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Abstract 
Trait diversification is often driven by underlying performance tradeoffs in the context of different selective pressures. Evolutionary changes in 
task specialization may influence how species respond to tradeoffs and alter diversification. We conducted this study to investigate the func-
tional morphology, evolutionary history, and tempo and mode of evolution of the Hymenoptera stinger using Ectatomminae ants as a model 
clade. We hypothesized that a performance tradeoff surface underlies the diversity of stinger morphology and that shifts between predatory and 
omnivorous diets mediate the diversification dynamics of the trait. Shape variation was characterized by X-ray microtomography, and the correla-
tion between shape and average values of von Mises stress, as a measure of yield failure criteria under loading conditions typical of puncture 
scenarios, was determined using finite element analysis. We observed that stinger elongation underlies most of the shape variation but found no 
evidence of biomechanical tradeoffs in the performance characteristics measured. In addition, omnivores have increased phenotypic shifts and 
accelerated evolution in performance metrics, suggesting the evolution of dietary flexibility releases selection pressure on a specific function, 
resulting in a greater phenotypic evolutionary rate. These results increase our understanding of the biomechanical basis of stinger shape, indi-
cate that shape diversity is not the outcome of simple biomechanical optimization, and reveal connections between diet and trait diversification.
Keywords: biomechanics, ectatomminae, finite element analysis, 3D geometric morphometrics

Introduction
As different lineages explore novel opportunities geograph-
ically and ecologically (Simpson, 1953), they may undergo 
adaptive changes to capitalize on these opportunities. 
Nevertheless, it can be challenging to optimize across the vari-
able functional requirements relevant to a single phenotypic 
trait or a group of traits (Huey & Hertz, 1984). Generalist 
organisms may perform reasonably well in multiple tasks 
but may not be finely tuned and specialized for specific roles 
(Irschick & Higham, 2016). In contrast, specialization in one 
task often comes at the expense of suboptimal performance in 
others (Arnold, 1992; Irshick & Higham, 2016), reflecting the 
frequent tradeoff between functional flexibility and optimiza-
tion. Although specialists may benefit from monopolizing a 
specific resource type, they may compete more intensely with 
other specialists (Paull et al., 2012) than generalists, as the 
latter can switch to alternative and underutilized resources. 
Therefore, resource specialists should have lower fitness than 
generalists if they are forced to switch to another resource to 
which they are poorly adapted. Tradeoffs may develop for 
various reasons, such as resource constraints and mechani-
cal limitations imposed by fundamental physical laws. The 

conflicting mechanical requirements of diverse anatomical 
structures often result in certain phenotypes that are well 
adapted for optimal performance under specific conditions 
and less suitable for others (Irshick & Higham, 2016). The 
nuanced interplay between adaptability and task-specific 
optimization emphasizes the nature of evolutionary compro-
mise, molding a diverse array of phenotypic traits.

Despite differences in size, structure, and evolutionary 
history, all venom delivery systems follow similar prin-
ciples when exposed to biologically relevant mechanical 
stress (Bar-on, 2019). Venom systems must tolerate various  
contact-induced stresses during penetration of the target 
tegument without failure (Bar-on, 2019; Jansen van Vuuren 
et al., 2016; van der Meijden & Kleinteich, 2017). Because 
the mechanical performance of venom injection tools is 
often fundamental to an organism’s fitness, their structural 
characteristics may be optimized to resist acute deforma-
tion or damage, primarily to reduce stress and maximize 
fracture propagation on the target (Bar-on, 2019; Bhushan, 
2018). Hence, we can anticipate common biophysical prin-
ciples underlying the evolution of such injection systems 
(Anderson, 2018; Bar-on, 2019).
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The venom apparatus of aculeate Hymenoptera (ants, 
bees, and wasps) is a highly modified and specialized system 
for the synthesis, storage, and inoculation of toxins derived 
from the female ovipositor and accessory glands (Robertson, 
1968) and probably evolved as an adaptation to a predatory 
lifestyle (Macalintal & Starr, 1996; O’Neill, 2001; Polidori, 
2011; Sharkey et al., 2012). The evolution of a stinger from 
an ovipositor has resulted in various morphological adapta-
tions, such as shortening and multiple sclerite fusions, especially 
the distal fusion of ninth gonapophyzes that have produced 
the base, bulb, valve chamber, and stylet of a stinger (Packer, 
2003; Snodgrass, 1933). It is believed that the dependence 
of some predatory ant species on live arthropods as a food 
resource selectively promotes the maintenance of a functional 
piercing stinger as an offensive weapon, whereas acquir-
ing plant material for feeding (e.g., herbivory and omnivory) 
is coupled with a simplified and less effective stinger (Kugler, 
1979). Therefore, active hunting and piercing defense may 
result in the unique shape of the stinger, ultimately improv-
ing its performance. In this study, three-dimensional (3D)  
landmark-based geometric morphometrics were used to 
describe the diversity and evolutionary paths of lineages within 
stinger shape morphospace. The association between stinger 
shape and mechanical behavior under distinct biologically rele-
vant loading conditions was evaluated using finite element anal-
ysis (FEA). Ants were used as a model to explore the evolution 
and mechanics of piercing stingers, primarily because of their 
substantial morphological diversity and the remarkable range 
of distinct ecological and functional roles played by them.

By integrating a reconstructed phylomorphospace with 
simulated mechanical behavior, we aimed to determine how 
well the stinger shape may correlate with load-bearing prop-
erties and the implications of stinger shape variation for the 
evolution of ants. We anticipated that most morphological 
changes in stinger shape would originate from the elongation 
of its distal portion (i.e., stylet). We hypothesized that elon-
gation and variation in stylet girth affect stress distribution 
patterns because stresses in puncturing structures tend to con-
centrate near the tip, which would cause the dissipation of 
stress toward its reinforced base, thus reducing the average 
values of stress on the stylet. In this scenario, elongated sting-
ers would have larger areas of high stress on the stylet and 
may be more prone to lateral deflection than shorter and stur-
dier stingers. As ants primarily use their stingers during ago-
nistic interactions (e.g., hunting and fighting), we predicted 
that the stinger shape would predominantly occupy function-
ally optimal (i.e., lower average values of von Mises stress) 
regions of the phylomorphospace, thereby avoiding exacer-
bated stress and minimizing its possibility of higher average 
values of von Mises stress, exceeding yield failure criteria. We 
also hypothesized that the stingers of predominantly preda-
tory ants would experience lower total stress than those of 
omnivorous species. Predatory ants depend on the stinger to 
subjugate their prey; in this sense, we may find that its shape 
is optimized for reducing the average values of equivalent 
stress. Conversely, omnivorous ants, feeding on a diet sup-
plemented with organic matter or other decaying organisms, 
would have their stinger released from pressures according to 
their puncture capability. Hence, its shape may vary for per-
forming different functions (e.g., social communication; trail 
communication in Megaponera [Hölldobler et al., 1994]) and 
may exhibit shapes that are not optimized for the penetration 
scenarios we are simulating.

In addition to exploring the shape variation and its func-
tional consequences, we analyzed the tempo, mode, and 
history of trait evolution using comparative methods. We 
evaluated whether the macroevolutionary dynamics of phe-
notypic and functional evolution of predatory lineages differ 
from those of their sister omnivore clades. We predicted that 
the phenotype and functional traits have undergone adaptive 
evolution (i.e., shifts in trait values) in response to ecological 
factors (e.g., feeding habit), in which a stricter diet (e.g., pred-
atory) will cause accelerated diversification of stinger mor-
phology, based on the premise that dietary specialization can 
increase diversification rates compared with that in taxa with 
broader diets (Futuyma & Moreno, 1988; Schluter, 2000). 
Although generalizations are challenging, numerous studies 
have demonstrated that dietary specialization can accelerate 
taxonomic diversification rates (Burin et al., 2016; Price et 
al., 2012; Rojas et al., 2012). In this context, we hypothe-
sized that predatory habits improve morphological evolution-
ary rates relative to lineages that supplement their diet with 
diverse material sources (i.e., omnivores).

Material and methods
Specimens
We focused on the subfamily Ectatomminae that comprises 
303 described ant species in 12 extant genera (Bolton, 2024) 
that are primarily solitary active foragers hunting and scav-
enging for arthropods on soil and vegetation, with some spe-
cies recognized as seed harvesters (Gómez & Espadaler, 2013; 
Thomas & Framenau, 2005) and gatherers of sugar-based 
resources (e.g., extrafloral nectar and honeydew) (Lachaud, 
1990; Passos & Leal, 2019; Ribas et al., 2010; Valenzuela-
González et al., 1995). Our sampling of extant ectatommines 
included one stinger (ninth gonapophyzes) from 32 species 
representing 11 of the 12 valid genera (Table 1) (specimen 
size ranging from ML: [diagonal length of the mesosoma in 
profile] ~0.80 to ~4.80 mm). The specimens used in this study 
were primarily preserved in ethanol, except for Bazboltonia 
microps (Borgmeier) and Poneracantha rastrata (Mayr), which 
were dried and mounted. Of the 32 scanned specimens, 16 
were imaged using a microcomputed tomography (micro-CT/
µCT) Zeiss Xradia 510 Versa scanner in the Scientific Imaging 
Section at Okinawa Institute of Science and Technology 
Graduate University (OIST) following the iodine staining 
protocol (specimens immersed in I2E dissolved in 99% EtOH 
for 24–72 hr) to improve contrast and controlling the source–
detector distance for high output resolution, which resulted in 
voxel sizes between 0.7 and 2.0 µm (Table 1). The remaining 
16 specimens were scanned using a parallel polychromatic 
X-ray beam at the UFO-I station of the Imaging Cluster at 
the Karlsruhe Institute of Technology (KIT) (Katzke et al., 
submitted), resulting in voxel sizes between 2.44 and 6.11 
µm (Table 1).

Phylogeny
A concatenated ultraconserved element Ectatomminae phylog-
eny based on a phylogenomic maximum likelihood analysis of 
a 90% complete data set (150 taxa) (see Camacho et al., 2022) 
was slightly modified to trim terminals that were not represented 
within the 32 scanned specimens using the geiger package v. 
2.0.10 (Pennell et al., 2014) in R (R Development Core Team, 
version 4.2.2, Vienna, Austria). The trimmed phylogeny was 
used for comparative and functional analyses and is available 
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4 Casadei-Ferreira et al.

in Supplementary Electronic Material (Supplementary File 
S1). As some of our analyses depend on a timetree, we derived 
divergence times by estimating them using the RelTime method 
(Tamura et al., 2018) in the MEGA11 software (Tamura et al., 
2021) using a GTR+Γ5 model of evolution.

3D models
3D reconstructions of the resulting scans were converted 
into Nrrd (“nearly raw raster data”). The Nrrd raw data 
were processed using 3D Slicer (Fedorv et al., 2012) to seg-
ment the stinger. The segmented material was exported as 
STL (“standard tessellation language”) and is available in 

the Supplementary Electronic Material (Supplementary File 
S2). Blender (Blender, v. 3.1.2, Amsterdam, North Holland, 
the Netherlands; https://www.blender.org/) was used to (a) 
reposition all models using the x-axis (refer to Figure 1 for 
the axis direction) aligned with the stinger’s longest princi-
pal axis (i.e., defined here as the longest straight line within 
the stinger that goes from the opening of the venom channel 
at the stinger bulb to its tip); (b) remove minor surface arti-
facts; and (c) remesh models applying the modifier “remesh” 
and using the “smooth” function, resulting in 3D models 
with face counting ranging between 182,268 and 538,910 
(Table 1). The final STL files were imported into the ANSYS 

Figure 1. Position of landmarks (L1–10) and semi-landmarks (C1–3) on the stinger along with corresponding terminology. (A) proximal view, (B) dorsal 
view, (C) ventral view, (D) terminology of different regions of the stinger and the adopted x-y-z axis, and (E) longitudinal section of the stinger showing 
its internal geometry. Dashed lines represent the positions of stinger cross-sections, illustrating the lateral and central channels.
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(Asys, Inc., v. 22.1, Canonsburg, PA, USA; http://www.
ansys.com/) SpaceClaim module to generate solid models. 
In SpaceClaim, the STL models were fixed using “auto fix,” 
“shrinkwrap” tool was used to create watertight, regular 
faceting models, and “auto skin” was performed to generate 
CAD geometries.

Geometric morphometrics
The stinger shape was quantified using 31 Cartesian coor-
dinates collected from the surface of each model (Figure 
1), of which 10 were fixed landmarks, and 21 were sliding 
semi-landmarks divided into three curves. The landmarks 
were collected using Stratovan Checkpoint (Stratovan 
Corporation, v. 2022.07.21.1321, Davis, CA, USA; https://
www.stratovan.com/products/checkpoint). The landmarks 
corresponded to the (L1) apex of the stylet, (L2) midpoint 
of the proximodorsal margin of the stinger bulb, (L3 and 
L4) left and right articular process of the stinger bulb, (L5 
and L6) left and right proximodorsal process of the stinger 
bulb, (L7 and L8) left and right basal notch of the stinger 
bulb, and (L9 and L10) left and right ventral notch of the 
stinger bulb. The semi-landmark curves corresponded to the 
(C1) dorsal curvature of the stylet from L4 to L1 (15 slid-
ing semi-landmarks) and (C2 and C3) left and right ventral 

margins from L9/L10 to L1 (10 sliding semi- landmarks 
each).

Geometric morphometrics analyses were conducted in R 
(R Development Core Team, version 4.2.2, Vienna, Austria) 
using the geomorph package v. 4.0.4 (Baken et al., 2021). 
Before alignment with Procrustes superimposition, the curves 
were resampled for evenly spaced sliding semi-landmarks 
using the “cursub.interpo” and “subsampl.inter” functions 
(available in the Supplementary file of Botton-Divet et al., 
2016). The landmarks were subject to Procrustes superimpo-
sition to remove differences due to scale, translation, and rota-
tion using the “gpagen” function. The least squares criterion 
(Rohlf & Slice, 1990) was used, and the semi-landmarks were 
allowed to slide between the fixed landmarks. Left- and right-
side landmarks and semi-landmarks were averaged to reduce 
error using the “bilat.symmetry” function. The significant 
components of variation in stinger shape based on Cartesian 
coordinates were extracted using a principal component 
(PC) analysis of all specimens to produce a total morpho-
space using the “gm.prcomp” function. Phylomorphospace 
plots were generated using the phytools v. 1.2-0 package 
(Revell, 2012) through the “phylomorphospace” function. A 
broken-stick model was used to determine the number of PCs 
that were used in subsequent analyses.

Figure 2. Graphic representation of the stinging process in a generalized hypothetical ant. Loading scenarios tested in the finite element analysis in the 
puncture loading conditions (A) axial and (B) angled. The orange arrow represents the origin point (circular head) and direction (triangular arrowhead) of 
the applied force (nominal force); orange dots represent the displacement locations in the y-z and × directions.
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Included angle
We evaluated the stinger tip included angle as a distinct mea-
sure of shape. This angle was determined from both lateral 
and dorsal views of the stinger using scanned volumes, with 
the mean value used for subsequent analyses. To obtain the 
included angle for each species, we aligned an isosceles tri-
angle with the stinger, where the equal-length sides matched 
the lateral margins of the stinger. The base of the triangle was 
positioned at a set distance (1% of the stylet length) from 
the stinger tip. The included angle, opposite to the base of 
the triangle, was then calculated. This method was selected 
based on its demonstrated efficacy as a predictor of puncture 
performance (see Crofts et al., 2019).

Finite element analysis
Static structural analysis was conducted using the FEA pack-
age ANSYS in a Dell Precision 5820 Tower with 128 GB 
RAM, Intel Xeon 3.70 GHz, and NVIDIA Quadro RTX 
6000 24GB. We used the mechanical properties of the stinger 
(Young’s modulus) derived from previously published data 
on in vivo nanoindentation of honey bee stingers (Miao et 
al., 2020). Therefore, we assigned an average Young’s modu-
lus value to each model, considering it as an isotropic mate-
rial (Young’s modulus: 8.39 GPa; Poisson’s ratio: 0.3). We 
assumed the material properties to be isotropic, which (a) 
ensures that the only source of variation in our simulations 
among different species was the stinger shape, (b) simplifies 
our analysis, and (c) and allows us to identify relative differ-
ences in structural performance (see Fortuny et al., 2012; Gil 
et al., 2015; Klunk et al., 2021, 2023; Marcé-Nogué et al., 
2020; Serrano-Fochs et al., 2015). The stingers were meshed 
using the ANSYS mesh module with an adaptive mesh of tet-
rahedral elements (Marcé-Nogué et al., 2015), with an aver-
age of approximately 1,500,000 elements (Table 1).

Loading scenario and boundary conditions
All models were fixed in the articular process of the stinger 
bulb (right and left sides) on the x-axis and the furcula con-
tact area with the proximodorsal process of the stinger bulb 
(right and left sides) on y- and z-axes (Figures 1D and 2A and 
B). We assumed that (a) the target is impenetrable and (b) 
the force driving the stinger is proportional to the size of the 
stinger. To compare different models and remove the sizing 
effect, we determined nominal forces (nominal force = (vol-
ume of stinger model of target species/volume of smallest 
stinger model)2/3 see Marcé-Nogué, 2020 and Krings et al., 
2021 for details) based on a load of 0.1 mN set for the 3D 
model with the smallest volume (B. microps) (Table 1). We 
used the nominal force because this procedure is a common 
method for scaling models to a comparable size, effectively 
addressing scale disparities in the FEA model (Krings et al. 
2021; Marcé-Nogué, 2020).

We applied nominal force vectors to test the performance 
of the stinger, referred to here as the ability of the stinger to 
present lower average values of von Mises stress, under two 
distinct puncture loading conditions, viz., (a) axial, where the 
load was applied to the stinger tip, parallel to its longest prin-
cipal axis (Figure 2A), and (b) angled, where the load was 
applied to the stinger tip at an angle (15°) in reference to the 
x-plane of its longest principal axis (Figure 2B). Because it is 
not within the scope of this study to analyze the functional 
differences at different angles of action and considering the 

absence of precise stinging angle data for ants in the liter-
ature, we arbitrarily adopted a 15° angle. However, the 
selected angle falls within the observed range for bees and 
wasps, which varies from 6° to 18° (Zhao et al., 2015). We 
opted to avoid using maximum von Mises stresses as a failure 
criterion, because our primary focus was on understanding 
the stress patterns in different stingers. Specifically, our aim 
was to explore the gradient that reflects the impact of stinger 
shape on stress field distribution during contact with a target, 
without the explicit intention of identifying areas prone to 
failure. Furthermore, we explored the ecological and evolu-
tionary aspects using methods that condense these stress map-
pings into a single value (e.g., the mesh-weighted arithmetic 
mean of von Mises stress; see below), which do not require 
failure criterion approaches.

These puncture loading conditions were considered perfor-
mance measures due to the expected shift between functional 
responses from axial compression to bending, which can be 
caused by a reaction to the curvature in columnar structures 
(e.g., stinger) (Pohl et al., 2020). In this scenario, straight sting-
ers might tolerate higher axial compression, whereas a curva-
ture in the stylet could potentially reduce stress when loads 
are applied at an angle to its longest principal axis (Bertram 
& Biewener, 1988). Moreover, the critical loads at which the 
stinger becomes unstable were estimated using linear eigen-
value buckling analysis. We used linear eigenvalue buckling 
as a crucial analysis to evaluate the structural integrity of the 
stinger under axial loading conditions to understand the spe-
cific conditions under which buckling might initiate, thus pro-
viding insights into the mechanical behavior and resilience of 
the stinger. The linear eigenvalue buckling analysis was con-
ducted using ANSYS Workbench on the base static structural 
solution under axial loading conditions, selecting only the 
first buckling mode for subsequent analysis.

Phylogenetically informed analysis
The mesh-weighted arithmetic mean of von Mises stress 
(MWAM; see the Supplementary file of Püschel et al., 2018 
for more details) was calculated individually for axial and 
angled puncture loading conditions after normalizing (by 
square root) the stress results obtained from the FEA in each 
model. MWAM was used as a quantitative metric to suc-
cinctly summarize the overall strength of the entire stinger 
model. Biologically, this mesh-weighted average stress value 
provides insights into the relative biomechanical robustness 
of the stinger across different taxa and stinging scenarios, 
offering a comparative understanding of the structural per-
formance under varying mechanical loads.

For calculating the MWAM, we opted to avoid using the 
top 2% (Marcé-Nogué, 2017) of the highest maximum stress 
values from each model. This decision was made because the 
maximum stress values derived from complex finite element 
models are often influenced by geometric artifacts (Marcé-
Nogué, 2016; Marcé-Nogué et al., 2017; Walmsley et al., 
2013). The phylogenetic partial least squares (Phylo-PLS) 
analysis was used to evaluate the covariation between stinger 
shape (Procrustes shape variables) and functional metrics 
(puncture loading conditions). The significance of the cor-
relation coefficient (r-PLS) was determined using a random-
ization test with 1,000 iterations (Adams & Collyer, 2016, 
2019; Adams & Felice, 2014; Rohlf & Corti, 2000) using the 
“phylo.integration” function in geomorph. Phylo-PLS anal-
ysis was performed by assuming a Brownian motion (BM) 
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model for trait evolution. The strength of the correlation 
between stinger shape and functional variables was compared 
between models using z-scores under the null hypothesis of a 
random association of variables (Adams & Collyer, 2016). To 
visualize shape covariation, the 3D model of Gnamptogenys 
continua (Mayr) (i.e., species closest to the center of the phy-
lomorphospace) was warped on the maximum and minimum 
shapes of the phylo-PLS using the “plotRefToTarget” func-
tion in geomorph.

Phylogenetic generalized least squares (PGLS) models 
(Martins & Hansen, 1996; Revell & Collar, 2009) were 
used to determine the correlation between the included 
angle and functional metrics (i.e., axial, angled, and critical 
buckling loading), accounting for the nonindependence due 
to phylogenetic relationship. The PGLS models were imple-
mented using the R package nlme v. 3.1-163 (Pinheiro & 
Bates, 2000; Pinheiro et al., 2023). We performed additional 
PGLS using a BM model of evolution to assess the relation-
ship between body size (i.e., measured as the distance between 
the seventh abdominal spiracles) and functional metrics. To 
account for potential nonlinear relationships, we included a 
quadratic term for size in the model. Each model was fitted 
using maximum likelihood, and the significance of predictor 
terms was assessed using ANOVA.

Macroevolutionary dynamics
A reversible-jump Markov chain Monte Carlo (rjMCMC)  
(       Green & Hastie, 2009) approach was used to discern regimes 
within the phylogenetic comparative data. This method 
allows the detection of multiple evolutionary regimes across a 
phylogeny without an a priori hypothesis. rjMCMC was used 
to fit a multi-regime Ornstein–Uhlenbeck (OU) model to the 

phylogenetic data to estimate the location, number, and mag-
nitude of shifts in adaptive optima as implemented in the R 
package bayou v 2.2.0 (Uyeda & Harmon, 2014). An a priori 
distribution was established that accommodated any number 
of regime shifts per branch, with their probabilities propor-
tional to the respective branch lengths, accessed through 
10,000,000 iterations. Subsequently, regimes for all branches 
in the phylogeny were defined based on the outcomes derived 
from the bayou analyses for each trait under scrutiny (spe-
cifically, phenotype represented by PC1, and included angle 
and performance metrics represented by MWAM and criti-
cal buckling load, respectively). Trait histograms aligned with 
phylogenetic trees were generated, incorporating posterior 
probabilities from the trait diversification analysis, to visu-
ally illustrate variation in the evolutionary regime associated 
with each tip. We also plotted phylogenetic trees showing the 
results of the bayou rjMCMC analysis, highlighting posterior 
probabilities (pp > 0.4) of regime shifts along the correspond-
ing edges. This approach provides a comprehensive visual 
representation of the evolutionary dynamics that underpin 
phenotype and performance metrics.

Lineage-specific variation was evaluated against a standard 
BM model to ascertain the relative acceleration of evolution 
within particular lineages compared with a gradual model. 
Ancestral values were inferred using a multiple variance BM 
(“mvBM”) approach (Smaers & Mongle, 2018; Smaers et 
al., 2016) as implemented in the evomap v. 0.0.0.9 package 
(Smaers & Mongle, 2018). Finally, a distance-based method 
(Q-mode) assuming a standard BM model of evolution with 
10,000 random permutations (Adams, 2014; Adams & 
Collyer, 2018; Baken et al., 2021; Denton & Adams, 2015) 
was used to discern differences in rate among phenotype 

Figure 3. PC1 and PC2 of the stinger phylomorphospace of Ectatominae, with different color groups representing each tribe (Ectatommini and 
Heteroponerini) and color shades representing different genera. PC1 depicts a clear divergence between the two Ectatomminae tribes and describes 
the stinger length, slenderness, and curvature, whereas PC2 explains the ventral curvature of the stinger and the length of the articular process of the 
stinger bulb. Stinger models illustrate the lateral view of the stinger representing all genera and extreme species for each axis. All points are scaled 
proportionally to the centroid size (i.e., proxy of body size). Simplified phylogenetic tree modified from Camacho et al. (2022). Vertical bars indicate 
different diet classes (omnivore, predator, and unknown).
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8 Casadei-Ferreira et al.

and performance metrics. Ancestral state reconstructions 
of diet class (omnivore, predator, and unknown) were esti-
mated based on maximum likelihood (Pagel, 1994) using the 
R package ape v. 5.8 (Paradis et al., 2004) with an equal-
rate (ER), all-rates-different (ARD), and symmetrical (SYM) 
model for the transition rate among character states, and the 
best fitting model was identified using Akaike Information 
Criterion corrected for small sample sizes (AICc).

Combined performance surfaces
Performance surfaces were mapped over a bivariate phylo-
morphospace (limited to PC1 and PC2) of stinger shape to 
understand the relationship between morphological and func-
tional variations. We standardized the MWAM and critical 
buckling load (i.e., in the following equation representing 
performance) each by scaling the variance between 0 and 1, 
where 0 indicates the lowest performance, and 1 represents 
the highest performance (Rescaled performance = 1 − [Raw 
performance − Minimum observed raw performance]/
[Maximum observed raw performance − Minimum observed 
raw performance]) (Polly et al., 2016; Stayton, 2019). 
Combined performance surface analyses were conducted 
using the Morphoscape v. 1.0.1 package (Dickson et al., 
2021). Performance variables, including puncture loading 
conditions and critical buckling load, were transformed 
into performance surfaces using the “krige_surf” function. 
Combined performance surfaces were calculated by merging 
the individual performance surfaces across all possible per-
mutations of weights, ranging from 0 to 1 in increments of 

0.005, resulting in 1,373,701 landscapes through the “calc_
all_lscps” function. The “calcGrpWprime” function was then 
used to identify the top 5% of weight combinations that 
yielded the highest overall fitness value (Z) across all surfaces, 
generating an optimally weighted combined performance 
surface.

Results
Variation in stinger shape
Principal component analysis revealed that the occupation of 
the phylomorphospace was primarily driven by a divergence 
in the first principal component (PC1) scores between the 
two major Ectatomminae lineages (Heteroponerini [which 
encompass Acanthoponera, Bazboltonia, and Heteroponera] 
and Ectatommini [which includes all the remaining lin-
eages]), with a single convergence (i.e., Rhytidoponera with 
Heteroponerini) (Figure 3). Some ectatommine lineages 
were constrained to small regions of the phylomorphospace, 
whereas Gnamptogenys, Holcoponera, Stictoponera, and 
Typhlomyrmex occupied both low and high scores in the sec-
ond principal component axis (PC2) (Figure 3).

PC1 accounted for 61.12% of the total variance in shape 
(Figure 3) and described the length, slenderness, and curva-
ture of the stylet; the angle and position of the proximodorsal 
process of the stinger bulb; and the height of the stinger base. 
Acanthoponera, Heteroponera, and Rhytidoponera scored 
high on PC1 (Figure 3), representing at least two indepen-
dent origins of the long, slender, and dorsal curved stingers in 

Figure 4. Von Mises stress distribution on the stinger of Ectatomminae represented in a modified phylogeny from Camacho et al. (2022). The scale was 
manually adjusted so that the brightest areas represent von Mises stress values > 7.5 MPa in each puncture loading condition (axial and angled). The 
stinger tip and base showed the highest stresses; in contrast, the central axis of the stinger showed the lowest values. The stress distribution pattern 
indicated that short and straighter stingers experience compression, whereas long, slender, and dorsally curved stingers experience bending. Vertical 
bars indicate different diet classes (omnivore [white], predator [gray], and unknown [black]).
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Ectatomminae. Bazboltonia also scored high on PC1 (Figure 
3), possibly because of stinger elongation (i.e., protrusion of 
the proximodorsal process of the stinger bulb). Nevertheless, 
its stylet was straighter than that of other Heteroponerini phe-
notypes. In contrast, Ectatomma, Typhlomyrmex, and some 
lineages of Gnamptogenys, Holcoponera, and Stictoponera 

showed low PC1 scores, suggesting at least five independent 
origins of short, stout, and almost straight stingers (Figure 
3). Finally, Alfaria, Poneracantha, and the remaining lineages 
of Gnamptogenys, Holcoponera, and Stictoponera exhibited 
intermediate scores (Figure 3) associated with compact and 
slightly curved phenotypes.

Figure 5. The mesh-weighted arithmetic mean of von Mises stress (MWAM) of the stinger of Ectatomminae of each taxon for (A) axial loading and 
(C) angled loading conditions. Box plots show the median and range of MWAM across diet classes (omnivores, predators, and unknown) under (B) 
axial loading and (D) angled loading conditions, highlighting lower mechanical resistance and a wider dispersion among omnivores in the case of axial 
loading, whereas no differences were observed under angled loading conditions. It is important to emphasize that in this plot, the only species for 
which the diet class is unknown is B. microps, whose biology remains a mystery. Vertical bars in (A) and (C) indicate different diet classes (omnivore 
[white], predator [gray], and unknown [black]).
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10 Casadei-Ferreira et al.

PC2 accounted for 13.25% of the total variance in shape 
(Figure 3) and was dominated by the ventral curvature of the 
stinger and extension of the articular process of the stinger 
bulb, and along with PC1, the elongation of the stylet. Alfaria 
and most members of Gnamptogenys, Holcoponera, and 
Stictoponera scored high on PC2 (Figure 3). These lineages 
had slightly elongated stylets, ventrally curved stingers (in 
contrast to those of Acanthoponera and Heteroponera whose 
stylet was dorsally curved), and a protuberant articular pro-
cess of the stinger bulb. All other clades showed low scores on 
PC2, with the articular process of the stinger bulb not protu-
berant. Regions of both high and low PC2 scores were occu-
pied by phylogenetically distant lineages, indicating multiple 
independent origins of these phenotypes in Ectatomminae.

The final two principal component axes (PC3, 7.08%; 
and PC4, 5.75% of the total variance), as indicated by the  
broken-stick model, described the stinger bulb height and  
the distance between the proximodorsal process and margin of 
the stinger bulb (Supplementary Electronic Material, Figure S1).

Biomechanical performance
The distribution of von Mises stress in the finite element 
models revealed similar patterns under both loading condi-
tions (axial and angled) (Figure 4). The tip of the stinger (i.e., 
puncture force location) and its base (i.e., boundary location) 

showed the highest stress, whereas, in all models, the cen-
tral axis of the stinger showed the lowest stress (Figure 4). 
Stingers with a deep ventral concavity near the articular pro-
cess (e.g., Poneracantha and Stictoponera) showed high stress 
along the bulb region, which became more obvious under the 
angled loading condition (Figure 4). Straight and short stylets 
(e.g., Bazboltonia and Ectatomma), as well as stingers that 
were slightly curved ventrally (e.g., Alfaria, Gnamptogenys, 
Holcoponera, Stictoponera, and Typhlomyrmex) experienced 
generally low stress with a pattern consistent with compres-
sion (Figure 4). In contrast, slender stingers with dorsally 
curved stylets, such as those of Acanthoponera, Heteroponera, 
and Rhytidoponera, experienced higher stress along the dor-
sal and ventral edges of the stylet, and its center showed lower 
stress (Figure 4), a configuration similar to the bending of a 
cantilever beam. Models under the angled loading condition 
experienced higher stress than those under the axial loading 
condition (Figure 4).

The MWAM under the axial loading condition was sub-
stantially higher in omnivore species than in predators, also 
showing the largest range of variation (Figure 5A and B). In 
contrast, under angled loading conditions, MWAM showed 
no clear differences (Figure 5C and D). Shorter, stouter sting-
ers showed lowest stress values in axial loading (e.g., Alfaria, 
Ectatomma, Gnamptogenys, Holcoponera, Poneracantha, 

Figure 6. The plot of phylo-PLS showing a positive covariation associated with stinger shape (Procrustes) and mesh-weighted arithmetic mean of von 
Mises stress (MWAM) resulting from (A) axial, (B) angled puncture loading conditions, and (C) critical buckling load. Stinger models show the warped 
3D model associated with minimum (short and robust stingers) and maximum (long and slender stingers) PLS vector scores. Vertical bars indicate 
different diet classes (omnivore, predator, and unknown).
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Stictoponera, and Typhlomyrmex) (Figure 5A), whereas elon-
gated stingers showed highest values (e.g., Acanthoponera, 
Heteroponera, and Rhytidoponera) (Figure 5A).

Correlation between phenotype and functional 
performances
No significant covariation between stinger shape and crit-
ical buckling load was found (r-PLS = 0.422, p = 0.537; 
Figure 6C). However, significant and positive covariation was 
observed for the axial (r-PLS = 0.712, p = 0.001; Figure 6A) 
and angled (r-PLS = 0.645, p = 0.008; Figure 6B) puncture 
loading conditions.

Most of the covariation was driven by stinger elongation 
and the dorsal curvature of the stylet drive, with the resul-
tant MWAM for axial (Figure 6A) and angled (Figure 6B) 
punctures. Species in the negative part of the axial loading 
condition plot (Figure 6A) had short, stout, and straight sting-
ers (low PC1 scores) that performed better under this load-
ing condition (lower MWAM values). Conversely, species in 
the positive part of the axial loading condition plot (Figure 

6A) had long, slender, and dorsal curved stingers (high PC1 
scores) that performed poorly under this loading condition 
(high MWAM values). The angled puncture loading condition 
plot showed a similar covariation pattern between stinger 
shape and MWAM values (Figure 6B).

A significant relationship between the traits while account-
ing for phylogenetic relatedness was found (F = 6.422, 
R2 = 0.521, p < 0.05 and F = 6.368, R2 = 0.593, p < 0.05, 
respectively) (Figure 7A and B). No significance was observed 
between the included angle and critical buckling load 
(F = 0.117, R2 = 0.189, p > 0.05) (Figure 7C). Significant 
nonlinear relationships between body size and perfor-
mance measures were observed (Figure 8). The linear term 
for log-transformed body size was significant (F = 6.86, 
p = 0.0139) in axial puncture, while the quadratic term 
showed borderline significance (F = 4.10, p = 0.0522), indi-
cating that species with intermediate body sizes had higher 
maximum stress in axial compression, while smaller and 
larger species had lower values (Figure 8A). For angled punc-
ture, the linear term was significant (F = 8.68, p = 0.0063), but 

Figure 7. The plot of PGLS showing the relationship between included angle and performance metrics (mesh-weighted arithmetic mean of von Mises 
stress (MWAM) and critical buckling load). Results are from (A) axial, (B) angled puncture loading conditions, and (C) critical buckling load. Stinger 
models show generalized stingers with small to large included angles on the X-axis. Vertical bars indicate different diet classes (omnivore, predator, and 
unknown).
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12 Casadei-Ferreira et al.

no significance was found for the quadratic term (F = 1.32, 
p = 0.2593), suggesting a weaker direct effect of body size on 
the angled puncturing regime (Figure 8B). Finally, the qua-
dratic term approached significance (F = 3.70, p = 0.0644) for 
critical buckling, indicating a potential nonlinear relationship 
with body size (Figure 8C).

Shifts in phenotype and functional trait regimes
For phenotype, two locations on the phylogeny had 
regime shifts occurred toward longer and slender sting-
ers (Rhytidoponera and Heteroponerini), and two shifts 
occurred toward short and stout stingers (Ectatomma and 
Typhlomyrmex) with a posterior probability of > 0.4 (Figure 
9A and B). Moreover, the two regime shifts were located 
toward lineages with small included angles (Rhytidoponera 
and Heteroponerini; pp > 0.4, Figure 9C and D). Remarkably, 
the regime shifts in phenotype were predominantly associ-
ated with omnivore lineages (Heteroponerini, Ectatomma, 
and Rhytidoponera) (Figure 9A and C), except for one PC1 

shift associated with the predatory lineage Typhlomyrmex 
(Figure 9A). Based on our maximum likelihood estimation of 
the ancestral discrete character using ER (AICc: ER = 21.61; 
ARD = 26.89; SYM = 23.84), it is possible that Ectatomminae 
had omnivore ancestors (omnivore = 0.923; predator = 0.062; 
unknown = 0.015) (Figure 9A and B).

For performance traits, five regime shifts related to the 
axial loading condition (Rhytidoponera, Poneracantha, 
Acanthoponera, and two in Heteroponera; pp > 0.4, Figure 
9E and F) and three shifts for the angled loading condition 
(Alfaria, Acanthoponera, and Heteroponera; pp > 0.4, Figure 
9G and H) were identified, all toward high MWAM values. 
Conversely, five regime shifts were revealed toward lineages with 
high critical buckling loading (Ectatomma, Gnamptogenys, 
Typhlomyrmex, Holcoponera, and Stictoponera; pp > 0.4, 
Figure 9I and J). Remarkably, the regime shifts in axial and 
angled loading conditions exhibited a consistent pattern as 
those found for phenotype, with most shifts occurring toward 
omnivore lineages (e.g., Acanthoponera, Heteroponera, and 

Figure 8. The plot of PGLS results illustrating the relationship between the body size and log of stinger performance metrics: (A) maximum stress 
in axial compression, (B) angled puncturing regime, and (C) critical buckling load. The X-axis represents the log of body size, measured as the width 
between the seventh abdominal spiracles. Intermediate-sized species are shown to have weaker mechanical performance in (A) axial compression and 
(B) angled puncturing. The vertical bars denote different diet classes (omnivore, predator, and unknown).
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Figure 9. Ectatomminae phylogeny showing trait regimes of a BAYOU rjMCMC analysis. Branches with similar colors represent branches with 
convergent regimes for phenotype, as illustrated by (A) PC1 and (C) included angle and performance traits, characterized by (F) axial, (H) angled, and 
(J) critical buckling loading. Different-sized circles show the location and posterior probability of a regime shift. Phenograms (B, D, E, G, and I) illustrate 
density and estimated evolutionary history based on lineage-specific rates of evolution. Vertical bars indicate different diet classes (omnivore, predator, 
and unknown). Pier charts at the nodes of the phylogeny in (A) and (B) indicate the maximum likelihood of ancestral character reconstruction of diet 
class (discrete trait) in Ectatomminae using the ER (best-fitted model AICc = 21.61) model of evolution.
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14 Casadei-Ferreira et al.

Rhytidoponera for axial loading and Acanthoponera and 
Heteroponera for angled loading). In contrast, regime shifts 
for critical buckling loading were primarily observed in pred-
atory lineages (Gnamptogenys, Holcoponera, Stictoponera, 
and Typhlomyrmex), with only a single shift occurring toward 
an omnivore lineage (Ectatomma).

The difference in the rate of evolution between omni-
vore and predatory lineages was significant for the axial 
loading condition (p = 0.0093) at a ratio of 6.86 (omnivore 
σ2 = 0.00115, predatory σ2 = 0.00017) (Figure 10). There 
were no differences in the rate of evolution for morphology 
(PC1 p = 0.51, included angle p = 0.81) and the remaining 
performance traits (angled loading condition p = 0.079 and 
critical buckling loading p = 0.13) (Figure 10).

Phylomorphofunctional landscape
The range of simulated axial and angled puncture loading 
conditions mapped to similar performance surfaces within 
the phylomorphospace (Figure 11A), in contrast to critical 
buckling load, which mapped performance surfaces rep-
resented by smaller islands of higher performance. A com-
bined performance surface resulted in a mapping with the 
same pattern as that under axial and angled puncture load-
ing conditions (Figure 11B) (estimate contribution weights: 
axial = 0.70,269; angled = 0.25,765), most probably due 
to the higher contribution of axial loading conditions than 
that by critical buckling load (contribution weight: critical 

buckling = 0.03966). Ectatommini dominated higher per-
formance areas, whereas Heteroponerini occupied under-
performing regions of the combined performance landscape 
(Figure 11B). Nevertheless, the predominance of Ectatommini 
in higher-performance regions was not a consistent trend, 
with Rhytidoponera sharing a low-performance boundary 
with B. microps (Heteroponerini). Considering the combined 
performance landscape, performance increased with short 
and robust stingers (low PC1 scores), whereas curved, long, 
and slender stingers (high PC1 scores) performed poorly 
(Figure 11B). Variations associated with the ventral curvature 
of the stinger and modifications of the articular process of the 
stinger bulb (PC2) exerted no influence on the stinger-rescaled 
performance of the combined performance landscape (Figure 
11B).

Discussion
Our results shed light on the functional morphology and evo-
lution of the Hymenoptera stinger and, more generally, on 
the phenotypic diversification in relation to task specializa-
tion. Using a comparative approach within a phylogenomic 
framework, we investigated for the first time the mechani-
cal responses related to stinger shape variation using a 
clade of ants (Ectatomminae) as a model system. Although 
Ectatomminae do not have all the functional and shape varia-
tions found across ants, or Hymenoptera, they do differ along 

Figure 10. Rate of evolution (σ2) of phenotype (PC1 and included angle) and performance traits (axial, angled, and critical buckling loading) for different 
diet classes (omnivore and predator) as estimated by a standard Brownian motion model.
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common axes of variation (elongation and curvature) that are 
found across the order.

Within Ectatomminae, the divergence between Ectatommini 
and Heteroponerini is responsible for most of the disparity 
in stinger shape, with elongation explaining much of the 
shape variance, followed by the curvature in its distal por-
tion (i.e., the stylet) (Figure 3). Furthermore, both tribes 
show high shape diversity within their genera, with a higher 
variation in Ectatommini than in Heteroponerini (Figure 
3). We demonstrated that this divergence also reflects the 
occupancy of the combined performance landscape, with 
the highly diverse Ectatommini dominating a large region 
with improved mechanical performance and Heteroponerini 
clustering in lower performance areas (i.e., areas susceptible 
to structural mechanical limitations) (Figure 11). A signif-
icant nonlinear relationship was found between body size 
and stinger performance, particularly for axial compression 
stress (Figure 8). Intermediate-sized species exhibit overall 
mechanically weaker stinger compared to smaller and larger 
species. Contrary to what would be expected, increased 
size does not directly compensate for a structurally weaker 
stinger. These findings suggest that intermediate-sized species 
may encounter functional constraints leading to suboptimal 
stinger strength, while smaller and larger species exhibit more 
mechanically efficient stingers. Our results also suggested that 
omnivore species have relatively weaker stingers under axial 
loading conditions than species that are primarily predators 

(Figure 5). Nevertheless, omnivore lineages concentrated 
most regime shifts in phenotype and performance (except 
for critical buckling loading). No clear tradeoff was observed 
between ants having short and robust stingers and ants hav-
ing long and slender stingers. Moreover, no apparent advan-
tages were associated with long and slender stingers, leaving 
this aspect as an intriguing, unmodeled function that merits 
further investigation.

Shape diversity of the sting apparatus
Hymenoptera stingers are often considered as one of the tar-
gets of natural selection as their functionality is crucial for 
hunting and defense, individual and/or colonial, in social 
aculeates. The support for the stinger as a key innovation 
for the diversification of Hymenoptera is equivocal, as the 
increased diversification rates in other nonaculeate clades 
might dilute the signal of a state-dependent diversification 
associated with the origin of the stinger (Blaimer et al., 2023). 
Nonetheless, the innovative functions of the stinger may have 
exerted an impact on accelerating diversification (Blaimer 
et al., 2023), and shape diversity still needs to be addressed 
for the Hymenoptera stinger, which is frequently assumed 
to have a generalized needle-like form (e.g., Bar-On, 2019). 
In contrast to vertebrate teeth, plant thorns, and cone snail 
harpoons, which have their internal structure filled with rel-
atively rigid tissue (e.g., dentin for teeth and various plant 
tissues for thorns), fangs and stingers require an internal 

Figure 11. Functional performance surfaces and adaptive landscape. (A) Performance surfaces recovered for the two loading conditions (axial and 
angled) and critical buckling load measured on the phylomorphospace and (B) adaptive landscape resulted from the combined performance surfaces 
showing Ectatommini dominating higher performance areas compared with Heteroponerini. A value of 1.0 (dark shades) indicates high performance and 
a value of 0 (light shades) indicates poor performance.
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channel through which the venom can flow. Such hollowness 
allows these morphologies to present relatively high resistance 
against compression while simultaneously allowing a certain 
flexibility when loaded angularly (Milwich et al., 2006; Pohl 
et al., 2020; Zhao et al., 2010). Nevertheless, unlike other 
venom injection systems, the Hymenoptera stinger presents 
a complex internal geometry, primarily due to the presence 
of a stinger bulb apophysis and an inner dorsal wall of the 
stylet that produces two lateral channels, which converge at 
the stylet proximal extremity, ultimately merging to form an 
enclosed central channel (Figure 1E).

Slender and elongated venom injection tools are often asso-
ciated with specialized and optimized properties for punctur-
ing soft tissues, requiring lower forces for penetration (Ballell 
et al., 2022; Evans & Sanson, 2003, 2006) but being more 
susceptible to high average values of von Mises stress and 
more likely to exceed yield failure criteria. According to their 
higher stress magnitudes and distribution patterns (Figures 
4 and 5), Heteroponerini and Rhytidoponera possess the 
mechanically weakest stingers under simple compression. The 
reduced mechanical resistance of their stinger to puncture- 
related loads compared with that of Ectatommini (excluding 
Rhytidoponera) (Figures 5 and 6) is probably due to the dif-
ferent material characteristics of their stinging target. This 
mechanical pattern suggests that these lineages occasionally 
prey on soft-bodied invertebrates (e.g., termites) and imma-
ture arthropods (e.g., eggs and larvae) (see Vincent & Wegst, 
2004 for differences in the material properties of insect cuti-
cles; Vicent, 2002 for general arthropod cuticle) or rarely use 
their stinger by supplementing their diet with plant deriva-
tives and dead organisms (i.e., detritivores). In addition, we 
propose that the high likelihood of higher average von Mises 
stress values can be mitigated through venom with faster and 
more deleterious activity, aiming to subdue the prey without 
the need for multiple stings. To the best of our knowledge, 
only a few studies have described the stinging behavior in 
Ectatomminae, and the chemical composition of the venom 
has been described only in Rhytidoponera metallica (Smith) 
and Ectatomma tuberculatum (Olivier) (Brophy et al., 1981; 
Brown et al., 2011; Robinson et al., 2023).

Short, blunt-shaped piercing systems may show low aver-
age von Mises stress values when attempting to break through 
tougher surfaces, similar to that observed with the fangs of 
crab-feeders Homalopsidae (Cleuren et al., 2021), teeth of 
omnivorous Sauropodomorphs (Ballell et al., 2022), occlusal 
variation in durophagous tooth morphologies (Crofts, 2015), 
and tooth adaptation for shell crushing (Crofts & Summers, 
2014). Ectatommini, besides Rhytidoponera, exhibited a 
broad range of robust stinger diversity that can vary from 
nearly straight (Ectatomma and Poneracantha) to slightly 
convex ventrally (Alfaria, Gnamptogenys, Holcoponera, 
Stictoponera, and Typhlomyrmex) (Figures 3 and 4). Although 
several Ectatommini species exhibit submissive and timid 
behavior (Cupul-Magaña, 2009; Gobin et al., 1998), some 
groups can be particularly aggressive (Melati & Leal, 2018). 
Therefore, the short and robust stinger of Ectatommini, 
mechanically adapted to overcome high loads (Figures 4 and 
5), combined with its highly toxic venom (Bernardi et al., 
2017; Pluzhinikov et al., 1994; Silva et al., 2018; Touchard 
et al., 2015), might represent a case of morphological adapta-
tion that enables subduing hostile prey with stiffer teguments 
and succeeding in agonistic interactions. Gnamptogenys is 
an excellent example of how short and blunt stingers might 

withstand significant mechanical demand. For instance, the 
thick and stiff cuticles of fungus-growing ants (Li et al., 2020) 
with few exposed intersegmental sections represent a chal-
lenge for their specialist predator G. hartmani to sting.

Our findings demonstrate that the stinger of Hymenoptera 
exhibits substantial morphological diversity (Figure 3), which 
causes significant functional variability (Figures 4 and 7). 
Robust stingers are better at sustaining equivalent stress, 
increasing their useful life when high-magnitude loads are 
applied. Remarkably, several lineages occupied suboptimal 
regions of the morphofunctional space (Figure 11), suggesting 
that prey selectivity, hostility, stinging behavior, and venom 
toxicity are crucial mechanisms for mitigating the associated 
functional demands with a piercing stinger. Our data are 
consistent with the hypothesis that selective forces related to 
active hunting, puncturing defense, and prey specialization 
can result in unique shape variations and improved mechan-
ical functionality.

Effect of dietary preferences on stinger 
diversification
Our results revealed that the large-scale shifts in phenotypes 
typically occurred early in the evolutionary history of omni-
vore lineages, with minor and gradual changes in perfor-
mance for both omnivores and predators occurring toward 
the tips of the phylogenetic tree. These data illustrate a strong 
correlation between shifts in stinger phenotype, performance 
traits, and trophic evolution. Remarkably, the omnivorous 
Ectatomminae, which feed on diets rich in plant-based mate-
rials such as seed arils and honeydew, showed a higher fre-
quency of regime shifts (Figure 9) than other lineages. These 
shifts were accompanied by accelerated rates of morphologi-
cal evolution in performance metrics, particularly in MWAM 
values for axial and angled loadings (Figure 10). In adaptive 
radiation scenarios, a tendency toward niche specialization 
is anticipated when ecological opportunities result in the 
occupation of new adaptive zones and subsequent niche dif-
ferentiation as lineages diversify (Simpson, 1953; Stroud & 
Losos, 2016). Nevertheless, we observed an overall trend 
toward omnivory (Figures 9 and 10) rather than specializa-
tion. Hence, morphological evolutionary patterns are related 
to the diversification of diets among most Ectatomminae. 
These results contradict our initial hypothesis of a general 
trend toward specialization; nonetheless, previous research 
has demonstrated that trophic specialization toward herbiv-
ory correlates with increased speciation rates (Burin et al., 
2016; Price et al., 2012; Wiens et al., 2015).

Our results suggest that omnivorous lineages that pri-
marily consume plants are favored over predatory lineages, 
possibly because a varied diet can help them better adapt to 
seasonal and spatial resource variations. The evolution of 
Ectatomminae indicates a transition toward a more limited 
diet in predatory lineages from an ancestral omnivorous state 
(Figure 9A and B). As omnivore populations begin special-
izing in predatory behaviors, they face intense competition 
from specialist populations, and on a larger scale, niche-filling 
may limit the exploration of new adaptive zones (McPeek, 
2008; Schluter, 2000). The morphological variability in pred-
atory lineages might be insufficient to adapt to new selec-
tive pressures (Day et al., 2016), as evidenced by the fewer 
regime shifts observed in most predatory Ectatomminae 
(Figure 9). Importantly, although predatory lineages have a 
more restricted diet (i.e., primarily focused on soft-bodied 
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invertebrates), their habits are not necessarily specialized. 
Several species exhibit a broad diet in terms of the prey they 
can use as food sources, which, in turn, might not lead to 
morphological specialization.

The dispersion of higher stress values due to feeding-related 
forces of omnivore species than those of predators (Figure 
5), for instance, is probably related to stinger release as the 
primary tool used for food acquisition. Releasing the stinger 
as a primary tool for hunting would result in the emergence 
of forms that are either not adapted to pierce through tar-
get tegument or highly adapted to other functions (e.g., trail 
marking) and/or piercing specific organisms (e.g., soft body 
invertebrates). Furthermore, besides a few lineages, such as 
Rhytidoponera metallica, that are more aggressive toward 
other ants and bigger threats (e.g., vertebrates), most omni-
vore species tend to be shy and rarely sting. We propose 
that omnivorous species depend on other structures, such as 
their mandibles, to subdue their prey. Recent studies on the 
mechanics of ant mandibles have demonstrated that species 
commonly associated with omnivorous habits have mandi-
bles adapted for abrasive processes (Klunk et al., 2021, 2023), 
which are not limited to plant consumption. For instance, 
major workers of the ant genus Pheidole, whose stinger is 
nonfunctional (Kugler, 1979), have highly adapted mandibles 
for processing hard items, such as breaking seeds and tear-
ing apart invertebrate cuticles. These mandibles are primarily 
associated with their specialization as food processors but are 
often used for capturing, restraining, subduing, and dismem-
bering the prey (Dejean et al., 2007; Fowler, 1987; Gomes 
et al., 2019, 2021) without the need for a functional stinger.

Conclusions
Our results highlight the tradeoffs shaping the evolution of 
stingers and puncture tools in Hymenoptera and other ani-
mals. These structures serve as intriguing models for evolu-
tionary biomechanics, considering the biophysical challenges 
of puncture and venom delivery, as well as their integration 
with the behavioral ecology of organisms. Although our study 
advances the basic understanding of stinger biomechanics, 
further studies are required to fully understand these complex 
structures from physical, fluidic, and anatomical perspectives. 
Furthermore, our results emphasize intriguing associations 
between diet specialization and functional diversification. 
Continued research, using diverse analytical approaches and 
a broader phylogenetic scale, is essential to gain a complete 
understanding of the diversification of these remarkable 
structures and their implications for our comprehension of 
evolutionary processes.
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