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Summary

Smart contracts are programs which run in a blockchain network. They manage
access to resources that are stored on the blockchain, such as cryptocurrencies
or tokens representing real-world assets. Smart contracts are unique in that
they allow anyone to run a program on a di�erent computer, while still being
certain about the execution semantics, and about what source code is being
executed. This comes at the price of immutability: Once deployed, the source
code smart contracts generally cannot be changed. Furthermore, the source
code, including possible programming errors, is usually publicly available. This
means that any vulnerability has a large probability of being exploited. Since
smart contracts cannot be patched, it is very important that smart contracts are
correct and secure upon deployment.

Indeed, formal analysis of smart contracts has been a very active research
area. Many tools for static analysis and formal veri�cation of di�erent classes
of properties have been developed. However, a long and ongoing history of
vulnerabilities and exploits of smart contract applications shows that security
in this �eld is very much a pressing issue. In the domain of smart contract ap-
plications, correctness properties are highly application speci�c, which places
them out of reach of static analysis tools. Existing tools for formal veri�ca-
tion, where developers can provide a speci�cation, still lack the mechanisms to
express many typical correctness and security properties.

In my thesis, I contribute to the �eld of formal methods for smart contracts
by creating the Scar approach for model-driven development of correct and
secure smart contract applications. Before implementing an application, smart
contract developers �rst describe it in terms of an intuitive, platform-agnostic
metamodel. Within this model, they can also specify high-level security and
behavioral correctness properties, and check whether the model contains any
inconsistencies. Finally, a combination of code generation, static analyses, and
formal veri�cation of automatically generated formal annotations leads to an
implementation that is correct and secure w.r.t. the initial model.
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Main Contributions

My main contribution consists of a metamodel of smart contract application
with formal speci�cation of behavioral correctness. On this foundation, I de-
velop a capability-based approach for specifying and verifying security prop-
erties. Furthermore, I propose a practical notion of liveness properties in smart
contracts, and a way of specifying liveness properties that is intuitive and re-
sults in practically feasible proofs. Apart from the abstract metamodel, I also
develop platform-speci�c methods that are required to translate a model into a
correct and secure implementation.

An Overview of Smart Contracts and Formal Veri�cation Before intro-
ducing the Scar approach, I give an overview of the history and the technolog-
ical foundations of smart contracts. Furthermore, I present a characterization
of smart contracts which forms the base for the formalization developed in the
later chapters.

Furthermore, I give an introduction to the research area of formal meth-
ods for smart contracts. I give an overview of the main approaches, possible
classi�cations, and of individual tools that are of interest.

The Scar Approach As the base for the model-driven Scar approach, I de-
velop a metamodel for smart contract applications. Structurally, an applications
consists of a set of contracts, which in turn have state variables and functions.
State variables are typed according to a simple type system inspired by the
Solidity language, which I envision to be the main practical use case of the
approach.

In addition to the structural description, Scar also provides a way to de-
scribe the behavior of an application: The ScarML functional speci�cation
language lets developers specify the behavior of functions in terms of pre- and
postconditions. Correctness properties of the individual contracts of an appli-
cation can be speci�ed in the form of invariants.

Furthermore, Scar provides a process to derive a source code implemen-
tation from a given model: A source code skeleton is automatically generated,
with the functions annotated with formal speci�cation. When the functions are
implemented such that they satisfy the generated speci�cation, the developer
can be sure that their implementation matches the intended behavior encoded
in the Scar model.

The Scar metamodel is an abstraction in several ways: First, it abstracts
from the smart contract platform and the programming language that is going
to be used. Importantly, this makes the model independent from the details of
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the underlying platform, e.g., the Ethereum Virtual Machine and programming
language, e.g., Solidity. The abstraction also reduces the necessary e�ort in case
of changes in a platform or programming language. In the relatively new �eld
of smart contracts, these changes happen frequently, and can invalidate tools
which operate directly on a speci�c version of a language. In a similar way, the
metamodel is also an abstraction from tool- or version-speci�c speci�cation
languages.

Overall, the Scar approach provides a simple way of describing a smart
contract applications and application-speci�c correctness properties. Develop-
ers can work on an intuitive abstraction and verify that their implementation
conforms to the properties speci�ed on the model.

Model-driven Security Smart contract applications manage resources in the
form of cryptocurrency or tokens representing other assets. Therefore, security
is eminently important in the smart contract domain, and functional correct-
ness problems often overlap with security issues. Although a plethora of tools
especially for static analysis have been developed, security continues to be a
concern. In part, this is because security is often an application-speci�c prop-
erty.

As a contribution to smart contract security, the Scar approach is extended:
Developers are required to specify security properties upfront on the abstract
model of the application. They are then provided with a process resulting in an
implementation that is correct with respect to these security properties.

I identify three security-relevant capabilities: Modifying the state of an ap-
plication, calling functions, and transferring currency. Furthermore, I de�ne the
actors to which these capabilities are attached, namely accounts and smart con-
tract functions. In the metamodel, actors can be summarized in roles. I develop
a set-based semantics for the capabilities, and de�ne notions of consistency and
least privilege on the model level. Furthermore, I develop a process for develop-
ing an implementation that is correct w.r.t. a given model. This process consists
of code and annotation generation, static analysis and formal veri�cation. The
process is instantiated for the Solidity programming language.

Liveness Properties An important part of behavioral correctness of smart
contracts is described by liveness properties, e.g., in the form of guarantees that
an action will lead to some desirable result in the future. This kind of property
can be hard to specify and verify, in particular because application-speci�c fair-
ness assumptions w.r.t. function invocation and the behavior of other parties are
usually necessary for any liveness proof to succeed.
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In my work, I develop an approach for modeling and verifying liveness
properties. First, I analyze smart contract liveness properties discussed in the
literature. I �nd that the smart contract paradigm of decentralization and trust-
lessness induces a certain, commonly occurring kind of liveness property which
is tied to the ability of an agent to induce a state change, e.g., a transfer of re-
sources. I introduce the ScarTL speci�cation language, which contains formal
speci�cation concepts which capture this notion of liveness, and extend the
Scar metamodel accordingly. Finally, I develop an approach for verifying live-
ness properties on the model level by deriving them from the function contracts
and invariants that are already part of the model.

Speci�cation Languages for Frame Condition In order to obtain an im-
plementation which is correct and secure w.r.t. a given model, my approach
requires some domain-speci�c methods. These include automatic generation
of code and formal speci�cation. In particular, my approach generates frame
conditions, i.e., a speci�cation of what a smart contract function cannot or will
not do. These conditions are useful to modularize functional correctness proofs,
but they are also necessary for the capability-based security approach. I develop
speci�cation languages for frame conditions in two speci�c platforms, namely
Ethereum and Hyperledger Fabric. The languages are based on the theory of
dynamic frames.

Outline

Before presenting my contributions around the Scar approach, a contextual-
ization is appropriate. Therefore, Chapter 1, gives an overview of the history of
smart contracts, and of their characteristics. Since the term “smart contract” is
not clearly de�ned in the literature, the characterization is also intended to be
a de�nition of what constitutes a smart contract for the purposes of this work.

Chapter 2 motivates the necessity of formal analysis for smart contracts,
and give a comprehensive overview of the existing tools and methodologies.

In Chapter 3, the Scar approach is introduced, a model-driven development
process based on formal veri�cation. Scar enables developers to formalize the
structure and intended behavior of an application without having to focus on
speci�cs of a platform or programming language.

The Scar formal model serves as the basis for speci�cation and veri�cation
of application-level correctness and security properties. In Chapter 4 the Scar
metamodel is extended to include roles and capabilities. This allows developers
to specify and verify application-level access control policies. Chapter 5 ana-
lyzes the prevalence of liveness properties in smart contract applications. As
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a consequence, Scar is extended to include common temporal properties, and
approaches for their veri�cation.

In Chapter 6, two speci�cation languages for frame conditions are pre-
sented, one for the Ethereum platform, and one for Hyperledger Fabric con-
tracts written in Java. Chapter 7 concludes.

New and Previously Published Material

Some of the material in this thesis has been previously published. Some other
parts are not yet submitted or have been written solely for this thesis. This
section is dedicated to attribution.

The �rst two chapters have been written exclusively for this thesis. The
third chapter, which describes the Scar metamodel and overall approach, is
scheduled for submission as a journal paper.

Chapter 4 is largely based on [SWB23], with the main addition being the
evaluation of the capability-based approach on the Palinodia case study. Chap-
ter 5 is based on [SB24], with some additional work in the sketched veri�cation
approaches. Chapter 6 is based on [BS20].
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Chapter 1

An Introduction to Smart

Contracts

Smart contract applications are a relatively new phenomenon. This chapter will
�rst give an overview of the history of the concept, mainly in terms of technol-
ogy, but also in terms of the societal perspectives from which smart contracts
originate. Then, we give an introduction to the characteristics of smart con-
tracts. Furthermore, we describe existing platforms, and introduce some use
cases and examples.

1.1 Historical Overview

This section presents an overview of the technological precursors and prelim-
inaries of smart contracts.

Blockchain and Bitcoin

The concept of smart contracts as viewed in this work is tightly bound to the
concept of a blockchain. A blockchain is an append-only data structure which
is replicated across a decentralized network. New data is added according to a
consensus protocol. The security of the system is guaranteed by cryptographic
primitives.

Public-key Cryptography Public-key cryptography, also known as asym-
metric cryptography, is a fundamental technology in modern information secu-
rity, underpinning a wide array of protocols and applications that ensure con-
�dentiality, integrity, and authenticity of digital communications. This crypto-
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2 CHAPTER 1. AN INTRODUCTION TO SMART CONTRACTS

graphic paradigm was �rst conceptualized in the groundbreaking work of Di�e
and Hellman in 1976 [DH76], who introduced the notion of key pairs to solve
the key distribution problem inherent in symmetric cryptography.

In public-key cryptography, each participant possesses a pair of related
keys: a public key and a private key. The public key, as its name suggests,
is distributed publicly and used by others to encrypt messages intended for the
key pair owner. Conversely, the private key is kept secret and is used to de-
crypt these messages. The security of this system relies on the computational
infeasibility of deriving the private key from the public key, even though they
are mathematically linked. This asymmetry eliminates the need for a secure
channel to exchange keys, a signi�cant limitation in symmetric key cryptogra-
phy.

The most widely used public-key algorithms include RSA (Rivest-Shamir-
Adleman) and ECC (Elliptic Curve Cryptography). RSA, based on the practical
di�culty of factoring large composite numbers, was one of the �rst public-key
cryptosystems and remains widely implemented. ECC, which is based on the
properties of elliptic curves over �nite �elds, o�ers similar security levels to
RSA but with signi�cantly smaller key sizes, leading to e�ciency gains in both
computational overhead and memory usage.

Two fundamental applications of public-key cryptography are encryption
and digital signatures. Messages to some agent are encrypted with this agent’s
public key, and can only be decrypted with the associated private key. Con-
versely, when a private key is used to create a digital signature of a message,
the sender’s public key can be used to validate that the message originates from
the sender (or at least someone who knows the sender’s private key).

Hash Functions Hash functions originate in checksums, i.e., calculations on
some data with the purpose of detecting errors that may have been introduced.

A hash function is a deterministic algorithm that maps an input of arbitrary
length to a �xed-size value, typically referred to as the hash value or digest.
This transformation is designed to be fast and to produce outputs that appear
random, despite being derived from the inputs in a deterministic manner.

Cryptographic hash functions have the following additional properties:

• Pre-image resistance: given a hash value, it is computationally infeasible
to �nd the input

• Second pre-image resistance: given an input, it is di�cult to �nd a di�er-
ent input that produces the same hash value

• Collision resistance: it is hard to �nd any two distinct inputs that hash to
the same output
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Cryptographic hash functions, such as SHA-256 (Secure Hash Algorithm
256-bit [NIS02]) and MD5 (Message Digest Algorithm 5, [Riv92]), are speci�-
cally designed to meet these security properties. SHA-256, part of the SHA-2
family developed by the National Security Agency (NSA), produces a 256-bit
hash value and is widely used in various security protocols, including SSL/TLS
for secure internet communications. Despite its historical popularity, MD5 is
no longer considered secure against attackers due to vulnerabilities that allow
for the construction of collisions [XLF13].

In the context of digital signatures, hash functions contribute to the pro-
cess by which a document is signed. The document is �rst hashed, and then
the resulting hash value is encrypted with a private key to produce the digital
signature. This process ensures that the signature is both compact and sensitive
to any changes in the document, since even a minor modi�cation will result in
a drastically di�erent hash value due to the avalanche e�ect.

Hashcash Hashcash [Bac02] is a proof-of-work (PoW) algorithm originally
proposed by Adam Back in 1997 as a mechanism to reduce email spam and
denial-of-service attacks. The core concept involves requiring a computational
e�ort to be performed by the sender of a message, which acts as a deterrent
against the mass sending of unsolicited messages. This computational task in-
volves solving a cryptographic puzzle that is simple to verify but computation-
ally intensive to �nd: In Hashcash, the sender of an email must include a header
containing a hash value that meets certain criteria. Speci�cally, the hash value
must have a speci�ed number of leading zeros, a requirement that necessitates
iterating through numerous inputs to �nd a suitable hash. The original imple-
mentation was based on the SHA-1 hash function, but modern implementations
use more secure alternatives like SHA-256 due to vulnerabilities in SHA-1.

An important property of Hashcash is its ability to scale the di�culty of the
proof-of-work, making it adaptable to varying levels of computational power
and desired security. The computational e�ort required to solve the puzzle can
be adjusted by altering the number of leading zeros required in the hash output,
allowing the system to remain e�ective as processing power evolves.

Bitcoin The Bitcoin protocol builds on the above technologies to provide a
pseudonymous, decentralized, peer-to-peer transaction platform. It was in-
troduced in 2008 by an anonymous entity known as Satoshi Nakamoto in a
whitepaper titled “Bitcoin: A Peer-to-Peer Electronic Cash System” [Nak08].
Bitcoin is the �rst decentralized cryptocurrency, and the �rst implementation
of a blockchain. Bitcoin addresses several fundamental challenges in digital cur-
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rency, such as the prevention of double-spending without relying on a central
authority.

Bitcoin was conceived as an electronic payment system based on crypto-
graphic proof instead of trust or regulation. The whitepaper outlines the design
principles and mechanisms that underpin Bitcoin. Central to Bitcoin’s concept
is the idea of a decentralized network where transactions are validated and
recorded by a distributed network of participants rather than a central entity.
Bitcoin’s decentralized nature aims to make it resilient against censorship and
centralized control, which are perceived to be prevalent issues in traditional
�nancial systems.

Bitcoin operates on a blockchain, a public ledger that records all transac-
tions in a chronological order. Each block mainly consists of a set of transac-
tions, but also contains a reference to the previous block, forming a chain of
blocks. The blockchain is maintained by a network of nodes, each containing
a copy of the ledger. This distributed ledger technology ensures transparency
and immutability of transaction records.

Each user of the Bitcoin blockchain has a pair of cryptographic keys—a pub-
lic key, which serves as the address to receive bitcoins, and a private key, which
is used to sign transactions. A transaction includes inputs (references to previ-
ous transactions) and outputs (addresses and amounts).

Each Bitcoin transaction is digitally signed using the sender’s private key
and broadcast to the network. Transactions are grouped into blocks in the form
of Merkle trees [Mer88]. The root hash of the tree is part of the block header.
Figure 1.1 illustrates the contents of blocks.

New blocks are appended to the blockchain by so-called miner nodes. Min-
ing, i.e., the process of creating a new block, happens in the context of the
Proof-of-Work (PoW) consensus algorithm, inspired by Hashcash. To create a
valid block, mining nodes must �nd a random value (a nonce) such that the
hash of the entire block starts with a number of zeroes. This number deter-
mines the mining di�culty and is scaled such that a new block is created every
ten minutes, on average. Once a block is successfully mined, it is broadcast to
the network and added to the other nodes’ local copies of the blockchain. The
miner is rewarded with newly created bitcoins and transaction fees. In case
of competing blocks, the protocol stipulates that nodes should accept a longer
incoming chain.

The PoW mechanism serves multiple purposes. The di�culty of PoW makes
it computationally infeasible to alter the blockchain, as an attacker would need
to re-mine all subsequent blocks. Furthermore, PoW allows any participant
with su�cient computational power to participate in mining, promoting a de-
centralized network. Lastly, miners are incentivized through block rewards and
transaction fees, ensuring continuous network availability.
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Figure 1.1: Illustration of the blockchain data structure

Bitcoin Script Bitcoin Script [Bra19] is a programming language integrated
into the Bitcoin protocol. It is intended to automate the validation and execu-
tion of transactions on the Bitcoin network. Bitcoin Script is an assembly-like
stack-based language designed speci�cally for the purpose of de�ning transac-
tion conditions.

Importantly, Bitcoin Script is Turing incomplete, meaning it lacks the ca-
pability to perform arbitrary computations. This limitation is a deliberate de-
sign choice to mitigate risks such as in�nite loops and other vulnerabilities that
could arise from more complex programming constructs.

The language comprises a set of prede�ned operations (opcodes) that in-
clude basic arithmetic, logical operations, and cryptographic functions. These
opcodes are used to de�ne the conditions under which a Bitcoin transaction can
be considered valid. For instance, common operations include “CHECKSIG” for
verifying digital signatures and “HASH160” for executing hash functions. The
combination of these operations allows the construction of various transaction
types, from simple payments to more complex multi-signature transactions.

Other consensus mechanisms Bitcoin’s proof of work consensus mecha-
nism is extremely wasteful in terms of power consumption, especially when the
price of Bitcoin tokens is high and miners are incentivized to work on adding
new blocks even at high di�culties. To avoid this, several other consensus
mechanisms have been proposed and implemented.

Proof of Stake In proof of stake consensus, the creator of the next block
(often called “validator” in this context) is determined by network participants
according to the share of tokens they are willing to “stake”, i.e., commit as col-
lateral. In the system used, e.g., by Ethereum, a veri�able random function
weighed with the stake sizes chooses the next validator. In “delegated” proof of
stake, token holders vote for the next validator.

This introduces some degree of centralization, since participants with more
�nancial resources have a higher power of decision-making.
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Permissioned Mechanisms Other consensus mechanisms that were pro-
posed for blockchain networks have an even larger degree of centralization
built into them, as the set of validators is limited, or validators have to be known
so that misbehavior can be punished. This includes the Byzantine Fault Toler-
ance algorithms used in Hyperledger Fabric, as well as the “Proof of Authority”
system promoted by some other platforms.

Stored Procedures

When viewing blockchains as databases, the closest historical analogy to smart
contracts are stored procedures. Stored procedures are precompiled user pro-
grams, written in a query language, which run inside the database server[Ris09].
Their earliest occurrence was in IBM System R, the �rst implementation of the
SQL database query language [Cha+81].

Stored procedures typically do not only execute a query for the application
program, but they manipulate other data in the database. They encapsulate, and
thereby enable the re-use of, common business logic. At the same time, they
may increase performance on the side of the calling application. They may
also be advantageous if the communication between the application program
and the database is slow or unreliable, since calling a stored procedure requires
just a single message, as opposed to a string of messages and back-and-forth
communication. Regarding security, stored procedures can be access controlled
directly, like other objects in the database.

However, stored procedures have also been regarded as bad practice in
software engineering. One important point of criticism is that the separa-
tion of business logic and data is violated by procedures which are stored as
data, and that this leads to di�culties in version controlling, testing and main-
taining the code. They also lead to a tight coupling between application and
database, which makes changes to either of the two more challenging. Lastly,
even though stored procedures can be access controlled, it is easy to introduce
security vulnerabilities in them, e.g., when the e�ects of a procedure are not
fully understood by a developer.

When a blockchain is viewed as a database, smart contracts are largely
equivalent to stored procedures. They are compiled programs, stored within
the database they manipulate. The di�erences are due to the di�erent envi-
ronments in which they run, particularly by the emphasis on decentralization
in smart contract platforms. In contrast to stored procedures, calling a smart
contract’s functions is typically the only way the database can be changed. Fur-
thermore, smart contracts typically cannot be changed at all, or only at the cost
of some decentralization. While access control to stored procedures can be
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�ne-grained, smart contract functions are, in principle, open for every network
agent to call them – they have to do their own access control.

Szabo’s Smart Contracts

The term “Smart Contract” originates in a 1997 paper by Nick Szabo [Sza97].
In it, Szabo envisions contracts which run on computers. They combine user
interfaces and protocols (especially cryptographic protocols) to formalize and
secure relationships in networks.

According to Szabo, there are three main objectives of smart contract de-
sign: First, observability, i.e., “the ability of the principals to observe each oth-
ers’ performance of the contract”; second, veri�ability, i.e., “the ability of a prin-
cipal to prove to an adjudicator that a contract has been performed or breached”;
and third, privity, i.e., “the principle that knowledge and control over the con-
tents and performance of a contract should be distributed among parties only
as much as is necessary for the performance of that contract”.

Szabo discusses various cryptographic techniques, such as digital signa-
tures, mixing, and “post-unforgeable transaction logs”. The latter he proposes
to realize via one-way hash functions, reminiscent of the way hashing was later
to be used in blockchain networks.

In his paper, Szabo considers a wide range of possible applications for dig-
ital smart contracts, including credit, digital rights management, and payment
systems. He also envisions autonomous agents who can assume the role of a
contract party, or of an adjudicator to a contract.

Szabo’s ideas and the newly-coined term “Smart Contract” gained promi-
nence only in 2016, when the developers of the Ethereum blockchain (cf. Sec-
tion 1.3) adopted the term.

Ethereum

The current concept of smart contracts as computer programs in decentral-
ized networks was heavily in�uenced or, one might say, introduced with the
description and implementation of the Ethereum platform and the Ethereum
virtual machine in 2016. The Ethereum platform is described in Section 1.3.
In the following, we characterize the type of smart contracts, platforms and
applications that are analyzed in this thesis.
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1.2 Characterization of Smart Contracts

There is no established consensus on the precise de�nition of what constitutes
a smart contract. In the wake of Ethereum’s success, many di�erent smart con-
tract platforms were created, with very di�erent goals and perspectives.

These perspectives range from simply regarding smart contracts as “pro-
grams stored on blockchains” to “programs running in conjunction with dis-
tributed ledgers” [And+18]. Others still view smart contracts as programs that
are meant to automatically enforce legal contracts, or highlight the fact that
smart contracts are programs that can be run on someone else’s computer with-
out relinquishing control over the execution.

To give a clearer picture of the domain this work is concerned with, this
section will give an introduction of the characteristics of smart contracts, as
well as highlight some consequences of these characteristics.

De�ning Characteristics

We present an overview of the main characteristics of smart contracts, smart
contract applications, and smart contract platforms for the purposes of this
work.

Turing-complete Programs First of all, for the purposes of this work, smart
contracts are computer programs written in turing-complete programming lan-
guages.

Many non-turing-complete smart contract languages have been developed
(cf. Section 1.3), starting with Bitcoin Script (see Section 1.1). Some of these have
been designed with the explicit goal of simplifying security analysis and formal
veri�cation – which becomes much easier with more restricted languages.

Here, however, only smart contracts in turing-complete languages will be
considered. This is due to two main reasons: First of all, the vast majority of
smart contract applications have been written in turing-complete languages.
While this does not prove the necessity of turing-complete smart contract lan-
guages (and may in fact just be an artifact of the prominence of the Ethereum
platform), common usage is still a reason to focus on these platforms. Secondly,
this work is aimed at (potentially large-scale) applications in a broad sense. The
restrictions of non-turing-complete languages do not �t this vision.

Decentralized Execution Environment Smart contracts are characterized
by running in a decentralized environment. A system is “decentralized”, for our
purposes, if the authority over the system does not rest with a single entity, but
is spread among di�erent groups or entities. This contrasts with a system being
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distributed, in that a system may be distributed over many di�erent machines in
di�erent locations, but still be controlled by one entity. Decentralization always
has an aspect of sharing decision-making power; in that sense, it is political.

In computer networks, the decentralization of a platform also determines to
what degree a participant or user of the platform can be certain of the execution
environment. In a centralized setting, by de�nition, it is possible for a single
entity to make signi�cant changes to the operation of a platform. In a decen-
tralized setting, such changes require a lot of coordination and are thus harder
to make. This gives participants a degree of certainty about the environment
they �nd themselves in.

Open World Related to decentralization, smart contracts are furthermore
characterized by existing in a public setting in which there are no general limi-
tations to participation. In a blockchain platform, this is exempli�ed by the fact
that anyone can run a node to create and validate new blocks, and that anyone
can submit transactions and expect them to be carried out eventually. Further-
more, the code of smart contracts must be publicly available in some form (in
blockchain platforms, the executable code is stored directly on the ledger, like
a stored procedure in a database).

There have been a number of so-called private blockchain platforms. Hy-
perledger Fabric [And+18] (see Section 1.3) di�erentiates in two dimensions:
“permissioned / permission-less” describes whether the set of participants who
are allowed to run a node is limited, and “public / private” refers to whether
any network participant is allowed to make transactions.

In this work, we focus on systems that are, by this de�nition, public and
permission-less: Everyone can run a node, and everyone can make transactions.
This includes untrusted and adversarial actors. Applications operating in such
systems need to take this into account, in particular when considering questions
of security.

Nevertheless, the methods developed in this thesis may still be useful for
platforms which do not �t this description, if adapted accordingly.

State Smart contract platforms, despite being decentralized in nature, create
a centralized view of the overall state (often called the ledger state or blockchain
state, depending on the underlying data structure). This state is publicly visible
to everyone on the platform. It can be viewed abstractly as a set of storage
locations.

The central de�ning characteristic of a smart contract is that it de�nes a
namespace within this state, i.e., a set of storage locations that can only be
changed by interacting with the smart contract.
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For this, smart contracts expose a set of functions, which can be called by all
participants of the platform, including other contracts. Importantly, calling a
function of a smart contract is the only way to change the state in this contract’s
namespace.

Conversely, a smart contract’s functions are also the only point where ac-
cess to the contract’s state can be restricted – there is no platform-level access
control mechanism. If some functionality is supposed to be limited to a sub-
set of actors, the corresponding checks can only be carried out in the function
itself.

Transactionality, Determinism, Termination In smart contracts, func-
tion calls are transactional in nature: A call either succeeds and results in some
change to the overall state, or it reverts completely, without any e�ect. This in-
cludes nested function calls: If any call in a chain fails, no changes take e�ect.

Furthermore, to ensure reproducible behavior across the decentralized net-
work, smart contract functions must be deterministic. Therefore, any potential
sources of nondeterminism, like parallel computation or �oating-point arith-
metic, must be ruled out in some form.

For similar reasons, smart contract functions must terminate – otherwise,
they interrupt the network. Some platforms ensure termination by restrict-
ing the programming language accordingly, but the turing-complete platforms
considered in this work have to enforce termination in other ways.

Accounts Participants in smart contract platforms can be real-world persons
or organizations, who need to be identi�able in some way and to have a way
to authenticate themselves (usually by a cryptographic key pair). Besides these
external participants, contracts themselves have also been viewed as actors, due
to their ability to call other contracts, but also due to their (relative) immutabil-
ity. This gives rise to the notion of accounts, which may either represent a per-
son or an organization in the real world (external account), or a smart contract
(contract account).

Cryptocurrency Lastly, in this thesis, we focus on smart contract platforms
that have a built-in cryptocurrency, i.e., fungible digital tokens that are ascribed
some monetary value and that can be transferred between accounts. Cryp-
tocurrencies have been a de�ning feature of the vast majority of smart con-
tract platforms, and arguably also played an important role in the hype around
them. Although some platforms de-emphasize cryptocurrencies (e.g., Hyper-
ledger Fabric, cf. Section 1.3), the most prominent platforms have them built
in to a degree that cannot be ignored in any analysis of smart contract cor-
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rectness and security. This includes special data types for currency, built-in
account balances recorded in the native currency, as well as special primitives
for transferring currency between accounts.

Implications

In summary, smart contracts are turing-complete programs which expose some
functionality to the participants in an open, decentralized network. They op-
erate on a shared central data structure (the ledger), on which they de�ne a
namespace. Within this namespace, the state of the ledger can only be changed
by interacting with the smart contract’s functions. These functions are deter-
ministic and transactional: Unless there is an error, a function call terminates
and its e�ects are committed to the ledger atomically. Participants in the plat-
form can call these functions knowing what code is going to be executed (and
being able to validate the execution afterwards), despite the execution happen-
ing on a computer not under their control.

In the following, we highlight some implications of this characterization, as
well as some further de�nitions and perspectives.

Smart Contract Applications The terms “smart contract” and “smart con-
tract application” are not clearly delimited in the literature. For the purposes
of this work, there is not a huge di�erence: A smart contract is one program
which exhibits the above characteristics, and a smart contract application is a
set of smart contracts deployed to ful�ll a particular purpose.

The term “Decentralized Application” is often used to describe applications
of which smart contracts are a part, but which also contain other parts, like
client software or user interfaces. These parts are not considered to belong to
a smart contract application here.

Immutability A corollary of the decentralized paradigm and the guaranteed
execution environment is that smart contracts must be, and usually are, very
hard to change. If participants should be able to rely on what code is executed
when they call a smart contract function, then this function cannot be subject
to change.

This introduces its own set of problems. Changing a program is necessary
to �x errors in the program, so there is a direct trade-o� between the guaran-
tees of the decentralized execution environment and the ability of developers
to release patches to their programs. While there are solutions that increase
patchability (e.g., proxies, cf. [WZ18]), these solutions invariably lead to a loss
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in decentralization, since the power to decide whether a patch is applied has to
be handed to some person or group.

Smart Contracts and Law Nick Szabo’s idea of smart contracts (see Sec-
tion 1.1) was directed at taking contracts out of the domain of law as much as
possible by translating them into digital objects. This attitude is echoed in the
“Code is Law” perspective often applied to Ethereum and other smart contract
platforms. This view holds that a smart contract, once published, de�nes its
own law: All possible uses are allowed, whether intended by the developers or
not.

However, in the real world, this view has not prevailed, and attackers who
used smart contracts in ways not intended by their developers have routinely
been prosecuted by those developers or the platform managers. The domain of
law has so far concurred and often found the perpetrators of such attacks guilty
of fraud or manipulation (as, for example, in the case of Avraham Eisenberg
[O�24]).

Others have taken a compromise view, arguing that speci�cation is law (cf.
[Ant+22]), i.e., there should be an abstract description of the intended behavior
of a smart contract. If an update conforms to this description, it is admissible. Of
course, this leaves the question of how the intended behavior is described, and
how to test whether an implementation conforms to it. The approach proposed
in this work attempts to answer this question.

Security As a consequence of their unique characteristics, smart contracts
are exceptionally attractive targets for attackers: They usually manage money
(in the form of cryptocurrency) or other digital tokens which represent valuable
assets. Therefore, any error in the program can, with a high probability, lead to
a security vulnerability. This criticality is exacerbated by the fact that the source
code (or byte code) of smart contracts is public and cannot be �xed easily, so
that any existing error is likely to be found and exploited by attackers.

1.3 Smart Contract Platforms

This section gives an overview of the most important smart contract platforms.
A heavy focus is on the Ethereum platform and its Solidity programming lan-
guage, which dominates the space both in public attention and in the value of
the managed tokens.
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Ethereum

Ethereum was the �rst major smart contract platform, and arguably introduced
the very de�nition of what is currently understood to be a smart contract (which
this work also mostly adheres to). Although the size of a decentral platform can
be hard to measure, there seems to be agreement that Ethereum remains by far
the largest platform by the value of the tokens traded on it, and by the value of
the contracts in the network[Coi24b] [Coi24a].

The Ethereum whitepaper ([But13]) was published in 2013, with the techni-
cal speci�cation following in 2014 [Woo14]. Ethereum founder Vitalik Buterin
adopted the term "smart contract" to refer to computer programs stored on a
public blockchain. This interpretation proved to be very in�uential, mostly due
to the predominance of Ethereum in the volume of trading and news cover-
age. To this day, the term "smart contract" is often used to refer to a program
on the Ethereum blockchain, usually one written in the Solidity programming
language. This usage remains pervasive even in academic writing. For example,
a recent overview paper on smart contract security (“Smart Contract and DeFi
Security: Insights from Tool Evaluations and Practitioner Surveys”) [Cha+23]
is solely concerned with Ethereum smart contracts.

There are two types of accounts on the Ethereum blockchain: External ac-
counts, identi�ed by a public key, represent a real-world entity (like a person
or company). Contract accounts represent the smart contracts. Every account
has a balance in the built-in Ether cryptocurrency.

The central data structure of the Ethereum network is the Ethereum block-
chain, which is continually updated by nodes running an Ethereum client, using
a proof of stake consensus mechanism. A client stores the current state of the
network, the “world state”, in what is called the state database. It also contains
an implementation of the Ethereum Virtual Machine (EVM). The EVM takes
programs written in EVM bytecode, and computes their e�ect based on the
current state.

In Ethereum, state changes are e�ected by calling a public function of a
contract. A successful function call which results in such a state change is called
a transaction. When an account wishes to make a transaction, it submits the
name of the function and the function parameters along with a digital signature
to the mempool, the set of pending transactions. From there, mining nodes can
choose transactions to be included in the next block that is appended to the
blockchain. For each transaction, the mining node computes its e�ects, updates
the state accordingly, and broadcasts the block to the network.

Transactions require a payment in cryptocurrency, called gas. The size of
the payment depends on the complexity and the storage requirements of the
called function – each bytecode instruction consumes a pre-de�ned amount of
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gas, and if the gas sent along with a transaction is not su�cient, the transac-
tion is reverted and no state change happens (apart from the gas fees, which
remain with the mining node). The gas mechanism is Ethereum’s way of forc-
ing termination: Since each function call can only consume a �nite amount of
gas, execution is inherently limited. Non-terminating functions abort when all
their gas is consumed, and participants are disincentivized to call such func-
tions, since their money will not be refunded.

The term transaction also hints at the transactionality of Ethereum function
calls: A function call either terminates successfully, or it reverts without chang-
ing the state. The only exception to this is the gas mechanism, where account
balances do change if a function call is reverted.

Smart contracts for the Ethereum platform are usually written in high-level
programming languages and then compiled to EVM bytecode. The dominant
language is Solidity. The only other higher-level language currently under de-
velopment is Vyper [Tea24].

Solidity Solidity [Tea] is a “contract-oriented” language developed speci�-
cally for smart contract applications on the Ethereum platform. It has been
the de-facto standard high-level programming language on Ethereum since its
release in 2015.

Solidity is an imperative, strongly typed language. The type system con-
sists of value types, which are always passed by value, and reference types,
which can be manipulated through multiple names. Value types include lit-
erals, booleans, strings, addresses (which represent an account), enums, and
integers. In order to enable memory-e�cient programming, Solidity provides
individual types for integers of all bit lengths divisible by 8, up to 256. The type
of functions is also a value type in Solidity.

Reference types include arrays, C-like structs, and key-value mappings that
map primitive-typed keys to values. When declaring variables or parameters of
reference types, the location of the data has to be stated explicitly: The calldata
location refers to the non-modi�able location of function arguments. Variables
of reference types can exist in the memory location, which exists only for the
time of the external function call, but can be modi�ed (unlike calldata). The
third possible location is storage, which refers to the persistent storage of the
Ethereum blockchain.

Functions in Solidity can be visible internally (i.e., from within the contract
where they reside), externally (i.e., they are part of the contract’s interface and
can be called by anyone on the platform), or both. The respective visibility mod-
i�ers are private (only visible to the contract where the function is de�ned)
and internal (includes inherited contracts), external , and public . Functions
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take a list of parameters and can return zero or more named values. Their be-
havior can be restricted by modi�ers. Built-in modi�ers are view for functions
that do not modify the state and pure for functions that neither read from nor
write to the state. Solidity also o�ers user-de�ned function modi�ers, which
store pieces of code for re-use.

The call environment of a function consists of the calling account, the amount
of Ether transferred with the call, the time of the call, and the current block
number (among others). These environment variables can be accessed from
within a function body with the msg.sender , msg.value , block.timestamp , and
block.number keywords.

Solidity has two built-in convenience functions for checking boolean con-
ditions, require and assert . They di�er in the kind of error they are meant
to catch: require is meant to be used for expected errors, e.g., input valida-
tion or access control. When the condition in a require statement evaluates to
false, an error is created, and the function reverts (i.e., no state change happens).
assert is supposed to be used for catching internal errors. As per the Solid-

ity documentation, a correct contract should never violate an assertion. If an
assert fails, it causes a Panic error. The e�ect is similar in that the execution

of the function is halted and no changes to the state are applied.
Since require and assert statements represent assumptions and asser-

tions, respectively, formal veri�cation tools often treat them as speci�cation.
For example, the solc-verify formal veri�cation tool treats them as pre- and
postconditions. Several assertion checking tools also build on them (see in-
depth description of veri�cation approaches in Section 2.4).

Figure 1.2 shows a basic Solidity contract with 2 state variables, owner of
type address , and numbers , which is a mapping from the address type to inte-
gers. Next, there is a user-de�ned function modi�er onlyOwner , which checks
whether in the current context the address of the caller is equal to the owner
address. Here, the underscore symbol “ _ ” is the placeholder for the function
body. A function with the onlyOwner modi�er will �rst check the require-
ment and then proceed to the function body. The only function in the contract,
write , is modi�ed in this way. It takes two parameters. After the access con-

trol check due to the modi�er, it checks whether the numbers mapping already
contains data at the given address and returns this information as a boolean
variable named res . If no data was stored yet, the new data is inserted.

Solana

Solana [Yak18] is a blockchain-based smart contract platform. It was introduced
in 2018 and claims better transaction throughput and less transaction costs than
Ethereum. Currently, it is one of the largest platforms according to the value of
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contract SimpleStorage {
address owner;
mapping ( address => int) numbers ;

modifier onlyOwner () {
require (msg. sender == owner ,

"Only owner may call this.");
_;

}

function write( address a, int i) public onlyOwner
returns (bool res) {
if ( numbers [a] != 0) return false;
numbers [a] = i;
return true;

}
}

Figure 1.2: A basic Solidity smart contract

tokens it manages[Coi24b]. Its consensus mechanism is a variant of delegated
proof of stake (cf. Section 1.1).

Solana smart contracts are compiled to a variant of Berkeley Packet Filter
(BPF) bytecode. Therefore, they can, in principle, be written in any language
supported by the LLVM framework. The most commonly used programming
language is Rust. In order to avoid non-determinism and to adapt to the single-
threaded environment that smart contracts are run in, some Rust features can-
not be used in Solana smart contracts. These include the randomness and time
libraries, as well as libraries for concurrent programming[Sol24a].

Unlike Ethereum, Solana strictly distinguishes data and (stateless) program
code. Accounts can be of either type, and programs are passed pointers to data
locations. Data accounts have owner accounts in Solana, which can be any
program account, a wallet account representing a natural person, or a multisig
wallet representing a set of actors. In order to decrease the cryptocurrency
balance of a data account, or to change the stored data, a signature of the owner
account must be included in a transaction. Furthermore, Solana smart contracts
can be marked as upgradeable, allowing the owner account to change the code.

Other platforms

In this section, other, smaller smart contract platforms will be mentioned. In
particular, platforms are highlighted that emphasize formal veri�cation of their
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smart contracts.

Concordium Concordium [Con24] is a public, permissionless blockchain plat-
form designed with a focus on identity and privacy but at the same time on
regulatory compliance. Before participating in the network, actors have to un-
dergo identity veri�cation.

Concordium smart contracts are compiled to Web Assembly, so they can be
written in a number of di�erent higher-level languages. Currently, Like Solana
smart contracts, they are mostly written in Rust.

Concordium has also been the focus of research e�orts in the areas of cryp-
tography and smart contract veri�cation (see Section 2.4).

Aptos On the Aptos blockchain [Fou24a], developers can deploy smart con-
tracts written in the Move programming language [Zho+20].

Move is resource-oriented, i.e., its type system makes it possible to create
data that behaves like a resource in that it cannot be copied or deleted, but only
transferred. The Move prover is a formal veri�cation tool for smart contracts
written in the language.

Hyperledger Fabric Hyperledger Fabric emerged as one of the projects from
the Linux Foundation’s Hyperledger umbrella project. It aims to o�er an “op-
erating system for permissioned blockchains” [And+18]. Fabric networks are
not open in the sense discussed in Section 1.2; they consist of agents who know
each other’s identity, and access to transactions is limited to this set of known
agents at most. The degree of political decentralization that can be ascribed to
a Fabric network is mostly determined by the applied consensus mechanism.
Furthermore, there is no built-in cryptocurrency.

Fabric smart contracts are programs written in one of a number of lan-
guages, e.g., Go, Java, or Javascript. Function calls are regulated by access con-
trol and submitted to a number of nodes. If these nodes compute the same
results, the resulting state changes are submitted to an ordering service in the
form of a read/write set (i.e., a set of locations and values that are read or writ-
ten, along with versions in order to detect read/write con�icts), and �nally
broadcast to all participating nodes.

Although not smart contracts in the strict sense of the above, Hyperledger
Fabric contracts share some of the other characteristics: They are written in
turing-complete languages, which allows the creation of arbitrary applications,
and each smart contract de�nes its own state space within the network.
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contract SimpleBank {

mapping ( address =>uint) balances ;

function deposit () public payable {
balances [msg. sender ] += msg. value;

}

function withdraw ( uint256 amount ) public {
require ( balances [msg. sender ] > amount );
balances [msg. sender ] -= amount ;
msg. sender . transfer ( amount );

}
}

Figure 1.3: Solidity simple bank application

1.4 Applications

We present some smart contract applications, ranging from simple examples to
more complex real applications.

Bank One of the simplest examples often cited in introductions is a simple
bank application, where a smart contract accepts transfers from participants,
logs their balances, and allows them to withdraw their funds. It consists of
one state variable balances , which maps accounts to unsigned integer balance
values. Furthermore, it exposes two functions deposit and withdraw , which
can be called to pay currency to the smart contract and get the funds back,
respectively.

Figure 1.3 shows a Solidity version of the simple bank application. While it
does not serve any practical purpose, it already must ful�ll some fundamental
correctness and security properties: The bookkeeping must be done correctly,
and it must be guaranteed that only the account that deposited some funds has
access to them.

Auction Another example (found, e.g., in the documentation of the Solidity
programming language [Doc]) is a smart contract implementing an auction.
It is relatively simple to implement, but it has complex temporal correctness
properties.

The implementation details vary. For demonstration purposes, consider an
application as in Figure 1.4 consisting of a single contract which has six state
variables: an owner account, a variable of type UInt storing the end time of
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contract Auction {
enum State {OPEN , CLOSED , FINALIZED };
address payable owner;
uint auctionEnd ;
mapping ( address => uint) bids;
uint highestBid = 0;
address highestBidder = address (0);
State state = State.OPEN;

constructor (uint _duration ) {
auctionEnd = block . timestamp + _duration ;
owner = msg. sender ;

}

function bid () public payable {
require (state == State.OPEN , " Auction is already

closed ");
require (msg. value + bids[msg. sender ] > highestBid ,

"Bid must be higher than current highest bid");
bids[msg. sender ] += msg.value ;
highestBidder = msg. sender ;
highestBid = bids[msg. sender ];

}

function withdraw () public {
require (msg. sender != highestBidder , "The highest

bidder cannot withdraw their bid");
if(bids[msg. sender ] != 0) {

uint amt = bids[msg. sender ];
bids[msg. sender ] = 0;
payable (msg. sender ). transfer (amt);

}
}

function close () public {
require (state == State.OPEN , " Auction is already

closed ");
require ( block . timestamp >= auctionEnd , " Auction

cannot be closed yet");
state = State. CLOSED ;
owner. transfer ( highestBid );

}

function claim () public {
require (state == State.CLOSED , " Auction must be

closed ");
state = State. FINALIZED ;

}
}

Figure 1.4: Solidity auction application
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the auction, a mapping bids which records the bids made by each actor resp.
account, and highestBidder and highestBid , which store the current leader of
the auction and their bid, respectively. Finally, an enum variable state records
the state of the auction (open, closed, or �nalized).

Furthermore, the contract has four functions: bid() transfers some amount
of currency (speci�ed by the caller) from the caller to the auction contract. If
the amount is higher than the current leading bid, the highestBidder variable
is overwritten with the caller’s address, and their bid is recorded in bids . The
function close() sets the state variable to closed and then assigns owner-
ship of the auction item to the current highest bidder. The withdraw() function
can be called by all losing bidders. It transfers the corresponding amount (as
recorded in bids ) to the caller. Finally, the claim() function can be called
by the winner of the auction after the auction is closed, to transfer ownership
of the auctioned item. The exact e�ects of this function are dependent on the
concrete use case. Therefore, they are left unspeci�ed in the example.

Escrow When smart contracts are used, e.g., to buy and pay for online pur-
chases, a variation of the so-called oracle problem can arise. If buyer and seller
do not fully trust each other, then the purchase is di�cult to carry out: Should
the money be paid �rst, and the bought item shipped after the money has ar-
rived? Or should the money only be paid after shipment? The payment could
be automatically triggered by the successful delivery, but who gets to con�rm
the delivery?

One solution to this problem is an escrow contract as in Figure 1.5. Buyer
and seller create a smart contract where the buyer �rst pays twice the required
payment, but is refunded upon con�rmation of delivery. This creates an incen-
tive for both parties to act according to the protocol. Of course, depending on
the goals of both participants, it is still possible for them to harm the other, e.g.,
by not delivering the item at all. More involved versions of the escrow try to
take this into account by also forcing the seller to deposit currency.

Casino Gambling has historically comprised a large part of smart contracts
deployed on the Ethereum blockchain. One example has already been the sub-
ject of an academic e�ort at formal veri�cation: The VerifyThis long-term chal-
lenge in 2021 was concerned with a Casino application [AWH21]. The Solidity
contract given as an example contained two accounts, the operator and the
player. A game works as follows: The operator can add or remove cryptocur-
rency from a pot. At some point, they create a game by choosing a secret num-
ber, hashing it and putting the hash value on the publicly visible blockchain.
A player can then accept the game by guessing the parity of the original num-
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contract Escrow {
enum State { AWAIT_PAY , AWAIT_DELIVERY , COMPLETE }

State public currState ;
address public buyer;
address payable public seller ;
uint price;

constructor ( address _buyer , address payable _seller )
public {

buyer = _buyer ;
seller = _seller ;

}

function deposit () external payable {
require (msg. sender == buyer , "Only buyer!");
require ( currState == State.AWAIT_PAY , " Already paid");
require (msg. value >= 2 * price , "Must pay deposit ")
currState = State. AWAIT_DELIVERY ;

}

function confirmDelivery () external {
require (msg. sender == buyer , "Only buyer!");
require ( currState == State. AWAIT_DELIVERY , " Cannot

confirm delivery ");
seller . transfer (price);
buyer. transfer ( address (this). balance )
currState = State. COMPLETE ;

}
}

Figure 1.5: A Solidity escrow smart contract, taken from [Zyn]

ber. Once the player has made their guess, the game is determined when the
operator reveals their secret number.

The Casino has many interesting properties for veri�cation. The main focus
is on the fact that care must be taken to avoid an implementation in which the
operator can block the execution of the application in case they lose, i.e., by not
revealing their original secret. This property can be described in various ways
and various levels and makes the Casino an interesting case for evaluation of
the temporal speci�cation language developed in this work.

Tokens and Decentralized Exchanges One pervasive real-world use case
for smart contracts is creating, buying and selling digital tokens. The block-



22 CHAPTER 1. AN INTRODUCTION TO SMART CONTRACTS

function name () public view returns ( string )
function symbol () public view returns ( string )
function decimals () public view returns (uint8 )
function totalSupply () public view returns ( uint256 )
function balanceOf ( address _owner ) public view returns (

uint256 balance )
function transfer ( address _to , uint256 _value ) public

returns (bool success )
function transferFrom ( address _from , address _to , uint256

_value ) public returns (bool success )
function approve ( address _spender , uint256 _value ) public

returns (bool success )
function allowance ( address _owner , address _spender ) public

view returns ( uint256 remaining )

Figure 1.6: The methods of the Solidity ERC 20 token standard, from [Fou24b].
This interface is implemented by creators of new cryptocurrencies on the
Ethereum blockchain.

chain and smart contract hype led to the creation of a multitude of tokens,
often associated to some underlying assets, or a proposed business model. Cre-
ating a custom token with a smart contract has become a standardized process.
Two important standards are ERC-20 ([Fou24b], cf. Figure 1.6), which de�nes
a fungible token, and ERC-721 [Fou23], which de�nes a non-fungible token.

Fungible tokens, called “coins”, are often traded against each other on ex-
changes. While centralized exchanges are simpler to use for non-technical
users, they also go against the industry’s claim of decentralization. Therefore,
decentralized exchanges have been developed. These consist of smart contracts
where traders can buy and sell tokens according to pre-de�ned rules.

Augur Augur [Pet+18] is a prediction market platform built on the Ethereum
blockchain. It allows users to create and participate in markets where they can
predict the outcome of future events. The goal of the platform is to leverage the
collective knowledge and insights of its users to forecast events across various
domains, including �nance, politics, sports, and more.

Participants in Augur can create markets by de�ning an event and its pos-
sible outcomes. Other users can then buy shares in these outcomes, essentially
betting on what they believe will happen. The prices of shares �uctuate based
on supply and demand, re�ecting the collective probability assigned to each
outcome by the market participants.

One particularly interesting aspect of smart contract-based prediction mar-
kets is that they have to solve the oracle problem, i.e., the problem of how to cor-
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rectly transfer real-world knowledge to the blockchain state. In the Ethereum
setting, this problem has to be solved in the absence of a trusted party, and in
the presence of strong �nancial incentives, e.g., for incorrectly resolving a pre-
diction market. To solve this, Augur employs a “decentralized oracle system”
to verify the actual outcomes of events. This system consists of a network of
nodes who stake their tokens, known as REP (Reputation), to report on event
outcomes. Honest reporting is incentivized through rewards, while dishonest
reporting can result in penalties.

Palinodia Palinodia [Ste+19; SDH20] is an application that allows users to
assess the integrity of software binaries they download from the internet. It
works by establishing unique identities for software and enforcing access con-
trol over these identities, including the publication and revocation of integrity
protecting information for individual binaries.

Palinodia is comprised of three kinds of smart contracts as depicted in Fig-
ure 1.7: A Software contract establishes a root identity for a software product
and is controlled by a Software Developer via an Identity Management contract.
It can store references to several distinct Binary Hash Storage (BHS) contracts
(representing di�erent intermediary identities of the software), each managed
by a di�erent Maintainer. A Binary Hash Storage contract represents an inter-
mediary identity of a software product and is managed by a Maintainer. Hashes
of binaries (stored elsewhere) can be published, representing an endorsement
by the Maintainer. They can also be revoked later. Each BHS contract is associ-
ated to one Software contract and one Identity Management contract. Identity
Management contracts are used by Software Developer and Maintainer alike
to control who has access to the functions of the software and BHS contracts
respectively. In particular, individual Ethereum public keys can be added to
and removed from Identity Management contracts to authorize or de-authorize
them.

Users of the Palinodia application can interact with these smart contracts
through a user client, which obtains contracts and their current state from the
Ethereum network in order to verify both the integrity and endorsement of bi-
naries they wish to use. To facilitate this, binaries include a metadata manifest
with the address of their respective BHS contract. After obtaining the current
state of the BHS contract, which includes the published hash of the binary for
comparison, the user client proceeds to check whether the BHS contract is en-
dorsed by the Software contract it expects. The �rst time a user obtains a binary,
the address of its corresponding Software contract is stored as a trust anchor.
Any binary that links back to such a stored Software contract through a BHS
contract is trusted by the user client.
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Figure 1.7: Overview of Palinodia, consisting of two roles (blue pills) and three
kinds of smart contracts (colored rectangles) and their mutual relations, taken
from [Ste+19]

Palinodia has been the subject of some academic research itself; a case study
on the veri�cation of access control requirements was conducted on it [Sch+21].
Furthermore, in a comparison of di�erent methods of coupling smart contracts,
Palinodia was the main subject [Fri+21].

In the context of this work, Palinodia is useful for evaluating the Scar ap-
proach. First, the structure and the requirements of Palinodia are described in
detail in the paper. This makes it possible to model it in Scar and evaluate
whether the Scar metamodel is suitable for the task (see Section 3.8). Further-
more, the generated source code can be compared to the existing source code
to highlight advantages and shortcomings of Scar.

Secondly, since access control is an integral concern of the application, the
question will be asked if Palinodia, as an application, can be speci�ed in Scar
in a simple and complete manner (see Section 4.5).

Decentralized Identity One more use case of Ethereum and other smart
contract platforms has been as a provider of identity management. Proving
one’s identity, or selectively revealing personal information like age or aca-
demic credentials, is highly sensitive. This has lead to a number of approaches
advocating for decentralized identity management building on blockchain and
smart contract technology.

A very thorough approach is presented in DecentID [Fri+21]. In it, smart
contracts on the Ethereum platform serve as a decentralized trust anchor, mak-
ing use of the central guarantee of smart contract applications: that anyone can
call their functions and be certain of the execution environment and the exe-
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cuted code, despite the execution happening on somebody else’s computer. In
DecentID, users can create identities and authenticate themselves to di�erent
services. These services can only access attributes disclosed to them; all other
attributes are kept secret.

The Ethereum DID Registry project [eth24b] has similar goals; their library
has been deployed to the Ethereum blockchain and is still used occasionally
[eth24a].

1.5 Hype and Criticism

This thesis is concerned with smart contracts as a technology, and with the
correctness and security of concrete applications of this technology. As such,
smart contracts are neither good nor bad. However, seeing the hype generated
by the media as well as by people who promote cryptocurrencies as a �nancial
investment, it is important to summarize the criticism as well.

Claims on Decentralization Decentralization claims in the blockchain and
smart contract domain often should be taken with a grain of salt for two main
reasons. Firstly, even if an application runs within a decentral system, this does
not mean the application itself is decentralized. Access to functionality can, and
often should, still be controlled (in fact, Chapter 4 of this thesis is entirely about
how to do this correctly).

Secondly, blockchain platforms themselves are often not as decentralized
as claimed. In the Bitcoin network, three to four mining pools make up more
than half of the network, and have consistently done so for years [Gen+18].
In theory, they have considerable power over the development of the network,
and over which transactions are executed. Furthermore, the implementation of
the Bitcoin Core software which is running on many nodes in the network is
curated by a small team of maintainers. While the software is open source and
node operators can choose to reject changes, the core team holds a lot of power
in practice.

Ethereum is not entirely di�erent in this regard. Since the switch to a proof
of stake consensus model, economics of scale put less pressure on miners to
merge with others (although it has been argued that proof of stake also cre-
ates bad incentives [Wan+20]). As for the power of the core team, in 2016, a
small number of people unilaterally decided to “roll back” the blockchain after
the now-famous DAO hack (see Section 2.2). Although a central decision like
this may be much harder to push through now that the Ethereum network has
grown much larger, it is still a reminder that especially in unforeseeable, critical
circumstances, decentralization might not be a strong as it is claimed to be.
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There are other, less obvious sources of centralization: Sultanik et al. report
that of all Bitcoin tra�c, 60% traverses just three ISPs, and that in Ethereum,
smart contract reuse may pose a high risk, since a high share of contracts is so
similar to other, already deployed contracts that one can reasonably assume that
large parts are just copied and pasted [Sul+22]. This introduces single points of
failure that are hard to spot, despite the ostentatiously decentral network.

Technical Criticism Decentralization of a world-wide network has draw-
backs in performance and scalability. One example is transaction throughput,
which is limited to at most seven transactions per second [Cro+16] in the Bit-
coin network and around 15 transactions per second on the Ethereum platform.
This is several orders of magnitude less than payment processors like Visa, who
process tens of thousands of transactions per second in peak times [SC21]. In
times of high use, the Ethereum and Bitcoin networks can become congested,
and participants have to pay high fees for their transactions to go through at
all.

One proposed solution are so-called “Layer 2” networks, which aggregate
transactions and commit them to the underlying blockchain in a batched fash-
ion. However, these solutions invariably lead to a more centralized network.
Furthermore, routing in such networks is believed to be an NP-hard problem
[Di +18], so that their real-world applicability is still unclear.

One recurring point of criticism is the energy consumption of proof of work
consensus; the Bitcoin network consumes more energy than a medium-sized
country [OM14].

Usability of blockchains and smart contracts has also been criticized. In
order to participate in the Bitcoin network, users have to deal with complex
cryptographic systems. This presents a high entry barrier and can result in
an irrevocable loss of funds. On the other hand, it incentivizes users to of-
�oad these tasks to centralized services like cryptocurrency exchanges, which
negates the purported positive e�ects of decentralization.

Economic and Social Criticism Nassim Taleb criticizes the idea of cryp-
tocurrencies as an investment, or as a hedge against in�ation [Nic21]. Numer-
ous other writers have written about the multiple scams and other nefarious
practices, such as money laundering and fraud, that are regularly occurring in
the blockchain and smart contract ecosystems [Whi24] [Ger24].

A recurring theme is what is dubbed “Solutionism”, where blockchain tech-
nology is proposed without any actual need for either the blockchain data struc-
ture or the decentralized network, and where centralized alternatives would be
preferable in all aspects.
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Another recurring theme in the space is extreme concentration of wealth in
the possession of very few actors. One particularly gregarious example is when
new tokens are created with the sole purpose of creating a price on cryptocur-
rency exchanges and selling them before discontinuing the project, a surpris-
ingly common practice which has been referred to as “rug-pulling”. However,
uneven distribution of wealth is also echoed in Ethereum’s proof of stake con-
sensus, which rewards those who already possess more than others.

1.6 Conclusion

Smart contracts are programs which give unique guarantees about the execu-
tion environment, and about what code is executed, even in decentralized plat-
forms. While not as ubiquitous and pervasive as some commentators suggest,
smart contracts can be used as building blocks for decentralized systems.

In this chapter, we surveyed the unique characteristics of smart contracts.
We also pointed out that the guarantees smart contracts deliver come at the cost
of some drawbacks. Most importantly, despite being tasked with the manage-
ment of valuable resources, smart contracts often cannot be patched if bugs are
discovered. This means that developers of smart contracts need to take precau-
tions to ensure that smart contracts are correct upon deployment. In Chapter 2,
we give an overview of the existing methods to achieve this.





Chapter 2

Formal Veri�cation of

Smart Contracts

Smart contracts have not only spurred hypes around cryptocurrencies and de-
centralized platforms, they have also inspired an impressive amount of research
in the �eld of formal methods. In this chapter, we �rst give a short overview
of the reasons for this development, and describe the errors and vulnerabilities
that have had the highest impact. In the following, the existing approaches are
reviewed and categorized. The chapter concludes with a more in-depth intro-
duction to the works most related to the approach presented in this thesis.

2.1 The Need for Formal Methods

Beginning with the deployment of the Ethereum blockchain in 2015, formal
analysis of smart contracts has quickly become a very active �eld of research.
The number of tools especially for static analysis, but also for specifying and
verifying more involved properties, is large enough that overviews of smart
contract formal veri�cation have become an established genre.

As already hinted at in Section 1.2, smart contracts require formal veri�-
cation more than many other classes of programs. This is due to a number of
reasons.

First, smart contracts typically manage assets, usually in the form of digi-
tal tokens representing either cryptocurrencies or other assets. The combined
value of cryptocurrencies is in the billions of dollars (even if one concedes
that the notion of “market capitalization” for cryptocurrencies is misleading,
cf. [Whi22]). This creates an enormous incentive for attackers to �nd and ex-
ploit programming errors. Making this worse is the fact that in smart contracts,

29
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correctness and security overlap much more than in other domains: Since the
data smart contracts store is often literally an asset, or at least directly related
to one, any minor error in the business logic of a smart contract has a high
probability of also being a security vulnerability.

Furthermore, due to the public nature of smart contract platforms, the source
code, or at least the executable byte code, of smart contract is available to ev-
eryone, including would-be attackers.

On top of this, smart contracts cannot easily be patched – at least not with-
out sacri�cing decentralization. If there is an authority who can unilaterally
decide to update some functionality, then an application might be better o�
running on that authority’s server instead of on a public blockchain. So, once
an application is deployed, it is on its own, and any error found afterwards is
both unlikely to be �xed and likely to be exploited.

All these characteristics lead to the conclusion that smart contracts should
always be correct and secure upon deployment – in a domain where correctness
does not just mean adhering to the speci�cation, and security is not only the
absence of a set of known vulnerabilities.

This has lead to a plethora of research and tool development in the �eld of
smart contract security. Multiple papers have been written on the typical er-
rors that smart contract developers make and the vulnerabilities arising from
them, with a prominent focus on reentrancy. In response, a number of static
analysis tools were developed to discover the most common and serious vulner-
abilities. Somewhat later, vulnerabilities were categorized in the spirit of CVE
repositories for classifying and reporting security issues. This categorization
also enabled work on benchmarking static analysis tools.

At the same time, the �rst tools for formal speci�cation and veri�cation of
user-de�ned correctness properties of smart contracts were proposed. These
approaches usually target programs at the source code level and enable devel-
opers to describe the intended behavior of smart contracts, e.g., in terms of in-
variants or function contracts. More recently, there have also been approaches
to compare such formal veri�cation tools, e.g., using benchmark sets [BP17].
However, this is a harder task than doing the same for static analysis tools de-
tecting known vulnerabilities , because the more involved formal veri�cation
tools di�er more in terms of the speci�cation language, and the properties they
address.

While there exist some approaches targeting other platforms and program-
ming languages, the vast majority especially of static analysis tools targets the
Ethereum platform, either at the EVM bytecode level or on the Solidity source
code level.
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2.2 Common Errors and Vulnerabilities

Public awareness concerning the pitfalls of Ethereum, and possibly the scale of
the damages caused by programming errors, was �rst raised by an attack on
“The DAO” (Decentralized Autonomous Organization), a smart contract which
was intended to act as an autonomous venture capital platform [Meh+19]. Par-
ticipants were supposed to be able to fund projects through the platform, and
reap �nancial rewards in case of successful projects. The smart contract at-
tracted many investors; at the time of the attack, it contained a sizable share of
all Ether in circulation.

An attacker managed to exploit errors in the protocol as well as a reen-
trancy vulnerability, stealing Ether valued at over 50 Million USD at the time.
In reaction, the Ethereum blockchain was rolled back: A majority of nodes reset
their local states to a point before the attack. Some disagreeing nodes went on
to become “Ethereum Classic”, a rival blockchain where the attack was never
rolled back.

The attack highlighted the general attractiveness of smart contracts for at-
tackers due to their �nancial nature, but also a concrete type of vulnerability,
namely reentrancy. Reentrancy is a type of recursion between at least two func-
tions; it occurs when a contract calls another contract’s function containing a
callback to the original caller. In Ethereum, sending money is a function call,
and can result in a callback. Many programmers who adopted the then-new So-
lidity programming language failed to understand the possible consequences,
and reentrancy vulnerabilities became the single most critical type of vulnera-
bility on the Ethereum platform [Cha+23].

Other common types of vulnerabilities were pointed out, in an early paper
about analyzing Ethereum smart contracts, “Finding The Greedy, Prodigal, and
Suicidal Contracts at Scale” [Nik+18]. Later, the numerous types of security
issues with Ethereum even gave rise to the Smart Contract Weakness Classi�-
cation ([SWC23]), an overview site inspired by the CVE system [Mit24]. The
site lists 36 di�erent types of weaknesses. In recent years, it has been surpassed
by other sites with similar goals, e.g., the Smart Contract Security Veri�cation
Standard [SCS24] or OpenSCV [VIL23].

Some vulnerability types exist speci�cally in the domain of smart contracts,
and are likely to escape programmers whose experiences are in other domains.
These domain-speci�c vulnerabilities include weak randomness. Generat-
ing random numbers in a blockchain network is not trivial. Commonly used
sources of randomness such as timestamps cannot be used in security-critical
contexts. This is because the miner node who executes a transaction also de-
termines its timestamp, and can therefore anticipate the random number and
possibly discard undesired results. Similar problems can arise with all other
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properties of the blockchain network, like the block hash or the block number.

Another speci�c vulnerability is transaction-ordering dependence: In
some cases, the correctness of a smart contract may depend on the order in
which transactions happen. The power over this ordering rests with the miner
nodes, and therefore cannot be relied upon for correctness. A related problem
is the possibility of frontrunning: Since transactions are submitted to a publicly
visible pool before being executed, it is possible for network participants to
analyze pending transactions and taking advantage of them. This has led to
the phenomenon of miner extractable value, which describes the �nancial gain
which a miner node can expect by frontrunning a given transaction. This is
especially relevant on decentralized cryptocurrency exchanges.

Another domain-speci�c problem are failed calls. In Ethereum, currency
transfers are function calls, and as such give control over program �ow to the re-
cipient. This can enable reentrancy attacks, but also gives the recipient the pos-
sibility to fail receiving the transfer on purpose. This can be especially harmful
when several transfers are carried out at once, e.g., in a loop which transfers
currency to a set of recipients. If failed calls are not handled correctly, a single
failed call reverts the transaction. This has led to the practice of letting others
withdraw funds, instead of actively transferring them.

Another important class of vulnerability can be summarized as Improper

Access Control. While access control is a very general area of information
security, it also plays a very important role in smart contract applications; two
entries in the SWC registry fall in this category, highlighting unprotected Ether
withdrawal, and unprotected selfdestruct instructions, which remove a contract
from the Ethereum world state.

While all these issues are important and can go wrong in many ways, it is
important to note that in the smart contract domain, security is highly applica-
tion speci�c. As [Zha+23] notes, security issues in software traditionally come
from vulnerabilities such as bu�er over�ows, privilege escalation, information
leaks. This is di�erent from functional bugs, which cause unexpected behavior,
but not necessarily a security issue. Analyzing security can be done abstractly,
in the same manner, independent of the application. For smart contracts, how-
ever, security and functional correctness overlap much more, which means that
security is a much more application-dependent question. This makes security
much less automatically checkable.

Therefore, while also introducing some static analysis approaches in the
following, the main focus of this chapter is on tools and techniques where users
can de�ne custom, application-speci�c properties.
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2.3 Classi�cation of Veri�cation Approaches

There are many dimensions in which smart contract analysis and veri�cation
tools can be categorized. We explore these dimensions to put the work pre-
sented in later chapters into context.

Overviews

Due to the large number of works in the �eld of smart contract security, several
overviews have been published, with the goals of categorizing, analyzing, and
benchmarking di�erent analysis and veri�cation tools.

Munir and Taha aim to give a comprehensive overview of veri�cation me-
thodologies, tools, and properties of interest in the domain of smart contracts
in their paper Pre-Deployment Analysis of Smart Contracts – A Survey [MT23].
They also include a list of survey and overview papers.

Chaliasos et al. give a security-focused overview of smart contract analy-
sis tools in Smart Contract and DeFi Security[Cha+23]. Their main �nding is
that static analysis tools are not, in practice, su�cient to detect security prob-
lems. They attribute this to the fact that security in smart contracts is very
application-speci�c, and therefore needs user-de�ned speci�cation.

Durieux et al. compare nine static analysis tools on one data set which con-
tains known vulnerabilities, and on a large benchmark set consisting of all de-
ployed smart contracts for which the Solidity source code is available [Dur+20].
They �nd that more than half of all vulnerabilities are not found by any of the
tools. The Mythril tools �nd most, but still fails to �nd 76% of the known issues.

Deductive Veri�cation and Model Checking

The term “formal veri�cation” denotes rigorous processes to ensure that a sys-
tem behaves according to its speci�cations. Such processes rely on methods
based on mathematical logic.

The two main approaches to formal veri�cation are model checking and
deductive veri�cation. Deductive veri�cation encompasses all methods which
generate proof obligations in some formal logic from a system and its speci�-
cation. A proof of these obligations corresponds to a proof of correctness of
the system against its speci�cation. Proof can either be carried out in an inter-
active theorem prover (such as Coq or Isabelle/HOL, see Section 2.4), or auto-
matically, after a translation to automated tools such as Satis�ability Modulo
Theory (SMT) provers (cf. Section 2.4).

Model checking is the systematic exploration of the possible state space of
a system. For �nite systems, this exploration can be made exhaustively, al-
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though state space explosion can make this approach computationally di�cult
or infeasible. In�nite state systems can be explored exhaustively only if suit-
able abstractions can be found to reduce the state space. The properties to be
veri�ed are usually de�ned in temporal logics, such as Linear-time Temporal
Logic (LTL) or Computation Tree Logic (CTL).

In the Scar approach that forms the central contribution of this work, au-
tomated deductive veri�cation of smart contract source code serves as the jus-
ti�cation for an abstract model of the application, which can then be analyzed
by model checking. The higher-level properties proven on the model, such as
temporal and security properties, are also ful�lled by the source code.

Veri�cation on Di�erent Layers

Like all modern software, smart contracts form a technological stack that is
several layers deep. Tools and methods have been devised to analyze correct-
ness properties on all layers. The focus of this work is veri�cation of properties
at the source code level as well as on abstract models which abstract from the
source. However, relevant properties also exist at other levels – platform, or
virtual machine – veri�cation approaches exist for each of these levels.

As for the platform level, smart contract platforms are de�ned by com-
plex network and communication protocols, and by the execution environment
which the applications run in. Examples include the proof of stake consen-
sus algorithm of Ethereum, and the Ethereum Virtual Machine. An example
of formal veri�cation on this level is the Veri�cation of Ethereum’s “Beacon”
blockchain by Cassez, Fuller, and Asgaonkar [CFA22].

For Ethereum speci�cally, smart contracts are always publicly available as
EVM bytecode. Therefore, static analysis tools may choose this level of ab-
straction to work on. Compared to source-level veri�cation, this eliminates the
abstraction introduced by compilation. However, Ethereum bytecode contains
very little static information, making analysis di�cult [Sch+20].

The deployed application is considered in runtime veri�cation. The system
is monitored while it runs, and it is observed whether the current execution vio-
lates or ful�lls a pre-de�ned set of properties. Typically, a monitor is generated
from a formula describing a desired property of the system (e.g., a temporal
logic formula). The system is then instrumented to notify the monitor of its
behavior. The monitor then judges whether the current behavior ful�lls the
property.

Runtime veri�cation is less complex than static formal veri�cation methods
like model checking or theorem proving because it only observes a �nite set of
execution traces. Conversely, it is also less powerful (e.g., relational properties,
which range over more than one execution of a program, are non-monitorable).
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In the context of smart contracts, runtime veri�cation can be used to check
whether the system is in an undesirable state, and take action accordingly (see
ContractLarva [AEP18]).

Speci�cation Type

Existing formal methods for smart contracts can be subdivided by how the an-
alyzed properties are speci�ed – either there is a pre-de�ned set of properties,
or properties can be speci�ed by the user.

Static analysis can be conducted to check whether a program contains a
given syntactic pattern. This kind of analysis is fast and lightweight, but also
imprecise.

As an example in Solidity, a useful check might be that every function which
changes the state of the contract, i.e., contains an assignment to state variables,
also contains a statement of the form require(msg.sender == ...) , which con-
trols access to the function. This check is implemented, e.g., in the Securify tool
[Tsa+18]. Some forms of reentrancy can also be detected syntactically, e.g., by
checking whether a contract changes its state after an external call.

More relevant patterns can be expressed on the level of an application’s
control-�ow graph (CFG). The nodes of the CFG represent basic blocks, i.e.,
parts of the code without jumps or branches. An edge between two basic block
represents a jump in the control �ow.

Many vulnerabilities in smart contract applications can be encoded as pat-
terns on an application’s CFG. This is especially relevant in Ethereum, where
external function calls yield control from the calling contract to the callee. Ex-
amples include reentrancy and reachability of critical functionality, e.g., a con-
tract’s “suicide”. More patterns are explored, e.g., in the 2018 paper “Finding
The Greedy, Prodigal, and Suicidal Contracts at Scale” [Nik+18].

However, many approaches have been developed where developers can
specify application-speci�c correctness properties. This can happen in the form
of assumptions and assertions in the code (cf. the approaches in Section 2.4).
Other approaches allow speci�cation on some formal model of an application
(cf. Section 2.4). Still others have developed their own source-level speci�cation
languages, usually based on �rst order logic or temporal logics (cf. Section 2.4).
Bartoletti et al. make an attempt to de�ne benchmarks for this category of for-
mal veri�cation tools [Bar+24].

Methods and Techniques

Formal methods build on various techniques. Static analysis tools which work
on the control �ow graph commonly rely on reachability analysis, i.e., the
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question of whether a given state in the program �ow is possible.
Other approaches rely on symbolic execution, where a program is exe-

cuted with symbolic values as an input. From this, a set of traces is obtained,
each of which has a path condition. Then, traces with unsatis�able path condi-
tions can be pruned, and the remaining traces can be checked for conformance
with, or violation of, some property. Symbolic execution is generally limited by
the bounds on the search (which may lead to false negatives) and by the way
the desired properties are speci�ed, which may lead to false positives.

2.4 Tools

This section presents notable tools in the area of smart contract veri�cation
and analysis, loosely ordered by the categories described above. It also serves
as an overview of the previous work most closely related to the Scar project.
Fo example, we introduce approaches which focus on the resource character of
smart contracts, and is therefore closely related to the capability-based security
approach presented in Chapter 4 and the concept of ownership discussed in
Chapter 5. The approaches listed in the �nal parts of this section are related to
the overall Scar approach presented in Chapter 3.

Static Vulnerability Analysis

The tools for smart contract analysis collected here take an approach where
a number of vulnerabilities is collected, and the tool subsequently tries to es-
tablish that a smart contract does not contain any of these vulnerabilities. The
approach often involves symbolic execution to explore all possible traces from a
given entry point. Vulnerabilities are characterized as patterns on these traces.

These approaches generally produce false positives as well as false nega-
tives. False positives occur when a pattern is not speci�c enough (e.g., an ex-
ecution trace is compliant with a pattern characterizing reentrancy, but does
not actually allow reentrant behavior). False negatives may be produced on
two di�erent levels: Either the veri�cation is bounded and does not �nd a pos-
sible violation, or the pattern (on traces) which is supposed to de�ne a property
is not precise.

The earliest academic tool for static analysis of Ethereum smart contracts
was Oyente [Luu+16]. It transforms Ethereum bytecode into a control �ow
graph, on which it then conducts symbolic execution. The resulting traces are
checked for transaction-ordering dependence, timestamp dependence, mishan-
dled exceptions, and reentrancy. While the tool is no longer actively main-
tained, it is still widely used in benchmarking comparisons. The Maian tool



2.4. TOOLS 37

[Nik+18] is an extension of the Oyente approach which also considers attacks
that require multiple transactions.

Slither [FGG19] is a static analysis tool for Ethereum smart contracts. It
takes as input the abstract syntax tree generated by the Solidity compiler from
a set of Solidity source code �les. The input is �rst converted to a control �ow
graph with additional information about the contract, such as inheritance and
a list of expressions. This is then further converted to SlithIR, an intermediate
language using Single Static Assignment form. On this representation, di�erent
analyses can be conducted, including the detection of prede�ned vulnerabili-
ties, but also opportunities for optimization. Furthermore, Slither enables the
con�guration of custom “printers” to output information about the program,
such as information �ow, in human readable form. This can also serve as the
basis for custom analyses.

The Echidna tool [Gri+20] is an approach for fuzzing Solidity smart con-
tracts, i.e., simulating the behavior of a system with randomized input. Echidna
analyzes the behavior for possible violations of pre-de�ned security vulnerabil-
ities, but also of user-de�ned correctness properties.

Mythril [Mue18] is an open static analysis tool for Ethereum byte code.
Analysis is based on symbolic execution. The tool continues to be used and has
been positively evaluated in benchmarks in comparison to other static analyz-
ers [Dur+20].

eThor [Sch+20] is a tool for �nding vulnerabilities in Solidity smart con-
tracts by conducting reachability analysis. Unlike other static analysis tools,
eThor claims soundness, i.e., the absence of false negatives. While the authors
of previous tools have already claimed to achieve soundness in their evaluation
(cf. [Kal+18]), Schneidewind et al. give a formal proof that their methodology
is sound against the formal semantics of the EVM as de�ned by [Gri+20].

Static analysis has also been developed for Solana smart contracts written
in Rust [Tav22] and [Cui+22].

SmartBugs [Fer+20] is a tool which combines several existing static anal-
ysis tools in one executable container, making it very easy to execute those.

Comparisons Chaliasos et al. analyze the performance of automated vul-
nerability checking tools at the hand of 127 high-impact real-world attacks
[Cha+23]. Their most striking result is that the vast majority of the attacks
they analyze could not have been avoided using static analysis tools, since these
tools are unable to detect issues that stem from errors implementing the busi-
ness logic. All of the attacks that are detected by static analyzers are based
on reentrancy vulnerabilities. Of the analyzed tools, Slither performs best at
detecting reentrancy, but also yields a high rate of false positive results.
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Assertion Checking

All common smart contract languages have built-in concepts of assumptions
and assertions, which check conditions speci�ed in the programming language
at runtime and throw an error and revert in case the condition is not met. For
example, Solidity has the require keyword to encode assumptions, e.g., about
the caller of a function or the function arguments, and the assert keyword to
encode knowledge about necessary conditions at some point during execution.

For the purposes of formal methods, assumptions and assertions can be used
as a speci�cation mechanism. This can be bene�cial, since it means that the
speci�cation language is the same as the programming language, and devel-
opers do not need to be trained in a new language. However, this also means
that assertions lack the abstractions and quality-of-life features that speci�ca-
tion languages can provide, e.g., quanti�cation over unbounded data types. A
number of tools have been developed which can statically check source code
assertions for possible violations:

SolCMC [Mar+20] is an approach for verifying that assertions in the Solid-
ity source code cannot be violated. It has since been integrated into the Solidity
compiler, where it can be activated with a command-line �ag [Oto+23]. Veri�-
cation is based on a translation to constrained horn clauses.

The VeriSol tool [Wan+19] is a static assertion checker for Solidity built
on a translation to the Boogie intermediate language [Bar+06]. Apart from
verifying the absence of assertion violations, the tool also provides a mecha-
nism to specify conformance to access control policies. Similarly, the Solidi-
fier [AR21] tool also translates Solidity code with assumptions and assertions
to Boogie. The resulting proof obligations are discharged with the Corral
model checker [LQL12]. Both of the above approaches conduct only bounded
veri�cation.

Model Checking

Model checking is a broad category, and a large, diverse set of tools use this
formal veri�cation approach. There are di�erences in the representation of the
model, and in the veri�cation tool set.

Nehaï, Piriou, and Daumas model Ethereum smart contracts [NPD18] in the
language of the nuXmv model checker [Cav+14]. The approach also provides
a model of the blockchain environment. However, the provided data types are
limited to integers and booleans.

Lahbib et al. explore modeling smart contracts in Event-B [Lah+20] and
proving invariants and safety properties using the tools provided by the frame-
work [Abr10]. As per the paper, the translation is still manual.
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Yet another existing formalism is built upon by Garfatta et al. [Gar+22]:
Smart contracts are translated to colored petri nets. Safety properties are then
speci�ed and model-checked in the petri net formalism. The work of Pinna and
Tonelli [PT22] goes in the other direction: smart contracts are �rst modeled as
petri nets, and safety properties are veri�ed on them. Then, Solidity smart
contracts are generated from the petri nets.

SmartAce [Wes+22] extends the Solidity compiler to support bounded and
parameterized smart contract veri�cation. It is based on the SEAHorn formal
veri�cation framework [Gur+15].

Outside of Ethereum, there is also an approach for bounded model checking
of Solana smart contracts written in Rust [Ott24].

Automatic Deductive Veri�cation

The approaches in this section all feature speci�cation languages which are
more expressive than the programming language that they target. All of them
feature universal and existential quanti�cation. This requires the use of more
powerful veri�cation techniques.

solc-verify solc-verify [HJ20] is a formal veri�cation tool for programs
written in Solidity. It takes as input Solidity smart contracts which are anno-
tated in solc-verify’s formal speci�cation language. Annotations can be con-
tract invariants, which specify conditions that always have to be maintained
after any public function call, and function contracts. Function contracts con-
sist of pre- and postconditions, conditions about events, and frame conditions,
which specify which part of the state a function may modify.

Speci�cation expressions are in Solidity with some �rst-order logic con-
structs, including quanti�cation over array and mapping elements as well as a
bounded sum operator. Furthermore, in the postcondition, the state before the
function call can be accessed. Function calls can be used in the speci�cation
if the concerned function is marked as internal (in which case it is inlined for
veri�cation), or if it has a function contract so that it can be abstracted.

For veri�cation, options can be speci�ed, e.g., for the treatment of arithmetic
operations and integer data types. solc-verify translates its input to Boogie
and then discharges the resulting proof obligations either with the Z3 [dB08]
or the CVC4 [Bar+11] SMT solver.

solc-verify has been used in other works. Antonino et al. developed an
approach for safe upgrading of deployed smart contracts, where before an up-
grade, it has to be proven that the new version of the contract still ful�lls some
required correctness property [Ant+22; Ant+24].
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Celestial Celestial [Dha+21] is a functional veri�cation tool for Solidity
smart contracts. It extends Solidity with annotations for invariants, postcondi-
tions, conditions for which a transaction will revert, and function frame condi-
tions clauses.

Annotated Celestial contracts can then be translated to F*, an ML-like
language which includes a tool chain for formal veri�cation. Veri�cation is
based on a translation of annotated programs as an SMT proof obligation.

Celestial also includes an environment model of the Ethereum network.
The annotated contract is veri�ed in the context of this model by SMT solvers.

Dafny Dafny [Lei10] is an approach for functional veri�cation consisting of
the Dafny programming language and a veri�er. The Dafny language contains
constructs for function contracts and loop invariants. The veri�er builds on
Boogie and Z3.

Dafny has been used as a platform to write veri�ed smart contracts which
can then be translated to Solidity and deployed [CFQ22]. Furthermore, the
Ethereum Virtual Machine has been speci�ed in Dafny in terms of executable
semantics [Cas+23].

VerX VerX [Per+20] is a tool for veri�cation of safety properties of Solidity
smart contracts. Its speci�cation language includes past temporal operators
(always, once, previously. It is also possible to refer to a function call and its
arguments as a predicate in the speci�cation.

An application is viewed as an implicit loop over all function calls, where
the function, the arguments and the caller are chosen non-deterministically.
Veri�cation of the speci�ed properties is conducted by symbolic execution of
this implicit loop, and verifying that the constraints collected in the course of
the symbolic execution satisfy the speci�ed properties.

Theorem Proving

Isabelle Modeling Hirai presented a semantic de�nition of the EVM in Is-
abelle/HOL [NPW02] in 2017 [Hir17].

Building on this de�nition, Amani et al. create an approach for formal ver-
i�cation of smart contracts in EVM bytecode [Ama+18]. While the approach
allows for very expressive speci�cation, veri�cation in Isabelle is mostly in-
teractive, which makes the approach less suitable for non-experts in theorem
proving.

Marmsoler and Brucker present an embedding of Solidity into Isabelle/HOL,
which enables speci�cation and veri�cation of source-level properties [MB22].
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KEVM The K framework [RS, 10] allows the de�nition of programming lan-
guages, calculi, and type systems. From the de�nition, a number of program-
ming language tools, such as compilers, but also formal analysis tools, e.g., sym-
bolic execution tools, can be automatically generated.

There have been works which use the K framework in the domain of smart
contracts. While a de�nition of Solidity within the K framework has not seen
much use [Jia+20], the de�nition of the EVM semantics in the K framework
[Hil+18] has been endorsed by the EVM developer team and built upon by other
formal approaches (e.g., [Sch+20]).

Functional Smart Contracts in Coq In the context of the ConCert frame-
work [ANS20], Annenkov et al. have created an embedding of a functional
smart contract programming language in Coq [Ann+21]. This makes it possi-
ble to test and verify smart contracts with the Coq theorem prover, and extract
smart contracts which exhibit the desired correctness properties.

Languages

Scribble So far, there have been relatively few attempts to create speci�ca-
tion languages for smart contracts, unless in the context of speci�c tools. One
notable exception is Scribble, which has been used as a speci�cation language
for di�erent approaches ranging from runtime veri�cation to assertion check-
ing [Mis+24].

Scribble [SCr23] is an annotation language for Solidity smart contracts.
The main goal is to provide tooling for runtime veri�cation. Annotations (in
Solidity) can be written for functions (" if_succeeds ") to encode pre- and post-
conditions. State variables can also be annotated to require that some property
holds on an update of the variable. This can be used, e.g., to express a concept
of ownership. Furthermore, contract invariants can be speci�ed. Clauses en-
coding frame conditions, such as in Celestial or solc-verify, are not possible.

Scilla Scilla [Ser+19] is an intermediate-level functional smart contract pro-
gramming language which aims to avoid common vulnerabilities observed in
Solidity smart contracts, namely reentrancy. Scilla is not turing-complete, but
the authors argue that all common use cases can still be implemented, and that
trading o� some expressiveness is worth the gain in security and ease of veri-
�cation. In the paper, the authors sketch how veri�cation of Scilla smart con-
tracts can be conducted through an embedding in Coq [Pau11].
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Obsidian Obsidian [Cob17; Cob+20] is a platform-independent program-
ming language for smart contracts which aims to avoid common errors made in
Solidity and other languages. It is a typed language based on linear types. Lin-
ear types ensure that objects can be used only once, and are therefore a good �t
for modeling non-fungible resources in smart contract applications. Obsidian
also includes a concept of ownership.

The work�ow with Obsidian is to write an application in the language and
rely on the built-in type checker to verify that no unintended behavior can
occur. Afterwards, the application can be translated to a speci�c platform. As
of 2020, only Hyperledger Fabric was supported, and the documentation [Obs]
does not contain any updates afterwards.

Resource-based Speci�cation and Veri�cation Approaches

One characteristic of smart contract applications is that they usually manage
resources of some kind, e.g., cryptocurrencies or tokens representing some real-
world asset. Some of these resources are built into the platform, like the Ether
cryptocurrency. Others are created within smart contracts, using the data types
the platforms provide.

Some formal veri�cation approaches take the resource properties of such
data types into account, and provide constructs for reasoning about ownership
or resource transfers.

Move Language and Prover Move is a smart contract programming lan-
guage developed for Facebook’s Diem blockchain. Although Diem has been
discontinued, the Move language is still being developed [Mov24], particularly
because of its strong emphasis on formal veri�cation. Move’s type system and
resource model are designed to prevent common vulnerabilities, such as reen-
trancy and unauthorized asset duplication, by ensuring that assets are treated
as linear resources that cannot be accidentally duplicated or destroyed. The
language is also modular, allowing for the creation of reusable and compos-
able components, which can enhance security and e�ciency in smart contract
development.

The Move Prover is a formal veri�cation tool integrated with the Move lan-
guage to ensure the correctness of smart contracts. It checks for safety prop-
erties such as invariants, preconditions, and postconditions. By automatically
generating and checking proofs, the Move Prover helps developers identify and
mitigate potential security issues early in the development process.
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2Vyper 2Vyper [Brä+21] is a veri�cation tool for Ethereum smart contracts
written in the Vyper language. The speci�cation language has resources as �rst
class speci�cation elements, and these automatically have all the properties ex-
pected of them, i.e., they cannot be copied, duplicated, or deleted. Furthermore,
the speci�cation language includes a notion of ownership, where it can be spec-
i�ed that some resource can only be moved or changed by a certain account.

Resource Speci�cations for Rust-based Smart Contracts Grannan and
Summers observe that classic speci�cation languages with �rst-order expres-
sions over program state often lead to cumbersome speci�cation when it comes
to programs that deal with resources that cannot be copied or duplicated [GS23].
While, e.g., a developer may take it for granted that money in a bank cannot
simply be deleted or copied, properties like this have to be speci�ed using frame
conditions, creating a mismatch between the mental model of the developer and
the speci�cation.

Based on these observations, a resource-based speci�cation language for
smart contracts written in Rust is developed. Veri�cation is implemented as an
extension of the Prusti veri�er [Ast+22] (which is, in turn, an extension of the
separation logic-based Viper approach [MSS16]).

Formal Model

This section presents veri�cation approaches which target application-level
properties and work on some abstract model. Therefore, the approaches men-
tioned here are the closest to the Scar approach introduced in Chapter 3.

Quartz �artz [Kol+20] is an approach in which smart contracts can be
concisely speci�ed, statically analyzed on the model level, and then turned into
Solidity implementations which ful�ll the analyzed properties.

The speci�cation language is a mix of the TLA+ systems speci�cation lan-
guage [Lam02] and Solidity. In TLA+, systems are speci�ed in terms of state
variables and actions, which de�ne state transitions. In �artz, actions can
be written in a limited subset of Solidity, which does not contain loops and
branching. However, �artz o�ers some constructs to reason about autho-
rization and time, e.g., it is possible to de�ne actions which are only possible
from a point in time onward, or in a given interval. With the actions trans-
lated to TLA+, an application can then be model-checked with the TLC model
checker [YML99].
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SmartPulse SmartPulse [Ste+21] is a tool for checking safety and also, es-
pecially, liveness properties of Solidity smart contracts. Properties are speci�ed
in SmartLTL, which contains primitives for functions being called, functions
�nishing execution, reverting, and sending ether. Fairness speci�cations can
be speci�ed if necessary to prove liveness properties.

In addition to source code and temporal speci�cation, an environment can
be speci�ed, consisting of an attacker model (the set of functions the attacker
can call, and a bound on the number of calls) and a blockchain model (gas costs,
especially of the transfer function). Useful defaults are provided for the envi-
ronment models.

SmartPulse builds on VeriSol’s translation to Boogie. For the veri�ca-
tion of temporal properties, speci�cation and programs are translated to Büchi
automata and veri�ed by the Ultimate Automizer tool [Hei+13].

FSolidM and VeriSolid The FSolidM tool [ML18] by Mavridou and Laszka
and its successor VeriSolid [Mav+19; Nel+20] have been developed to en-
able correct-by-design Solidity smart contracts. In both approaches, developers
model smart contracts as transition systems, consisting of pre-de�ned states
and actions. Action de�ne the transitions between states. They can contain
Solidity source code.

The authors de�ne structural operational semantics for transitions written
in a supported Solidity subset. This allows veri�cation of some properties, such
as the existence of an initial state, or function termination.

While FSolidM is for single smart contracts, VeriSolid extends it by a
mechanism called deployment diagrams, which allows specifying an applica-
tion consisting of several contracts and their interactions. This speci�cation
can then be translated to a model in the Behavior, Interaction, Priority language
[Bli+15]. Then, existing tools can be used to check this model for safety and
liveness properties. Since the transitions in the model are de�ned in Solidity
by the developer, generating an implementation from the model is straightfor-
ward. One caveat of the overall approach is that the developer has to de�ne an
explicit �nite set of states that an application can be in.

Model-driven Development

In Chapter 3, the Scar approach for model-driven development based on formal
veri�cation is introduced. While model-driven development is not a formal
method as such, this section lists some approaches which enable development
of smart contract applications in this way.

Skotnica and Pergl [SP20] develop DasContract, an UML-like domain-
speci�c language for modeling smart contracts. Their metamodel includes el-
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ements for contracts, data types, transactions, and actor. The approach allows
the creation of a number of domain-speci�c models and diagrams, including
and action models which can specify conditions on transactions, as well as
structure diagrams and process diagrams, which are similar to UML class di-
agrams and sequence diagrams, respectively.

The iContractML language [HMQ20] focuses more on the deployment of
Solidity smart contracts. A metamodel of smart contracts is developed, consist-
ing of the contract, transaction, asset, and participant elements. From the model,
code can be generated for the Ethereum and Hyperledger Fabric platforms.

Other approaches in this area include architectural modeling of smart con-
tracts [Jur+23] and model-driven development of smart contracts for cyber-
physical systems [Gar+18].





Chapter 3

The Scar Approach

Chapter 2 gives an overview of the multitude of existing approaches which ap-
ply formal methods to smart contracts. Despite the availability of these tools
and methods, security remains a challenging issue in the domain of smart con-
tracts.

In this chapter, we show that to achieve more secure smart contract appli-
cations, an approach is needed which provides a more suitable level of abstrac-
tion for describing security and correctness properties. At the same time, such
an approach must still result in a concrete implementation which satis�es the
speci�ed properties.

For this, we propose the Scar (“Smart Contract Abstract Representation”)
approach. At its core, the approach consists of a metamodel of smart contract
applications. Developers can create instances of this metamodel to describe an
application in terms of its state and the functionality it exposes.

Furthermore, the Scar approach provides a process to get from a model to
an implementation that is consistent with the model. This process is based on
the automatic generation of formal speci�cation, and the use of existing tools
for formal veri�cation.

The model serves as ground truth for application-level speci�cation and
analysis of security properties like access control policies and temporal prop-
erties. While some analyses have been developed and implemented, the Scar
approach is also intended as an extendable platform, where new analyses can
be easily added, and other tools can be integrated.

In the following, we give some evidence for the necessity of this veri�cation-
based, model-driven approach in the domain of smart contracts. Then, we pre-
sent an overview of the goals, the core components, and the processes of the
Scar approach in Section 3.2. In Section 3.3, the Scar application metamodel
is described in terms of syntax and semantics. Afterwards, we describe how

47
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consistency between a Scar model of an application and a source code imple-
mentation of the same application can be achieved. The Scar approach has
been implemented in a publicly available project. Next, we discuss examples of
Scar models of the use cases described in Section 1.4. Finally, in Section 3.7,
we sketch some further possible use cases of the Scar approach that go beyond
the process described in Section 3.2.

3.1 Model-driven, Veri�cation-based

Development

As detailed in Chapter 2, static analysis and formal veri�cation of smart con-
tracts have been very active �elds of research. Numerous approaches for de-
tecting bugs and common weaknesses as well as specifying and verifying user-
de�ned correctness properties have been proposed; Munir and Taha list 194
works in their paper on Pre-Deployment Analysis of Smart Contracts – A Survey
[MT23].

However, smart contract security is still a problem. There are entire web-
sites dedicated to listing all the instances of smart contract applications being
hacked (for example, [Whi24] and [Ger24]). Many of the exploited applications
were even audited, prior to the attacks, by companies like CertiK [Cer24], who
perform audits consisting of both manual code review and automated static
analysis. This indicates that the methods used in the audits are not su�cient to
guarantee security.

Although static analysis tools may help to avoid common vulnerabilities,
current research shows that they are not su�cient to ensure smart contract
application security. For example, Zhang et al. come to the conclusion that
the majority of bugs in smart contracts is “hard to �nd” and “not machine-
auditable” [Zha+23]. Chaliasos et al. state, after analyzing a set of high-impact
attacks, that only 8% of the vulnerabilities which led to these attacks could have
been detected with any state-of-the-art static analysis tool [Cha+23]. Moreover,
He et al. argue that most current vulnerability detection tools “can only detect
vulnerabilities in a single and old version of smart contracts” [He+23]. This
also hints at the wide-spread phenomenon of software quickly becoming un-
usable in the wake of advancements; for example, new versions of the Solidity
programming language or the Ethereum virtual machine can render analysis
tools obsolete, unless they are actively developed. Ivanov et al. come to a simi-
lar conclusion in their survey of security defense mechanisms, concluding that
“[...] many vulnerabilities are not covered by any solutions” [Iva+23]. They
also point out another way in which static analysis tools can be insu�cient,
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namely that “Apart from strict false positives, static analysis tools also report
vulnerabilities that are not exploitable (e.g., for economic reasons)”.

In the presentation of the Horstify tool, Holler, Biewer, and Schneidewind
also touch upon the problem of false positives and, especially, false negatives,
claiming that “most analysis tools aiming at provable soundness guarantees
fall short” [HBS23]. On this, the authors base their argument that better static
analysis tools for vulnerability detection are needed, especially tools that give
veri�able soundness guarantees.

Overall, however, we can conclude that static analysis tools alone do not
and cannot su�ce to ensure security in smart contract applications. In this
domain, security is just too application-speci�c.

Formal veri�cation tools go a di�erent route by allowing their users to de-
�ne the desired properties, and attempting a proof. Unlike with vulnerability
detection tools, there is not always a yes or no answer; a proof attempt can
always time out. If a proof is found, the program is deemed to ful�ll its speci-
�cation. On one hand, this greatly increases the complexity of formal analysis,
since the developer has to write formal speci�cation. On the other hand, a pos-
itive result, i.e., a proof of correctness of a desired property, is a much more
powerful result than the absence of some prede�ned vulnerabilities.

Di�erent approaches allow specifying di�erent kinds of properties (cf. Sec-
tion 2.4). The two most common kinds are function contracts and invariants,
e.g., solc-verify [HJ20] or Celestial [Dha+21]. Other tools go beyond this
and also allow specifying temporal properties, like VerX [Per+20].

One di�culty that developers face when using source code-level formal ver-
i�cation tools of this kind is a lack of abstraction. The speci�cation is on the
source code level. Therefore, a developer will always have to think about the ap-
plication in terms of a speci�c platform and programming language, even when
specifying abstract behavior. This is especially di�cult with relatively new pro-
gramming languages, like Solidity, where developers often lack familiarity with
the peculiarities, and where best practices have not yet been established.

Furthermore, important correctness properties in the smart contract do-
main are often not properties of single functions, but of the entire application.
This makes them inherently hard to specify on the source code level. A good
example of this is access control: A developer may want to specify that a certain
functionality must only be available to a subset of users, or that a part of the
application state may only be modi�ed by the owner of the application. While
access to a single function can be expressed as a precondition to that function,
there is no immediate way to specify a restriction of access to state.

A more general perspective on this is o�ered by Grannan and Summers:
Developers might also face di�culties in specifying the behavior of smart con-
tract applications due to the huge semantic gap between intuitive concepts like
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resource ownership and access control on one hand, and their representation
in a programming language on the other hand (cf. [GS23]). It is easy to state
that an account “owns” the amount stored in a variable, or that only a subset
of callers may access a state variable, and the intent behind these statements
is clear. However, the formal speci�cation needed to describe these intentions
in terms of function contracts and invariants, is much more complex. This in-
dicates a need of an additional layer of abstraction, which allows developers
to use “easy” concepts in a way that still builds on the rigorous guarantees of
formal methods.

The above observations lead to the Scar model-driven development ap-
proach for smart contract applications that presented in this work.

3.2 Scar Overview

In this chapter, we present Scar, a modeling and analysis approach for smart
contract applications. The Scar approach consists of three main parts:

• A metamodel of smart contract applications, in which these appli-
cations can be de�ned in terms of their structure, i.e., the contracts, state,
and functions they consist of. A type system is also part of the metamodel.

• The ScarML speci�cation language, which serves to describe the be-
havior of individual functions in terms of pre- and postconditions, and
properties of individual contracts in terms of invariants.

• A model-driven process based on formal veri�cation, which leads from
the creation of a Scar model to a source code implementation that can
be deployed on a speci�c platform. Formal methods ensure that the im-
plementation is consistent with the model.

In the following, we use the term basic metamodel to refer to the structural
part of the metamodel. This part consists of contracts, i.e., objects which encap-
sulate their own state (in the form of state variables) and functionality (in the
form of functions). The basic metamodel does not contain ScarML, the behav-
ioral speci�cation part of the metamodel. An instance of the basic metamodel
is a basic model.

The ScarML speci�cation can be attached to functions or individual con-
tracts. In contrast, we use the term application-level property to describe prop-
erties that cannot be readily expressed in ScarML, because they to not pertain
to just one function or contract. In Chapter 4 and Chapter 5, we extend the Scar
metamodel with speci�cation languages for such application-level properties,
and develop speci�c model-level analysis techniques.
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Figure 3.1: The Scar process of smart contract application development

Model-driven Development Process Overview

An overview of the intended work�ow with the Scar platform is given in Fig-
ure 3.1. After collecting the requirements for an application, developers create
a basic Scar model. This basic model de�nes an application in terms of its
smart contracts, their state variables and functions, and the behavior of these
functions. The developer then proceeds in two directions: First, they specify
application-level correctness and security properties (cf. Chapter 4 and Chap-
ter 5) on the model. They conduct the analyses provided by Scar (or by the
integration of Scar with other tools) to verify that these properties are consis-
tent with the basic model. Secondly, they use the code generation capabilities
provided by Scar to automatically create a source code skeleton in the desired
target programming language, annotated with speci�cation in the language of
a formal veri�cation tool suitable for that language. They proceed to implement
the functions such that the veri�cation tool is able to prove that the implemen-
tation is correct w.r.t. the generated speci�cation. This process is inspired by
the Design by Contract paradigm [Mey92].

Goals of the Scar Approach

The main goal of the Scar approach proposed in this work is to give developers
the possibility to succinctly specify application-level security and correctness
properties of smart contract applications, and to equip them with a process that
yields an application which is guaranteed to ful�ll these properties.

Scar also serves more abstract purposes. It ties in with a general drive to
“shift left security”, an approach in software development which aims to factor
in security as early in the software development cycle as possible. Furthermore,
it aims to reduce the semantic gap between complex application-level proper-
ties and their instantiation on the source code level.
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Scar is intended to enable di�erent formal analysis tools. The separation
of model and implementation is bene�cial especially when something changes:
When a function implementation is adapted, does this a�ect any application-
level correctness properties? The separation between model and code reduces
this question to whether the changed function still ful�lls its contract. Similarly,
Scar may reduce the necessary e�ort in case of a change in requirements.

Speci�c design decisions

Scope of anApplication As described in Section 1.2, a smart contract can be
viewed as an object that de�nes a namespace and encapsulates some function-
ality that may operate on that namespace. A smart contract application, then,
could be de�ned as the set of contracts which is concerned with performing a
certain task. Since smart contracts can call other contracts, and have contract-
typed state variables, a smart contract application can also be viewed as the
transitive closure of an initial set of contracts: Every contract that is called by
the application or in the state of an application becomes part of the application.
This is the view we take in Scar.

Note that, in practice, this may mean that developers have to specify con-
tracts that are already deployed, e.g., existing libraries, if these contracts are to
be called from the planned application.

Function Abstraction In Scar, functions are abstracted by �rst-order logic
function contracts, instead of being de�ned in terms of a program. This has ben-
e�ts: First, it allows introducing speci�cation constructs that are not existing
in some programming languages, while still including all necessary domain-
speci�c elements. This is especially relevant for quanti�ers and sum operators,
which are needed to reason about unbounded data types.

Most importantly, though, this abstraction can be viewed as a change of
perspective of the developer: A Scar model describes what a function does, as
opposed to how it does it.

Under-speci�cation of Functions In Scar, developers can choose to leave
functions under-speci�ed. Function contracts are not necessarily deterministic
and allow di�erent concrete implementations of the same function.

This brings �exibility: If an under-speci�cation still su�ces to prove some
application-level property, then it has ful�lled its purpose, and the implemen-
tation details do not matter as long as the implementation is consistent with
the model.
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Precondition Semantics In speci�cation languages which allow the spec-
i�cation of function or method contracts, the precondition has to be met by
the caller of the function (e.g., in JML [LC06] or ACSL [Bau+08]), and if the
precondition is not met, the behavior of the function is not de�ned. In the
adversarial environment of smart contracts, where functions are called by un-
trusted and possibly malicious actors, this does not make sense. Therefore, we
adapt slightly di�erent semantics where if the precondition is not ful�lled, no
transaction happens and the state remains unchanged. If the precondition is ful-
�lled, then the function must terminate in a state that ful�lls the postcondition
(as with other comparable speci�cation formalisms). This is also the semantics
that formal veri�cation tools for the Ethereum platform have adopted.

Contracts as Data Types Should an application model be static, in the sense
that every individual contract is described by it, and the set of contracts remains
the same? Or can contracts be created dynamically over the execution of an
application?

There exists a trade-o� between expressive power and complexity here. In
many real-world applications, contracts are in fact created dynamically, and
to describe these applications, the modeling language needs to allow this. On
the other hand, this increases the complexity of the speci�cation, and makes it
harder for developers to intuitively grasp the meaning of a model.

Scar tries to �nd a good compromise in this regard. Contracts are data
types, and can be dynamically created during execution. However, simple,
static applications can still be described easily.

Time In smart contract networks, there are two di�erent notions of time.
The �rst is concerned with the time at which a transaction was executed, or at
which a block was mined, respectively. The second notion is about the order of
blocks and transactions. Intuitively, the �rst notion is about timestamps, while
the second is about block (or transaction) numbers.

Functions in smart contracts can make reference to system time. Therefore,
specifying correctness and security properties requires reasoning about the sys-
tem time. One example is the auction application presented in Section 1.4, in
which the close function can only be called after a prede�ned period of time
has elapsed.

Block numbers are always increasing by 1, but can be unreliable for time
estimation due to changes in block di�culty and other normal �uctuation.

Block timestamps are di�erent between platforms. In Ethereum, they are
set by the miner of a block. By the Ethereum speci�cation, the timestamp must
be larger than that of the previous block, but not by more than 900 seconds.
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However, most Ethereum clients (such as Geth [Gol18]) reject blocks if their
timestamp is larger than that of the client attempting to validate it. In prac-
tice, this limits the miners’ �exibility with the timestamp to a few seconds, and
makes timestamps a much more reliable base for estimating elapsed time than
block numbers. This is also true for the other platforms, e.g, Solana, where
timestamps are calculated on request, as an average over timestamps on recent
blocks [Sol24b].

Since both notions of time can reasonably be useful in speci�cation, both
timestamp ( \systime ) and block number ( \blocknum ) are speci�cation ele-
ments in Scar.

3.3 Scar Application Metamodel

This section presents the core of the Scar approach, namely, its smart contract
application metamodel. First, we present the basic model elements and Scar’s
type system. Then, we de�ne the speci�cation language used within the model
to describe the behavior of functions in terms of functions contracts.

Basic Model Elements and Type System

Figure 3.2 gives an overview of the basic metamodel. The topmost element of
the metamodel is the application. It consists of contract elements. Contracts, in
turn consist of stateVariable and function elements. State variables have a name
and a type. Functions have a name, a list of named and typed parameters, an
optional return type, and a function contract written in the Scar functional
speci�cation language (see Section 3.3 below).

In order to describe the initialization of an application, an initial condition
can be speci�ed for each contract in the same speci�cation language. To closely
re�ect the constructors in smart contract programming languages, the initial
condition can be parameterized.

The Scar type system is visualized in Figure 3.3. In it, there are four prim-
itive types: Booleans (Bool), signed and unsigned integers (Int and UInt, re-
spectively), and strings (String). Accounts (Account) can be either external ac-
counts, representing a real-world entity, or contracts. Both have a non-negative
balance, and every account has a unique ID. Each contract in an application de-
�nes its own type, which consists of a name, a list of typed and named state
variables, and a list of the functions of that contract. Furthermore, there are two
composite types: Arrays and Mappings, which map keys of a primitive type to
values (whose type is not restricted). In addition, there are two user-de�ned



3.3. SCAR APPLICATION METAMODEL 55

Figure 3.2: The core metamodel. The Type hierarchy is presented in Figure 3.3.
Function contracts and invariants are expressions in the ScarML functional
speci�cation language described in Figure 3.4.

types: Enums have a String list of constant names. Structs are records with a
list of named and typed �elds.

In order to avoid problems with in�nite recursion in the type system, we
restrict user-de�ned types to be non-recursive. This means that no struct or
contracts type may contain a �eld or state variable of its own type, or a collec-
tion thereof.

ScarML

The ability to specify the behavior of a smart contract application in a modu-
lar way is a core element of the Scar approach. In this section, we introduce
ScarML, the Scar modeling language. ScarML is a speci�cation language for
contract invariants (for specifying properties of smart contract instances) and
function contracts (for specifying the behavior of single functions). Function
contracts consist of preconditions, postconditions, and frame conditions. In-
variants, preconditions, and postconditions are de�ned as Boolean speci�cation
expressions. Frame conditions are speci�ed as frame expressions.
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Figure 3.3: A graphical description of the type system

The grammar of ScarML speci�cation expressions is de�ned in Figure 3.4.
Expressions are typed.

Each state variable in an application model is a term of the variable’s type.
Elements of composite data types are also terms. Terms of number types can
be combined with arithmetic and comparison operators. Terms of Boolean type
can be negated and combined with the standard Boolean connectors. Existen-
tially and universally quanti�ed expressions are also allowed. There are two
equality operators, re�ecting value equality and referential equality (see Sec-
tion 3.4).

There is a special operator for evaluating a term in the pre-state of a transac-
tion ( \old ). Furthermore, there are some constructs that represent the context
of a transaction, i.e., the caller, the amount transferred with the call, the system
time of the call, and the number of the block in which the transaction is exe-
cuted. Another domain-speci�c term is the \hash operator. Furthermore, the
speci�cation can contain terms representing a (pure) function call. All Boolean,
integer, and string literals are also terms. Terms of Boolean type can be used as
top-level expressions in invariants, preconditions and postconditions.

We provide some set-typed terms for reasoning and quantifying over primi-
tive data types and elements of unbounded data types: \keys() and \values()
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φ ::= v | v[t] | v.id
| [1-9][0-9]+
| true | false
| φ [== | !=] φ
| φ [=== | !==] φ
| !φ1 | φ1 [&& | || | =>] φ2
| -φ3
| φ3 [+ | - | * | / | %] φ4
| φ3 [< | <= | >= | >] φ4
| [ ∀ | ∃ ] (qV ar) : φ
| \result | \old(t)
| \caller | \amt | \systime | \blocknum
| \send(φ3,φ5,φ6)
| \hash(φ)
| \sum(φ7)
| StringLiteral
| funName(args)
| \values(φ) | \keys(φ) | \size(φ)
| \in
| \creates type:id(params)

Figure 3.4: The grammar of ScarML. φ1 and φ2 are of type bool, φ3 and φ4 are
number-typed, φ5 and φ6 are of type account, and φ7 is a set of number-typed
values

refer to the domain and the set of elements of an array or mapping, respec-
tively. For these, the \in keyword signi�es set inclusion. The \size() key-
word refers to the number of elements of an array or mapping variable.

A bounded sum operator \sum() is provided, which takes a number-typed
set expression, like an integer array or the values of a mapping to unsigned
integers.

Within a quanti�ed expression, the quanti�cation variable is written v: r
where v is an identi�er and range is either the name of a primitive type (i.e., int,
uint, string, or account), or a set-typed expression, like \keys() or \values() .

The \creates() keyword expresses that a new contract of a given type with
given parameters is created as part of a function execution.

Term Types Terms representing variables, elements, contract members are
of the type of the element they represent. A function call term is of the type
that the function returns. Number literal terms are of type uint. The unary
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frameExpr ::= modifies : id | id.e | id.* | id[e]| id [e1..e2] | id[*]

Figure 3.5: The grammar for ScarML frame condition expressions

minus yields a term of type int .
The arithmetic functions are polymorphic. Both subterms can be either of

type int or uint . With the exception of subtraction, the resulting term is of
type uint i� both subterms are also of type uint . Otherwise, it is of type int .
Subtraction always yields a term of type int .

The \old() operator yields a term of the same type as the term it contains.
The \result term can only be used within a function postcondition and is of
the type this function returns.

The domain-speci�c special terms \amt , \systime , \blocknum , and \hash()
are of type uint . The \caller term is of type account . The \send() term is
of Boolean type.

A function call term can only refer to a pure function. We de�ne a function
to be pure if it is side-e�ect free, i.e., it does not modify the state in any way.

For reasoning and quantifying over primitive data types and elements of
unbounded data types, we introduce some terms that are set-typed: \keys()
and \values() yield �nite sets of the type of the array or mapping they refer
to. \size() is of type uint . Set-typed expressions can also occur within range
expressions of quanti�ers.

Frame conditions In function contracts, ScarML allows the speci�cation
of frames, i.e., the parts of the state that a function may modify. The frame
condition syntax in ScarML is given in Figure 3.5.

3.4 Scar Semantics

We develop the semantics of the Scar metamodel. First, we de�ne the domains
of the di�erent types, and the locations that arise from a given application.
With this, we can de�ne the state of an application.

Going forward, we de�ne the semantics of a Scar model in terms of execu-
tion traces consisting of environment and application steps. In the last part of
this chapter, we de�ne the semantics of ScarML.

Types and Locations in the Basic Metamodel

In order to de�ne the state of an application, we �rst require some preliminary
de�nitions. First, we say that A is the abstract set of all accounts. In an appli-
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Type t of variable a ValsOf (t)
Int Z
UInt N0
Bool {>,⊥}
String String
Account A

Enum(c0, ..., ci) {c0, ..., ci}
mapping(t1 ⇒ t2) {f : t1 → t2}
mapping(t1 ⇒ t3) {f : t1 → t3}

t[] {f :UInt → t}
Struct {f : a.fields→ AllValues}

Contract {f : a.vars→ AllValues}

Table 3.1: The set of values a variable can assume. (with t2 a primitive type and
t3 a non-primitive type).

cation a, at each point in time, there are two sets of accounts in the application:
Ca, the set of contracts in the app, and Ea, the set of external accounts in the
app. These two sets are �rst de�ned in the initial step (see below) and change
over time. Together, they form Aa = Ca ∪ Ea, the combined set of all “known”
accounts.

Each Scar type de�nes a set of possible values that a variable of this type
can assume. We de�ne a function ValsOf which maps Scar types to the set of
their possible values:

De�nition 1 (The ValsOf function) The function ValsOfmaps Scar types to sub-
sets of AllValues as de�ned in Table 3.1.

We describe the state of an application in terms of Locations. Each state
variable v de�nes a set of locations according to its type. Variables of primi-
tive type de�ne exactly one location, which is described simply by the name
of the variable. Composite-type variables de�ne sets of locations, with each
location described as a tuple. The size of the tuple is de�ned by the nesting
depth of the type. For example, an Int array a de�nes a set of locations, each
of which is described by a tuple (a, x), where x is an integer. In analogy to the
ValsOf function, we de�ne the LocsOf function in Table 3.2:

De�nition 2 (The LocsOf function) The function LocsOfmaps Scar types to sets
of locations as de�ned in Table 3.2.

With this, the set of locations of an application a is Locsa = ⋃
c∈Ca

LocsOf(c),
and the state of an application Sa : Locsa → AllValues is a function that maps
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Type t of variable a LocsOf (a)
Int, UInt, Bool, String {a}

Account {a, a.balance}
Enum(c0, ..., ci) {a}

mapping(t1 ⇒ t2) {a} × ValsOf(t1)
mapping(t1 ⇒ t3) {a} × ValsOf(t1)× LocsOf(t3)

t[t2] {a} × N0
t[t3] {a} × N0 × LocsOf(t3)

Struct {a} × LocsOf(fields(a))
Contract {a} × LocsOf(stateVars(a))

Table 3.2: The set of and the set of locations de�ned by a variable of each type
(with t2 a primitive type and t3 a non-primitive type)

locations to values. Where it is clear (or irrelevant) which application is referred
to, we omit the subscript.

State variables are never uninitialized, but arrays and mappings can have
elements that have not been set. In accordance with Solidity’s state defaults,
the state function is de�ned as a total function over all locations, even if those
locations have not been initialized. In that case, the location is de�ned to be in
the default state. We de�ne the default values for the Scar types as follows:

De�nition 3 (Default values) The function defValOf maps Scar types to values
as de�ned in Table 3.3.

The defaultAccount is a special value of type Account. For composite types,
the default value is a variable with all elements set to the default value of the el-
ement type, e.g., the default value for a variable of type mapping(account=>int)
is the function mapping all accounts to 0.

Semantics of ScarML

We de�ne the semantics of ScarML in terms of an evaluation function over the
state.
Evaluation Function Invariants and pre- and postconditions are evaluated
in a step τi of the execution, which consists of the call context ctxi and a state
si (cf. the description of the trace semantics below).

De�nition 4 (Evaluation Function) The partial evaluation function J·K is de-
�ned in Figure 3.6. It maps terms of the ScarML speci�cation language to the set
AllValues of all possible values. The evaluation function is parameterized with a
call context.
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Type t of variable a defValOf (a)
Int 0
UInt 0
Bool ⊥
String “”
Account defaultAccount

Enum(c0, ..., ci) c0
Composite type f(x) = defValOf (x)

Table 3.3: The default value for each type. The default value for the String
type is the empty string. For the account type, a special value defaultAccount is
introduced. For the composite data types, the possible values are functions; For
these types, the default value is the constant function which maps everything
to the default value.

The evaluation function is not de�ned for terms containing out-of-bounds
accesses or a division by zero.

De�nition 5 A condition c is ful�lled (or satis�ed) in a step τi if JcKτi
= >.

A condition c is satis�able if there exists a possible step (i.e., a combination of a
state s and a call environment) τ such that c is ful�lled in τ .

Set-typed Expressions To make quanti�cation over composite data types
more intuitive, ScarML contains some set-typed expressions. However, the
language is limited to very basic expressions representing the elements of such
composite types. We judge that introducing set operators increases the com-
plexity of speci�cation and veri�cation while providing only very little bene�t.

The \keys and \values expressions are set-typed. Each variable of the
unbounded array and mapping data types de�nes a function. The domain of
this function consists of all values for which the function is de�ned, which
corresponds to the set of mapping keys or array indices that have been assigned
a value. The codomain is the set of all these values. The \keys and \values
expressions map a variable to its domain or codomain, respectively.

The exact semantics of what constitutes the domain of an array or a map-
ping is speci�c to the application platform (or even to a concrete veri�cation
tool). Therefore, the translation of these expressions to the source code anno-
tations is crucial.

Function frames Frame conditions in ScarML de�ne what part of an appli-
cation’s state may be modi�ed by the function. The grammar is given as a part
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JtrueK := >
JfalseK := ⊥

JvK := si(v)
Jv[t]K := si((v, JtK))
J-φK := −JφK

Jφ1 + φ2K := Jφ1K + Jφ2K
Jφ1 − φ2K := Jφ1K− Jφ2K
Jφ1 ∗ φ2K := Jφ1K ∗ Jφ2K

J\resultK := returni
J\old(t)K := JtKsi−1

J\callerK := calleri
J\amtK := amti

J\systimeK := systimei
J\blocknumK := blocknumi

J\send(φ3,φ4,φ5)K := send(Jφ3K, Jφ4K, Jφ5K)
J\hash(t)K := hash(JtK)
Jφ1 == φ2K := Jφ1K =val Jφ2K
Jφ1 != φ2K := Jφ1K 6=val Jφ2K

Jφ1 === φ2K := Jφ1K =ref Jφ2K
Jφ1 !== φ2K := Jφ1K 6=ref Jφ2K

J!φK := ¬JφK
Jφ1 && φ2K := Jφ1K ∧ Jφ2K
Jφ1 || φ2K := Jφ1K ∨ Jφ2K
Jφ1 => φ2K := Jφ1K⇒ Jφ2K
Jφ1 < φ2K := Jφ1K < Jφ2K

Jφ1 <= φ2K := Jφ1K ≤ Jφ2K
Jφ1 >= φ2K := Jφ1K ≥ Jφ2K
Jφ1 > φ2K := Jφ1K > Jφ2K

J∀ qVar : φK := ∀x ∈ RangeEval(qV ar) : J{qVar/x}φK
J∃ qVar : φK := ∃x ∈ RangeEval(qV ar) : J{qVar/x}φK

J\sum(a)K := ∑
i∈domain(a)JaK(i)

J\keys(m)K := domain(m)
J\values(m)K := codomain(m)

J\size(m)K := |codomain(m)|
Jv(t)K := si((v, JtK)) if JtK ∈ domain(v)

Jφ1/φ2K := Jφ1K/Jφ2K if Jφ2K 6= 0
Jφ1%φ2K := Jφ1KmodJφ2K if Jφ2K 6= 0
a mod n := a− n ∗ (a/n)

Figure 3.6: The ScarML evaluation function J·K. The function is parameterized
with the step τi, which contains the environment values calleri , amti , systimei ,
blocknumi , and the prestate si−1 and poststate si
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Expr JExprKloc
\nothing ∅

id {id}
id.e (JidKloc, JeKloc)
c.* JcKloc × statevars(c)
s.* JcKloc × fields(c)

id[e] (JidKloc, JeKloc)
m(*) JaKloc × dom(m)
m[*] JaKloc × ValsOf(t1)

a[e1..e2] JaKloc × {n ∈ N | Je1K ≤ n ∧ n < Je2K}
a(*) JaKloc × dom(a)
a[*] JaKloc × N

Figure 3.7: De�nition of the function frame evaluation function J·Kloc, where c
is a contract, s is a struct, m is a mapping from type t1 to t2 and a is an array

of the basic model grammar in Figure 3.9. The semantics of the frame condition
is de�ned by the location evaluation function J·Kloc.

De�nition 6 (Frame condition evaluation) The frame evaluation function
J·Kloc is de�ned in Figure 3.7. It maps ScarML location expressions to locations in
the model (cf. Section 3.4).

Note that a function annotated with a \nothing frame condition may still
create a new contract. However, the new contract cannot be referred to from
any location within the application, since that would require the modi�cation
of the application state.

Unbounded Types and Default Values Mappings and arrays are �nite, but
unbounded dynamic data structures in Scar. We treat them like functions: The
domain of an array a is the set of all indices for which an element has been set.
In ScarML, we provide two kinds of access to these data structures. The �rst
one is functional access, expressed by parentheses (“ a(i) ”). Functional access
is de�ned only if the index (or key) is in the domain, and remains unde�ned
otherwise.

The second way of accessing elements is close to what a Solidity developer
might expect. It is expressed with brackets (“ a[i] ”) and always de�ned. If no
element has been created for a given key or index, the access will yield a default
value (as speci�ed in Table 3.1).
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Equality ScarML o�ers two equality operators (namely, “ == ” and “ === ”,
as well as the corresponding inequalities), so that developers can distinguish
between referential equality and value equality. For this, we de�ne two equality
predicates =ref and =val. Two expressions are referentially equal if they refer
to the exact same location.

To be of equal value, two expressions must have the same type. For primi-
tive types, two expressions are considered equal i� their values are equal. Two
account-typed expressions are equal i� they refer to accounts with the same ID.
Expressions of composite types are value equal if all their elements are value-
equal.

Note that x =ref y implies x =val y.

Division by Zero Division by zero is treated in di�erent ways by di�erent
programming languages and veri�cation tools. In Solidity, a division by zero
results in an error, which leads to a function reverting without state change.
In some logic tools, e.g., SMTLIB2 and the z3 SMT solver, division by zero is
unde�ned. The solc-verify tool is based on these technologies. Therefore, we
choose to adopt these semantics for the Scar speci�cation language because it
limits the risk of discrepancies between the model-level and implementation-
level speci�cation.

Semantics of a Scar Model

In this section, we de�ne trace-based semantics of a full Scar model, i.e., a basic
model with function contracts and invariants.

De�nition 7 (Model plausibility) A Scar model m is plausible if

• all contract invariants are satis�able, and

• all function pre- and postconditions are satis�able, and

• the initial conditions of each contract type in m are satis�able, and

• for each contract type in m, the initial conditions of m imply each contract
invariant, i.e., every possible state which satis�es the initial conditions must
also satisfy every contract invariant.

For a given Scar model, an execution of the application is an in�nite trace
of steps τ0, τ1, τ2, ... where each step τi is either an environment step or an ap-
plication step.
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Initial step The initial step τ0 is de�ned in the appInit part of the appli-
cation speci�cation. In it, the initial set of contracts is declared, along with a
list of parameters according to the initial parameter types that each contract
requires. After the initial step, the set of known contracts C consists of all con-
tracts declared in appInit , as well as all contract-typed locations within these
(i.e., state variables of contract type, as well as contract-typed elements of ar-
rays, mappings, and structs).

Similarly, the set of known external accounts is initialized with all account-
typed state variables and account-typed elements of arrays, mappings, and
structs.

For τ0 to be valid, the initial condition of each contract in C must be ful�lled.

Environment steps An environment step characterizes a step in which no
function of the application is called, and in which the application state does not
change, with the possible exception of account balances. Furthermore, block
number and system time can increase.

Formally, an environment step taui consists of

• ctxi, the context of the step, consisting of

– systimei, the system time of the step
– blocknumi, the block number of the step

• si, the state of the application after τi

De�nition 8 (Validity of an environment step) For an environment step τi to be
valid, the following conditions must hold:

• blocknumi = blocknumi−1 ∨ blocknumi = blocknumi−1 + 1

• systimei = systimei−1 if blocknumi = blocknumi−1

• systimei > systimei−1 if blocknumi = blocknumi−1 + 1

• ∀ l ∈ Locs :

si >= si−1, l is balance
si = si−1, else

Application steps An application step is the result of a call to one of the
application’s functions. Formally, an application step τi consists of

• ctxi, the call context, consisting of

– systimei, the system time of the step
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– blocknumi, the block number of the step

• fi, the function that was called to reach τi, consisting of

– calleri, the caller of the function
– amti, the amount transferred with the function call
– paramsi, the call parameters
– prei, the precondition of fi
– posti, the postcondition of fi
– returni, the return value of fi
– modi, the set of locations fi may modify

• si, the state of the application after the execution of fi

De�nition 9 (Validity of an application step) For an application step τi to be
valid, the following conditions must hold:

• blocknumi = blocknumi−1 ∨ blocknumi = blocknumi−1 + 1

• systimei = systimei−1 if blocknumi = blocknumi−1

• systimei > systimei−1 if blocknumi = blocknumi−1 + 1

• prei must be ful�lled in τi−1

• posti must be ful�lled in τi

• ∀ l ∈ Locs \modi :

si >= si−1, l is balance
si = si−1, else

Trace Semantics With this, we now de�ne the semantics S of a Scar model
as the set of all in�nite traces of valid steps. Environment and application steps
can occur in any order:

De�nition 10 (Scar trace semantics) For a plausible Scar model m, the seman-
tics S(m) is the set of traces {T := τ0, τ1, τ2, ...} where τ0 is a valid initial step
for m, and each τi∈N>0 is either a valid environment step or a valid application
step.

A visualization of the Scar trace semantics is presented in Figure 3.8.
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s0, init,
ctx0

s1, f1,
ctx1

s2,
ctx2

s3,
ctx3

s4, f4,
ctx4

...

τ0 τ1 τ2 τ3 τ4

Figure 3.8: An example execution trace. Steps τ3 and τ4 are environment steps.

3.5 Scala Implementation of the Scar approach

Scar has been implemented in the Scala programming language. The repos-
itory [Sch24] is publicly available. The project’s core is the model package,
in which all model elements are de�ned as Scala classes. The top-level model
element is the smart contract application SCApp .

The syntax of the .scar model is de�ned in an antlr grammar. A simpli-
�ed overview grammar for the basic metamodel is shown in Figure 3.9. First,
the user-de�ned types are speci�ed, followed by the initial con�guration of the
application. Then, the contracts are declared with their state variables, initial
conditions, invariants, and functions (including function contracts).

The translation package contains all functionality for translating a text
�le in the Scar format into the corresponding Scala model. This includes type
checking and other checks of the application and the provided speci�cation.
The generation package contains functionality to translate an SCApp to an-
other formalism, e.g., annotated Solidity. Finally, the analysis package con-
tains functionality for model-level analysis.

The Scar implementation is an instantiation of the model-driven approach
sketched in Section 3.2. Developers write a �le in the .scar format and check it
for syntactic correctness and plausibility (cf. De�nition 7). Then, they proceed
in two directions: First, they determine what requirements the application as a
whole must ful�ll, and specify these properties using the approaches detailed in
the following chapters. Second, they use one of the translations that the Scar
project provides to translate their model to a code skeleton with formal anno-
tations. After �nishing the implementation of the functions, they prove them
correct w.r.t. the generated speci�cation. This may require some iterations, but
yields an application that ful�lls the requirements speci�ed on the model level.

Apart from this envisioned use, the Scar project is also intended to pro-
vide a platform for the integration of other approaches in the domain of smart
contract veri�cation. It is therefore designed to be extensible.

ScarML can be translated into many other existing speci�cation languages
which have been designed for a speci�c tool, making these tools more broadly
applicable. In this way, Scar may also serve as a platform for comparing dif-
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app ::= application : userType∗ appInit contract+
userType ::= structDef | enumDef
structDef ::= struct name : {[id : typeExpr]+}
enumDef ::= enum name : {[id]+}
appInit ::= appInit : [id : contractType(params)]+
contract ::= init? id state functions

init ::= initParams? initCond+
initParams ::= initParams : [id : typeExpr]+
initCond ::= init : specExpr

state ::= state : stateVar+
stateVar ::= var id : typeExpr
functions ::= functions : function+
function ::= fun id : params? ret? pre∗ post∗ frame∗
params ::= params : [id : typeExpr]+

ret ::= returns : typeExpr
pre ::= pre : specExpr
post ::= post : specExpr

typeExpr ::= primitiveType | arrType | mapType | id
primitiveType ::= bool | int | uint | string

arrType ::= typeExpr[]
mapType ::= mapping(typeExpr=>typeExpr)

frame ::= modifies : frameExpr

Figure 3.9: A grammar for the basic metamodel. The specExpr symbol is de-
�ned in the functional speci�cation language grammar (see Figure 3.4). The
frameExpr symbol is de�ned in Figure 3.5.

ferent formal veri�cation tools and approaches.

3.6 Consistency between Model and Code

In order to deploy an application, a model needs to be converted into platform-
speci�c source code. The main point of our model-driven approach is that
properties that were proven to hold for the model also hold for the implemen-
tation. Therefore, the conversion from model to code needs to be semantics-
preserving: The implementation must be a re�nement of the model. This means
that for every possible execution of the implementation, when deployed, there
must be a corresponding trace in the model semantics.

To show that this is the case, the semantics of the platform and of the ver-
i�cation tool have to be taken into account, and it has to be shown that each
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execution of a deployed application corresponds to an execution trace of its
model. This argument has to be made separately for each target platform.

In our approach, we achieve a re�nement relationship by generating for-
mal speci�cation that matches the model annotation, and expecting the �nal
implementation to conform to this generated speci�cation.

In this section, we describe the code and annotation generation that trans-
lates a Scar model into a Solidity source code skeleton annotated in the speci�-
cation language of the solc-verify tool. We then argue why (and under which
circumstances) an implementation that ful�lls the generated speci�cation is in-
deed a re�nement of the Scar model.

Solidity Code Generation

From a Scar model, code is generated as follows: First, a Solidity version header
is prepended to the �le. Then, a library contract UTIL containing the user-
de�ned data types is created. Scar structs and enums are translated to their
respective Solidity counterparts.

For every contract in the Scar model, a corresponding Solidity contract of
the same name is created. Since Scar was written with Solidity as the main tar-
get language, each Scar type has a directly corresponding Solidity type, mak-
ing the translation of state variables, function parameters, and return types
straightforward. For functions, only headers are generated, which consist of
the function name, the translated function parameters, the public modi�er
indicating that the function can be called from everywhere, as well as the re-
turn type.

Generation of solc-verify Annotations

solc-verify [HJ20] is a tool for formal veri�cation of Ethereum smart con-
tracts written in Solidity. It takes formally annotated Solidity smart contracts
as input and translates them to programs in the Boogie [Bar+06] intermediate
veri�cation language. From Boogie, veri�cation conditions are generated and
then discharged using SMT solvers.

As in Scar, the main speci�cation elements in solc-verify are invariants
and function contracts. Furthermore, loop invariants can be speci�ed to aid
the veri�cation tool. The speci�cation language is a combination of �rst-order
logic and a subset of Solidity. It contains quanti�ers, a bounded sum operator,
and an “old” construct for accessing the pre-state of a function from within a
postcondition. The speci�cation must be in prenex normal form.

ScarML is translated to solc-verify as follows:
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• Boolean and arithmetic operators are translated to their direct counter-
parts.

• If the \result keyword occurs in Scar in a function postcondition, the
return value of the Solidity function is named result , and the expression
is translated as such.

• The \old keyword is translated using solc-verify’s __verifier_old_t
pre�x, where t is the type of the translated expression.

• The special values \caller , \amt , \systime , and \blocknum are trans-
lated to the Solidity keywords msg.sender , msg.value , block.timestamp ,
and block.number , respectively.

• The \send element is translated in its de-sugared form as assignments
to the balances of sender and receiver.

• Equality: solc-verify does not provide di�erent equality operators. In
the case of composite data types, equality in solc-verify is referential
equality. For value equality on composite data types, the translation is
such that equality of all elements is required. For arrays and mappings,
this produces a universal quanti�er. For structs, it produces a number of
equalities depending on the number of �elds of the struct type.

• The \sum operator is translated to solc-verify’s bounded sum expres-
sion.

• Array and mapping access with the [] operator is translated directly. If
the functional access a(i) occurs in a function contract, an additional
precondition is introduced, which states that the accessed element a[i]
must not be the default element for that type. If a(i) occurs in a contract
invariant, the same condition is added as an additional invariant.

• \size(a) is translated as a.length if a is an array; otherwise, the trans-
lation fails.

• The set-typed expressions are translated only when they occur in a quan-
ti�cation variable. The translation is as follows:

– \forall (x \in values(a)) for an array a is translated as a quan-
ti�er over a: forall (uint i)0 <= i && i < a.length . The matrix
of the quanti�ed expression is appended as a conjunction to the
bounds on the index variable, and all occurrences of x are replaced
with the array element a[i] .



3.6. MODEL-CODE CONSISTENCY 71

– For a mapping variable m , \forall (x \in values(m)) is translated
as forall (t i)m[i] != val_default , where t is the key type of
the mapping m , and val_default is the default value for the values
of m . In the matrix of the translated expression, the occurrences of
x are replaced by m[i] .

– Analogously, for a mapping variable m , \forall (x \in keys(m))
is translated as forall (t i)m[i] != val_default , where t is the
key type of the mapping m , and val_default is the default value
for the values of m . In the matrix of the translated expression, the
occurrences of x are replaced by i .

solc-verify does not support function calls in the speci�cation. Therefore,
the code generation fails if such a call occurs. The same is true for the Scar
hash primitive, since it also constitutes a function call. If needed, developers

may work around the veri�cation tool limitations by substituting the necessary
properties in the original Scar speci�cation.

All other model elements can be translated. An example of the code gener-
ation can be seen in Figure 3.10 and Figure 3.11, showing a simple bank appli-
cation modeled in Scar and the translation to Solidity, respectively.

Consistency

Consistency between a Scar model and an implementation means that every
possible execution of the implementation is also a trace of the model.

The di�erences between Scar and Ethereum/Solidity are mainly in the area
of data types. Scar supports fewer types than Solidity. Therefore, the Solidity
implementation has to be limited to the variables that actually occur in the
model to ensure consistency.

However, the Scar types contain mathematical integers, which are not pre-
sent in Solidity; the Scar type system is not a subset of the Solidity type system.
Therefore, care has to be taken to avoid situations where this discrepancy leads
to a violation of consistency. To give an example, this could happen if a precon-
dition is not satis�able over mathematical integers, but satis�able over Solid-
ity’s machine integers. This would lead to a situation where the function could
never occur in the semantics of the model, but it could be called successfully
in the implementation. Thus, the implementation would allow more behaviors
than the model. This needs to be avoided by the translation, or by additional
measures or precautions developers have to take.

In case of the Scar to Solidity code and annotation generation, the imple-
mentation is consistent under the following assumptions:
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application : bank

contract bank:

invariant : total >= 0
invariant : total = \sum( \values (m))

state :
var total: uint
var balances : mapping ( account =>uint)

init: total == 0
init: \size ( balances ) == 0

functions :
fun deposit :

post: balances [ \caller ]
== \old( balances [ \caller ]) + \amt

post: \send (\caller , \this , \amt)
modifies : balances [ \caller ]

fun withdraw :
params : uint amount
pre: amount <= balances [ \caller ]
post: balances [ \caller ]

== \old( balances [ \caller ]) - \amt
post: \send (\this , \caller , amount )
modifies : balances [ \caller ]

Figure 3.10: A simple Scar application model

• The code generation succeeds

• The generated source code is not changed except for

– implementing the generated functions, and

– adding helper functions, i.e., functions that cannot be called from
outside their contract, and which do not change the state in any
way

• the generated function preconditions and contract invariants do not con-
tain arithmetic over�ows

• The implementation is proven correct against the generated speci�cation
(function contracts and contract invariants)
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// SPDX -License - Identifier : UNLICENSED
pragma solidity >= 0.7;

library UTIL {
enum Role {ANY}
function hasRole ( address a, Role r) internal pure returns

(bool) { }
}

contract bank {
mapping ( address =>uint) balances ;

int total;
constructor () { }

/// @notice precondition balances [msg. sender ] >= amount
/// @notice postcondition balances [msg. sender ] ==

__verifier_uint_old ( balances [msg. sender ]) - amount
/// @notice postcondition address (this). balance ==

__verifier_uint_old ( address (this). balance ) - amount
/// @notice postcondition address (msg. sender ). balance ==

__verifier_uint_old ( address (msg. sender ). balance ) +
amount

function withdraw (int amount ) public { }

/// @notice postcondition balances [msg. sender ] ==
__verifier_uint_old ( balances [msg. sender ]) + msg.value

/// @notice postcondition address (this). balance ==
__verifier_uint_old ( address (this). balance ) + msg.value

/// @notice postcondition address (msg. sender ). balance ==
__verifier_uint_old ( address (msg. sender ). balance ) - msg.
value

function deposit () public { }

}

Figure 3.11: The generated Solidity code with solc-verify annotations
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With this, it is guaranteed that the original model was syntactically cor-
rect, and that the application state cannot be changed outside of the behavior
speci�ed in the model.

3.7 Applications of Scar

We sketch some applications of the Scar metamodel. While the main use case
we envision is veri�cation of application-level properties (Section 3.7), there are
other possibilities. Some of them have been implemented in the Scar project
and are ready to use, while others remain future work.

Veri�cation of Application-level Properties

The most important motivation for the approach presented here is veri�cation
of application-level properties of smart contracts, such as the compliance with
access control policies, or with liveness properties. These properties are di�cult
to specify on the source code level. On the level of a Scar model, however, the
relevant speci�cation constructs can be easily introduced in a way that keeps
speci�cation concise and intuitive. The respective approaches are described in
Chapter 4 and Chapter 5.

In Scar, function contracts and contract invariants have two meanings de-
pending on the perspective: On the source code level, they are proof obliga-
tions, and discharging them is showing the consistency between the model
and the implementation. On the other hand, they work as assumptions for
the application-level properties.

This clear separation between the levels can also help modularizing and
continuously refactoring applications and correctness proofs. One example is
the case where application-level requirements change. If these requirements
are speci�ed directly on the source code level, changes in the requirements are
bound to be complex, because it is hard to judge what parts of the application
may be a�ected. However, in Scar, if the security requirements change, the
application-level analysis will point the developer precisely to the parts of the
implementation that have to be changed to ful�ll the new policy.

Scar can also help if an application needs to be adapted to another software
version, or to another platform. This can necessitate changes in the source code
and/or changes of veri�cation tools in order to prove that the original correct-
ness properties still hold. When maintaining a Scar model of an application,
it is easy to understand which parts of an application are a�ected by a change.
Furthermore, writing a new translation from Scar to the language of a ver-



3.7. APPLICATIONS OF SCAR 75

i�cation tool is less e�ort than manually writing new speci�cation for every
veri�cation tool.

Planned Applications of Scar

Automatic Code Generation While program synthesis from a given func-
tional speci�cation is generally a hard problem, in the smart contract use cases
we examined, function contracts are often very straightforward to implement.
Indeed, at least in simple cases where the speci�cation can be ful�lled through
assignments and simple case distinctions, the question should be asked whether
our approach does not put an unnecessary burden on developers by essentially
forcing them to write the same thing twice.

Given the recent advances in code completion tools based on generative AI,
the Scar approach is a good candidate for AI-based program synthesis. De-
velopers are required to prove the correctness of the implementation against
the derived speci�cation anyway, so the use of generative AI for the imple-
mentation presents less of a concern. Preliminary experiments we conducted
with Github Copilot have been very promising and indicate that after a Scar
model has been created, the development of a consistent implementation can
be automated to a large degree.

Simulation of Application Execution Formal veri�cation tools have been
successfully used to aid developers by enabling simulations (cf., e.g., the sim-
ulation capabilities of the Alloy analyzer [Tor+13]). Scar’s state transition se-
mantics make it very suitable for execution with random input parameters, and
the relevant parts of the application state can easily be highlighted for visual-
ization. This can help developers to quickly build an intuition whether their
model actually captures their intention. Furthermore, the small scale hypothe-
sis holds that many errors already manifest after just a few steps of execution.
Therefore, simulation could be a lightweight way to catch errors while coming
up with a model, before conducting more heavyweight analysis.

Generating Runtime Checks In cases where formal veri�cation of the gen-
erated speci�cation does not succeed, Scar can still be used to generate runtime
checks. These can then be used as a safeguard to abort execution in case some
undesired state occurs, or if function preconditions are not ful�lled on a func-
tion call.

The Scar project contains a prototypical runtime check generation, which
translates preconditions to require checks and postconditions to assert state-
ments. This is possible for the large majority of Scar’s speci�cation elements
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and data types, with the exception of quanti�ed expressions over unbounded
data types, which cannot be easily expressed in Solidity without sacri�cing
runtime performance.

Backwards Projection Consistency between a Scar model and an imple-
mentation is achieved when the implementation can be proven correct against
the speci�cation generated from the model. However, what happens when ver-
i�cation fails in this step?

For a basic metamodel, i.e., one without higher-level properties like capabil-
ities or temporal speci�cation, a failure to prove the implementation just means
that model and code may not be consistent. However, if the actual target of ver-
i�cation is a higher-level property, e.g., an access control policy, it can happen
that the possibility of a violation on the source code does not a�ect the imple-
mentation’s conformance with the target property. For example, it is possible
that we cannot prove a function postcondition, but the liveness property that
we are really interested in does not depend on this postcondition.

To test whether a failure of source code veri�cation has consequences for
higher-level properties, we can develop a feedback which projects the output
of the veri�cation tool to the model level. In the above case of the super�uous
postcondition, we can create a di�erent Scar model which does not contain the
postcondition, and then re-run the model-level analysis.

3.8 Evaluation

In this section, we return to some of the examples described in Section 1.4. We
present ways to formalize these use cases in Scar, and discuss the applicability
of the Scar metamodel.

Bank

The bank example can be modeled in Scar as an application consisting of one
contract with two state variables and two functions (see Figure 3.10). The spec-
i�cation of the functions is straightforward when using the \send syntax.

Furthermore, the example includes two contract invariants expressed in the
Scar speci�cation language that may be of interest to the developer. They state
that the value of the total state variable cannot be negative, and that it is
always the sum of all the values in the balances mapping.

A feasible functionality for a bank would be to compute some interest for the
customers, depending on their balance with the bank. For this, a state variable
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...
var interest : mapping ( address => uint)
function computeInterest :

post: \forall (a \in \keys( balances )):
interest [a] = rate * balances [a]

Figure 3.12: Banking with interest

interest and a function computeInterest could be added to the model as in
Figure 3.12.

More than the previous implementation of the bank in Figure 3.10, this ex-
ample shows Scar’s power of abstraction. In an implementation, e.g., in So-
lidity, the computeInterest function is rather complex. For one, the universal
quanti�er has to be replaced by an unbounded loop. Secondly, it is not trivial
to iterate over a mapping data structure in Solidity, so the set-valued keys ab-
straction introduced by Scar makes this use case much more succinct than the
implementation.

Auction

Modeling the auction in Scar results in the model presented in Figure 3.13.
Like the Solidity contract it is modeled after, the Scar application consists of
one contract with six state variables and three functions. The function’s pre-
and postconditions are very similar to the Solidity code in Figure 1.4. On the one
hand, this indicates some overhead for the developer, since they will still have to
implement the functions; on the other hand, implementation and veri�cation
are likely to be very straightforward, and might be automated in the future
using program synthesis or automated generation tools.

Escrow

The escrow can be modeled in Scar as seen in Figure 3.14. The resulting con-
tract has four state variables and two functions.

It can be noted here that Scar o�ers some �exibility as to how some trans-
fers are speci�ed. In the deposit function, the precondition states that the
caller must be the buyer account, and the function call must be accompanied
by an amount greater than two times the item price.

It is possible to also specify a postcondition expressing that the caller trans-
fers currency to the contract. Whether this is necessary depends on the use
case.
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application Auction :

enum Mode: {OPEN , CLOSED , FINALIZED }

contract Auction :
state:

var owner: Account
var auctionEnd : uint
var bids: mapping ( account => uint)
var highestBid : uint
var highestBidder : Account
var mode: Mode

initparams : uint _duration
init: owner == \caller && mode == OPEN

&& highestBid == 0 && auctionEnd == \systime + _duration

functions :
fun bid:

pre: \amt > ( highestBid + bids[ caller ])
&& mode == OPEN

post: highestBid == \amt + bids[ caller ]
post: highestBidder == \caller
post: bids[ caller ] == \old(bids[ \caller ]) + \amt
modifies : bids[ \caller ]

fun withdraw :
pre: \caller != highestBidder
post: bids[ \caller ] == 0
post: \send (\this , \caller , \old(bids[ caller ]))
modifies : bids[ \caller ]

fun close:
pre: \systime >= auctionEnd
pre: mode == OPEN
post: mode == CLOSED
post: \send (\this , owner , highestBid )
modifies : this. balance

fun claim:
pre: mode == CLOSED
post: mode == FINALIZED

Figure 3.13: Scar Auction
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application Escrow

enum Mode { AWAIT_PAYMENT , AWAIT_DELIVERY , COMPLETE }

contract Escrow :
state :

var mode: currMode
var buyer: Account
var seller : Account
var price: uint

initparams : account _buyer , account _seller
init: buyer == _buyer && seller == _seller

functions :
function deposit :

pre: \caller == buyer
&& mode == AWAIT_PAYMENT && \amt >= 2 * price

post: mode == AWAIT_DELIVERY
function confirmDelivery :

pre: \caller == buyer && mode == AWAIT_DELIVERY
post: \send(\this , seller , price) && mode == COMPLETE

Figure 3.14: Scar Escrow

Palinodia

Palinodia (see Section 1.4) is an Ethereum application that allows users to as-
sess the integrity of software binaries downloaded from the internet. Its basic
structure is as follows: There are three kinds of smart contract, Software, Bi-
naryHashStorage, and IdentityManagement. A Software contract represents one
program, for which a set of developers is responsible. The list of developers
(represented by their Ethereum accounts) is stored in an IdentityManagement
contract. This contract, in turn, is a state variable of the Software contract.

The software may be published on di�erent platforms. A BinaryHashStorage
contract represents concrete versions of some software for one speci�c plat-
form. It is created from a Software contract, and pointers are stored in both
directions. In it, the responsible maintainers (again represented by an Identity-
Management contract) can publish and revoke hashes of downloadable binaries.

All contracts have a variable root owner of type address. This account is
allowed to grant the roles of developers and maintainers, respectively.

The Palinodia paper ([Ste+19]) provides not only the description of this
overall structure, but also a detailed description of the state variables of each
contract, as well as of the individual functions and their pre- and postcondi-
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Variable or Function Description of Requirements
root_owner Address of root owner
sw_name Name of the software

dev_control IdentityManagement contract used for
access control

software_platforms The list of di�erent software platforms,
each with a pointer to the corresponding
hash storage

storage_contracts The list of BinaryHashStorage contracts
for each software platform

constructor(_idManagement) The constructor is given an IdentityMan-
agement contract as a parameter. The
caller of the function is the root owner.

changeRootOwner Changes the root owner. Can only be
called by current root owner.

setDevCtrl Change the identity management con-
tract. Can only be called by the root
owner.

setSoftwareName Change the name of the software. Can
only be called by a developer.

registerBHS Register a new BinaryHashStorage con-
tract. Can only be called by a developer.

deregisterBHS Delete an existing BinaryHashStorage
contract from the list of endorsed stor-
age contracts. Can only be called by a
developer.

Table 3.4: The requirements of the Software contract

tions. For example, the Software contract is described as presented in Table 3.4.
Similar documents exist for the IdentityManagement and BinaryHashStorage
contracts.

From this information, we construct a Scar model of Palinodia. The part of
the model that describes the Software contract is presented in Figure 3.15.

The description of the state variables is straightforward. The platforms
variable is modeled as a mapping, so that each platform name can directly serve
as an index into the storage_contracts array.

The description of the functions is more complex, especially due to the
platforms_store and storage_contracts variables, both of composite types,
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application : Palinodia

contract IdentityManagement : // ...
contract BinaryHashStorage : // ...

contract Software :
state :

var root_owner : account
var sw_name : string
var dev_control : IdentityManagement
var platforms : mapping ( string => uint)
var storage_contracts : account []

functions :
fun changeRootOwner :

params : account _newAddress
pre: \caller == root_owner
post: root_owner == _newAddress

fun setDevCtrl :
params : IdentityManagement _newDev
pre: \caller == root_owner
post: developer_control == _newDev

fun setSoftwareName :
params : string _newName
returns : bool
pre: dev_control . checkIdentity ( \caller )
post: sw_name == _newName

fun registerBinaryHashStorageContract :
params : BinaryHashStorage _binaryHashStore
pre: dev_control . checkIdentity ( \caller )
// equal reference , not equal value
post: storage_contracts [ platforms_store

[ _binaryHashStore . platformID ]]
=== _binaryHashStore

// this contract endorses the bhs contract
post: storage_contracts [ platforms_store [

_binaryHashStore . platformID ]]. software_contract
=== \this

fun deregisterBinaryHashStorageContract :
params : string _platformID
pre: developer_control . checkIdentity ( \caller )
post: !( _platformID \in

\values ( storage_contracts [ platforms_store ]))

Figure 3.15: Scar model of Palinodia Software contract
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Example LoC Solidity LoC Scar
Bank 11 20

Escrow 24 18
Auction 38 34
Casino 58 53

Palinodia 299 174

Figure 3.16: Lines of code comparison

referencing each other.

Casino

The Casino application (see the Scar model Figure 5.4 in Chapter 5) consists
of seven state variables and �ve functions. However, note that the Scar model
contains an error for implementation purposes.

Overall Assessment

While the above set of example models does not constitute a full evaluation,
some conclusions still can be drawn.

First of all, Scar is general enough: Its data types and structural model
elements are su�cient to model all desired applications and their basic func-
tionality.

Second, even though the set of examples is not large, almost all syntactic
elements of the Scar speci�cation language appear in at least one of the exam-
ples. From this, it can be concluded that the modeling language is not overly
complex.

Another metric for assessing the quality of a metamodel is how succinct the
models are, compared to some reference. In Figure 3.16, the length of the Scar
models of the examples described in this section is compared to the length of
the corresponding Solidity code. This comparison should be taken with a grain
of salt; it is easy to change the relative length by leaving out or specifying
additional properties in the Scar model.

When comparing the length of the Scar models and the Solidity source
code the models are based on, it can be observed that the models are always
shorter, but often not by much. For very simple functionality, such as assign-
ments or transfers, the Scar speci�cation and the corresponding Solidity code
are practically identical. In such cases, Scar’s approach leads to a duplication,
and might increase the workload of a developer. On the other hand, functions
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with such an easy speci�cation can also be implemented without much e�ort,
and in the future, Scar will incorporate functionality for automatic program
synthesis, or correct-by-construction code generation.

Scar’s bene�ts become more obvious when the modeled functionality be-
comes more complex. This includes properties of array and mapping data types,
which can be succinctly speci�ed in Scar. Another recurring case was the use
of an array as an index data structure to a mapping, which happens both in
the simple bank example and in the real-world Palinodia application. Imple-
menting this functionality is rather complex, requiring tens of lines of code.
The abstract property describing the intended behavior, however, is very sim-
ple to describe in both cases, and this is re�ected in the succinctness of the Scar
model.

Veri�cation with solc-verify For the examples discussed above, it was
evaluated whether it was possible to prove the Solidity implementation (as
presented in the overview in Section 1.4) correct against the generated spec-
i�cation in solc-verify. This was possible in all cases. Since neither the im-
plementation nor the speci�cation were very complex, no additional auxiliary
speci�cation (such as loop invariants) were required. All proofs were conducted
fully automatically.

3.9 Conclusion

This chapter presented the basic components of Scar, a veri�cation-based model-
driven approach for developing smart contract applications. Scar consists of
a type system and a grammar to describe applications in a text-based format.
Furthermore, Scar provides a behavioral speci�cation language to capture the
intended functionality of an application’s functions.

This basic model enables model-driven development work�ows through
code and annotation generation. However, the real value of the Scar appli-
cation metamodel is as a basis for specifying application-level security policies
and temporal properties. This, we cover in the following chapters.





Chapter 4

Capability-based Security

for Smart Contract

Applications

The smart contract application metamodel presented in Chapter 3 is intended to
work as a basis for specifying and verifying application-level properties. In this
chapter, we extend the Scar metamodel to introduce a language for de�ning
security properties. The properties de�ned in this language (see Section 4.2)
can be analyzed on the Scar model level. The approach is then integrated into
Scar’s model-driven development approach by de�ning a process, based on
formal veri�cation, which can be re�ned to an implementation that conforms
to the high-level speci�cation.

We take a view of smart contract security that is based on resources, and
who can access them. We identify three main resources: the state of an applica-
tion, its public functions, and cryptocurrency. Inspired by the capability-based
security model [Lev84], we de�ne capabilities as access to resources (calling
functions, changing state, and transferring currency) in the context of smart
contracts.

Typically, capability-based security is implemented in systems where ca-
pabilities can be determined at run-time, e.g., in operating systems. We argue
that in the open, highly adversarial environment of smart contract platforms,
all relevant capabilities for an application should be determined at design time,
based on the security policy given in the requirements speci�cation.

As seen in Section 2.2, building security mechanisms in source code is com-
plex and error-prone. Directly implementing a security policy in a smart con-
tract programming language poses a serious risk of exploits. This risk is exac-
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erbated by the fact that smart contracts cannot easily be patched. Therefore,
it is crucial to enable developers to work on a suitable level of abstraction for
specifying security requirements. The model-driven Scar approach provides
this abstraction, as well as a process resulting in a consistent implementation.

After designing an application by instantiating the Scar metamodel (see
Section 3.3) and specifying the application’s security properties, a developer
must have a way to decide whether their model is consistent and precise. There-
fore, we develop a formal de�nition of consistency and precision based on set-
theoretic semantics of the extended metamodel. Then, we develop analysis
techniques which enable a developer to detect whether their model contains
contradictions, or whether the speci�ed capabilities can be more restrictive.

Given a consistent model of an application, the next task is to develop an
implementation that is correct w.r.t. the model. For this, we provide an ap-
proach for implementing an application for the Ethereum platform written in
Solidity. Our approach is based on a combination of code generation and for-
mal analysis. Since our metamodel is platform-independent, the approach can
be used for other platforms in principle, but needs to be adapted accordingly.

In summary, the contribution in this chapter is three-fold:

• The Scar metamodel for smart contract applications is extended with a
capability-based security model (Section 4.1 and Section 4.2).

• A de�nition of consistency and precision of a given model is developed,
along with analysis techniques for proving consistency and precision
(Section 4.3).

• A partly automatic process for developing a platform-speci�c implemen-
tation which is secure in the sense of the model (Section 4.4).

Overall, this work should enable smart contract developers to turn the se-
curity policy of a requirements speci�cation into an implementation which re-
spects this security policy at all times.

4.1 Modeling Capabilities for Smart Contract

Applications

This section describes the extension of the Scar metamodel with roles, and a
simple grammar for expressing capabilities.

To recap from Section 3.3, the set of contracts of an application a is denom-
inated Ca. The set Locs of locations in an application is de�ned by all the state
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variables of all contracts (see Table 3.2). Intuitively, a location is either a vari-
able or an element of a composite data type, i.e., an array element, a value in a
mapping, or a struct �eld.

The set of all functions of an application is called F . In this chapter, the
Scar function description is extended with capabilities.

Actors

Going forward, the Scar metamodel is extended with elements to describe and
summarize the entities in a smart contract application which possess agency,
i.e., which can call functions. We call such an entity an actor. The set of all
actors is denominated Acts.

In smart contract platforms, the entities that can call functions are usually
called accounts. They are uniquely identi�ed by an accountID, e.g., the address
on the Ethereum platform. Whether an account represents a program or a per-
son is not relevant for our purposes.

The set of all accounts is called A (cf. Section 3.3). To make modeling ac-
counts feasible, we allow summarizing them in the form of roles. In our meta-
model, a set of roles can be attached to an application. Here, we do not go into
the details of role-based access control (some approaches have been proposed
by Chatterjee, Pitroda, and Parmar [CPP20] and Töberg et al. [Töb+22]). We
simply assume that the implementation of the application contains a boolean
function hasRole(Account a, Role r) which returns true i� Account a indeed has
role r.

In order to allow functions which are not access controlled at all, we de�ne
a role any which exists by default in all applications. If a function is supposed
to be callable by every account without restriction, this role can be assigned the
corresponding capability.

The set of roles of an application isR. Each r ∈ R de�nes a set Ar ⊆ A :=
{a ∈ A | hasRole(a, r)}.

Apart from accounts, functions themselves can also call other functions.
Therefore, we include them in the set of actors Acts := A ∪ F .

Resources and Capabilities

Motivated by our perspective of smart contracts described in Section 1.2, we
identify three important resources on smart contract platforms: The state, which
represents the assets on the ledger; functions, which manage and grant access
to the state; and cryptocurrency, which has a role similar to actual currency
and can be transferred via built-in primitives.
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CallCapability ::= calls funIDList | any | external
funIDList ::= funID [, funID]*

ModifyCapability ::= modifies Locset
Locset ::= LocExpr [, LocExpr]*
LocExpr ::= contractName . LocalLocExpr
LocalLocExpr ::= primitiveVarName |

CompositeVarName
[arraySu�x | mapSu�x | structSu�x]?

arraySu�x ::= [intExpr] | [intExpr .. intExpr] | [*]
mapSu�x ::= [mapKey] | [*]
structSu�x ::= . structMember | .*

TransferCapability ::= transfers transfer [, transfer]*
transfer ::= ( actorSet , actorSet , limitExpr )
actorSet ::= \self | any | accountID | roleID

Figure 4.1: Capabilities Syntax

From this, we identify three types of capabilities: Changing state, calling
functions, and transferring currency. In our model, capabilities are assigned to
actors, i.e., to roles and functions.

Unlike postconditions in ScarML function contracts, capabilities do not
specify that some behavior must occur. Rather, they describe an upper bound
of the allowed behavior. In the context of the frame conditions of function con-
tracts, these two notions coincide.

In this section, we introduce a grammar for de�ning capabilities. It is shown
in Figure 4.1.

Calling functions Roles and functions can be annotated with a list of func-
tions they are allowed to call, following the calls keyword. There are two
special values: external for declaring that the function may only make exter-
nal calls to functions that are not known at design time, and any for stating
that a function may call any other function, including external functions.

Modifying State A capability to modify the application state is described af-
ter the modifies keyword, which is followed by a list of location sets. These
include variables of primitive type, but also composite variables and their el-
ements, e.g., individual struct �elds and array or mapping elements. Further-
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more, array ranges can be speci�ed, and the developer can also express that all
elements of a composite type variable can be changed (but not the reference to
the variable itself).

Note that for functions, the capability to modify the state coincides with the
frame conditions introduced in Section 3.3.

Transferring Currency The transfers keyword initializes a transfer capa-
bility, which consists of three parts: A set of allowed senders, a set of allowed
recipients, and an expression that limits the amount of currency being sent. The
sender can be a speci�c account, but also the special value \self , describing
the caller of the function. The same is true for the recipient. This makes it pos-
sible to specify a recurring pattern of smart contract applications: A caller may
initiate a transfer to themselves (e.g., by withdrawing money they deposited
earlier), but not to anyone else. Furthermore, the sets of allowed senders and
recipients can be described by a role. Finally, the any keyword expresses that
there is no limitation as to the sender or recipient of the money.

The limit is speci�ed as a general integer expression. It can be an integer
literal, but it can also contain arithmetic or make reference to the state of the
application, or to the value of function parameters at call-time. This enables
the developer to specify limits that depend on the current state, e.g., limiting a
withdrawal to the deposited amount.

Note that this is not the same as the send primitive in the Scar functional
speci�cation language, which speci�es a transaction exactly.

Example We provide a simple running example in Figure 4.2 to illustrate the
presented concepts. Our example application is the bank, already introduced in
the previous chapters, where customers can deposit cryptocurrency and with-
draw it at a later point. Furthermore, the owner of the bank can close it, thereby
sending all withdrawable funds to the customers.

The application consists of only one contract, which has two state vari-
ables (the balances mapping storing the customer balances, and totBal stor-
ing the overall balance of the contract) and three functions ( close , deposit ,
and withdraw ). Furthermore, the application has two roles: An owner, and
customers. A suitable implementation of the hasRole() function for this ap-
plication is as follows: An account has the owner role if it is the one which
created the contract. An account a has role customer if balances(a) is greater
than zero.

Roles and customers are annotated with capabilities, according to the gram-
mar de�ned in Figure 4.1. Since access to the deposit function is not meant
to be limited, it is assigned to the default any role. The owner may call the
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application : bank
roles:

role any:
calls : Bank. deposit

role owner:
calls : Bank.close
transfers : (Bank , customer , Bank. totBal )
modifies : Bank. balances [*], Bank. totBal

role customer :
calls : Bank. withdraw
transfers : (Bank , \self , Bank. balances [ \self ])
modifies : Bank. balances [ \self ], Bank. totBal

contract Bank:
state :

var balances : mapping ( account => int)
var totBal : int

functions :
fun close:

transfers : (Bank , customer , Bank. totBal )
modifies : Bank. balances [*], Bank. totBal

fun deposit :
params : int amt
modifies : Bank. balances [ \caller ], Bank. totBal

fun withdraw :
params : int amt
transfers : (Bank , \caller , Bank. balances [ \caller ])
modifies : Bank. balances [ \caller ], Bank. totBal

Figure 4.2: Simple bank application with capability speci�cation

close function and transfer currency to other accounts if they have the cus-
tomer role. They may also modify all elements of the balances mapping as well
as the totBal value. Customers, in turn, can call the withdraw function and
access the value of the balances mapping, but only at their own address. They
can also only initiate transfers to themselves, capped at their current balance.

The application’s functions are also given capabilities: close may trans-
fer money to all customers, limited only by the contract’s total balance, and it
may modify all state variables of the application. The withdraw function can
transfer currency, but only to the caller of the function (denoted by the \self
keyword).



4.2. SEMANTICS OF CAPABILITIES 91

Jc1.f1, ..., cn.fnKC ::= {(get(c1), get(f1)), ..., (get(cn), get(fn))}
Jexternal KC ::= external
JanyKC ::= F ∪ external

Figure 4.3: Call Capability Evaluation

4.2 Semantics of Capabilities

In this section, we give a formal meaning to the capability syntax given in Fig-
ure 4.1. For each kind of capability, we de�ne an evaluation function which
maps syntactical elements to an abstract set of capabilities.

We de�ne an auxiliary function get: ID ⇒ CF ∪ V ∪A, which maps func-
tion identi�ers, variable names, and account identi�ers to the corresponding
elements in the sets F , V and A.

Furthermore, some capability descriptions may contain references to the
state of an application, or to function parameters. Also, the identity of the caller
may be signi�cant to evaluate a capability description. All of these depend on
the context of a function call. Therefore, we de�ne another auxiliary function
ctx which evaluates a given expression in the context of a concrete function
call.

Call Capability

De�nition 11 (Call Capability Evaluation) The call capability evaluation

J·KC : FunctionIdentifiers ⇒ F

is de�ned by the rules shown in Figure 4.3.

A given list of functions simply evaluates to the set of corresponding func-
tions in F . The external keyword evaluates to the corresponding set external
of all functions which are not described in the application. While nothing is
known about the behavior of these functions, it is sensible to make the de-
veloper explicitly model external calls. Furthermore, if a function should be
unrestricted, the developer can use the any keyword to signal this.

Modi�cation Capability

De�nition 12 (Modi�cation Capability Evaluation) Themodi�cation capa-
bility evaluation

J·KM : LocSet⇒ Locs
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Jl1, l2, ...KM := Jl1KM ∪ Jl2KM ∪ ...
JcName, locExprKM := {get(cName)} × JlocExprKM
JprimitiveVarNameKM := {get(primitiveVarName)}
JArrVarNameKM := {get(ArrVarName)}
JArrVarName arrSu�xKM := {get(ArrVarName)} × JarrSu�xKM
JMapVarNameKM := {get(MapVarName)}
JMapVarName mapSu�xKM := {get(MapVarName)} × JmapSu�xKM
JStructVarNameKM := {get(StructVarName)}
JStructVarName structSu�xKM := {get(StructVarName)} × JstructSu�xKM
J[intExpr]KM := {ctx(intExpr)}
J[e1..e2]KM := {i ∈ Int | ctx(e1) ≤ i ∧ i ≤ ctx(e2)}
J[*]KM := Int ∪MapKeySet
J[.*]KM := StructFieldSet
JmapKeyKM := {mapKey}
J.structMemberKM := {structMember}

Figure 4.4: Modify Capability Evaluation

is de�ned by the rules shown in Figure 4.4.

A list of location expressions is evaluated to the disjunction of the location
sets described by each expression. Variable names evaluate to the locations
of these variables. For arrays, speci�cations of single indices or index ranges
can contain integer expressions. These are evaluated under the context of the
function call. For mappings and structs, the * operator evaluates to all possible
mapping keys or struct �elds, respectively.

Transfer Capability

De�nition 13 (Transfer Capability Evaluation) The transfer capability eval-
uation

J·KctxT : transfer⇒ (A× N)2

is de�ned by the rules shown in Figure 4.5. It is parameterized with the call context
ctx.

Transfer capabilities consist of three parts, with the �rst two specifying the
sets of allowed senders and recipients, respectively. The third parameter sets an
upper bound for the amount of transferred currency. For the sender and recipi-
ent sets, the \self keyword evaluates to the caller of the function (retrieved by
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Jt1, t2...KctxT := Jt1KctxT ∪ Jt2KctxT ∪ ...
Jfrom, to, limitKctxT := JfromKctxrec × JtoKctxrec × {n ∈ N | n ≤ JlimitKctx}

J\selfKctxrec := {ctx(self)}
JanyKctxrec := A
JaccountIDKctxrec := {get(accountID)}
JroleIDKctxrec := {a ∈ A | ctx(hasRole(a, get(roleID)))}

Figure 4.5: Transfer Capability Evaluation

the get helper function). A speci�c account identi�er evaluates to that account,
and any evaluates to the set of all accounts. A role identi�er evaluates to the
set of all accounts who, in the current context, have the indicated role.

4.3 Analyzing Model Consistency

In this section, we de�ne what constitutes a consistent model. Intuitively, a
consistent model is one where capabilities cannot be violated. A violation on
the model level occurs, e.g., if a function has a less restrictive capability than
an account which is allowed to call that function. In this section, we develop
an analysis to decide whether a model is consistent. Additionally, we want
to ensure that the speci�ed privileges are tight in comparison to the required
capabilities.

Due to our semantics de�nition, the model consistency is a simple subset
relationship of the capabilities. LetR be the set of roles, F the set of functions
and Acts = R∪ F the set of all actors de�ned for an application (as above).

De�nition 14 (Model consistency) A model is consistent i�

∀a ∈ Acts : ∀f ∈ Cacall∀ctx : JC(f)Kctxγ ⊆ JC(a)Kctxγ ,

where Cacall denotes the set of functions speci�ed as callable by a role a, γ ∈
{C, T,M} is the domain of call, transfer, or modi�cation capabilities, and ctx
an arbitrary context for the evaluation of expressions.

Note that the consistency notion is also transitive, in the sense that if a
function f1 transitively calls f3 via f2, the speci�ed capabilities of f1 need to be
a superset of the speci�ed capabilities of f3:

JC(f3)Kγ ⊆ JC(f2)Kγ ⊆ JC(f1)Kγ
The call capabilities are directly checkable, since they are a set of symbols. In
contrast, the modi�cation and transfer capabilities contain symbolic integer
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expressions over the set of states and parameters. Therefore, further reasoning
is needed to decide whether a set of modi�cation capabilities is more restrictive
than another. The same is true for transfer capabilities.

For both kinds of capabilities, we derive proof obligations in the follow-
ing de�nitions which are automatically checkable with SMT solvers (e.g., Z3
[dB08]) due to their support of integer theory.

De�nition 15 Given two sets M1,M2 of modify capabilities, we say M1 is a
subset ofM2 (M1 ⊆modify M2) i� the following formula is valid∧

m1∈M2

∨
m2∈M2

m1 ≤ m2 ,

wherem1 v m2 is de�ned as

m1 v m2 :=



true : ifm1 = m2

∀x1, . . . , xn︸ ︷︷ ︸
xi∈FV (e1)

: ∃ y1, . . . , yn︸ ︷︷ ︸
yi∈FV (e2)

:

e1 ≥ 0 ∧ e2 ≥ 0→ e1 = e2

: ifm1 = a[e1] andm2 = a[e2]
false : otherwise

The expressions e1 and e2 are the integer expressions describing the set of allowed
indices.

FV (e) denotes the free variable of an expression e. These arise from the
context of a call, i.e., the state and the parameters of the function. Since this
context is not known on the model level, we abstract from the free variables in
an over-approximated manner. The de�nition m1 ≤ m2 evaluates to true for
symbolically identical capabilities, e.g., if both capabilities allow the modi�ca-
tion of the same state variables.

For accesses of array indices, e.g., m[4 ∗ x] ≤ m[2 ∗ x], we need to compare
the described set of indices for all possible positive indices: every index of the
more or equally restrictive expression must be possible in the other expression.
In the example the expression 4 ∗ x is more restrictive than 2 ∗ x as it describes
fewer indices, but not vice versa.

For transfer capabilities, the consistency de�nition is as follows:

De�nition 16 For transfer capabilities t1 = (rec1, am1) and t2 = (rec2, am2),
we say t1 is more restrictive than t2 (denoted t1 ≤ t2) i�

• receiver set rec1 is a subset of rec2, and



4.4. A SECURE SOLIDITY IMPLEMENTATION 95

• the value of am1 is lower than am2 under all interpretations of the free
variables in am1 and am2:

∀ x1, . . . , xn︸ ︷︷ ︸
xi∈FV (am1)∪FV (am2)

: rec1 ⊆ rec2 ∧ am1 ≤ am2

For a two sets T1, T2 of transfer capabilities, we say T1 is a subset of T2 i�

∀t1 ∈ T1 : ∃t2 ∈ T2 : t1 ≤ t2 .

The current consistency de�nitions only specify that the permissions of an
actor must not be stricter than those of the functions they are allowed to in-
voke. Moreover, we might want to ensure that an actor only has the necessary
the capabilities to work properly. This principle of least privilege is similar to
consistency but investigates the opposite direction. For an actor a ∈ Acts, we
say it ful�lls its principle of least privilege i�

∀c ∈ JC(a)Kγ : ∃f ∈ Cacall : c ∈ JC(f)Kγ

is valid. The de�nition requires that every capability of the actor a is required
for at least one speci�ed callable function. As this notion also relies on the
model-level speci�cation of the callable functions, it might also be an over-
approximation in contrast to the actual called function of the implementation.

4.4 A Secure Solidity Implementation

While Section 4.3 describes how to achieve a consistent model of a smart con-
tract application with a formally speci�ed security policy, this section gives a
de�nition of what properties an implementation needs to ful�ll to be considered
conforming. Based on this de�nition, we sketch how to arrive at an implemen-
tation in the Solidity programming language that is conforming w.r.t. the model
according to the de�nition.

For this, we provide a de�nition of when an implementation is conforming
to its model:

De�nition 17 (Implementation conformance) An implementation is conform-
ing to its model i�

1. for each function f ∈ F , an account a ∈ A only has access to f if a has a
role r ∈ R s.t. f ∈ Crcall

2. each function f conforms to its capability speci�cation, i.e.

a) f calls only functions g where g ∈ Cfcall
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b) during any execution of f , any location l where l /∈ Cfstate remains
unchanged

c) f only makes transfers (to, amt) ∈ Cftransfer

Whether an implementation conforms to its model depends on the plat-
form where it is implemented. Therefore, we sketch a process for the Solidity
programming language of the Ethereum platform, although the general ideas
might apply for any platform.

Solidity has several characteristics and mechanisms relevant to developing a
secure application in the proposed process (cf. Section 1.3). First, in Ethereum,
accounts are identi�ed by addresses in the form of 160-bit integers. Second,
Solidity provides the requires keyword, which checks a boolean condition
at runtime and reverts if the condition is not met. Furthermore, Solidity has
modi�ers, which wrap functionality (e.g., parameter checks) and can be added as
a keyword to a function header. Both the requires mechanism and modi�ers
can be applied to implement access control.

The basis for generating the proof obligations described in Section 4.3 and
the source code stubs as described below is the Scala implementation of the
Scar metamodel (cf. Section 3.5). After arriving at a consistent model, a smart
contract application developer can achieve a conforming implementation via a
combination of code and annotation generation on the one hand, and formal
methods and static analysis on the other.

Code Generation

From the model, the code generator generates source code stubs as described
in Section 3.6: First, it generates a contract �le for each contract in C. The �le
contains a variable declaration for each state variable, and a function header
consisting of name, parameters and return type for every function.

Then, we generate a smart contract which is responsible for access control
to functions. There are two possible approaches here, which are applicable
depending on whether the access control is static or dynamic. In the case of
a static access control, i.e., in a setting where the roles are constant sets of
accounts, the generated access control smart contract contains an enum of the
roles speci�ed in the model, and a function hasRole(address a, Role r),
which can be called to check at runtime whether a given address has a certain
role.

For a dynamic setting, the code generation also creates an admin account,
which is initialized at the time of contract initialization. Furthermore, two
functions addRole(account a, Role r) and removeRole(account a, Role r)
are added, which can only be called by the administrator. These functions add
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modifier onlyOwner {
require ( hasRole (msg.sender , Roles.OWNER));
_;

}

function close () onlyOwner {
...

}

Figure 4.6: Example access control modi�er

or remove the given account to the role. While this is not the only possibly im-
plementation of a dynamic role-based access control policy, it is one which �ts
all of the example use cases, and is also applied in related work (cf. [CPP20]).
However, note that in the setting described here, the developer is completely
free to implement the access control as desired, and the above is just a quality-
of-life feature.

Furthermore, we generate access control modi�ers: For each function f ∈
F , we compute the set rf ⊆ R of roles that may access f . Then we generate
a modi�er which checks whether a given account with address a has any of
the roles in rf . Of course, if the access sets of two functions are equal, the
corresponding modi�er only needs to be generated once. An example is shown
in Figure 4.6, where a modi�er is de�ned to check that the caller has the Owner
role, and the close function is generated with this modi�er in the header.

Furthermore, for each transfer capability t ∈ Cftransfer of a function f , we
generate a wrapped transfer function which ensures at runtime that the function
adheres to its capabilities. The function is internal (i.e., it can only be called
from within the contract) and takes an address addr and an amount amt as a
parameter. For a capability t consisting of a recipient set expression rs-exp and a
limit expression limit-expr, the wrapped function is implemented as follows: At
�rst, it checks whether the address parameter matches the recipient set. This is
done by a require statement, with a condition depending on rs-expr : If rs-expr
is an address, it must be equal to addr. If it is \self , addr must be equal to
msg.sender (note that because the wrapped function is marked as internal ,

the msg.sender variable is passed on to it from the calling function). If rs-expr
is a role r, it is checked whether hasRole(addr, r) returns true. Finally, if rs-
expr is any , the check is omitted. Afterwards, it is checked whether amt is less
than or equal to limit-expr.

We give an example in Figure 4.7. The function withdraw() of our run-
ning bank example has a capability of sending currency, but only to the caller,
and the amount of currency is limited by the balance of the caller. By using
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function wrappedTfWithdraw ( address a, uint amt) internal {
require (a == msg. sender );
require (amt <= Bank. balances [msg. sender ])
a. transfer (amt);

}

Figure 4.7: Example Wrapped Transfer Function

the generated function wrappedTfWithdraw , the developer can be sure that the
implementation adheres to the model.

Formal Analysis

While transfers and access of accounts to functions can be handled by code gen-
eration in a correct-by-construction manner, this is not possible for ensuring
that a function only calls the functions it is allowed to call, and only modi�es
those parts of the application’s state speci�ed in the model. Checking these
properties is only possible on the �nished implementation. It can be done us-
ing static analysis and formal veri�cation tools.

For analyzing whether all functions conform to their call capabilities, we
developed a simple static source code analysis based on a publicly available So-
lidity grammar [Bon+24]. For every function f, our analysis collects all function
calls that occur explicitly, as well as all occurrences of the call and callcode
keywords and their parameters. It then compares the names of the called func-
tions to the functions in Cfcall. If Cfcall contains the external value, then only
functions within the application itself are forbidden. If the capability speci�ca-
tion contains the any keyword, the analysis is skipped.

If the analysis �nds a function call that is not allowed per capability speci�-
cation, it fails. This is a deliberate over-approximation, as our analysis will �ag
some legitimate calls as not allowed (for example, in Solidity, functions can be
passed as parameters and assigned to variables and then called). However, it is
easy to write the implementation in a way that satis�es the analysis, and we
think application developers will bene�t from the increased clarity.

For analyzing whether all functions adhere to their modi�cation capabili-
ties, we have to prove that a function modi�es only those locations speci�ed in
its capabilities. Formally, we need to prove that

∀f ∈ F : ∀l ∈ Cfstate : Spref (l) = Spostf (l)

where Spref and Spostf are the states before and after the execution of f .
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/// @notice modifies balances [msg. sender ]
/// @notice modifies totBal
function withdraw (uint amt) onlyCustomer {

...
}

Figure 4.8: Example solc-verify Frame Condition

For this, we employ automated generation of formal speci�cation in combi-
nation with the solc-verify formal veri�cation tool [HJ20]. solc-verify takes
as an input solidity source code that is annotated with formal speci�cation,
such as invariants and function contracts. Function contracts consist of a pre-
and postcondition, but can also include a frame condition, i.e., a statement about
what parts of the state a function is allowed to modify.

We utilize solc-verify as follows: During code generation (cf. Section 4.4),
we annotate every function with one frame condition per LocExpr in its modi-
�cation capability speci�cation. The annotations are in solc-verify’s annota-
tion language. An example is shown in Figure 4.8: The withdraw() function is
annotated with frame conditions which state that the function may only modify
the caller’s own balances mapping element and the overall balance of the con-
tract. This corresponds to the modi�cation capabilities de�ned for the function
in the example (Figure 4.2). If the solc-verify tool successfully proves that
a given implementation adheres to this speci�cation, then it follows that the
function adheres to its capability speci�cation.

After the implementation is �nished, the developer conducts a formal proof
of correctness with solc-verify. If the proof succeeds, this means that all func-
tions adhere to their modi�cation capabilities.

Note that, again, this is an over-approximation: It is possible that the proof
of correctness of the frame conditions does not succeed although the implemen-
tation is actually correct w.r.t. the modi�cation capabilities. This can happen,
e.g., if auxiliary speci�cation such as loop invariants are missing or not su�-
cient.

As an alternative to our over-approximating approach, a developer could
also conduct a di�erent static analysis, such as an information �ow analysis.
Slither [FGG19] is one of several tools which have been developed for this
purpose. It automatically analyses a given application statically and can be
con�gured to output the call graph and all variables written by a certain entry
point (e.g., a function). An alternative to our approach would be to run Slither
in this way and inspect its output. If the call graph for a function contains
functions that are not contained in Cfcall, or if a function writes a variable which
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is not in Cfstate, then the function does not adhere the capabilities speci�ed in
the model, and its implementation needs to be corrected.

One drawback of using Slither or comparable static analysis tools is the
possibility of false positives and false negatives. With our analysis and solc-
verify’s proof of frame conditions, a developer can be sure that an implemen-
tation is correct; Slither gives no such guarantee. On the other hand, a formal
proof of correctness can require developer involvement. For example, it can be
necessary to provide auxiliary speci�cation, e.g., loop invariants, for an auto-
mated proof to succeed. The decision for a speci�c analysis tool depends on the
speci�cs of the application (or even individual functions) and has to be made
on a case-by-case basis.

Correctness

At the beginning of this section, we gave a de�nition of when we consider
an implementation to be conforming to a model. We argue that the process
sketched in this section leads to an implementation which is correct in that
sense, if the following assumptions hold (cf. Section 3.6): The developer does
not change the generated code, but only adds the function bodies; they only
use the auto-generated wrapped transfer methods instead of Solidity’s built-
in transfer methods; and all source code analyses (cf. above) correctly return a
successful result (e.g., a proof that the implementation adheres to the generated
frame annotations).

If these assumptions hold, condition 1) is guaranteed by the access control
modi�ers. Condition 2a) and 2b) are guaranteed by our static call analysis and
by solc-verify’s proof that all the generated frame conditions hold. Finally,
condition 2c) holds because the generated transfer functions ensure at runtime
that all functions adhere to their speci�ed transfer capabilities.

4.5 Evaluation

In this section, a lightweight evaluation of the capability extension to the Scar
approach is conducted. The main use case considered here is the Palinodia
application (cf. Section 3.8), because it is a large application in which access
control plays a crucial role.

Bank

The bank example with capabilities (see Figure 4.2) is not shorter than the pre-
vious bank examples (see Section 3.8). However, the capability speci�cation
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makes a statement which was not possible in the original example, namely that
a customer can cause the contract to send money up to their balance. Further-
more, the capability speci�cation also contains statements about who can call
what functions. This shows that the extended version of Scar presented here
can specify properties which were not expressable in the basic model.

Palinodia

Palinodia (cf. Section 1.4) is an application that enables users to assess the in-
tegrity of software binaries downloaded from the internet. At its core, Palinodia
is about access control: Developers and maintainers of software can endorse
versions of it by publishing hashes on the Ethereum blockchain. Users who
download a software binary can compute a hash of it locally and compare it to
a published hash. The trust in the system is established by controlling who can
publish (and thereby endorse) these hashes.

Therefore, Palinodia is a good candidate for evaluating Scar’s capability-
based security approach. In Section 3.8, Palinodia was discussed for evaluating
the general Scar metamodel and code generation approach; in this section, we
analyze whether the capability-based security approach proposed in this chap-
ter is capable of modeling the access control policies that need to be enforced
in Palinodia.

Static Application The approach presented in this chapter assumes a static
set of contracts. Palinodia as a concept consists of a set of Software contracts of
unknown size, each of which references a set of BinaryHashStorage contracts,
the size of which changes over the execution of the application. For this, the
capability speci�cation presented here does not work: If a role is assigned a ca-
pability, e.g., in the BinaryHashStorage contract, it is not clear what this means,
since there can be multiple instances of this contract.

In order to make the static approach work, the perspective on what consti-
tutes a Palinodia application needs to be narrowed down. If an application is
considered to consist of a concrete Software contract for a concrete platform,
then it can be described statically, and the role-based capability speci�cation
presented in this chapter actually is a very good �t.

In this static description, an application consists of one Software contract
and one BinaryHashStorage contract, as seen in Figure 4.9.

Much of the functionality in the original version of Palinodia is concerned
with access control, e.g., adding addresses as trusted developers or maintainers,
and checking access control requirements within functions. One of the three
contract types in Palinodia (IdentityManagement) is exclusively designed for
implementing a role-based access control policy.
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application : Palinodia

roles:
role any:

calls BinaryHashStorage . checkHash

role developer :
calls setSoftwareName
modifies sw_name

role maintainer :
calls BinaryHashStorage . setPlatformID , BinaryHashStorage

. publishHash , BinaryHashStorage . revokeHash
modifies BinaryHashStorage .platformID , BinaryHashStorage

. hashStore [*], BinaryHashStore . publishCounter

contract BinaryHashStorage :
state :

var platformID : string
var hashStore : uint []
var publishCounter : uint

functions :
fun setPlatformID :

params : string _newID
post: platformID == _newID

fun publishHash :
params : uint _hash
post: hashStore [\old( hashStore .size)] == _hash
post: publishCounter == \old( publishCounter ) + 1

fun revokeHash :
params : uint _hash
post: ! ( \exists (i: uint): hashStore [i] == _hash)
post: publishCounter == \old( publishCounter ) - 1

fun checkHash :
params : _hash: uint
returns : bool
post: \result == \exists (i: uint): hashStore [i] ==

_hash

contract Software :
state :

var sw_name : string

functions :
fun setSoftwareName :

params : string _newName
post: sw_name == _newName

Figure 4.9: Scar model of static Palinodia application with roles and capabilities
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All the access control parts of Palinodia can be subsumed in the Scar de-
scription with added role and capability speci�cations. Therefore, this descrip-
tion is extremely concise compared to both the Palinodia source code and the
original Scar model (cf. the excerpt in Figure 3.15): In its Solidity implemen-
tation, Palinodia consists of 299 non-blank, non-comment lines of code. The
Scar model developed in Section 3.8 still has 174 lines of code. The version
with capabilities only consists of 37 lines.

Of course, this version still requires a developer to think about the access
control smart contract, which is assumed to exist in this chapter. However, the
code generation of Scar turns out to be a very good �t for Palinodia: A devel-
oper can automatically generate an access control smart contract where roles
can be dynamically added and revoked by an admin address (see Section 4.4).
The generated contract already contains all de�ned roles and o�ers a function
hasRole(address a, Role r) to check whether a given address has the given

role. This is exactly the functionality needed in Palinodia.

Dynamic Application A dynamic instance of Palinodia is one consisting
of a set of Software contracts, each of which references an unbounded list of
platforms. Each software has a set of developers with certain rights, and each
platform-speci�c version of a software has a set of maintainers who have the
right to publish valid hashes for the software.

This cannot be modeled in Scar directly, since roles and capabilities can
only be annotated at the application level, not at the level of contracts. In prac-
tice, Scar would still be helpful for this case: Developers could start by mod-
eling a static application and use Scar’s code generation. Then, the generated
source code for the di�erent contract types and the respective access control
smart contracts would only have to be slightly adapted before deployment of
a new Software or BinaryHashStorage contract. Speci�cally, the address of the
root owner and of the access control smart contract would have to be set man-
ually.

In order to allow for a dynamic set of contracts directly, capability and role
de�nitions and their semantics could be adapted as follows: Roles and capa-
bility de�nitions can either be on the level of an application (as proposed in
this chapter), or at the level of a contract type (as introduced in Section 3.3).
Contract-level roles are separate for each individual instance of the contract;
for the code generation, this also means that for each contract, there needs
to be a separate access control smart contract. Contract-level capabilities can
only refer to functions and state variables of this contract type, and they, like
the roles, are speci�c to individual instances. As an example, a call capability
de�ned within contract type c that allows role r to call function f would
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mean that for every instance ci of c , there is a role ri which is allowed to call
the function ci.f .

In contrast, application-level capabilities would refer to all instances of a
contract type, and the roles de�ned for an application would only exist once.
In analogy to the above example, if role r is de�ned on the application level
and has the capability to call function c.f , this means it can call ci.f for all
instances ci of c .

This extension of the capability mechanism would allow the speci�cation of
Palinodia in an even more direct manner, since the developer and maintainer
roles could be speci�ed in the Software and BinaryHashStorage contracts, re-
spectively.

4.6 Conclusion and Future Work

In this chapter, a solution is proposed for developing secure smart contract ap-
plications from existing requirements speci�cations. We argue that implement-
ing a security policy directly in source code is error-prone and likely leading to
vulnerabilities. Therefore, we extend the Scar metamodel of smart contract ap-
plications with an attached capability-based security speci�cation. This makes
it very easy for smart contract developers to abstract away from the complexity
of the source code and focus on the security-relevant aspects of an application.

In the lightweight evaluation we conducted, it was shown that for a realistic
application, the approach presented here allows for an extremely succinct spec-
i�cation of security policies in comparison to either the Solidity source code or
the basic Scar metamodel. Furthermore, the separation of concerns achieved
by isolating the security policy from the business logics may be bene�cial.

Going forward, we de�ne a notion of consistency and precision on our
model, based on set-theoretic semantics. We also develop analyses to check
whether a given model conforms to these notions. Furthermore, we describe
how to turn a model into a conforming implementation. This is done by a com-
bination of code generation and simple static analysis that we implemented on
the one hand, and existing formal veri�cation tools on the other hand.

A natural way of extending our methodology is integrating analysis tool
results into the model automatically. A further interesting research directory
is extending the capability model by adding conditional capabilities, i.e., capa-
bilities that are only in e�ect if some condition, such as a time constraint, is
met.

The Scar approach is platform-independent, and our methodology can eas-
ily be adapted for other platforms or other programming languages. In particu-
lar, our approach may be used for programming languages which have built-in
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concepts of access control and/or resource management, or tooling which sup-
ports these concepts. As an example, it would be possible to derive an imple-
mentation in the Vyper language, and ensure conformance to transfer capabil-
ities with support of the 2vyper veri�cation tool.

So-called permission-based blockchain platforms like Hyperledger Fabric
[And+18] do not fully match our notion of smart contracts, since they enforce
a closed world in which all participants are known and identi�able. This allows
de�ning role models and security policies which can be implemented above the
source code level, partly negating the advantage that our modeling approach
brings. However, the methods we developed for analyzing a given model can
still be used to detect inconsistency or imprecision in the capability de�nitions
of a Fabric application. This raises the con�dence in the security of the applica-
tion, and may shift the detection of errors from runtime to design time, thereby
lowering the cost of �xing them.

Other platforms have yet other built-in mechanisms for access control.
Solana smart contracts written in the Rust programming language can require
multiple signatures for a program to be executed. In order to work for Solana
smart contract applications, the capability-based Scar approach would need to
be adapted in terms of its code generation and source-level veri�cation.





Chapter 5

A Practical Notion of

Liveness in Smart Contract

Applications

Due to their unique characteristics, it is very important that smart contracts
are correct upon deployment. In this chapter, we propose a novel perspective
on an important and challenging class of correctness properties, namely live-
ness, in the context of smart contracts. In general, liveness properties can take
many forms, depending on the application domain. One example is termina-
tion: Given a function, we may ask whether it always �nishes execution. In
other domains, especially in distributed or parallel settings, deadlock freedom
is essential: Is there always a way to continue execution, or is it possible to
reach a situation where no progress can be made?

In this chapter, we argue that in the domain of smart contracts, liveness
properties typically require that a certain functionality is (or becomes) acces-
sible to an actor. In Section 5.1, we substantiate this intuition by analyzing the
examples given in existing literature on smart contract liveness veri�cation. In
Section 5.2, we formalize our notion and develop the ScarTL speci�cation lan-
guage, in which common temporal properties of smart contract applications
can be expressed. ScarTL, the Scar temporal logic language, is based on a sub-
set of LTL. We also sketch possibilities for verifying that a given Scar model
ful�lls its ScarTL speci�cation. In Section 5.4, we demonstrate the use of the
language on some examples from literature.

107
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5.1 Liveness Properties in Smart Contracts

Smart contract platforms have several characteristics that in�uence what kind
of liveness properties are important in a smart contract application. First, smart
contracts exist in an open world: As a matter of principle, anyone can call any
function and thereby trigger a transaction. Furthermore, smart contract plat-
forms speci�cally exist for use cases where participants in the network do not
necessarily trust each other. Therefore, participants generally cannot be as-
sumed to behave in any particular way, at least in the absence of incentives.

A second de�ning characteristic of smart contracts is money: Most smart
contract platforms have some form of cryptocurrency built in, and transferring
currency or tokens is a part of almost all real-world smart contract applications.
This means that there are usually �nancial incentives.

These characteristics lead to a special kind of liveness property which is
highly common in smart contracts: “If I transfer money to a smart contract, will
I get it back?” Or, more generally: Will some desired state change eventually
happen? In the following, we elaborate on this kind of liveness property at
the hand of the simple examples introduced in Section 1.4, and demonstrate its
pervasiveness by a brief review of example liveness properties in the literature.

Simple Bank An example often used to showcase basic functionality is a
simple smart contract version of a bank, which allows other accounts to de-
posit money, logs the balance of each account, and enables withdrawing funds
according to the caller’s balance (which is stored in a mapping bals). There
are only two public functions, deposit and withdraw. They both have no pre-
condition. The postcondition is that money is transferred from the caller to
the bank contract (or vice versa for withdraw) and that the bals mapping is
updated accordingly.

Intuitively, the main correctness property of this application can be viewed
as a liveness property:

If I deposit money in the bank, I will eventually get it back.

Escrow Another common example is an escrow, where a smart contract ap-
plication acts as an intermediary for a purchase. For a successful purchase, the
application proceeds through a succession of prede�ned states, according to
the actions of buyer and seller. There are several liveness properties integral to
the correctness of the application, depending on the exact implementation. For
example, after the buyer con�rms they received the purchased item, the seller
should eventually be refunded their deposit.
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Auction In the auction application (see Section 1.4), the owner of a item puts
it up for sale. Potential buyers can submit bids. The bids are transferred when
making the bid to ensure that the auction owner can get payed eventually. Un-
successful bidders, i.e., those who are not currently leading the auction, can
withdraw the money they transferred so far. After a prede�ned end date, the
auction can be closed, after which no new bets are possible. Then, the auction
winner can claim the bought item.

Like in the bank example, the main correctness property of this application
is a liveness property:

If an actor makes a bid, that actor will eventually either win the auction and be
assigned ownership of the desired item, or they will get their money back.

Casino In the Casino example, the operator commits to a secret number by
publishing a hash of it in the smart contract. A player can then bet on the parity
of the secret. The main correctness property of this application (as presented
in Section 1.4) is also a liveness property:

If the player guesses correctly, they will eventually receive their reward.

Examples fromLiterature As Chapter 2 shows, formal veri�cation of smart
contracts has been a very active �eld of research. However, only a few tools
consider temporal properties, and even fewer target liveness properties.

Sergey, Kumar, and Hobor give some examples of properties over multi-
step executions and so-called lifetime properties, and sketch how to prove such
properties via an embedding in Coq [SKH18]. VerX [Per+20] introduces Past
LTL temporal operators, but focuses on speci�cation and veri�cation of safety
properties only.

To our knowledge, there are two tools for speci�cation and veri�cation of
liveness properties. Both are speci�c to the Solidity programming language.

VeriSolid [Mav+19] is a tool for developing Solidity smart contracts through
modeling them as state transition systems. The state of an application is mod-
eled explicitly. Transitions are written directly in the supported Solidity sub-
set. This model is translated into a BIP (Behavior, Interaction, Priority) model,
which can be model-checked, e.g., for safety and liveness properties like dead-
lock freedom. VeriSolid allows speci�cation of liveness properties in CTL. How-
ever, the properties that can be proven are concerned with successful termina-
tion after a function is called. There is no notion of fairness assumptions or the
ability of an actor to e�ect a transfer.

SmartPulse [Ste+21] is a tool for checking safety and liveness properties
of a given Solidity smart contract. Properties are speci�ed in SmartLTL, which
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contains primitives for functions being called, functions �nishing execution, re-
verting, and sending ether. Fairness assumptions can be speci�ed if necessary
to prove liveness properties. In addition to source code and property speci�ca-
tions, an environment is speci�ed, consisting of an attacker model (e.g., bounds
on the number of re-entrant calls) and a blockchain model (e.g., gas costs of
function calls).

The SmartPulse paper [Ste+21] lists 23 safety and liveness properties of 10
applications that can be veri�ed with their tool. Of these, 13 are liveness prop-
erties, signi�ed by the eventually keyword. All of them fall into one of two
categories: In the �rst category are properties that represent postconditions
of a function, e.g., the following property of an escrow application: “If a user
withdraws funds after refunds are enabled, they will eventually be sent the sum
of their deposits.” The paper on VeriSolid [Nel+20] only gives a single example
of a liveness property, which also falls into this category.

The second category is of the type described above, stating that some de-
sired action will happen eventually. One of the examples in this category is an
auction smart contract exactly like the one described above. Another example
is the following statement about a crowdfunding application: “If the campaign
fails, the backers can eventually get their refund.”

In SmartPulse, liveness properties can be speci�ed in a variant of LTL. Prop-
erties of the second category require a fairness assumption about the actors’
behavior in order for veri�cation to succeed: If a withdraw functionality is
available, but never called, then losing bidders will not get their money back,
although they could! The fairness assumption in this auction scenario is that
any losing bidder will eventually call the withdraw function.

From Liveness to Enabledness

From the examples above, we note several important points. First, many live-
ness properties in smart contract application can be reduced to postconditions
and termination of a single function. This is already covered by several smart
contract veri�cation tools. Therefore, we focus on the second category of live-
ness property, which states that a desired state change will happen eventually.

Concerning this kind of “real” liveness property, we observe that the cru-
cial point about a desirable state change is whether an actor is able to e�ect it.
There is a subtle di�erence: Liveness in smart contracts is not about whether
something will de�nitely happen, but about whether someone can make it hap-
pen. In the auction example, what we want to prove is not whether every losing
bidder actually gets their money back, it is that they can get it back (if they take
the appropriate action).
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This phrasing leads to the insight that in the context of smart contracts,
it should be possible to specify liveness properties without having to specify
assumptions regarding the actors’ behaviors at all. What should be speci�ed is
enabledness, i.e., the ability to e�ect a desired result. The simplest cases, where
the desired property is just that an event occurs eventually, can be expressed by
stating that the event must be permanently enabled. This requires an operator
to specify that some property holds forever.

In more complex examples, the ability to trigger an event pertains to a spe-
ci�c actor. Furthermore, on some examples, the desired change can only be
e�ected after some �xed amount of time has elapsed, or if some other condi-
tion is met.

Another recurring speci�cation pattern is that some event, e.g., a state
change or a function call, is enabled until it happens, but not afterwards. Ex-
amples include closing the auction (which should be always enabled after the
duration of the auction has elapsed, but which cannot be enabled any more
once the auction is closed) and withdrawing money from the bank (depending
on the implementation). This resembles the meaning of the weak until operator
from temporal logic.

One last observation is that liveness is connected to resources, e.g., the built-
in cryptocurrency of a blockchain network. Liveness may correspond to own-
ership: If an actor is able to e�ect a transfer of an amount of currency from a
smart contract to themselves, then they own this amount, even though it is not
stored in their own account.

5.2 ScarTL

We formalize the insights from the previous section. As a practical way of spec-
ifying liveness properties for smart contract applications, we propose ScarTL,
the Scar temporal logic language.

For this, we build on the Scar metamodel as de�ned in Section 3.3, and
extend the ScarML speci�cation language. The extensions consist of special
constructs intended to capture the concept of enabledness, and of operators
from LTL.

Preliminary: LTL

Linear temporal logic (LTL, �rst introduced in 1977 by Pnueli [Pnu77]) is a
widely used logic for describing and verifying properties of execution traces.
In its original form, LTL formulas consist of a set of propositional variables, the
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φ ::= φScarML

| Gφ | φ1 UW φ2

| f[a? par?]
| enabled[a? par? amt?]([φ1 | f ])
| enabledUntil[a? par? amt?]([φ1 | f ])
| owns(a, amt)

Figure 5.1: The syntax of ScarTL. φScarML is a placeholder representing a
ScarML speci�cation expression (as de�ned in Section 3.3). f ∈ F is a function
of the application, par ∈ Pf a list of parameters for f , amt an integer expres-
sion, and a, b ∈ A are accounts. φ1 and φ2 are boolean ScarTL expressions.

standard boolean connectors, and some temporal operators that enable state-
ments about traces:

The Next operator Xφ states that some formula φ holds in the next step of
the trace. The Until operator φ U ψ states that eventually, ψ will hold, and φ
must hold in every step until that point. F (“�nally” or “eventually”, also written
♦) with the meaning Fφ := true U φ and G (“globally”, also written �, with
Gφ := ¬F¬φ) are commonly used derivations. Furthermore, the Weak Until
operator φ UW ψ states that φ must be true until a state is reached where ψ
holds, but unlike U, ψ does not necessarily have to become true at some point.
The Releases operator R is the dual of U with φR ψ ::= ¬(¬φU ¬ψ).

Every LTL formula can be transformed into Negation Normal Form (NNF),
where the only operators are U, R, and X, and where only atomic formulas
are negated [Zhu+17].

ScarTL Syntax

ScarTL is an extension of ScarML with temporal operators and some special
constructs for expressing enabledness and the related concepts. The syntax of
ScarTL language is de�ned in Figure 5.1.

In addition to all ScarML expressions, ScarTL consists of the LTL operators
UW and G. Furthermore, there is a syntax construct for expressing that a cer-
tain function is called in one state. The keywords enabled and enabledUntil
formalize the concept of enabledness. The owns keyword relates liveness prop-
erties with resource ownership.

Note that for the enabled and enabledUntil expressions, the account, the
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parameter list, and the transferred amount are optional, and the argument can
be either a transaction or a boolean formula. For the function call expression,
parameter list and account are also optional.

Semantics of ScarTL

To recap, for a given smart contract application a, F is the set of all functions
of all contracts in an a, V the set of all state variables, and Vals the set of all
possible values of the variables. Then the state S : V → Vals is a function
which assigns each state variable a value.

For a function f ∈ F , Pf is the set of all possible concrete parameter lists for
f . Furthermore, we say thatA is the set of all accounts. pref : S×A×Pf → B
is the precondition of f , a predicate over the application state, the caller, and
the parameters. Likewise, postf : S × S ×A× Pf → B is a predicate over the
state before and after the execution of a function, as well as the caller and the
parameters of the call.

We view an execution of a smart contract application as a trace, as described
in Section 3.4. Each step τi of a trace τ consists of the application state si as
well as the transaction which led to τi and the time of the transaction ti. The
transaction description consists of the name of the called function, which also
contains information about the caller, the sent amount, and the parameters with
which it was called (fi, caller i, amt and paramsi, respectively).

The semantics of the temporal UW and G operators is identical to the stan-
dard LTL semantics.

We de�ne enabledness as a speci�cation construct that is evaluated in one
step of an execution. For a function f (with precondition pref over the state and
the execution context) and an account a, we de�ne that enabled[a, par, amt](f)
is true in a step τi i� a can call f successfully with parameters par and amount
amt in the state represented by that step:

τ, i |= enabled[a, par, amt](f) i� pref (si, (a, par, amt))

The context, or parts of it, can be left out to indicate universal quanti�cation,
i.e., enabledness for all callers regardless of the parameters and the amount
transferred with the call:

τ, i |= enabled[](f) i� ∀a ∈ A ∀par ∈ Pf : pref (si, (a, par, amt))

We extend this notion to boolean expressions over the state: For a boolean
expression c, we say that c is enabled in step τi i� there exists a function that is
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enabled, and which results in a state that implies the desired state:

τ, i |= enabled[a, par,amt](c) i�
∃f ∈ F : τ, i |= enabled[a, par, amt](f)
∧ postf (si−1, si, (a, par, amt))→ c

Note that this allows two-state predicates, i.e., boolean expressions which relate
two states of the application by expressing a condition over the new state in
terms of the previous state. Since function postconditions can also reference
the state before the function was executed, the semantics are exactly the same
as for enabledness of one-state predicates.

Since liveness properties in smart contract applications are often about re-
source ownership, we introduce a special construct to express that an account
a owns some amount of currency. Recalling the ScarML \send keyword, we
formalize ownership as the ability of an account to e�ect a transfer of currency
to itself from the contract where the property is speci�ed (this):

τ, i |= owns(a, amt) i� τ, i |= G (enabled[a](\send(this, a, amt)))

This property only makes sense when the amt expression refers to a vari-
able which stores the amount, and which is updated in case of a transfer. One
example is the mapping storing the balances in the Bank contract. We think
this pattern is prevalent enough to justify the owns abbreviation.

Furthermore, we introduce a way to express that a function call happened
in a given step τi:

τ, i |= f[ctx] i� f = fi ∧ ctx = ctxi

As with enabled[](), the calling account and the parameters can be left out:
tx[] is true in τi i� tx = fi. This is useful for example when specifying that a
certain condition always holds after some function was called.

Lastly, we provide a construct which describes that something (e.g., a trans-
action or state change) is always possible at least until it actually happens:

τ, i |= enabledUntil[ctx](f) i� τ, i |= enabled[ctx](f) UW f[ctx]

As above, the calling account and the parameters can be left out to indicate
universal quanti�cation, and the construct can also be used with a predicate
instead of a transaction.
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5.3 Veri�cation

While the main focus of this chapter is on speci�cation, this section will also
discuss the model-level veri�cation of temporal properties. Scar is intended as
a platform which enables di�erent tools and techniques for veri�cation both on
the model and on the source code level. For application-level temporal proper-
ties, this section introduces two veri�cation methodologies: First, a translation
to SMT-LIB proof obligations, and second, a translation to the SMV format, and
subsequent veri�cation with the nuXmv tool.

In general, for each property speci�ed in an application model, the veri-
�cation goal is to show that all possible executions of this application ful�ll
the property. For real liveness properties, as expressed by the F operator, this
requires additional assumptions, e.g., about the behavior of the actors in an ap-
plication. Because we restrict our speci�cation language to safety formulas, we
can, in principle, prove them by induction.

SMT Translation In this section, we discuss a translation of a Scar model
with temporal properties to the SMT-LIB [BST+10] language, which is then in-
put to an SMT solver. The approach is incomplete in that it works only for
invariants that are implied by the postcondition of every function in the appli-
cation. However, the approach is also very lightweight in terms of implemen-
tation and runtime, and it is already su�cient to prove most of the properties
in the above examples.

The Scar types are translated as follows: int and uint are translated to
Int . For constants of unsigned integer type, an assertion is generated which

states that the constant cannot be less than zero. The Scar types bool and
string get translated to their direct counterparts. SMT-LIB also has an ar-

ray type. Scar mappings are translated to uninterpreted functions which take
a parameter of the mapping’s key type and return the mapping’s value type.
Enums, structs, and contracts are translated with SMT-LIB’s define-datatype
command.

For each state variable v , two constants v and v' are introduced. If the
property to be proven contains an old expression nested within a temporal
operator, a third constant v'' is de�ned. Furthermore, one constant is de�ned
for each of the context variables ( caller , amt , systime , blocknum ), and for
each function parameter in the application.

As for the speci�cation expressions, the translation of the arithmetic and
logic operators is straightforward. Currently, there is no translation of the set-
valued operators, since SMT-LIB does not include set theory; however, there is
a de�nition of the theory of �nite sets for the CVC5 SMT solver [CVC24]. In
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the future, the Scar to SMT translation will be extended, and the performance
of CVC5 evaluated.

With this, the pre- and postcondition condition of each function fi are trans-
lated as predicates pre(fi) and post(fi) in SMT-LIB. This, in turn, makes it
possible to also translate the temporal constructs presented in this chapter to
SMT-LIB:

• A transaction expression f [ctx] is translated by the postcondition of f
with the values from ctx substituted, if applicable

• An expression enabled[ctx](f), where ctx is the combination of conditions
on the context, is translated to the implication ctx→ pre(f)

• An expression enabled[ctx](c) with c some predicate over the state, is
translated as follows:

ctx ∧
∨
fi

(pre(fi) ∧ (post(fi)→ c))

This represents the existence of a function with the desired postcondition
(cf. Section 5.2). Each occurrence of a state variable in post(fi) and c is
replaced by its primed version, except when it occurs in an old expres-
sion.

• A box expression G (p) is translated as follows: �rst, the initial state of
the application is translated to a predicate init, and it is asserted that this
predicate evaluates to true. Second, a new predicate p() is de�ned, with
one parameter for each state variable referenced by the expression.
Then, the entire expression is translated as follows:

(init→ p) ∧ (
∨
fi

post(fi)⇒ p(v1′, v2′, ...))

That is, the initial condition must already ful�ll the property, and the
property must be implied by every function postcondition.

The top-level property is asserted in its negated form. When a solver is run
on the translation and proves it is unsatis�able, it is thereby shown that the
target property is indeed valid.

In Figure 5.2 and Figure 5.3, a simple application with an invariant is shown
alongside with the corresponding SMT-LIB translation. The translation is
shown to be unsatis�able, showing that the Scar model’s invariant holds.



5.3. VERIFICATION 117

application Example

tmp: G ( ex.a > 0 )

contract ex:
state :

var a: int

init: a == 1

functions :
fun f1:

post: a == \old(a) + 1

fun f2:
post: a == \old(a) * \old(a)

Figure 5.2: Scar simple invariant example

( declare-const ex.a Int)
( declare-const ex.a_ Int)

( define-fun init () Bool (= ex.a 1))
( assert init)

( define-fun p ((x Int)) Bool (> x 0))

( define-fun post-f1 () Bool (= ex.a_ (+ ex.a 1)))
( define-fun post-f2 () Bool (= ex.a_ (* ex.a ex.a)))

( define-fun initiallyValid () Bool (=> init (p ex.a)))

( define-fun ind () Bool (=> (or post-f1 post-f2 ) (p ex.a_)))

( assert (not (and initiallyValid ind)))
( check-sat )

Figure 5.3: SMT-LIB translation for simple invariant example
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nuXmv Translation The translation to SMT-LIB discussed above is limited
to very simple properties. Therefore, this section discusses another veri�cation
methodology, namely the nuXmv model checker [Cav+14].

The nuXmv input language allows specifying a state transition system (STS)
that is similar to the Scar semantics. On this STS, properties like invariants or
LTL formulas can be speci�ed, and a range of technologies to verify whether a
system ful�lls these properties.

The translation of the data types is more limited than in SMT-LIB. All types
are bounded in size by a variable bitlen that has to be provided by the prover.
Then, the Scar integer types are translated to the nuXmv signed word and
unsigned word types, respectively. The primitive bool type and the enumera-

tion types can be translated directly to their nuXmv counterparts. Arrays and
mappings are translated to the nuXmv type array word of the speci�ed bit
length.

The nuXmv state transition machine is de�ned in terms of input variables
( IVAR ), state variables ( VAR ), an initial condition ( INIT ), invariant constraints
( INVAR ), and a transition function ( TRANS ). The Scar state variables are trans-
lated to state variables. Function parameters and context variables are trans-
lated as input variables. Furthermore, an input variable fun of enumeration
type is created, with one value for every function in the application.

Contract invariants are translated as invariant constraints, i.e., they are as-
sumed to be true, which limits the search space. The initial condition is trans-
lated directly.

The TRANS constraint de�nes whether a pair of states is a valid transition.
It can contain variables in next expressions, signifying that they are evaluated
in the second state. Let prefi

and postfi
be the translation of the pre- and post-

condition of fi, respectively. In the postcondition, variables are translated as
next() expressions. The transition relation is then de�ned as follows:∧

fi

(fun = fi ∧ prefi
→ postfi

)

The temporal speci�cation is straightforward to translate, since nuXmv
supports LTL (among many other temporal logics). enabled expressions (along
with the constraints on the call context) are translated in the same way as in
the SMT-LIB translation, i.e., a disjunction over the application’s functions and
their e�ects.

nuXmv only supports a limited type system, and it does not support quan-
ti�ers in the translation of the function pre- and postconditions and contract
invariants. On the other hand, the state transition machine is semantically close
to Scar, which makes the translation straightforward. Concerning veri�cation,
nuXmv is more complete for our purposes, since it also takes into account the
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function preconditions, and it is able to prove a valid invariant even if it is not
inductive by inferring an inductive invariant.

5.4 Evaluation

We describe how to specify the liveness properties of the examples discussed
in Section 5.1. We also sketch how the properties can be veri�ed, and discuss
the limitations and advantages of our approach in general.

Bank

The main correctness property of the simple bank application is that every cus-
tomer can withdraw all their funds whenever they want. The customer balances
are stored in a key-value mapping bals.
\forall (a: account ): G enabled {a}

(a. balance == \old(a. balance ) + \old(bals[a]))

Here, we can also specify where the money comes from, and use the \send
shorthand:
\forall (a: account ): G enabled {a}

(\send (\this , a, bals[a]))

In this speci�c case, we can even use the owns abbreviation and simply write
\forall (a: account ): owns(a, bals[a])

Veri�cation is straightforward: The withdraw function does not have a pre-
condition. It is therefore always enabled for every caller, and the postcondition
matches the desired property exactly.

Escrow

In the escrow example, one liveness property is that the seller can get their
deposit back after the buyer con�rms the reception of the item. In Scar, we
model this property as follows:
confirmPurchase {buyer} =>

enabledUntil { seller }( \send (\this , seller , deposit ))

This means that after the confirmPurchase method is called successfully, the
seller is able to e�ect a refund of their deposit – of course, only until this actually
happens.

This can be veri�ed by showing that the only function that is enabled after
the successful call to confirmPurchase is refundSeller , and that its postcon-
dition implies the desired e�ect.
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Auction

For the auction example, we consider two properties: Bidders must be refunded
if they do not win, and the seller should be able to claim the winning bid after
the auction closes.

For the losing bidders, the property is similar to that of the bank, with the
di�erence being that the current highest bidder can not withdraw:
\forall (a: account ):

G(a== highestBidder || enabled {a}( \send (\this , a, bals[a])))

Note that in this example, we cannot use the owns shortcut, because it in-
cludes a G operator, so that the resulting property might actually not be true:
After all, a losing bidder might increase their bid to become the highest bidder
again.

Veri�cation is also similar to the bank example. The withdraw function has
only one precondition, which is that the caller must not be the current highest
bidder. Therefore, it is always enabled for all other accounts. From this, it
follows that the desired property is indeed an invariant.

For the seller in the auction, the desired property is that after the auction is
closed, they get paid. This can be speci�ed in two steps. First, after the auction
ends, it can be closed:
G (time > endTime => G ( enabledUntil (close)))

Second, after the auction is closed, the seller can call the claim function to
be paid the auction price from the contract:
G (close => enabledUntil { seller }( claim))

Another correct formalization of this second property can be expressed with
the application state instead of a transaction expression:
G (state == State . CLOSED => enabledUntil { seller }( claim))

Yet another possible formalization could express the ability to e�ect a transfer,
instead of the enabled-ness of the claim function. In this example, there are
many di�erent reasonable ways of specifying the desired property.

Veri�cation relies on the fact that after the close() function is successfully
executed, the state variable is in the state closed (as implied by the postcon-
dition). This means that the claim() function is enabled for the seller. Since
no other function is enabled, we derive that the enabled-ness of the claim()
function is an invariant until it is actually called.

At �rst glance, it seems that the seller property it would be easier to specify
with the LTL F operator, like this:
F ( enabled { seller }( claim))
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This property might hold, but additional assumptions about the seller’s behav-
ior would have to be given in order to be able to prove this.

Casino The Casino example (see Section 1.4), if modeled as in Figure 5.4,
contains a vulnerability: If the player guessed correctly, but the operator never
calls the decideBet function, the player will not receive their reward. This vi-
olates the application’s main correctness property, which states that if a player
guesses the parity correctly, they must be able to withdraw the money they bet
plus the same amount as a reward. In Scar, this property can be formalized as
follows:
\forall ( secret : uint):

placeBet {a,_guess ,amt}
&& _guess == secret % 2
&& hashedNumber == \hash ( secret )
=> enabledUntil { \caller ==a}( transfer (\this ,a ,2* amt))

Since there is no function that the player can call to collect their reward,
the veri�cation fails. However, the error can be corrected; one way of doing so
is adding a timeout variable, and a function that can be called by the player
after the timeout to withdraw the reward irrespective of the game’s outcome.
In this formalization, the above property (adapted to include the timeout) is
maintained and can be proven correct.

General Remarks

Our speci�cation language can be used to express all properties yielded by our
literature research on smart contract liveness properties. This shows that the
introduce speci�cation constructs combined with the G and UW operators are
su�cient to specify properties which are commonly perceived to be liveness
properties.

In ScarTL, it is not possible to specify that a strategy exists for achiev-
ing some goal, i.e., a desired state change. This means that the speci�cation
must be explicit about how a desirable state can be reached: e.g., in the auction,
the speci�cation cannot just state ♦enabled[](close), but has to show the way:
time > end → enabledUntil[](close). This not only simpli�es veri�cation, but
also forces clarity in the speci�cation. If a complex sequence of function calls is
necessary to reach some goal, this might point to an overly complex implemen-
tation and possible simpli�cation. At the very least, our approach will force the
developer to document the necessary steps.

There are plausible scenarios where our notion of liveness fails to express
all relevant properties. One example would be a vote with a quorum: Some de-
sirable action will be taken according to a vote, but only after a �xed percentage
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application Casino

enum Mode {IDLE , GAME_AVAILABLE , BET_PLACED }

contract Casino :
state :

var operator : account
var player : account
var pot: uint
var bet: uint
var hashedNumber : uint
var guess: uint
var mode: Mode

init: operator == \caller
&& mode == IDLE
&& pot == 0 && bet == 0

functions :
fun addToPot : ...
fun removeFromPot : ...

fun createGame :
params : uint _hashedNumber
pre: mode == IDLE
pre: \caller == operator
post: hashedNumber == _hashedNumber
post: mode == GAME_AVAILABLE

fun placeBet :
params : uint _guess
pre: _guess == 0 || _guess == 1
pre: \caller != operator
pre: \amt <= pot
post: mode == BET_PLACED
post: \caller == player
post: bet == \amt
post: guess == _guess

fun decideBet :
params : uint secretNumber
pre: mode == BET_PLACED
pre: \caller == operator
pre: hashedNumber == \hash ( secretNumber )
post: secretNumber % 2 == guess

=> pot == \old(pot) - bet
&& \send (\this , player , 2 * bet)
&& bet == 0

post: secretNumber % 2 != guess
=> pot == \old(pot) * 2

&& bet == 0
post: mode == IDLE

Figure 5.4: Scar model of the Casino application



5.5. CONCLUSION AND FUTURE WORK 123

of those entitled to vote have cast their vote. Will the action be taken eventu-
ally? Whether or not the participants are incentivized to vote depends on the
speci�cs of the application. If they are su�ciently incentivized, this would con-
stitute a case where a fairness condition makes sense, and our simpler notion
would not be su�cient to specify and verify that any action will be taken. How-
ever, cases like this do not seem to be common in the smart contract world, and
deciding whether a fairness assumption is plausible can be very challenging.
We leave this kind of question to future research.

Our model-driven approach for speci�cation and veri�cation enables de-
velopers to specify liveness properties on a level where the implementation of
the functions is abstracted via function contracts. Therefore, we cannot rely on
the implementation itself for veri�cation. Working on the abstraction means
that, in general, the properties that can be proven in our approach are a sub-
set of the properties that would be provable directly on the implementation.
However, since veri�cation in our approach is straightforward for all example
liveness properties we could �nd in the literature, we argue that this limitation
hopefully does not matter much in practice.

5.5 Conclusion and Future Work

In this chapter, we analyze the concept of liveness properties for smart contract
applications. We �nd that all properties commonly perceived as liveness in the
literature are not classical liveness, but can be expressed as an actor’s access to
some functionality. Based on this �nding, we develop ScarTL, and extension to
ScarML. ScarTL provides a limited set of temporal operators as well as concise
constructs for specifying enabledness. The constructs o�er �ne-grained con-
trol for specifying the context in which an event is supposed top be enabled.
Furthermore, we sketch how this perspective simpli�es the veri�cation task,
and evaluate our approach on some typical examples.

In the future, we will look to further automate the veri�cation task. Further-
more, we will develop processes for di�erent platforms to achieve implemen-
tations which adhere to the liveness properties speci�ed in the model. Con-
versely, it would be possible to translate an annotated Solidity smart contract
implementation to a Scar model, and use our approach to specify and verify
liveness properties on it.





Chapter 6

Speci�cation of Frame

Conditions for Solidity and

Hyperledger Fabric

The previous chapters have presented a platform-independent model-driven
approach for developing secure smart contract applications. However, the Scar
approach relies on platform-speci�c formal methods for creating a correct im-
plementation of a model. In this chapter, we present two speci�cation lan-
guages for frame conditions – one for Solidity and one for Hyperledger Fabric
smart contracts written in Java.

6.1 Introduction

Smart contracts are a prime target for formal methods because they manage re-
sources, bugs cannot be �xed easily, and they are relatively small. Many formal
analysis methods require the contract’s program code to be annotated with for-
mal speci�cations (invariants, pre- and postconditions). These may express the
top-level functional requirements for the contract that are to be analyzed, veri-
�ed, or checked at runtime. Or they are auxiliary speci�cations of components
to facilitate a modular analysis.

In this chapter, we propose an approach and a formalism to enrich speci-
�cations with frame conditions, i.e., a speci�cation of what a function cannot
resp. will not do. Even though this information can also be given as part of
a postcondition, frame conditions focus on a particular kind of information,
namely which parts of the storage is changed – as opposed to specifying how
it is changed.

125
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Note that it is usually much easier to specify which parts of the state a
function (potentially) changes (its frame) than specifying what is not changed.
The changed part is closely tied to its functionality and in most cases is much
smaller than the unchanged part.

Simple, intuitive frame annotations can help programmers express their ex-
pectations as to the e�ect of a function, and a proof that a function actually
adheres to its frame – whether successful or not – will give valuable feedback
concerning the correctness of an implementation.

The idea of dynamic frames, which we use in our approach, aims to solve the
frame problem by making location sets �rst-class citizens in the speci�cation
language, so that a programmer can refer to such sets directly. This allows
proofs that two such sets are disjoint, or that one location is not part of a given
set of locations. A dynamic frame is an abstract set of locations; it is “dynamic”
in the sense that the set of locations to which it evaluates can change during
program execution.

Smart contract networks can be categorized according to the general avail-
ability of their services: In a public platform, everyone can set up a node to
replicate the ledger and validate the correctness of all transactions. And there
are no limitations as to who may make a transaction. In contrast, private net-
works are set up to serve a group of stakeholders; setting up a node requires
permission of some sort, and access to smart contract functions is regulated.
This also implies the necessity of an identity management. For our approach
to smart contract frame speci�cations, we select representatives of both cat-
egories: Ethereum [Woo14] as the most relevant public blockchain platform,
and Hyperledger Fabric [And+18] as a permission-based approach that targets
industrial applicability. In Sections Section 6.3 and Section 6.4, we discuss the
relevant properties of Ethereum resp. Hyperledger Fabric, de�ne languages for
specifying frame conditions that �t these properties, respectively, de�ne their
semantics, and show some examples.

Even though our main focus is on the speci�cation language, we give some
hints as to how the frame speci�cations can be translated into assertion state-
ments and can thus be analyzed and veri�ed (Section 6.5).

6.2 Motivation

Smart contracts are computer programs, written in turing-complete, high-level
programming languages, which o�er services to clients in distributed, decen-
tralized networks. The services are made available through public function
calls. The main bene�t of smart contracts is that they ensure deterministic and
reproducible execution despite the inherently decentralized architecture.
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Though there is no universally accepted de�nition for what constitutes a
smart contract, the general consensus is that they run on a blockchain infra-
structure, i.e., they work in conjunction with a distributed, immutable ledger;
they can take control over assets on that ledger; and they do so in an automated
and deterministic fashion, thereby enabling parties who do not necessarily trust
each other to rely on them. Depending on the platform, a smart contract can be
deployed either by every network participant, or by the network administra-
tion. Interaction with a smart contract is done by calling its (public) functions.
Reading from and writing to the distributed ledger is possible only through
smart contracts.

Since their inception, smart contracts have been a prime target for research
in the area of formal methods, for two main reasons: First, the main use cases
of smart contracts, i.e., managing resources in networks in which participants
do not trust each other, means that programming errors can have severe con-
sequences. Furthermore, once discovered, bugs in the code cannot be �xed
as easily as with other programs, since smart contracts are either immutable
once deployed, or require the explicit consent of all concerned parties for every
change to the code. This makes static proofs of correctness before deployment
highly desirable. Second, the characteristics of smart contracts make them re-
warding targets for formal speci�cation and veri�cation: smart contracts are
usually short, do not have many dependencies on outside libraries, and tend to
refrain from using complex program structures (to the point where unbounded
loops are considered bad practice [Con20]). This makes functional veri�cation
of single smart contract functions feasible [APS18]. However, verifying the
correctness of a smart contract application, i.e., a set of functions operating on
the same part of the state, is still challenging. As others have noted [Per+20],
smart contract applications should be viewed to have an implicit enclosing loop,
within which functions and parameters are non-deterministically chosen (while
smart contract architectures eventually create a shared order of transactions, it
is not possible to statically predict that order). This encourages a modular ap-
proach to formal veri�cation in the style of design-by-contract, where function
calls are abstracted through pre- and postconditions.

Even if verifying the functional correctness of a single smart contract func-
tion may be within reach due to the lack of complex control structures and data
types, two di�culties remain: (a) reasoning about calls from one smart contract
function to other functions, (b) proving that an invariant of a smart contract
application is maintained by all its functions. We argue that these di�culties
should be approached by modularization of the veri�cation e�ort: Smart con-
tract functions should be annotated with pre- and postconditions. Correctness
properties of a smart contract application are formulated as an invariant. A
proof of correctness for a function must then include a proof that it preserves
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the invariant. However, proofs of this kind often require some sort of reasoning
about a frame condition, i.e., a speci�cation of what a function cannot resp. will
not do. As a very simple motivating example, consider a smart contract with
only two functions, one called pay that accepts a positive amount of currency,
and another one called lookup which allows anyone to observe the accumu-
lated amount. A plausible invariant states that the accumulated amount never
decreases. However, that the invariant is preserved by lookup may not imme-
diately follow from lookup’s postcondition, which typically does not mention
any changes to the contract’s balance. This can be solved by a frame annotation
which states that lookup does not change the state at all.

6.3 Frame Conditions for Solidity

We recall the relevant features of the Solidity programming language (cf. also
Section 1.3), and discuss syntax and semantics of the proposed speci�cation
language.

Relevant Features of Solidity

Ethereum is a distributed computing platform for smart contracts, which are
executed on the Ethereum Virtual Machine (EVM). There are several higher-
level languages that can be compiled into EVM bytecode; the most popular
representative of these languages is Solidity. Execution of bytecode instructions
on the EVM consumes a resource called gas. The caller of a smart contract
function has to provide su�cient gas. If the execution costs exceed the provided
amount of gas, the execution is aborted and has no e�ect.

In Ethereum, there are two types of accounts: External accounts, which
only have the functionality to send and receive money, and contract accounts,
which can have arbitrary functions. Every account has a balance in the built-in
Ether cryptocurrency.

Each account in Ethereum has an address in the form of a 160-bit integer.
For contract accounts, this address also serves as a namespace where the con-
tract’s state is stored.

In the Solidity programming language, the balance of a contract with ad-
dress addr is obtained with addr.balance. The address of the contract to
which a function belongs is accessed with address(this); the address of the
caller of a function is accessed with the Ethereum built-in msg.sender con-
struct.

Solidity di�erentiates between memory and storage. Memory is not persis-
tent between function calls; it is used, e.g., for function parameters and tempo-
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rary variables. Storage refers to the data persisted on the blockchain. In our
approach for frame speci�cations, frames only contain locations in the per-
sistent memory. In which way a function may or may not have a�ected the
volatile memory is irrelevant after its termination anyway. In the following,
we therefore always refer to storage.

Solidity has two kinds of variables types: value types of a �xed size, like
booleans, integers, �xed-size arrays etc., and reference types, including dynam-
ically sized arrays, mappings, and structs. Variables of reference type point to
a location (in the namespace of their contract).

Syntax and Semantics of Frame Conditions for Solidity

We de�ne a speci�cation language for frame analysis of Solidity smart con-
tracts. The basic building blocks are frame conditions, which can be attached
to a function and de�ne its frame. A frame condition starts with the key-
word modifies, which is followed by one or more location expressions or the
nothing keyword. A location expression is a combination of an address ex-
pression and a variable expression. We also call these frame conditions modi�es
clauses.

As for addresses, msg.sender and this are special address expressions.
Furthermore, expressions of int, contract and bytes20 types can be cast to
addresses.

As for variable expressions, simple variables are referred to by their name.
In addition, for array, struct, and mapping expressions we allow su�xes that
denote which part of the data structure may be modi�ed: arr would express
that the pointer to the array can be modi�ed, while arr[4] refers to the �fth
entry in the array to which arr points. arr[0..4] allows the modi�cation of
the �rst through �fth entry of the array. Finally, arr[*] includes all elements
of the array. Similar short-hand constructs exist for structs and mappings.

The full syntax for our Solidity frame-condition language is given in Ta-
ble 6.1. There,

• addrExpr is any Solidity expression of type address. This includes address
literals as well as compositional expressions like this.x where x is a
variable of type address, such that this.x.y becomes a valid location
expression.

• primitiveTypeVarName is any name of a variable of primitive static type
(boolean, integer, address).

• �xedArrVarName is any name of a variable of a �xed-sized (static) array
type.
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Table 6.1: Syntax of the Solidity frame condition language

modifies locExpr+ | nothing
locExpr ::= addrExpr . loc-identi�er
loc-identi�er ::= primitiveTypeVarName | �xedArrVarName arrSu�x |

refToArrExpr | refToArrExpr arrSu�x |
refToMapExpr | refToMapExpr mapSu�x |
refToStructExpr | refToStructExpr structSu�x

arrSu�x ::= [intExpr] | [intExpr .. intExpr] | [*]
mapSu�x ::= [mapKey] | [*]
structSu�x ::= . struct-member | .*

• refToArrExpr, refToMapExpr, refToStructExpr are any Solidity expressions
that evaluate to a reference of the appropriate (dynamic) type.

Note that there is a di�erence between dynamic and static arrays (�xed-
sized byte arrays): If arr is dynamic, then ‘modifies arr’ and ‘modifies
arr[i]’ are both valid modi�es clauses, while only the latter is allowed for
static arrays. The reason is that the reference to a static array cannot be
changed. If a user were to write ‘modifies arr’ for a static array, then ei-
ther that clause would be redundant or it would have meant to be ‘modifies
arr[*]’ – both an indication of some misconception on the user’s part.

To formalize the semantics of modi�es clauses, we �rst de�ne the set Locs
of locations and, based on that, the concept of state.

De�nition 18 The set of Solidity locations is

Locs = N160× (primitiveTypeVarName ∪
(�xedArrVarName× int)∪
ptr ∪
(ptr × (arrayIndices×mapKeySet× structMemberSet)))

where

• N160 is the set of 160-bit numbers (addresses),

• primitiveTypeVarName is the set of all names of variables of primitive type,

• ptr is the set of all references to storage,

• arrayIndices = int is the set of possible array indices (integers),
mapKeySet is the set of all possible map keys (all primitive types), and
structMemberSet contains the names of all struct members.
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A state is a function

state : Locs → Vals

that assigns values to locations, where the set of possible values Vals contains all
primitive types as well as the elements of ptr , i.e., the references to storage.

Instead of the set Locs from De�nition 18, we could alternatively have used
N160 × ptr as the set of locations, staying closer to the Ethereum semantics.
With our more structured de�nition, however, we encode in the structure of
locations that certain location expressions cannot alias to the same position in
storage while others can.

Consider for example the location expression this.arr[4]. It represents
the location (17, (25, 4)) if this has the address 17 and a is a variable of dy-
namic array type that refers to an array at position 25 in the storage of this.
Depending on the type of a, the value of that location can be a primitive value,
say 42, but it can also be a pointer to, e.g., a particular struct in storage if arr is
an array of structs. We can immediately conclude – without further analysis of
the state – that the location expression this.a[5] evaluates to (17, (25, 5))
and is, therefore, a di�erent location (no aliasing). The location expression
this.b[4], on the other hand, may or may not evaluate to the same loca-
tion as this.a[4], depending on the values of a and b in the particular state
(aliasing possible). Similarly, if x and y are variables of static primitive type,
then this.x and this.y evaluate to (17, x) resp. (17, y) and are, thus, di�er-
ent independently of the state. If, on the other hand, x and y are variables of
dynamic type, their locations are of the form (17, 25) (the second component
is a pointer), and they may be the same.

The full semantics of the location expression lists which occur in modifies
clauses is de�ned by the function J·Ks:

De�nition 19 Given a state s, the evaluation

J·Ks : LocationExpressions→ Locs

of lists of location expressions is de�ned by the rules shown in Table 6.2.
In these rules, JeKsEth denotes Ethereum’s evaluation function that evaluates an

expression e in a state s according to Ethereum’s semantics.

Note that, in the above de�nition, J·Ks evaluates to a set of locations, while J·KsEth
returns a single value (a primitive value, and address, or a storage pointer).
The function J·KsEth is also responsible for giving values for the special ex-
pressions this, msg.sender, msg.value etc., which we evaluate according to
Ethereum’s semantics.
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Table 6.2: Rules for the evaluation function J·Ks (see De�nition 19)

If Exc is any expression that throws an exception:
JExcKs := ∅

Otherwise:
JnothingKs := ∅
JlocExpr1, locExpr2Ks := JlocExpr1Ks ∪ JlocExpr2Ks
JaddrExpr.loc-identi�erKs := (JaddrExprKsEth, Jloc-identi�erKs)
JprimitiveTypeVarNameKs := { primitiveTypeVarName }
J�xedArrVarName arrSu�xKs := {�xedArrVarName } × JarrSu�xKs
JrefToArrExprKs := { JrefToArrExprKsEth }
JrefToArrExpr arrSu�xKs := { JrefToArrExprKsEth } × JarrSu�xKs
JrefToMapExprKs := { JrefToMapExprKsEth }
JrefToMapExpr mapSu�xKs := { JrefToMapExprKsEth } × JmapSu�xKs
JrefToStructExprKs := { JrefToStructExprKsEth }
JrefToStructExpr structSu�xKs := { JrefToStructExprKsEth } × JstructSu�xKs
J[intExpr]Ks := { JintExprKsEth }
J[intExpr1..intExpr2]K

s := { i ∈ int | JintExpr1)KsEth ≤ i ∧
i ≤ JintExpr2K

s
Eth }

J[*]Ks := int ∪mapKeySet
J.*Ks := structMemberSet
JmapKeyKs := {mapKey }

Finally, we can de�ne what it means for a function be correct w.r.t. a modi-
�es clause:

De�nition 20 A Solidity smart contract function f is correct w.r.t. a modi�es
clause ‘modifies locExpr’ i� the following holds:

For all preState, postState ∈ states such that f terminates in postState when
started in preState,

∀ l ∈ L : preState(l) 6= postState(l) =⇒ l ∈ JlocExprKs

Note that the correctness condition of the above de�nition is equivalent to

{l | preState(l) 6= postState(l)} ⊆ JlocExprKs

According to the �rst line in Table 6.2, if a location expression throws an
exception, such as division by zero or out-of-bounds array access, its semantics
is the empty set. This is useful in the context of Ethereum, because if such an
exception occurs, the function is rolled back and has no e�ect. In this case, no
location is modi�ed, and the modi�es clause is trivially satis�ed.
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Modi�es clauses are always evaluated in the prestate of a function ex-
ecution, not in the state in which an assignment happens during the ex-
ecution. For example, if the modi�es clause contains this.a[i] and
this.i, then the assignments ‘a[i] = a[i]+1; i = i+1;’ are �ne, but
‘i = i+1; a[i] = a[i]+1;’ violates the clause. The latter would need
this.a[i+1] to be included.

We do not allow pointer arithmetic in modi�es clauses, i.e., (a+n)[1] can-
not be used to refer to a[2] for any n. Modi�es clauses with pointer arithmetic
would be confusing, a source of errors, and a way of obfuscating the clauses
for malicious programmers. Moreover, pointer arithmetic is notoriously hard
to analyze for veri�cation tools.

Example: A Simple Solidity Bank Contract

The example in Figure 6.1 shows a simple version of a Solidity contract for a
bank, where clients can deposit and withdraw their money. When someone
deposits their funds, the money is transferred to the bank contract, and their
balance with the bank is adapted (in the bals mapping).

The modi�es clauses of deposit and withdraw include
bals[msg.sender] to indicate that one – and only one – entry of the
bals mapping is changed; the other entries of the mapping remain unchanged,
which is important for checking the ‘this.balance == \sum(bals)’ (see
Section 6.5).

The modi�es clauses also mention the contract’s as well as the caller’s bal-
ance (this.balance and msg.sender.balance), which are modi�ed because
the function either accepts funds (because it is payable) or transfers funds to
the caller.

A modi�es clause has also been added to function lookup to specify that
only the deposit and withdraw methods can change the bookkeeping balance,
and lookup modi�es nothing.

Example: Uninitialized Pointers in Ethereum

The example in Figure 6.2 illustrates one of the pitfalls of the solidity program-
ming language (or, more precisely, a recent version of Ethereum).

The Surprise contract declares a struct Thing, a public integer variable x
and a mapping things. The function addThing declares a variable t of the
Thing type, but does not initialize it (which is problematic); afterwards, the
struct’s boolean �eld is set to false, and the new thing is added to the contract’s
things mapping. Unintuitively, calling this function overwrites x: Since t is an
uninitialized storage pointer, it automatically points to slot 0 of the contract’s



134 CHAPTER 6. FRAME CONDITIONS

contract Bank {
//@ invariant this. balance == \sum(bals);

mapping ( address => uint) private bals;

//@ postcondition
//@ this. balance == \old(this. balance ) + amt
//@ && \bals[msg. sender ] == \old(bals[msg. sender ]) + amt);
//@
//@ modifies bals[msg. sender ];
//@ modifies this.balance , msg. sender . balance ;

function deposit () public payable returns (uint) {
bals[msg. sender ] += msg.value ;
return bals[msg. sender ];

}

//@ postcondition bals[msg. sender ] >= amt
//@ ==> (this. balance == \old(this. balance ) - amt
//@ && \bals[msg. sender ] == \old(bals[msg. sender ]) - amt);
//@ postcondition bals[msg. sender ] < amt
//@ ==> (this. balance == \old(this. balance )
//@ && \bals[msg. sender ] == \old(bals[msg. sender ]);
//@
//@ modifies bals[msg. sender ];
//@ modifies this.balance , msg. sender . balance ;

function withdraw (uint amt) public returns (uint) {
if (amt <= bals[msg. sender ]) {

bals[msg. sender ] -= amt;
msg. sender . transfer (amt);

}
return bals[msg. sender ];

}

//@ modifies \ nothing ;
function lookup () public returns (uint) {

return bals[msg. sender ];
}

}

Figure 6.1: A simple bank contract written in Solidity
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contract Surprise {

struct Thing {
bool b;

}

uint public x = 100;
mapping ( string => Thing) public things ;

//@ modifies things [name ];
function addThing ( string name) public {

Thing storage t;
t.b = false ;
things [name] = t;

}
}

Figure 6.2: An example of unintuitive behavior in Ethereum (cf. [Hit18])

storage, which in fact is also the position of the storage variable x. The boolean
value false is cast to the type of x, i.e. uint, which yields 0. The addThing
function modi�es the value of a variable that it does not syntactically refer
to, which is not what a programmer would expect. A framing condition that
clearly states which locations a method may modify (along with a tool to prove
that the function indeed ful�lls the speci�cation) would render errors of this
kind harmless (of course, the tool needs to know about the intricacies of the
memory model). In the example, the function is annotated with a modifies
clause stating that only the things mapping at the key of the newly created
object may be modi�ed. A proof of correctness against this speci�cation would
fail, leading the programmer to detect the error. A programmer may then have
the (wrong) idea that the problem can be �xed by adding t to the modi�es
clause; but that would lead to a syntax error because the modi�es clause is not
within the scope of t’s declaration.

Beginning with Solidity version 0.5 (Nov. 2018), uninitialized storage point-
ers lead to a compiler error, because the behavior described above was con-
sidered too dangerous and unintuitive. Nevertheless, the example shows that
modi�es clauses help in cases where a programmer has a misconception of
what a function does. Moreover, a programming language does not even have
to be unintuitive; mistakes always happen. Framing speci�cations can help to
uncover these mistakes before they cause potentially serious errors.
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6.4 Frame Conditions for Hyperledger Fabric

We discuss the relevant features of the Hyperledger Fabric platform, where
smart contracts can be written in Java. We then design a speci�cation language
for frame conditions speci�c to the Hyperledger Fabric platform.

Hyperledger Fabric

Hyperledger Fabric emerged as one of the projects from the Linux Foundation’s
Hyperledger umbrella project. It aims to o�er an “operating system for permis-
sioned blockchains” [And+18]. Unlike Ethereum, a Fabric network consists of
agents who know each other’s identity. Fabric smart contracts are programs
written in one of a number of languages, e.g., Go, Java, or Javascript. Function
calls are regulated by access control and submitted to a number of nodes. If
these nodes compute the same results, the resulting state changes are submit-
ted to an ordering service in the form of a read/write set (i.e., a set of locations
and values that are read or written, along with versions in order to detect read-
/write con�icts), and �nally broadcast to all participating nodes.

Hyperledger Fabric has its own storage nomenclature. The fundamental
data structure is a blockchain which stores the assignments made as a result
of smart contract function calls. However, the data structure that a smart con-
tract developer interacts with is not the blockchain, but an abstraction called
the world state. The world state is a database that holds the current values of the
ledger state, expressed as key-value pairs. The world state at key s is de�ned as
the value of the last assignment to s in the blockchain. The ledger is the com-
bination of the blockchain and the world state determined by the blockchain.

In the following, we consider the world state that represents the storage of
one fabric network. Our frame condition language for Fabric allows for less
granularity than the one for Solidity: It does not mention speci�c data struc-
tures (like structs or arrays) nor does it allow �eld access. This is due to the fact
that Fabric chaincode can be written in one of several programming languages
with di�erent characteristics and built-in structures. We want our proposed
language to capture the process of accessing the world state, which is similar
in the di�erent APIs. Our language can then be instantiated (i.e., re�ned) for
the actual chaincode programming languages.

In Fabric, data is (only) stored in the form of byte arrays. Thus, all data
structures have to be serialized before they can be written to the ledger, and
deserialized after reading. This does not immediately lead to problems because
we treat the data stored at one location as a monolithic block, and do not allow
expressions accessing sub-units of data structures (like �elds of a stored object,
or elements of a stored array). This has the drawback that, if more �ne-grained
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information about which parts of a data structure are changed is required, this
has to be achieved through cumbersome auxiliary speci�cations that refer to
serialization and deserialization (see Section 6.4).

In the Java API for Fabric, basic storage access is provided by the getState,
putState and delState methods. The ledger object on which these meth-
ods operate is passed as a parameter of each chaincode function. Range access
is also possible: getStateByRange(String start, String end) returns all
keys which are lexicographically between the two parameters, and the corre-
sponding values. This is re�ected in our speci�cation language. We allow lo-
cation expressions to end with an asterisk * to express that all locations with a
given pre�x may be modi�ed. Furthermore, we allow expressions that evaluate
to sets of strings, such as lists or arrays.

Composite keys are another way of storing and querying data in Fabric. A
composite key consists of a list of attributes, and a string which denotes the
types of these attributes. For example, an item in an auction (cf. Section 6.4)
could be represented as a Java struct with two �elds for the ID of the item
(itemID) and the ID of the owner (ownerID). A composite key for one spe-
ci�c item could have the form (itemID~ownerID, 42, “john”). This enables
queries for either the ID of the item or the owner; in this example, it would al-
low a function to retrieve all items belonging to a particular ID without having
to read all items from the state and �lter them by their owner. Since the com-
posite key mechanism is present in the APIs for all chaincode programming
languages, it is included in our speci�cation language in the string set expres-
sions.

In Hyperledger Fabric, the caller of a function is obtained via the CID (for
Client Identi�cation) interface, which guarantees that each agent in the net-
work is identi�able by a unique ID.

Syntax and Semantics of Frame Conditions for Fabric

In Fabric, a location is uniquely described by a string. Our speci�cation lan-
guage (see Table 6.3) therefore consists of the modifies keyword followed by
one or more expressions which return strings or sets of strings, such as string
ranges (e.g., “modifies itemA .. itemZ” would express that all locations
whose identi�ers are lexically between itemA and itemZ can be modi�ed), pre-
�x expressions using the asterisk (e.g., “modifies item*” would include all lo-
cations where the key starts with “item”), and side-e�ect-free expressions that
return a string or a collection of strings (such as string arrays in Java or Go).

The full syntax for our Fabric frame-condition language is given in Table 6.3.
There,
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Table 6.3: Syntax of the Fabric frame condition language

modifies locExpr+ | nothing
locExpr ::= strExpr | rangeExpr | starExpr | strSetExpr
rangeExpr ::= strExpr .. strExpr
starExpr ::= strExpr *

• strExpr is expression in the programming language that evaluates to a
string,

• strSetExpr is any expression that evaluates to a collection or set of strings
(e.g., string arrays).

To formalize the semantics of modi�es clauses, we again have to de�ne a
concept of state. The de�nition is similar to that for Solidity frame conditions
(De�nition 18), except that now locations are strings, and their values are byte
arrays.

De�nition 21 The set of Fabric locations is

Locs = String

where String is the set of all strings. A state is a function

state : Locs → Vals

that assigns values to locations, where the set of possible values Vals is the set of
all (�nite) byte arrays.

The semantics of location expression lists, which occur in modifies clauses
is again de�ned by giving rules for the function J·Ks:

De�nition 22 Given a state s, the evaluation

J·Ks : LocationExpressions→ Locs

of lists of location expressions is de�ned by the rules shown in Table 6.4.
In these rules, JeKsFab denotes the evaluation function that evaluates an expres-

sion e in a state s according to the semantics of the programming language that
is used to write Fabric contracts.

The de�nition of when a contract function satis�es its modi�es clause is the
same as that for Solidity (De�nition 20):

∀ l ∈ L : preState(l) 6= postState(l) =⇒ l ∈ JlocExprKs
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Table 6.4: Rules for the evaluation function J·Ks (see De�nition 22). ≤lex is the
lexicographic ordering relation.

If Exc throws an exception or if its evaluation is unde�ned:
JExcKs := ∅

Otherwise:
JnothingKs := ∅
JlocExpr1, locExpr2Ks := JlocExpr1Ks ∪ JlocExpr2Ks
JstrExprKs := { JstrExprKsFab }
JstrSetExprKs := { s ∈ String | s ∈ JstrSetExprKsFab }
JstrExpr1..strExpr2Ks := { s ∈ String | JstrExpr1KsFab ≤lex s

and s ≤lex JstrExpr2KsFab}
JstrExpr*Ks := { s ∈ String | strExpr is a pre�x of s }

Example: A Fabric Auction Contract

In Figure 6.3, excerpts of an auction smart contract are shown. Items that can
be bought or sold are represented as structs with �elds for their own ID, the ID
of their owner, and the ID of the auction in which the item is o�ered (if any).
Besides items, auction objects are stored on the ledger. They declare a list of
strings which signify the locations of the items that are sold in the auction.
Furthermore, they have an ID, a minimum bid, and an ending time. When an
auction is created, it is checked that all items actually belong to the caller of
the function, i.e., the identity which creates the auction. If all checks succeed,
the items are given a non-empty auction ID, signifying they are currently being
auctioned and cannot be o�ered in another auction.

When an auction is closed, the ownership of all its items is transferred to
the highest bidder, and the auction ID of the items is set to the empty string,
signifying that they are currently not being auctioned. The closeAuction()
function can modify the auction object which is referred to in the auctionID
parameter. Furthermore, it can modify all the items which are being sold in
this auction object. However, there is no direct way to refer to this set of items,
since their locations are not directly passed as parameters but only indirectly as
a �eld of the auction object. Therefore, to refer to the item list in the modifies
clause, the object stored at the location of the auctionID string needs to be read
from the ledger with getState, deserialized, and then cast to an object of the
auction type: ‘(Auction) deserialize(ledger.getState(auctionID))’.
The itemLocs �eld of this object yields a list, and therefore constitutes a string
set expression as de�ned by our speci�cation language. If this frame condition
is proven to be correct, it can then be used to prove more complex properties of
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public class Auction extends ChaincodeBase {

//@ modifies auctionID , itemLocs ;
Response createAuction (...) {

...
}

//@ modifies
//@ auctionID ,
//@ (( Auction ) deserialize ( ledger . getState ( auctionID ))).

itemLocs
Response closeAuction ( String auctionID , ChaincodeStub

ledger ) {
Auction a = deserialize ( ledger . getState ( auctionID ));
if ( getCurrentTime () < a. ending ) return newErrorResponse

();
a. closed = true;
for ( String s: a. itemLocs ) {

Item i = deserialize ( ledger . getState (s));
i. owner_id = a. highestBidderID ;
i. auctionID = "";
ledger . putState (i.itemID , serialize (i));

}
ledger . putState (auctionID , serialize (a));
return newSuccessResponse ();

}
...

}

Figure 6.3: Fabric chaincode from an auction contract

the auction smart contract, e.g., that items can only ever be modi�ed with the
consent of their current owner.

6.5 Towards Analysis and Veri�cation of Frame

Conditions

Though the focus of this work is on the speci�cation of frame conditions, we
give short overview of how they can be analyzed and veri�ed, and how frame
conditions can be used in the analysis and veri�cation of other formal speci�-
cations such as invariants and pre-/postconditions.

The most obvious way to express what needs to be proved to establish cor-
rectness of a smart contract function f w.r.t. its frame condition is to use the
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formula from De�nition 20 as a postcondition and to prove that it holds after
all executions of f:

∀ l ∈ L : preState(l) 6= postState(l) =⇒ l ∈ JlocExprKs (6.1)

That is actually what is typically done in deductive veri�cation tools with an
expressive program logic such as the KeY tool [Ahr+16], which supports both
automatic and interactive veri�cation of Java code with annotations such as
pre- and postconditions and modi�es clauses. KeY’s support for user interaction
allows veri�cation w.r.t. expressive speci�cations, but proving frame conditions
can require a lot of e�ort for interactive proof construction.

For systems based on software (bounded) model checking or runtime check-
ing, Equation (6.1) is problematic because it quanti�es over all locations and,
moreover, requires to store the prestate values of locations so that they can be
compared to their poststate values. For such systems, it is better to add an asser-
tion for each assignment such that the assertion fails if the assignment writes
to a location not mentioned in the frame condition (for simplicity, we only con-
sider assignments but this approach is applicable to other state-changing op-
erations as well). Notice that only assignments to storage locations need to be
covered, as assignment to volatile memory is always legal.

Consider, for example, the assignment ‘bals[msg.sender] += msg.value
;’ in function deposit (Figure 6.1). It leads to the assertion that
Jbals[msg.sender]Ks must be an element of the locations in the modi�es
clause, where s is the state in which the assignment happens and the modi-
�es clause is evaluated in the prestate of the function. This assertion is true,
but note that even in this simple case the two states (s and the prestate) are not
the same as the function is payable, and the transfer of funds happens before
the assignment deposit is executed. Still, checking this assertion is easier then
proving Equation (6.1), as the assertion does not contain a universal quanti�er
and the set of locations in the modi�es clause is much smaller than the set of all
locations mentioned in Equation (6.1). An implementation that generates the
appropriate assertions needs to be aware and make use of the evaluation J·Ks
for modi�es clauses (De�nition 19).

Note, that an analysis which checks every assignment may actually raise
false alarms. According to our de�nition, an assignment to a storage locations
is allowed – even if the location is not mentioned in the modi�es clause – if
it has no e�ect (e.g., ‘x=x+0’) or is temporary (e.g., ‘x=x+1;x=x-1’). However,
such false alarms are rare in practice and mostly indicate redundant code or
bad programming style even if they do not actually violate the modi�es clause.

Once the correctness of a function w.r.t. a modi�es clause has been estab-
lished, that knowledge can be used in further correctness proofs. For example,
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consider the invariant shown at the beginning of contract bank (Figure 6.1).
To prove that this invariant is preserved by function deposit, one can ana-
lyze deposit’s implementation. But if deposit has already been shown to
satisfy its speci�cation, the proof can be modularized, i.e., one can prove that
the invariant is implied by the speci�cation. That requires to prove that (a) the
invariant implies the precondition and that (b) the postcondition implies the
invariant. The latter step, however, is only possible using the modi�es clause.
The postcondition alone is not su�cient as it only expresses what the function
does, not what it does not do. The postcondition does not say anything about
the elements of bals[c] for c 6= msg.sender in the poststate. But the modi-
�es clause comes to the rescue: since these locations are not mentioned in the
modi�es clause they must be unchanged, which implies that their value from
the prestate is preserved.

6.6 Related Work

Several approaches to security analysis and formal veri�cation of smart con-
tracts have been proposed. They range from simple static analysis for detecting
known anti-patterns (e.g., [Luu+16]), over dynamic approaches (e.g., [EP18]),
trace properties [Per+20] and functional speci�cation and veri�cation [Bha+16;
Bec+18]) to full formalizations of the Ethereum virtual machine in the Is-
abelle/HOL framework [Ama+18] (see [Pra+20] for a recent overview).

Frame analysis is an established �eld of research, and several logic frame-
works have been proposed. The two most prominent approaches are separation
logic [Rey02] and dynamic frames [Kas06].

Separation logic is an extension of Hoare Logic which enables reasoning
about programs with complex pointer structures. It has been used for veri�ca-
tion and program analysis in a variety of tools, such as jStar [DP08], a veri�ca-
tion tool for Java programs, or the RustBelt project [Jun+17] for veri�cation of
the core of the Rust programming language.

The theory of dynamic frames has been widely used for program veri�ca-
tion; for example, the Java Modeling Language [LC06] (and, subsequently, veri-
�cation tools that build upon it) use a dynamic-frames approach (see [Ahr+16]).

Combinations of both approaches have also been proposed [SJP09]. For
example, Chalice [PS12] is a language and program veri�er for reasoning about
concurrent programs with built-in speci�cation constructs written in the style
of implicit dynamic frames.

Our proposed speci�cation languages for smart contracts use the dynamic
frames approach. This has the advantage that the programmer can write the
speci�cation in the same terms that they need to know to write the program
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code. There is no additional learning required; the speci�cation language is
very similar to the programming language itself. This is a di�erence to separa-
tion logic, which requires more knowledge about the logic behind the speci�-
cation.

From our experience, this does not make the proofs of correctness more
di�cult: While separation logic may have an advantage for reasoning about
complex pointer data structures, these do not occur in the reality of smart con-
tracts. Therefore, we can use the simple, intuitive speci�cation language of
dynamic frames without sacri�cing expressive power or e�cient proofs.

6.7 Conclusion

In this chapter, we argue that formal speci�cation and veri�cation of smart con-
tracts would bene�t from frame conditions. We propose framing speci�cation
languages for two smart contract platforms, Ethereum and Hyperledger Fabric.

We plan to implement veri�cation support by translating the proposed mod-
i�es clauses into a standard assertion language supported by existing tools.
That will allow to automatically generate and then discharge proof obligations
from our frame annotations. An implementation that generates the appropriate
assertions needs to be aware and make use of the evaluation function J·Ks for
modi�es clauses (De�nition 19).

For Fabric speci�cation, it would also be useful to support more complex
location expressions. Regular expressions, which many programmers are fa-
miliar with, would make a useful addition. This would, however, also bring
new challenges for the veri�cation of the resulting proof obligations.





Chapter 7

Conclusion

Smart contracts are programs which give some guarantees even if executed
on somebody else’s computer. This makes them potential building blocks for
decentralized systems. However, the characteristics of smart contract platforms
make the applications built on them hard to �x, while at the same time, every
bug in the code is a potential security issue. Formal methods are necessary to
ensure that smart contract applications behave as intended.

7.1 Summary

In this work, we present a formal approach for the development of correct
and secure smart contracts. The Scar framework consists of a platform-
independent metamodel of smart contract applications. On this basis,
application-level temporal and security properties can be speci�ed and veri-
�ed. Furthermore, Scar provides methods to create source code implementa-
tions which ful�ll the properties speci�ed on the model level.

Scar The core of the Scar approach is a metamodel of smart contract ap-
plications. These are described in terms of their contracts, state variables, and
functions. The behavior of the functions is de�ned in terms of function con-
tracts consisting of pre- and postconditions, as well as frame conditions. Scar
provides a formal language in which developers can instantiate the metamodel
in a text format.

From a given model, developers can generate source code annotated with
formal speci�cation. Making use of existing veri�cation tools, developers prove
that their implementation is consistent with the model.
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Capability-based Security The basic Scar metamodel is extended with se-
curity properties. These enable developers to specify what actors have access to
which resources in an application. Actors can be accounts, but also functions.
Furthermore, accounts can be summarized into roles.

For these actors, developers can specify capabilities, which encompass ac-
cess to functions, state changes, and cryptocurrency transfers.

Actors and capabilities are speci�ed on the model level. Then, a model can
be analyzed for consistency, which is violated if actors are able to access func-
tions that have greater capabilities than themselves. If a model is judged to
be consistent, a combination of annotation generation and source-level formal
methods ensures that the implementation is a re�nement of the model and ful-
�lls the same security properties.

The evaluation shows that for an application where access control is an
important concern, the Scar model is much more concise than the Solidity
implementation. Furthermore, the Scar tooling greatly reduces the necessary
e�ort for implementing the access control policy.

Liveness Properties In the existing literature, there are few approaches for
veri�cation of liveness properties in smart contracts. After a review of the com-
monly cited use cases, we observe that in the adversarial environment of smart
contract applications, liveness is often better speci�ed as enabledness.

Continuing from this observation, the Scar framework is extended with
a language for specifying temporal properties. The concept of enabledness,
along with some other constructs, is rei�ed in the language to make common
properties easy to specify.

Furthermore, we sketch two ways for veri�cation of temporal properties in
a Scar model. In Scar’s model-driven approach, veri�cation is done on the
model level. In the implementation, the proven properties are guaranteed to
hold due to the re�nement relationship between model and code.

Figure 7.1 presents a �nal overview of the Scar approach, similar to Fig-
ure 3.1, but including the extensions for capability-based security and liveness.

Frame Conditions In the last chapter, we develop two platform-speci�c ap-
proaches. Formal veri�cation tools can bene�t from the modularity introduced
by method contracts, but for this e�ect, it is necessary to also specify what parts
of the state are not changed by a function.

To this end, we design two speci�cation languages for frame conditions,
building on the theory of dynamic frames. The �rst is for Solidity and the
Ethereum platform, while the second targets Hyperledger Fabric contracts writ-
ten in Java.
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Figure 7.1: The Scar process of smart contract application development

The languages are intended to be incorporated by developers of formal ver-
i�cation tools. Furthermore, they can serve as inspiration for speci�cation lan-
guage creators in the smart contract domain.

7.2 Future Work

Composition andRelational Properties Scar models describe correctness
and security properties of smart contract applications. In the future, it would be
interesting to investigate whether the properties of di�erent models, or parts
thereof, are maintained after (partly) composing the models.

Furthermore, relational properties of Scar models should be investigated.
For example, a notion of equality on Scar models should be developed. Fur-
thermore, it should be investigated whether the abstraction provided by the
Scar approach can be used to make relational veri�cation more e�cient.

Support formore Platforms In order to develop smart contracts with Scar,
it is necessary to have a de�nition of consistency between the Scar model and
the target implementation language. Currently, most smart contracts are writ-
ten in Solidity, and therefore, Solidity has been the main target of the Scar ap-
proach. At this time, Solidity is the only language for which the Scar approach
has clearly de�ned consistency, and solc-verify is the only veri�cation tool
for which an automated translation has been implemented.
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In the future, we want to extend the Scar approach to other platforms. Suit-
able candidates are Solana smart contracts written in Rust, and Hyperledger
Fabric smart contracts written in Java. For both languages, source-level formal
veri�cation tools exist, so that speci�cation generation is feasible. An interest-
ing research question is how access control and other security properties can
be translated, because the other platforms have built-in features which may
constitute a better alternative to Solidity’s function-level access control.

Implementation and Tool Support The Scar approach has been imple-
mented, albeit in a somewhat prototypical fashion. In the future, we will work
to make the implementation more complete and more usable. For example, it
should be easier for a developer to integrate a new formal veri�cation tool. If
source-level veri�cation fails, it should also be possible to give feedback on the
model level, guiding the developer to possible sources of error, or proving that a
source-level veri�cation failure is not actually relevant to a desired application-
level property.

Integration with other Formal Methods The main bene�t of the Scar ap-
proach is its platform character: It is intended to serve as a basis for the applica-
tion and integration of other tools. Therefore, in the future, we will pursue the
integration of di�erent formal methods in Scar. We would also like to position
Scar as a common format to de�ne formal veri�cation benchmarks.
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