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Abstract: This study presents the first column-averaged dry-air mole fractions of carbon dioxide
(XCO2), methane (XCH4) and carbon monoxide (XCO) in the coal mine aggregation area in Shanxi,
China, using two portable Fourier transform infrared spectrometers (EM27/SUNs), in the framework
of the Collaborative Carbon Column Observing Network (COCCON). The measurements, collected
over two months, were analyzed. Significant daily variations were observed, particularly in XCH4,
which highlight the impact of coal mining emissions as a major CH4 source in the region. This
study also compares COCCON XCO with measurements from the TROPOspheric Monitoring Instru-
ment (TROPOMI) onboard the Sentinel-5P satellite, revealing good agreement, with a mean bias of
7.15 ± 9.49 ppb. Additionally, comparisons were made between COCCON XCO2 and XCH4 data
and analytical data from the Copernicus Atmosphere Monitoring Service (CAMS). The mean biases
between COCCON and CAMS were −6.43 ± 1.75 ppm for XCO2 and 15.40 ± 31.60 ppb for XCH4.
The findings affirm the stability and accuracy of the COCCON instruments for validating satellite
observations and detecting local greenhouse gas sources. Operating COCCON spectrometers in coal
mining areas offers valuable insights into emissions from these high-impact sources.

Keywords: greenhouse gas; XCO2; XCH4; XCO; COCCON; TROPOMI; CAMS

1. Introduction

Carbon dioxide (CO2) is a crucial long-lived greenhouse gas (GHG) that signifi-
cantly influences the Earth’s radiative energy balance and climate. According to NOAA’s
Global Monitoring Laboratory, the global surface CO2 concentration reached approximately
419.3 parts per million (ppm) in 2023, which reflects an increase of 2.8 ppm over the past
year. The primary sources of anthropogenic CO2 emissions are fossil fuels and land-use
changes, contributing 86% and 14% of the total emissions, respectively, over the period of
2010–2019 [1]. Methane (CH4) is another significant anthropogenic GHG, and the second-
largest contributor to global warming after CO2. Despite its relatively short atmospheric
lifetime of approximately 12 years, methane has a high global warming potential (GWP)
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of 81.2 times that of CO2 over 20 years and 27.9 times over 100 years [2]. Methane is
emitted from both human activities and nature sources. About 60% of global emissions
are anthropogenic, which are principally associated with fossil fuel production and use
(e.g., oil and gas extraction and coal mining), waste disposal and agriculture (e.g., livestock
production, rice cultivation, biomass burning) [3,4].

Carbon monoxide (CO) is a toxic and reactive gas with an atmospheric lifetime ranging
from weeks to months [5]. It is generated through various processes, including the oxidation
of CH4, biomass burning and the incomplete combustion of fossil fuels. In the atmosphere,
CO primarily undergoes oxidation by hydroxyl radicals (OH), which acts as its primary sink
and helps regulate its concentration [6]. An increase in CO levels reduces the availability
of OH, which in turn influences the lifetime of CH4. Consequently, CO emissions are
known to contribute to increased radiative forcing, classifying CO as an indirect GHG [7].
Additionally, CO is involved in the formation of ground-level ozone (O3), a harmful
air pollutant that can exacerbate respiratory conditions. Understanding and precisely
monitoring CO2, CH4 and CO gases are essential for identifying their sources, sinks and
trends. Comprehensive information of the spatiotemporal distributions of these gases
provides a fundamental basis for accurately identifying emissions and sources, and for
evaluating their environmental and regulatory impacts [8,9].

For many decades, atmospheric measurements of CO2, CH4 and CO have been con-
ducted using in situ surface-based networks and occasional aircraft campaigns [10–14].
However, these methods have been limited to a few locations and have sampled the
atmosphere non-uniformly. Recent advancements in remote sensing technologies, both
space-based and ground-based, have significantly enhanced our ability to detect and
monitor these gases globally. Satellites, such as the Sentinel-5 Precursor (S5P), offer exten-
sive global coverage, allowing for detailed trend analysis and the refinement of emission
inventories, not only at a global scale, but also at regional and local scales [9,15–19].

Ground-based column abundance measurements using solar-viewing near-infrared
spectrometers are comprehensively employed to validate satellite observations, ensuring
the accuracy and reliability of the data [9,20,21]. The Total Carbon Column Observing
Network (TCCON) is a global network of ground-based Fourier transform infrared (FTIR)
spectrometers, providing highly precise column-averaged dry-air mole fractions of the gas
(Xgas) values for CO2 (XCO2), CH4 (XCH4) and CO (XCO), amongst other gases [22]. Xgas
is defined by the following equation:

Xgas = 0.2095 ×
columngas,dry

ColumnO2,dry
,

where 0.2095 is the dry-air O2 mole fraction.
Recently, the Collaborative Carbon Column Observing Network (COCCON) has

emerged, using a portable, low-resolution FTIR spectrometer (Bruker EM27/SUN) as its
standard instrument, serving as a valuable complement to the TCCON network [23–26].
These portable COCCON instruments are characterized by stability and the ability to
retrieve GHGs concentrations with high precision and accuracy. As a result, they are well-
suited for deployment in diverse environments, including high-latitude regions, deserts
and urban areas [21,27–36].

Alongside the increasing development of GHG sensors, both in orbit and through
ground-based remote sensing networks, the Copernicus Atmosphere Monitoring Service
(CAMS) is a service implemented by the European Centre for Medium-Range Weather
Forecasts (ECMWF) on behalf of the European Commission, using the Numerical Weather
Prediction (NWP) Integrated Forecasting system for Composition (C-IFS) to deliver consis-
tent and high-quality data related to air pollution and atmospheric composition, such as
greenhouse gases, on a global scale [37,38].

This study presents the first COCCON observations conducted in Shanxi, China, focus-
ing on the XCO2, XCH4 and XCO measured over Zhangzi County. It includes a comparison
between the COCCON XCO data and the XCO measurements from the TROPOspheric
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Monitoring Instrument (TROPOMI), on board the S5P satellite. Additionally, this study
analyzes the collocated XCO2 and XCH4 from COCCON in comparison with the analysis
datasets from CAMS.

2. Materials and Methods
2.1. Sites Description

Shanxi is situated in northern China, and it is characterized by mountainous terrain. In
2023, Shanxi, one of the China’s leading coal-producing provinces, produced approximately
1.37 billion tons of coal, accounting for about 30% of the country’s total coal production.
Zhangzi County is situated in the southeastern part of Shanxi and on the southwestern
edge of the Shangdang Basin. It lies in the transitional zone between the Taiyue Mountains
and the Taihang Mountains. Surrounded by mountains on three sides and bordered by a
vast plain on the remaining side, the county has a significant portion of its land dedicated
to agriculture, with cultivated areas comprising of approximately 40% of its total land area.
Zhangzi County has proven coal reserves amounting to 5.97 billion tons. These mines are
part of the Qinshui coal field. Currently, there are 10 large-scale coal mines operating in the
county, which collectively produced 34 million tons of raw coal in 2022 (http://www.zh
angzi.gov.cn/zzxxgk/zfxxgk/zfxxgkml/sjhd/202305/P020230525391512084152.pdf, last
access: 21 August 2024). Among them, a local coal mine (close to site10, Figure 1) is notable
for its annual production exceeding 7 million tons.
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Figure 1. (a) A terrain map showing Shanxi Province and the location of Zhangzi County.
(b) A map showing the locations of two COCCON spectrometers in Zhangzi County, within Shanxi
province. The SN53 instrument was primarily positioned at the stationary site. Green circles indicate
locations where the SN38 instrument was deployed, while orange triangles represent sites for the
SN53 instrument. Blue rectangles denote locations where both instruments were used on different
days. The base map is sourced from © Google Earth, Image © 2024 Maxar Technologies; Image ©
2024 CNES/Airbus.

2.2. COCCON

The emergence of portable, low-resolution and solar-viewing FTIR instruments, such
as EM27/SUN, has significantly enhanced global coverage of GHG observations [25]. The
EM27/SUN is a compact and mobile instrument that was developed by the Karlsruhe
Institute of Technology (KIT) in collaboration with Bruker Optics GmbH, Ettlingen, Ger-
many [25,26]. The spectrometer records double-sided DC coupled interferograms in the
NIR window using two indium gallium arsenide (InGaAs) detectors at room temperature.
It has a spectral resolution of 0.5 cm−1, which, with careful calibration, provides precision

http://www.zhangzi.gov.cn/zzxxgk/zfxxgk/zfxxgkml/sjhd/202305/P020230525391512084152.pdf
http://www.zhangzi.gov.cn/zzxxgk/zfxxgk/zfxxgkml/sjhd/202305/P020230525391512084152.pdf
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and accuracy comparable to that of TCCON [39]. The interferograms are processed using a
preprocessing tool and the PROFFAST nonlinear least squares fitting algorithm, the code
development being supported by the ESA in the framework of COCCON-PROCEEDS
projects. The PROFFAST retrieval algorithm scales a priori profiles to retrieve the total
column of trace gases, including CO2, CH4 and CO.

More than 200 EM27/SUN instruments are currently operated worldwide by various
research groups. Studies have demonstrated that the instrument is appropriate for both
field campaigns and long-term deployment at fixed sites, offering the ability to complement
TCCON by extending observational coverage and enhancing data collection in various
locations [31,33,34,40–43]. In this context, the Collaborative Carbon Column Observing
Network (COCCON) was established to further advance and integrate these observational
efforts. COCCON also implemented as international travel standard spectrometers unit for
evaluating the consistency of GHG measurements across different TCCON stations [24].

Two COCCON instruments were used to assess columnar greenhouse gas abundances,
focusing on coal mine aggregation areas between July and September 2022. This collabora-
tive project involved Tongji University and China University of Mining and Technology
(CUMT), as well as the Karlsruhe Institute of Technology (KIT), Germany. The instruments
were first shipped from Karlsruhe, Germany, to Xuzhou, China. Upon arrival in Xuzhou,
side-by-side measurements were conducted at the CUMT campus (34.22◦N, 117.19◦E) in
Xuzhou to ensure that the instruments were functioning properly and undamaged after
their long-distance transport (Figure 2). Following this, the instruments were transported
to Zhangzi County (back to Xuzhou), where similar calibration measurements were per-
formed before (and after) the field campaign. These calibrations were crucial for ensuring
the accuracy of the observations, despite initial calibrations having been completed with a
reference COCCON instrument at Karlsruhe Institute of Technology (KIT).
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Figure 2. Side-by-side calibration measurements were performed at CUMT Campus in Xuzhou prior
to shipment to Shanxi province. Simultaneous solar observations from two COCCON instrument
were analyzed to verify the temporal invariability of instrumental characteristics and to derive
intercalibration factors for XCO2, XCH4 and XCO.

During the campaign, one COCCON instrument (SN53) was mostly positioned at
a stationary site (see Figure 1) for the entire study period, except for 19 August (site5),
23 August (site2) and 30 August–1 September (site7). The second COCCON instrument
(SN38) was moved to different locations daily, depending on the prevailing wind direction,
to capture downwind signals with respect to the SN53 instrument. Observed interferograms
were processed with PROFFAST v2.4 retrieval algorithms to obtain trace gases abundances.
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In addition to the abundances of the target gases, PROFFAST also provides a sensitive
indication (XAIR) for the detection of instrumental drifts and operation problems [24,39]. XAIR
quantity is calculated from observed columns of O2 and H2O, and from ground pressure:

Xair =
0.2095

ColumnO2 ·µ

(
Ps
g

− columnH2O·µH2O

)
, (1)

where µ and µH2O represent the molecular mass for dry air mass and water vapor, respec-
tively. TCCCON also uses XAIR as a supplementary method to check for consistency. Note
that XAIR values calculated by PROFFAST are inverted compared to values by the GGG
algorithm in TCCON.

2.3. TROPOMI XCO Products

The S5P satellite, launched in October 2017, is an Earth observation satellite developed
by European Space Agency as part of the Copernicus Programme. It was designed to main-
tain continuity of atmospheric observations between the Envisat and Sentinel-5 missions.
S5P provides comprehensive data on various traces gases and aerosol properties with
global coverage on a daily basis and an overpass time of 13:30 local solar time [19]. The pay-
load of the mission is the TROPOMI, a nadir-viewing imaging spectrometer that employs
passive remote-sensing techniques. TROPOMI measures backscattered solar radiation
across multiple spectral bands, including ultraviolet (UV), visible (VIS), near-infrared (NIR)
and short-wave infrared (SWIR), for monitoring atmospheric composition and detecting
environmental changes [18,19]. The instrument operates in a push-broom configuration
with a broad swatch of approximately 2600 km and an unprecedented spatial resolution of
5.5 × 7 km2 (7 × 7 km2 prior to August 2019) [9].

Total column abundances of CO are retrieved from the TROPOMI SWIR module at
2.3 µm using the SICOR physics-based retrieval algorithm (https://sentinel.esa.int/docum
ents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Re
trieval.pdf, last access: 28 August 2024) [44]. Ref. [45] compared the TROPOMI XCO with
a large number of TCCON FTIR stations, presenting a relative mean bias of 9.22 ± 3.45%
for the standard TCCON XCO. In this study, the TROPOMI XCO L2 data during the study
period are investigated. To ensure the satellite products are recorded under clear-sky and
low-cloud atmospheric conditions, a quality value (qa ≥ 0.7) is applied.

2.4. CAMS XCO2 and XCH4 Products

CAMS provides a range of products, including global near-real-time analysis, reanaly-
sis and forecast of the GHGs for recent years [46–49]. In this work, the CAMS XCH4 and
XCO2 analysis dataset has a spatial resolution of 29 km (0.25◦ × 0.25◦) and a temporal
resolution of 6 h.

3. Results and Discussion
3.1. Side-by-Side Measurements

Instrument calibration is crucial for ensuring accuracy when multiple instruments are
used in a field campaign. The COCCON instruments were checked and calibrated with
respect to a common reference unit (the EM27/SUN spectrometer SN37) at KIT before
delivery to the end users. However, instruments can experience unexpected mechanical
shocks, such as impacts or vibrations, particularly during transportation [23]. Therefore,
solar side-by-side calibration measurements are necessary both before and after the cam-
paign to verify the temporal invariability of instrumental characteristics and to derive
intercalibration factors for retrievals [40].

The initial calibration took place from 21 July to 24 July, after the instruments were
shipped from Karlsruhe, Germany to Xuzhou, China. After transporting the instruments
to Zhangzi, a 2-day measurement period was conducted. Additional calibration measure-
ments were performed during 21–23 September, after the instruments were shipped back
to Xuzhou.

https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Retrieval.pdf
https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Retrieval.pdf
https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-Carbon-Monoxide-Total-Column-Retrieval.pdf
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To determine the calibration factors, measurements were collected on clear-sky days
with empirical instrument-specific solar zenith angles of less than 50 degrees for each target
gas. To minimize the impact of scattered clouds during the measurements, a strict filtering
process was applied, excluding observations in which the difference between individual
XAIR values and the mean value exceeded 0.001.

The calibration process involved scaling the retrievals (XCO2, XCH4 and XCO) from
the SN38 instrument to align with those from the SN53 instrument, as follows:

Xgas
cali
SN38 = Xgas

unc
SN38 × fgas

where Xgas
cali
SN38 represents the calibrated retrieval for the SN38 instrument, while Xgas

unc
SN38

denotes the uncalibrated retrieval. fgas indicates the slope of the fitting line established
from the side-by-side measurements of the SN38 and SN53 instruments. Note that the
fitting line was constrained to pass through the origin, resulting in slopes of 1.0027 for
XCO2, 0.9978 for XCH4 and 0.9810 for XCO.

Figure 3 illustrates the 5-min average time series of the uncalibrated COCCON mea-
surements taken during the campaign in Zhangzi County and after the campaign in Xuzhou.
The time series from both periods exhibit generally similar trends. However, on 2 August,
around noon, outliers in XCO were observed due to cloud cover, which were not filtered
out during the data processing. This issue did not affect the XCO2 and XCH4 measurements
on this day because the CO2, CH4 and O2 columns were retrieved from the same primary
channel, whereas the CO columns were obtained from the secondary channel. Different
kinds of disturbances in the measured CO2, CH4 and O2 columns are compensating when
calculating XCO2 and XCH4 by rationing the target gas column over the co-observed
O2 columns.
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Figure 4 presents the correlations of the calibrated retrievals from SN38 instru-
ment with respect to those from SN53 instrument. Different colors in the figure repre-
sent measurements taken on different days. The mean biases observed are as follows:
−0.0002 ± 0.4143 ppm for XCO2, −0.0054 ± 1.7717 ppb for XCH4 and 0.2225 ± 4.9755 ppb
for XCO. Notably, some data outliers, especially on 24–25 July and 2 August, are mainly
due to cloud cover during the measurements. The variation in solar intensity due to
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cloud disturbances did not exceed the filtering criteria and therefore the trace gas results
were not excluded during the data processing.

Remote Sens. 2024, 16, 4022 7 of 15 
 

 

Figure 4 presents the correlations of the calibrated retrievals from SN38 instrument 
with respect to those from SN53 instrument. Different colors in the figure represent 
measurements taken on different days. The mean biases observed are as follows: −0.0002 
± 0.4143 ppm for XCO2, −0.0054 ± 1.7717 ppb for XCH4 and 0.2225 ± 4.9755 ppb for XCO. 
Notably, some data outliers, especially on 24–25 July and 2 August, are mainly due to 
cloud cover during the measurements. The variation in solar intensity due to cloud 
disturbances did not exceed the filtering criteria and therefore the trace gas results were 
not excluded during the data processing. 

Note that the following XCO2, XCH4 and XCO results refer to the value obtained after 
applying the instrument-specific calibration factors. 

 
Figure 4. Correlations of calibrated XCO2, XCH4 and XCO between the two instruments. 

3.2. COCCON Observations 
3.2.1. XAIR 

Figure 5 presents the time-series of XAIR for two instruments from August to 
September. The performance indicator parameter, XAIR, showed generally consistent 
values around 1 for both instruments, with specific values of 1.004 ± 0.0011 for SN38 and 
0.9975 ± 0.0009 for SN53 (Table 1), indicating no obvious instrumental drifts or operation 
problems during the period. It also further demonstrated that the COCCON instrument 
is robust for long-distance transport and field campaigns. 

 
Figure 5. Time series of XAIR during field campaign in Zhangzi County. XAIR is a sensitive 
indication for instrumental drifts and operation problems. 

  

08-02 08-03 08-04 08-05 08-06 08-07 08-12 08-13 08-19 08-30 08-31 09-01 09-02 09-04 09-05 09-06 09-07
0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01
SN38
SN53

Date

XA
IR

Figure 4. Correlations of calibrated XCO2, XCH4 and XCO between the two instruments.

Note that the following XCO2, XCH4 and XCO results refer to the value obtained after
applying the instrument-specific calibration factors.

3.2. COCCON Observations
3.2.1. XAIR

Figure 5 presents the time-series of XAIR for two instruments from August to Septem-
ber. The performance indicator parameter, XAIR, showed generally consistent values
around 1 for both instruments, with specific values of 1.004 ± 0.0011 for SN38 and
0.9975 ± 0.0009 for SN53 (Table 1), indicating no obvious instrumental drifts or operation
problems during the period. It also further demonstrated that the COCCON instrument is
robust for long-distance transport and field campaigns.
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Figure 5. Time series of XAIR during field campaign in Zhangzi County. XAIR is a sensitive indication
for instrumental drifts and operation problems.

Table 1. Summary of COCCON XCO2, XCH4 and XCO measurements observed in Zhangzi County.

COCCON XAIR XCO2 (ppm) XCH4 (ppb) XCO (ppb)

SN38 1.004 ± 0.0011 413.66 ± 1.20 1999.71 ± 73.69 123.92 ± 19.13
SN53 0.9975 ± 0.0009 413.64 ± 1.08 2004.10 ± 85.62 123.96 ± 19.15
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3.2.2. XCO2

Although the two instruments were positioned up to approximately 10 km apart, their
observations generally exhibited similar trends in XCO2 level (Figure 6). The mean XCO2
values were 413.66 ± 1.20 ppm for SN38 and 413.64 ± 1.08 ppm for SN53, respectively.
The averaged bias between the instruments over the field campaign was 0.02 ± 0.89 ppm.
The maximal difference up to 5.09 ppm occurred on the morning of 7 September, when
SN38 was positioned in the northeast (site2) and SN53 at the stationary site. The significant
increase in XCO2 may be attributed to the proximity of SN38 to a power plant, which is a
different source compared to the observations from SN53.
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Figure 6. Similar to Figure 5, but for XCO2.

3.2.3. XCH4

XCH4 exhibits higher variability compared to XCO2, reflecting the influence of local
coal mines, which are major sources of CH4 emissions in this region [50]. Over the mea-
surement period, the two instruments recorded similar mean values: 1999.71 ± 73.69 ppb
for SN38 and 2004.10 ± 85.62 ppb for SN53 (see Figure 7). The XCH4 levels and their
variation in this coal mine aggregation area were generally higher compared to urban
areas, such as Xuzhou, where the mean values were 1942.67 ± 13.02 ppb for SN38 and
1942.15 ± 11.57 ppb for SN53.
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Figure 7. Similar to Figure 5, but for XCH4.

The average bias between the instruments was −4.39 ± 107.68 ppb during the field
campaign, corresponding to a small relative difference of approximately −0.22%. However,
individual differences varied significantly, ranging between −1138.89 (−57%) on 7 Septem-
ber and 748.19 ppb (37%) on 6 September. Significant XCH4 enhancements were observed
when the instruments were positioned at site10, close to the local coal mine in the south,
i.e., on 5–7 August and 6 September (after 1 pm) for SN38 and on 7 September (after 1 pm)
for SN53.
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Figure 8 shows an example day, when SN53 was relocated from its stationary site
to site10 after 1 pm. This move resulted in a significant increase in XCH4 levels, with an
average value of 2128.34 ppb ± 183.94 ppb, ranging from 1963.10 to 3118.71 ppb.
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Figure 8. Time series of XCH4 for the example day of 7 September.

3.2.4. XCO

The averaged XCO levels in the coal mining areas are 123.92 ± 19.13 ppb for SN38
and 123.96 ± 19.15 ppb for SN53 Figure 9. In comparison, the XCO levels in urban
areas like Xuzhou are slightly lower, with averages of 113.86 ± 12.06 ppb for SN38 and
111.98 ± 11.83 ppb for SN53. This results in a mean difference of approximately 10 ppb in
this region. The elevated XCO concentrations in the mining areas are mostly attributed to
the incomplete combustion of CH4 emitted from coal mining activities or the natural gas
used in residential areas [51–53].
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Figure 9. Similar to Figure 5, but for XCO.

3.3. Comparision Between COCCON and TROPOMI Datasets

Figure 10 presents the correlation in XCO between TROPOMI and COCCON. The
COCCON XCO values were collocated with TROPOMI XCO within 2 h of the satellite
overpass over Zhangzi. The spatial collocation criterion was set to a 20 km radius for
TROPOMI data. Additionally, satellite measurements were restricted to those with a
quality assurance value (qa) equal to or larger than 0.7, representing measurements under
clear-sky conditions or the presence of low-level clouds.

The correlation between COCCON and TROPOMI XCO shows good agreement,
with an R2 value of 0.7042 and a mean difference of 7.15 ± 9.49 ppb for both instrument
measurements. When collocated TROPOMI XCO points were collected within larger spatial
radii of 50 km (see Appendix A Figure A1), the resulting bias increased to 8.74 ± 10.29 ppb.
The statistics are summarized in Table 2.
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Figure 10. Correlation plot between TROPOMI and COCCON XCO measurements. Circle and
triangle symbols represent collocated SN38 and SN53 data, respectively. Error bar denotes the
standard deviations. Different colors denote measurements on different days.

Table 2. The mean biases in XCO measurements between COCCON and TROPOMI, as well as in
XCO2 and XCH4 measurements between COCCON and CAMS.

XCO2 (ppm) XCH4 (ppb) XCO (ppb)

COCCON-TROPOMI
SN38 -- -- 5.91 ± 9.60
SN53 -- -- 8.67 ± 9.51

COCCON-CAMS
SN38 −6.43 ± 1.73 14.05 ± 34.75 --
SN53 −6.42 ± 1.81 16.93 ± 28.71 --

3.4. Comparision Between COCCON and CAMS Datasets

Figures 11 and 12 present correlations between the collocated CAMS and COCCON
XCO2 and XCH4 for SN38 and SN53, respectively. The COCCON measurements were
averaged from data collected 2 h before and after 2 p.m., local time, with error bars
representing standard deviations. The CAMS results were obtained from the mean value
within a 20 km radius at 2 p.m., local time.
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The collocated CAMS data generally show higher XCO2 and lower XCH4 compared
to the COCCON results. The CAMS modeled values that were 6.43 ± 1.73 ppm higher
in XCO2 and 14.05 ± 34.75 ppb lower in XCH4 compared to SN38 and 6.42 ± 1.81 and
16.93 ± 28.71 ppb compared to SN53. For some days, such as on 5 August (13 August),
SN38 (SN53) measured significant XCH4 signals around 2 p.m., local time, resulting in a
high standard deviation (error bar).

4. Conclusions

In this paper, total columns of CO2, CH4 and CO were measured for the first time
in Zhangzi County, a coal mine aggregation area in China. Two portable solar-viewing
FTIR instruments (SN38 and SN53) within the framework of the COCCON network were
employed over two months, August and September, 2022.

Side-by-side measurements were conducted after the instruments were shipped to
China, during the campaign and after the campaign, presenting good consistence between
the two instruments. The calibrated results indicated minimal biases in two instruments.
Additionally, the performance indicator parameter, XAIR, during the observation period
showed minor variations (standard deviation < 0.21%). These results further highlight the
robust performance of the COCCON instruments.

Both COCCON instruments observed similar mean values for XCO2, XCH4 and XCO,
although there were large differences on various days. Among these gases, XCH4 exhibited
the highest variability for both instruments, reflecting the influence of coal mine emissions,
a major source of CH4 in this region.

The COCCON results were also compared with TROPOMI (for XCO) and CAMS
analysis (for XCO2 and XCH4) datasets, showing generally better agreements in COCCON–
TROPOMI than COCCON–CAMS. TROPOMI observed higher values of 5.91 ± 9.60 ppb
and 8.67 ± 9.51 ppb in XCO for SN38 and SN53, respectively. CAMS generally overes-
timated XCO2, reporting values of 6.43 ± 1.73 ppm for SN38 and 6.42 ± 1.81 ppm for
SN53. In contrast, CAMS underestimated XCH4, with values of 14.05 ± 34.7 ppb and
16.93 ± 28.71 ppb compared to COCCON for SN38 and SN53, respectively.

The stability and accuracy of COCCON ensure its capability for validating satellite
observations and detecting local GHG sources. The operation of the COCCON spectrometer
in coal mine areas will provide critical insights into emissions from such high-impact
sources. Combined with modeling efforts, COCCON measurements will enhance the
accuracy of emission source estimations.
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COCCON–TROPOMI than COCCON–CAMS. TROPOMI observed higher values of 5.91 
± 9.60 ppb and 8.67 ± 9.51 ppb in XCO for SN38 and SN53, respectively. CAMS generally 
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The stability and accuracy of COCCON ensure its capability for validating satellite 
observations and detecting local GHG sources. The operation of the COCCON spectrom-
eter in coal mine areas will provide critical insights into emissions from such high-impact 
sources. Combined with modeling efforts, COCCON measurements will enhance the ac-
curacy of emission source estimations. 
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Figure A1. Similar to Figure 10 but with a spatial criterion of 50 km radius for collocated TROPOMI XCO. 
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