planners.

In the remaining section, we will give more details about
the process of linearizing and the configurations with respect
to the agile track and the satisficing track.

Linearizing PO Problems
There are two variants of our linearizing technique. The first
one linearizes grounded PO problems, and the other is tar-
geted at lifted problems. Both variants share the same idea.
That is, for each method (either grounded or lifted), we first
infer the precondition and effects of each compound task in

it, and then, the method is linearized according to those in-
ferred preconditions and effects.

Linearizing Grounded Problems
For the variant which linearizes grounded problems, we em-
ployed two approaches for inferring compound tasks’ pre-
conditions and effects. The first approach is easy-to-compute
but less informed while the other (Olz, Biundo, and Bercher
2021; Olz and Bercher 2022) has higher complexity but can
compute more precise preconditions and effects. For conve-
nience, we call the former one the simple inference approach
and the latter complex inference approach.

More specifically, for each compound task, the simple in-
ference approach regards the precondition and effects of ev-
ery action which can be obtained from its decompositions as
its own precondition and effects, i.e., it is a simple collection
of all actions that can be reached. For more details about this
simple inference approach, we refer to our previous work
(Wu et al. 2022). Contrastively, the complex inference ap-
proach is the one developed by Olz and Bercher (2022) for
PO problems which is based on the previous work by Olz,
Biundo, and Bercher (2021) for TO problems and which fur-
ther rule out some impossible propositions in a compound
task’s inferred precondition and effects, on top of those com-
puted by the simple inference approach.

Having obtained preconditions and effects of compound
tasks, we can linearize each method in a PO problem by ex-
ploiting them. Note that the linearizing approach only lever-
ages the inferred preconditions and effects and is indepen-
dent of how they are obtained (i.e., by the simple inference
approach or the complex one). Informally, the linearizing ap-
proach can be summarized by the following two rules:
1) For any two tasks t1 and t2 where t1 adds a proposition

that is required by t2, we want to place t1 in front of t2
so that t2 will more likely be applicable.

2) If t1 deletes a proposition that is required by t2, we would
like to place t2 before t1 so that t1 will have less chance
to be unapplicable.

For detailed implementation of the approach, we again refer
to our previous work (Wu et al. 2022).

For every method in a PO problem, we only generate one
linearization. In other words, the number of methods in the
linearized problem is identical to that in the original PO
problem. Furthermore, a linearized problem is guaranteed to

The 11th International Planning Competition – Planner and Domains Abstracts

24

preserve at least one solution if for any two tasks t1 and t2
in any method in the original PO problem, the order on these
two tasks induced by the above two rules is consistent, i.e.,
t1 will not be put both before and after t2 (Wu et al. 2022,
Thm. 4).

Linearizing Lifted Problems
When linearizing lifted problems, for each lifted method, we
instantiate each variable with a hypothetical instance of the
appropriate type. For variables of the same type, all are as-
sumed to be different instances from every other. Note that
the variables we instantiate are the parameters of the respec-
tive method which, as we will show later on, will be inher-
ited by the subtasks of this method (because the parameters
of every subtask are also the parameters of the method). This
thus ensures that we can reason on the inferred preconditions
and effects of the subtasks when linearizing the method.

A method m, whose instantiated counterpart is referred
to as m, has some subtasks. For each (abstract or primi-
tive) subtask, we apply the appropriate instantiated variable
from those applied to their parent, to produce an instanti-
ated counterpart for each lifted subtask. If the child refers
to a variable the parent does not refer to, a unique hypothet-
ical instance is used as instantiation. We perform the fol-
lowing two operations depending on whether a subtask is
primitive or not: 1) If the subtask is primitive, we instantiate
its precondition and effects with the appropriate hypotheti-
cal instances. For variables that do not appear in the primi-
tive task, a unique hypothetical instance is used as instantia-
tion. 2) If the subtask is compound, then for each method m′

that could be applied to it, the method is also instantiated as
m′ with the appropriate hypothetical instances in accordance
with the instantiation of the task. We repeat this instantiation
for methods and compound tasks that the original method
could decompose into, until we obtain a collection of in-
stantiated actions that this instantiated method m could have
decomposed to.

For all instantiated actions an instantiated task could even-
tually decompose into, we consider all instantiated effects
and preconditions as the effects and preconditions of the
task. For each subtask, we regard instantiated preconditions
and effects of every instantiated action which can be ob-
tained from its decompositions as its own precondition and
effects (i.e. using the simple inference approach). Having
obtained inferred preconditions and effects, we again use
the two-step process for linearizing grounded problems. The
lifted subtasks are ordered as their instantiated counterparts
would be. Anything instantiated is now discarded.

Configurations
Based on the linearizing approaches described above, we
developed three planning systems to participate in the IPC
2023 on HTN Planning:
1) Grounded-Simple-Linearizer,
2) Grounded-Complex-Linearizer, and
3) Lifted-Linearizer.
More specifically, all these systems participated the PO agile
track and the PO satisficing track. We did not participate in

the optimal track because a linearized problem might not
preserve any optimal solution to the original problem.

All systems consist of the following three components:
1) a linearizer that linearizes a PO problem,
2) an inner planner that solves the linearized problem, and
3) an outer planner that solves original PO problems if the

linearized problem has no solutions.

Grounded-Simple-Linearizer
This system participated in the (partial order) agile and the
satisficing track. For each track, we had three configurations
(i.e., 6 configurations in total). All 6 configurations used the
same linearizer and the same configuration of the outer plan-
ner, that is, only the settings of the inner planner were differ-
ent. More concretely, the linearizer of this system used our
linearizing technique for grounded problems with the sim-
ple inference approach. Both the inner and outer planners
were PANDAπ with the progression-based solver. The outer
planner used the relaxed composition (RC) heuristic (Höller
et al. 2018, 2020) with Fast Forward (FF) (Hoffmann and
Nebel 2001) as the inner heuristic, written RC(FF), in con-
junction with a weighted A* (WA*) search with the weight
being two. The heuristic estimated the number of actions and
methods needed to reach a solution (i.e., the distance). The
g-value for the search is the mixture of action costs and de-
composition costs. The different settings of the inner planner
for each configuration are as follows.

Agile track In the first configuration, we adapted the RC
heuristic with Add (Bonet and Geffner 2001) as the inner
classical heuristic, written RC(Add), together with a greedy
best first search (GBFS) where a search node with the best
heuristic value is expanded. In the second configuration, we
used the RC(FF) heuristic with a GBFS. For the last one, we
used the heuristic RC(Add) together with a WA* search with
the weight being 2 where the g-value is again the mixture of
action costs and decomposition costs. The heuristics used in
all configurations estimated the distance to a solution.

Satisficing track The settings of the inner planner for the
satisficing track are more complicated because the goal of
this track is to find a solution whose length is as closed to
that of an optimal solution as possible. To this end, we de-
sign a three-round search where each round aims at finding
a better solution than the previous one. Notably, the g-value
used in the search in all configurations for the satisficing
track is action costs.

Concretely, in the first configuration, we design a three-
round search. In the first round, we use the RC(Add) heuris-
tic, estimating the distance to a solution, with a greedy best
first search. If a solution is found in the first round, then the
inner planner will start the second round of search where we
use the RC(FF) heuristic (which again estimated the distance
to a solution) in conjunction with a weighted A* search with
the weight being two. In particular, in the second round of
search, we eliminate search nodes whose f -value is greater
than the cost of the solution found in the first round. This
ensures that if a solution is found in the second round of
search, then its cost is guaranteed to be smaller than that of
the solution found in the first round. Similarly, in the third

The 11th International Planning Competition – Planner and Domains Abstracts

25

round of search, we again use the RC(FF) heuristic with a
weighted A* search except that the weight is 1.5 this time.

For the second configuration, we used the RC(FF) heuris-
tic (estimating the distance) with a weighted A* search with
the weight being 2 in the first round of search. In the sec-
ond round, we adapted the same setting except for reducing
the weight to 1.5. Lastly, in the third round, we used the RC
heuristic with Landmark Cut (Helmert and Domshlak 2009)
as the inner heuristic, written RC(LMC), which now esti-
mated the cost of action required to reach a solution and is
an admissible heuristic, with an A* search.

In the last configuration, we only do a single-round search
where we use the RC(LMC) heuristic with an A* search.

Grounded-Complex-Linearizer
This system participated in the agile and satisficing tracks as
well. It again has three configurations per track. All of them
share the same linearizer, which uses the complex inference
approach for grounded problems. The settings of the outer
and inner planners for each configuration are identical to the
respective one for the agile track except that the inner plan-
ner used is PANDADEALER (Olz, Höller, and Bercher 2023),
an advanced version of PANDAπ equipped with the dead-end
look-ahead technique (Olz and Bercher 2023) and the land-
mark technique (Höller and Bercher 2021; Höller 2023a)
which won all three total order tracks of the IPC 2023. It
uses the same complex inference approach (which thus al-
lows us to reuse the inferred preconditions and effects) and
is customized to solve TO problems more efficiently.

Lifted-Linearizer
The last system only participated in the agile track. However,
we intended to submit it to both tracks, but we forgot to reg-
ister it for the satisficing track. This system had three con-
figurations. All of these three configurations use the same
linearizer that works on lifted problems and the same outer
planner that is identical to the previous two. The setting of
the inner planner per configuration is as follows. In the first
one, we use Lilotane (Schreiber 2021) with Glucose 4 as the
SAT solver. In the second configuration, PANDAπ with the
SAT-based solver (Behnke, Höller, and Biundo 2018, 2019a)
is used. For the last one, we also use PANDAπ with the SAT-
based solver except that it is now configured for finding op-
timal solutions (Behnke, Höller, and Biundo 2019b). Note
that all inner planners are based on SAT, and Lilotane works
on lifted problems.

Summary
Lastly, we provide a brief summary for our systems.

Agile track
• Grounded-Simple-Linearizer

+ Outer planner: PANDAπ

* Heuristic: RC(FF) (estimation: distance)
* Search: WA* (w = 2, g-value is the mixture of action

costs and decomposition costs)
+ Inner planner: PANDAπ

* Configuration 1

- Heuristic: RC(Add) (estimation: distance)
- Search: GBFS

* Configuration 2
- Heuristic: RC(FF) (estimation: distance)
- Search: GBFS

* Configuration 3
- Heuristic: RC(Add) (estimation: distance)
- Search: WA* (w = 2, g-value is the mixture of ac-

tion costs and decomposition costs)
• Grounded-Complex-Linearizer

+ Outer planner: same as the simple version
+ Inner planner: PANDADEALER (Olz, Höller, and

Bercher 2023)
* All configurations are identical to the simple version

• Lifted-Linearizer
+ Outer planner: same as above
+ Configuration 1

* Inner planner: Lilotane
+ Configuration 2

* Inner planner: PANDAπ with SAT
+ Configuration 3

* Inner planner: PANDAπ with SAT (optimal version)

Satisficing track
• Grounded-Simple-Linearizer

+ Outer planner: same as that for the agile track
+ Inner planner: PANDAπ

* Configuration 1
- Round 1
· Heuristic: RC(Add) (estimation: distance)
· Search: GBFS

- Round 2
· Heuristic: RC(FF) (estimation: distance)
· Search: WA* (w = 2, g-value is action costs)

- Round 3
· Heuristic: RC(FF) (estimation: distance)
· Search: WA* (w = 1.5, g-value is action costs)

* Configuration 2
- Round 1
· Heuristic: RC(FF) (estimation: distance)
· Search: WA* (w = 2, g-value is action costs)

- Round 2
· Heuristic: RC(FF) (estimation: distance)
· Search: WA* (w = 1.5, g-value is action costs)

- Round 3
· Heuristic: RC(LMC) (estimation: action costs)
· Search: A* (g-value is action costs)

* Configuration 3
- Heuristic: RC(LMC) (estimation: action costs)
- Search: A* (g-value is action costs)

• Grounded-Complex-Linearizer
+ Outer planner: identical to the simple version
+ Inner planner: PANDADEALER (Olz, Höller, and

Bercher 2023)
* All configurations are identical to the simple version

The 11th International Planning Competition – Planner and Domains Abstracts

26

Domains
Planner Score Barman Monroe (FO) Monroe (PO) PCP Rover Satellite Transport Cockpit Woodworking Colouring

Linearizer 7.60238 (197) 0.66 (14) 0.94 (24) 0.70 (18) 0.82 (14) 0.86 (19) 0.98 (25) 0.26 (12) 1.00 (29) 0.70 (21) 0.69 (21)(G, C, Config-1)

Linearizer 7.47407 (189) 0.73 (15) 0.94 (24) 0.64 (16) 0.82 (14) 0.85 (18) 1.00 (25) 0.17 (8) 1.00 (29) 0.63 (19) 0.69 (21)(G, C, Config-2)

Linearizer 7.47253 (194) 0.60 (13) 0.96 (24) 0.66 (17) 0.82 (14) 0.81 (19) 1.00 (25) 0.26 (12) 1.00 (29) 0.70 (21) 0.66 (20)(G, S, Config-1)

Linearizer 6.96385 (176) 0.54 (11) 0.84 (21) 0.56 (14) 0.82 (14) 0.83 (18) 1.00 (25) 0.15 (7) 1.00 (29) 0.57 (17) 0.66 (20)(G, S, Config-2)

Linearizer 6.92736 (176) 0.50 (10) 0.90 (23) 0.60 (15) 0.82 (14) 0.75 (16) 1.00 (25) 0.19 (9) 1.00 (29) 0.50 (15) 0.66 (20)(G, C, Config-3)

Linearizer 6.76902 (172) 0.50 (10) 0.84 (21) 0.52 (13) 0.82 (14) 0.73 (16) 1.00 (25) 0.20 (9) 1.00 (29) 0.50 (15) 0.66 (20)(G, S, Config-3)

PANDApro-λ 6.46739 (171) 0.15 (3) 0.91 (23) 0.75 (19) 0.82 (14) 0.43 (10) 0.99 (25) 0.33 (15) 1.00 (29) 0.42 (13) 0.66 (20)(agl, gas, ao)

PANDApro 6.30870 (167) 0.19 (4) 0.96 (24) 0.72 (18) 0.82 (14) 0.27 (7) 0.97 (25) 0.32 (14) 1.00 (29) 0.39 (12) 0.66 (20)(sat, gas, ff)

PANDApro-λ 6.28603 (166) 0.15 (3) 0.95 (24) 0.66 (17) 0.82 (14) 0.37 (9) 0.99 (25) 0.29 (13) 1.00 (29) 0.39 (12) 0.66 (20)(agl, gas, lmc)

Aries 4.73026 (118) 0.15 (3) 0.44 (11) 0.52 (13) 0.59 (10) 0.79 (16) 1.00 (25) 0.32 (13) 0.66 (19) 0.00 (0) 0.27 (8)(sat)

SIADEX 2.17641 (73) 0.62 (20) 0.26 (8) 0.04 (2) 0.00 (0) 0.31 (14) 0.83 (25) 0.03 (1) 0.00 (0) 0.09 (3) 0.00 (0)

Total 10.0000 (261) 1.00 (20) 1.00 (25) 1.00 (25) 1.00 (17) 1.00 (20) 1.00 (25) 1.00 (40) 1.00 (29) 1.00 (30) 1.00 (30)

Table 1: The performance scores of all participating planners in the satisficing track together with the number of problem
instances solved by them (written within the parentheses in each cell). The configurations of each planner are written within
the parentheses below the name of the respective planner. For our planner (Linearizer), the letter G refers to the version of
the linearization technique that works on grounded problems, and the letter S (C) refers to the simple (complex) approach for
inferring compound tasks’ preconditions and effects. For the PANDA family, “agl” and “sat” refer to the agile and the satisficing
track, respectively, “gas” means the greedy A* search algorithm. “ff” and “lmc” are the heuristics RC(FF) and RC(LMC).

Domains
Planner Score Barman Monroe (FO) Monroe (PO) PCP Rover Satellite Transport Cockpit Woodworking Colouring

Linearizer 7.03533 (218) 0.81 (18) 0.57 (24) 0.44 (21) 0.82 (14) 1.00 (20) 1.00 (25) 0.52 (23) 0.93 (29) 0.63 (24) 0.30 (20)(G, S, Config-2)

Linearizer 7.01996 (222) 0.85 (18) 0.50 (24) 0.43 (21) 0.82 (14) 1.00 (20) 1.00 (25) 0.54 (24) 0.93 (29) 0.64 (26) 0.31 (21)(G, C, Config-2)

Linearizer 6.89761 (217) 0.75 (16) 0.49 (24) 0.34 (18) 0.82 (14) 1.00 (20) 1.00 (25) 0.63 (27) 0.93 (29) 0.62 (23) 0.31 (21)(G, C, Config-1)

Linearizer 6.89485 (217) 0.75 (16) 0.49 (24) 0.32 (17) 0.82 (14) 1.00 (20) 1.00 (25) 0.66 (28) 0.93 (29) 0.61 (23) 0.31 (21)(G, C, Config-3)

Linearizer 6.81972 (210) 0.70 (16) 0.57 (24) 0.35 (17) 0.82 (14) 0.99 (20) 1.00 (25) 0.54 (23) 0.93 (29) 0.61 (22) 0.30 (20)(G, S, Config-1)

Linearizer 6.64191 (207) 0.51 (12) 0.57 (24) 0.33 (17) 0.82 (14) 1.00 (20) 1.00 (25) 0.57 (24) 0.93 (29) 0.60 (22) 0.30 (20)(G, S, Config-3)

Linearizer 6.44606 (193) 0.70 (17) 0.51 (18) 0.60 (21) 0.00 (0) 0.97 (20) 1.00 (25) 0.78 (34) 0.97 (29) 0.91 (29) 0.00 (0)(L, Config-1)

Linearizer 6.24541 (196) 0.75 (18) 0.43 (18) 0.48 (21) 0.00 (0) 0.99 (20) 1.00 (25) 0.88 (39) 0.98 (29) 0.74 (26) 0.00 (0)(L, Config-2)

Linearizer 5.20113 (182) 0.74 (18) 0.38 (18) 0.40 (21) 0.00 (0) 0.58 (19) 1.00 (25) 0.64 (31) 0.85 (29) 0.60 (21) 0.00 (0)(L, Config-3)

PANDApro-λ 5.01524 (171) 0.08 (3) 0.50 (23) 0.36 (19) 0.82 (14) 0.36 (10) 0.99 (25) 0.34 (15) 0.92 (29) 0.36 (13) 0.29 (20)(agl, gas, ao)

PANDApro 5.00565 (167) 0.10 (4) 0.53 (24) 0.36 (18) 0.82 (14) 0.32 (7) 1.00 (25) 0.30 (14) 0.91 (29) 0.36 (12) 0.30 (20)(agl, gas, ff)

PANDApro-λ 4.95080 (166) 0.08 (3) 0.50 (24) 0.34 (17) 0.82 (14) 0.38 (9) 1.00 (25) 0.26 (13) 0.90 (29) 0.39 (12) 0.29 (20)(agl, gas, lmc)

Aries 3.22657 (119) 0.05 (2) 0.21 (11) 0.26 (13) 0.38 (12) 0.44 (15) 1.00 (25) 0.20 (13) 0.58 (19) 0.00 (0) 0.12 (9)(agile)

SIADEX 3.03256 (73) 0.92 (20) 0.24 (8) 0.05 (2) 0.00 (0) 0.70 (14) 1.00 (25) 0.03 (1) 0.00 (0) 0.10 (3) 0.00 (0)

Total 10.0000 (261) 1.00 (20) 1.00 (25) 1.00 (25) 1.00 (17) 1.00 (20) 1.00 (25) 1.00 (40) 1.00 (29) 1.00 (30) 1.00 (30)

Table 2: The performance scores of all participating planners in the agile track. For our planner (Linearizer), the letter “L”
within the parentheses refers to the lifted version.

The 11th International Planning Competition – Planner and Domains Abstracts

27

Simple Inference Approach Complex Inference Approach
Agile Satisficing Agile Satisficing

Total Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3 Config-1 Config-2 Config-3
Barman 20 3 1 6 3 5 8 0 0 0 0 0 7
Monroe (FO) 25 8 8 8 8 8 9 6 6 6 6 6 6
Monroe (PO) 25 5 5 5 5 5 12 3 3 3 3 3 5
PCP 17 17 17 17 17 17 17 17 17 17 17 17 17
Rover 20 0 0 0 0 1 4 0 0 0 0 1 4
Transport 40 0 0 0 0 0 20 0 0 0 0 0 18
Cockpit 34 28 28 28 28 28 28 28 28 28 28 28 28
Woodworking 31 7 5 8 8 5 5 1 1 1 1 1 3
Colouring 30 30 30 30 30 30 30 30 30 30 30 30 30

Table 3: Number of linearized problems that are reported to be unsolvable by the inner planner for each configuration. The data
for the lifted system is not shown here because it is not recoverable.

IPC Results
Lastly, we present the performance scores of our planners
in the IPC together with that of all the remaining par-
ticipants, namely, PANDApro (Höller 2023b), PANDApro-
λ (Höller 2023a), Aries (Bit-Monnot 2023), and SIADEX
by Expósito, Soler-Padial, Fernández-Olivares, and Castillo
which is based on the previous work by Fernández-Olivares
et al. (2006). The results for the satisficing track are sum-
marized in Tab. 1, whereas Tab. 2 summarizes the results
for the agile track. A planner’s performance score for solv-
ing one single instance for the agile track is computed as
1 − (log T/log 1800) where T is the time needed by the
planner to solve the instance. The total score for a planner is
the sum of each score for solving each instance. For the sat-
isficing track, the score for solving one instance is computed
as C/C∗ where C is the cost of the solution found, and C∗

is the cost of an optimal solution. The total score is again the
sum of each score for solving each instance.

Furthermore, our linearization techniques cannot guaran-
tee that a linearized problem is solvable. Hence, for the pur-
pose of better characterizing the performance of those lin-
earization techniques, we also summarize in Tab. 3 the num-
ber of unsolvable linearized problems reported by the inner
planner for each configuration and domain. The columns
labelled with ‘simple’ and ‘complex’ indicate which in-
ference approach is used, and those labelled with ‘agile’
and ‘satisficing’ indicate the configurations for the respec-
tive track. We did not collect the number of unsolvable lin-
earized instances produced by the lifted linearizer because
we wrapped up all intermediate information output by that
system, which caused the result that the number on demand
was not recoverable.

Conclusion
In this paper, we presented our linearization techniques, two
for grounded problems and one for lifted ones, and three sys-
tems that incorporate our techniques into other existing plan-
ners. The systems won the PO agile and satisficing tracks of
the IPC 2023 on HTN Planning. We did not participate in
the optimal track because our linearization technique does
not guarantee to maintain optimal solutions. The results in-
dicate that although POHTN problems are in theory much
more expressive than TO ones in terms of complexity (Erol,
Hendler, and Nau 1996; Geier and Bercher 2011; Alford,

Bercher, and Aha 2015; Bercher, Lin, and Alford 2022) and
solution space (Höller et al. 2014, 2016), most PO problems
in practice do not require such additional expressive power
and can be solved more efficiently by eliminating partial or-
der and using specialized TOHTN planners.

Acknowledgments
We would like to thank all authors who allowed us to use
their planners as our inner (and outer) planners, specifically,
Daniel Höller and Gregor Behnke who developed PANDAπ

and Dominik Schreiber who developed Lilotane. We want to
particularly thank Daniel Höller, who allowed us to use his
planner even though the same system also participated in the
same tracks as our systems – thus knowing that our planner
will most likely outperform his. We would also like to thank
Ron Alford, Dominik Schreiber, and Gregor Behnke for or-
ganizing the IPC 2023 HTN tracks.

Lastly, we emphasize again that our main contribution
is the development of the linearization techniques and that
the actual planning processes are still done by the inner and
outer planners. Therefore, although our systems won the re-
spective tracks, we still regard the inner and outer planners
we used as the actual winners.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 7–15. AAAI.

Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, AAAI 2018, 6110–6118. AAAI.

Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
Order to Chaos - A Compact Representation of Partial Or-
der in SAT-Based HTN Planning. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
7520–7529. AAAI.

Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding Op-
timal Solutions in HTN Planning - A SAT-based Approach.
In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, IJCAI 2019, 5500–5508. IJCAI.

The 11th International Planning Competition – Planner and Domains Abstracts

28

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Bercher, P.; Lin, S.; and Alford, R. 2022. Tight Bounds
for Hybrid Planning. In Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2022, 4597–4605. IJCAI.
Bit-Monnot, A. 2023. Experimenting with Lifted Plan-
Space Planning as Scheduling: Aries in the 2023 IPC. In
Proceedings of the 11th International Planning Competi-
tion: Planner Abstracts – Hierarchical Task Network (HTN)
Planning Track, IPC 2023.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1-2): 5–33.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity Re-
sults for HTN Planning. Annals of Mathematics and Artifi-
cial Intelligence, 18(1): 69–93.

Fernández-Olivares, J.; Castillo, L. A.; Garcı́a-Pérez, Ó.;
and Palao, F. 2006. Bringing Users and Planning Technol-
ogy Together. Experiences in SIADEX. In Proceedings of
the 16th International Conference on Automated Planning
and Scheduling, ICAPS 2006, 11–20. AAAI.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Walsh, T., ed., Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, 1955–1961. AAAI.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009. AAAI.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Höller, D. 2023a. The PANDA λ System for HTN Plan-
ning in the 2023 IPC. In Proceedings of the 11th Interna-
tional Planning Competition: Planner Abstracts – Hierar-
chical Task Network (HTN) Planning Track, IPC 2023.
Höller, D. 2023b. The PANDA Progression System for HTN
Planning in the 2023 IPC. In Proceedings of the 11th Inter-
national Planning Competition: Planner Abstracts – Hier-
archical Task Network (HTN) Planning Track, IPC 2023.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, 447–452. IOS.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling, ICAPS 2016, 158–165. AAAI.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence, AAAI 2021, 11826–11834. AAAI.

Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2018, 114–122. AAAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research, 67: 835–880.
Olz, C.; and Bercher, P. 2022. On the Efficient Inference of
Preconditions and Effects of Compound Tasks in Partially
Ordered HTN Planning Domains. In Proceedings of the 5th
ICAPS Workshop on Hierarchical Planning, HPlan 2022,
47–51.
Olz, C.; and Bercher, P. 2023. A Look-Ahead Technique for
Search-Based HTN Planning: Reducing the Branching Fac-
tor by Identifying Inevitable Task Refinements. In Proceed-
ings of the 16th International Symposium on Combinatorial
Search, SoCS 2023, 65–73. AAAI.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks - A Complexity Analysis. In Proceedings of the
35th AAAI Conference on Artificial Intelligence, AAAI 2021,
11903–11912. AAAI.
Olz, C.; Höller, D.; and Bercher, P. 2023. The PAN-
DADealer System for Totally Ordered HTN Planning in the
2023 IPC. In Proceedings of the 11th International Plan-
ning Competition: Planner Abstracts – Hierarchical Task
Network (HTN) Planning Track, IPC 2023.
Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research, 70: 1117–1181.
Wu, Y. X.; Lin, S.; Behnke, G.; and Bercher, P. 2022. Find-
ing Solution Preserving Linearizations For Partially Ordered
Hierarchical Planning Problems. In 33rd PuK Workshop
“Planen, Scheduling und Konfigurieren, Entwerfen”, PuK
2022.

The 11th International Planning Competition – Planner and Domains Abstracts

29

New HTN Domains in the 2023 IPC

Gregor Behnke1, Jane Jean Kiam2, Dominik Schreiber3

1University of Amsterdam, Netherlands, g.behnke@uva.nl
2Universität der Bundeswehr, Munich, Germany, jane.kiam@unibw.de

3Karlsruhe Institute of Technology, Germany, dominik.schreiber@kit.edu

Abstract

We present four new hierarchical planning domains named
Colouring, Lamps, SharpSAT, and Ultralight-Cockpit.

Colouring
Coloring is a Partially Ordered domain authored by G.
Behnke. It encodes a version of the tiling problem (van
Emde Boas 2019), which is frequently used for complex-
ity reductions. Given a set of available tiles, each having a
color at one of its edges, the task is to fill an n × n square
with these tiles, s.t., touching edges have the same color.
The outer edge has no required color. This problem is NP-
complete for unary encoded n. The encoding uses the idea of
proof encoding double-exponentially time-bounded Turing
Machine (Alford, Bercher, and Aha 2015). The colouring is
determined by a sequence of actions generated by a totally-
ordered decomposition, which only checks the touching
colours in the left and right directions. The HTN’s partial or-
der is used to simulate a memory of arbitrary size that keeps
track of the up-facing colours of each line to check whether
the up/down touching tiles are the same colour.

Lamps
The Totally Ordered domain Lamps, authored by G. Behnke,
models a variant of the game “Lights Out,” which is about an
n×m field with lamps that can either be on or off. Switch-
ing a lamp forces all horizontally and vertically connected
lamps of the same status (on or off) to also toggle. This
reachability-based procedure can be easily modeled with an
HTN, but is hard to express using classical planning.

SharpSAT
The Totally Ordered domain SharpSAT, authored by
D. Schreiber, models the problem #SAT, or (exact) model
counting. This problem is to count the number of dif-
ferent variable assignments (“models”) which satisfy a
given propositional formula (Gomes, Sabharwal, and Sel-
man 2021). The complexity class of #SAT, named #P, is
(handwavingly) somewhere between NP and PSPACE and
therefore not considered as hard as HTN planning. Never-
theless, a hierarchical planning model for #SAT is appealing
due to the problem’s natural hierarchical structure, its rather

simple formulation, and a number of interesting search prop-
erties (see below).

We express instances of #SAT as TOHTN planning in-
stances. Our hierarchical model is based on the straight
forward recursive CDP algorithm (Birnbaum and Lozinskii
1999), which is a modified DPLL search procedure (Davis,
Logemann, and Loveland 1962). When finding a model
at decision depth d, the procedure does not terminate (as
DPLL) but instead adds 2|V |−d to its global model count
and backtracks. The only decisions a planner can make is
choosing a literal to branch on (or, if unit clauses are present,
which one to satisfy first). The domain has no dead-ends
(DPLL backtracking is performed with explicit subtasks);
however, the branching choices a planner makes can re-
sult in substantial differences with respect to the effective
search space size. As such, informative heuristics and/ or
restarts with different decision-making have the potential to
make a big difference. The hierarchy’s depth is limited to
O(|V |+ |C|) levels until all variables have been assigned.

Arbitrarily difficult benchmarks can be generated from
DIMACS CNF instances, e.g., benchmarks from the In-
ternational SAT Competitions1 or randomly generated dif-
ficult 3-SAT instances. A found plan can be transformed
to an actual model count in linear time using an associ-
ated decoder script. This linear-time procedure just looks
for specific actions A OUTPUT EXPONENTIAL COUNT d
and adds 2|V |−d to a model counter for each such action.

Ultralight-Cockpit
Ultralight-Cockpit is a Partially Ordered domain authored
by J. J. Kiam and P. Jamakatel (Kiam and Jamakatel 2023),
and is motivated by its application on a Pilot Assistance Sys-
tem (PAS) for single-pilot ultralight aircraft. It models var-
ious tasks to be performed by a private pilot, while focus-
ing on tasks necessary for handling emergency situations.
Modeling the tasks in HTN is natural, as instructions docu-
mented in pilot operating handbooks (e.g. SHARK (2017);
Pooley (2003)), are sequences of abstract or primitive tasks,
without reference to reachable states.

The HTN model of the Ultralight-Cockpit domain is
mainly used for two purposes: for generating instructions in

1https://satcompetition.github.io/2022/downloads.html

The 11th International Planning Competition – Planner and Domains Abstracts

30

form of a task plan to be displayed on the cockpit as guid-
ance for the private pilot in distress (Jamakatel and Kiam
2024), as well as for automated pilot observation to recog-
nize the pilot’s goal task (Jamakatel et al. 2023) using the
Plan and Goal Recognition (PGR) technique for HTN plan-
ning problems developed by Höller et al. (2018). With an
automated goal recognition, the PAS can intervene or guide
the pilot without asking continuously for the pilot’s intent
during an emergency. By doing so, the PAS avoids increas-
ing the pilot’s mental workload, as private pilots in general
do not undergo intensive training or strict health screening
to ensure their capabilities for coping with emergencies.

Unexpected precautionary landing may be necessary
when anomalies arise. In this use case, to land an ultralight
aircraft safely, the emergency landing site is still required to
fulfill certain conditions such as being free of obstacles and
within reach of the aircraft. Besides, the surface of the site as
well as its slope gradient must be reasonable for landing. For
the sake of benchmarking HTN-planners, instances of arbi-
trary numbers of landing sites with randomly set conditions
(i.e. distance to aircraft, presence of obstacles, condition of
the surface and the slope) can be generated.

References
Alford, R.; Bercher, P.; and Aha, D. 2015. Tight bounds for
HTN planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 25,
7–15.
Birnbaum, E.; and Lozinskii, E. L. 1999. The good old
Davis-Putnam procedure helps counting models. Journal
of Artificial Intelligence Research, 10: 457–477.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A ma-
chine program for theorem-proving. Communications of the
ACM, 5(7): 394–397.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2021. Model
counting. In Handbook of satisfiability, 993–1014. IOS
press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and Goal Recognition as HTN Planning. In Proceed-
ings of the 30th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), 466–473. Volos, Greece:
IEEE Computer Society.
Jamakatel, P.; Bercher, P.; Schulte, A.; and Kiam, J. J. 2023.
Towards Intelligent Companion Systems in General Avia-
tion using Hierarchical Plan and Goal Recognition. In Pro-
ceedings of the 11th International Conference on Human-
Agent Interaction (HAI 2023). Association for Computing
Machinery.
Jamakatel, P.; and Kiam, J. J. 2024. Generation and Com-
munication of Strategic Plans at Different Levels of Abstrac-
tion for Intelligent Assistance Systems in General Aviation.
In 34th Congress of the International Council of the Aero-
nautical Sciences (ICAS).
Kiam, J. J.; and Jamakatel, P. 2023. Can HTN Planning
Make Flying Alone Safer? In Proceedings of the 6th ICAPS
Workshop on Hierarchical Planning (HPlan 2023), 44–48.

Pooley, D. 2003. POOLEYS Private Pilots Manual: JAR
Flying Training, Volume 1. Cranfield, UK: POOLEYS.
SHARK. 2017. Flight Manual: UL airplane.
SHARK.AERO CZ s.r.o.
van Emde Boas, P. 2019. The convenience of tilings. In
Complexity, Logic, and Recursion Theory, 331–363. CRC
Press.

The 11th International Planning Competition – Planner and Domains Abstracts

31

