KIT | KIT-Bibliothek | Impressum | Datenschutz

Theta-induced diffusion on Tate elliptic curves over nonarchimedean local fields

Bradley, Patrick Erik ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

A diffusion operator on the K-rational points of a Tate elliptic curve Eq is constructed, where K is a nonarchimedean local field, as well as an operator on the Berkovich analytification Eanq of Eq. These are integral operators for measures coming from a regular 1-form, and kernel functions constructed via theta functions. The second operator can be described via certain nonarchimedean curvature forms on Eanq. The spectra of these self-adjoint bounded operators on the Hilbert spaces of L2-functions are identical and found to consist of finitely many eigenvalues. A study of the corresponding heat equations yields a positive answer to the Cauchy problem, and induced Markov processes on the curve. Finally, some geometric information about the K-rational points of Eq is retrieved from the spectrum.


Originalveröffentlichung
DOI: 10.2140/pjm.2025.334.13
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0030-8730, 1945-5844
KITopen-ID: 1000177705
Erschienen in Pacific journal of mathematics
Verlag Mathematical Sciences Publishers (MSP)
Band 334
Heft 1
Seiten 13-42
Projektinformation DFG, DFG EIN, BR 2128/21-1
DFG, DFG EIN, BR 3513/14-1
Vorab online veröffentlicht am 30.12.2024
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page