
Security Analysis of Online Cashless
Vending Systems

Bachelor’s Thesis of

Janis Streib

at the Department of Informatics, Institute of Telematics

Decentralized Systems and Network Services Research Group

Reviewer: Prof. Dr. Hannes Hartenstein

Second reviewer: Prof. Dr. Martina Zitterbart

Advisor: M.Sc. Jan Grashöfer

01. June 2018 – 31. October 2018

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 31.10.2018

. .

(Janis Streib)

Sperrvermerk

Das vorliegende Dokument enthält bislang unverö�entlichte Sicherheitslücken. Veröf-

fentlichungen oder Vervielfältigungen des vorliegenden Dokuments, auch nur auszugsweise,

sind ohne ausdrückliche Genehmigung vor dem Ablauf der Frist am 31.04.2019 nicht ges-

tattet. Die Arbeit ist nur den Korrektoren, den Mitgliedern des Prüfungsausschusses und

den betro�enen Parteien zugänglich zu machen. Vor Ablauf der Frist darf dieses Doku-

ment nicht ohne ausdrückliche Genehmigung in der Bibliothek der Hochschule ausgelegt

werden.

i

Abstract

Cashless payment is omnipresent at sites like universities or large companies: If one wants

to buy goods at vending machines or in the canteen, or pay for local services at the site,

the student, guest or employee card is used for payment. The card is revalued with money

by the card holder beforehand. These payment systems can be operated cloud based.

Therefore, the information security is vital, to protect the user’s money. Moreover, the

money of the operator, who guarantees the transactions to the other departments and

contractors, has to be protected, too.

In this thesis, the cashless payment system used at the campus of the Karlsruhe Institute

of Technology will be analyzed in detail with focus on its information security. For the

analysis, the risk management process de�ned in the ISO27005 will be applied: First,

the risks will be identi�ed, analyzed and mitigations will be evaluated. Finally it will be

discussed, whether the system can be operated in compliance with BSI Grundschutz and if

the industry standard PCI PA-DSS would have prevented the problems found in context of

this work, if applied during implementation of the system.

The analysis process revealed 13 weaknesses. The discussion yielded, that the payment

system cannot be operated in compliance with the BSI Grundschutz. If the system would

have been developed in compliance with PCI PA-DSS, most of the problems would have

been prevented. Finally, a brief list of recommendations for this type of system was created.

iii

Zusammenfassung

Bargeldloses Zahlen ist an Universitäten oder in großen Firmen allgegenwärtig: Möchte

man an einem solchen Standort etwas an Verkaufsautomaten oder in der Kantine erwerben,

oder für lokale Dienstleistungen bezahlen, bezahlt man mit seinem Studenten-, Gäste-, oder

Mitarbeiterausweis. Diese Karte wird dabei zuvor von ihren Besitzern mit Geld aufgeladen.

Diese Systeme können Cloud-basiert arbeiten, um die �nanziellen Transaktionen zu tätigen.

Daher ist die Informationssicherheit bei diesen Systemen von großer Bedeutung, um das

Geld der Kunden und das Geld des Betreibers, der für die Abwicklung der Zahlung an die

jeweiligen Abteilungen oder Dienstleistern die Verantwortung trägt, zu schützen.

In dieser Arbeit wird das System, das unter anderem auf dem Campus des Karlsruher

Instituts für Technologie Verwendung �ndet, genauer auf seine Informationssicherheit hin

untersucht. Dabei wird nach dem im ISO27005-Standard de�nierten Risikomanagement-

prozess vorgegangen: Zuerst werden Risiken im System identi�ziert, diese dann bewertet

und schließlich mögliche Gegenmaßnahmen evaluiert. Abschließend wird diskutiert, ob

existierende Sicherheitsstandards wie der BSI Grundschutz oder PCI PA-DSS einen Betrieb

zulassen, bzw. ob diese die gefunden Probleme verhindert hätten.

Im Rahmen des Analyseprozesses wurden 13 Schwachstellen identi�ziert, das Angri�s-

risiko analysiert, sowie Strategien zur Risikominimierung entwickelt und evaluiert. In der

Diskussion ergibt sich, dass das System nicht unter Beachtung der Vorgaben des BSI Grund-

schutzes betrieben werden kann. Auch hätte die Beachtung des Standards PCI PA-DSS

während der Implementierung einige der im Kontext dieser Arbeit identi�zierten Probleme

verhindert. Abschließend wird ausgehend von den vorangegangenen Erkenntnissen eine

Liste an Sicherheitsempfehlungen für diese Art von System aufgestellt.

v

Acknowledgments

I would like to thank Thomas Fluhrer, Alen Kecic, Patrick Eble and Markus Kopf from the

Studierendenwerk Karlsruhe AöR for their support for the realization of this thesis, as well

as Andreas Lorenz and the legal department of the KIT. I would also like to thank Felix Dörre
for his help with understanding cryptographic methods and algorithms. Additionally, I

would like thank the KIT CERT team, which provided the required tool "IDA Pro" and

supported the responsible disclosure process.

Finally, I especially want to thank Jan Grashöfer, Prof. Hartenstein and the DSN team

for the support and competent guidance for writing this work.

vii

Table of Contents

Sperrvermerk i

Abstract iii

Zusammenfassung v

Acknowledgments vii

1. Introduction 1

2. RelatedWork 3
2.1. Cashless Vending . 3

2.2. Information Security . 3

2.3. Similar Research . 4

3. SystemOverview 7
3.1. Roles and Components . 7

3.2. Processes . 8

3.2.1. Vending . 8

3.2.2. Audit . 10

3.2.3. Maintenance and Update . 10

3.3. Device Hardware . 11

3.4. Device Software . 11

3.5. Backend Server Software . 12

3.5.1. Heartbeat API . 12

3.5.2. APIX . 13

4. Method 15
4.1. Risk Identi�cation . 15

4.2. Risk Analysis . 18

4.3. Mitigation . 18

5. Risk Identification 19
5.1. Outdated Operating Systems . 19

5.2. Usage of an Operating System with Desktop Environment 19

5.3. Remote Management . 20

5.4. Missing Server Certi�cate Veri�cation . 20

5.5. Usage of Weak Cipher Algorithms . 20

5.6. Weak Binary Integrity Check . 21

ix

Table of Contents

5.7. Broken AES Implementation . 22

5.7.1. AES Overview . 22

5.7.2. AES Implementation in the Payment System 24

5.8. Hard-Coded Database Encryption Key and Weak Integrity Check 25

5.9. Automatic Execution of Script from Removable USB Storage 26

5.10. Unauthenticated Access to Con�guration 26

5.11. Missing Transaction Authorization by User 26

5.12. Missing Replay Protection . 27

5.13. Lack of Basic Sanity Checks for Transaction History 27

6. Risk Analysis 29
6.1. Method . 29

6.1.1. Attacker Model . 29

6.1.2. Target Data . 30

6.1.3. Consequence Probability Matrix 30

6.2. Weaknesses . 31

6.2.1. Outdated Operating Systems . 31

6.2.2. Usage of an Operating System with Desktop Environment 31

6.2.3. Usage of Weak Cipher Algorithms 31

6.2.4. Weak Binary Integrity Check . 31

6.2.5. Hard-Coded Database Encryption Key and Weak Integrity Check 32

6.2.6. Lack of Basic Sanity Checks for Transaction History 32

6.3. Vulnerabilities . 32

6.3.1. Remote Management . 32

6.3.2. Missing Server Certi�cate Veri�cation 32

6.3.3. Automatic Execution of Script from Removable USB Storage . . . 33

6.3.4. Broken AES Implementation . 34

6.3.5. Unauthenticated Access to Con�guration 34

6.3.6. Missing Authorization by User 34

6.3.7. Missing Replay Protection . 35

7. Risk Mitigation 37
7.1. Internal Mitigations . 37

7.1.1. Remote Management . 37

7.1.2. Missing Server Certi�cate Veri�cation 37

7.1.3. Usage of Weak Cipher Algorithms 37

7.1.4. Weak Binary Integrity Checks . 37

7.1.5. Broken AES Implementation . 38

7.1.6. Hard-Coded Database Encryption Key and Weak Integrity Check 38

7.1.7. Automatic Execution of Script from Removable USB Storage . . . 38

7.1.8. Unauthenticated Access to Con�guration 38

7.1.9. Missing Authorization by User & Missing Replay Protection . . . 39

7.1.10. Lack of Basic Sanity Checks for Transaction History 39

7.2. External Mitigations . 39

7.2.1. Securing the Network connection 39

x

Table of Contents

7.2.2. Securing the Desktop Environment 41

8. Discussion 43
8.1. Comparison with BSI Grundschutz . 43

8.1.1. Remote Management . 43

8.1.2. Software Integrity and Operating System 44

8.1.3. Missing Server Certi�cate Veri�cation 44

8.1.4. Usage of Weak Cipher Algorithms 44

8.2. Comparison with PCI PA-DSS . 44

8.2.1. Cryptographic Weaknesses . 45

8.2.2. Management Weaknesses . 45

8.2.3. Weaknesses in Financial Transaction Handling 46

8.3. Summary . 46

9. Conclusion & Future Work 47

Bibliography 49

A. Appendix 53
A.1. Vending Setups . 53

A.2. Commands for cmd.xml . 54

A.3. Debugging of the x86 Library cs_dbpack.dll 56

A.4. Proof of the Attacker Model "Curious Student" 57

xi

List of Figures

3.1. Flow of vending process with UPOS in a vending machine 9

3.2. Simpli�ed block diagram of a vending reader 11

4.1. Vending Reader test setup . 16

4.2. Concept for a man-in-the-middle proxy setup 16

4.3. Example of a subroutine in IDA Pro . 17

5.1. Cipher Block Chaining (CBC) mode of operation [Whi13] 23

5.2. Displayed board number on startup of a vending reader 27

5.3. Excerpts from the management web interface 28

6.1. A typical revalue device setup on an university campus. 33

7.1. Revalue devices secured by a solid enclosure 40

7.2. Securing the connection using a VPN tunnel and a proxy server 40

A.1. Flow of vending process with UPOS and turnstile 53

A.2. Flow of vending process with POS operated by a cashier 54

A.3. A Card Terminal playing a video in a browser. 57

xiii

List of Tables

3.1. APIX base structure . 13

3.2. APIX Actions . 13

5.1. Supported SSL and TLS Ciphers . 21

6.1. Consequence probability matrix . 30

6.2. Overview of the weaknesses . 35

6.3. Overview of the vulnerabilities . 35

7.1. Overview of weakness mitigations . 42

A.1. Commands usable in cmd.xml . 56

xv

1. Introduction

Online cashless vending systems are common on large sites like university campuses or

companies. They are mainly used for payment of food or services on site. The user gets a

site-speci�c identi�cation card. In most cases, this is a Near-Field Communication (NFC)

card, which is able to store encrypted data. On sites like university campuses, these cards

are often also the student identi�cation card. The card holders recharge their cards with

money and use them to pay e.g. at site’s vending machines or canteens. At university sites,

such cards can also be used to pay e.g. in the library, for print and plot services or laundry

in student dormitories. The main motivation to use such a system compared to traditional

cash systems with coin acceptors and banknote validators is the lower rate of damaged

and robbed vending machines and lower costs for handling cash money. Those systems

have to be protected and frequently emptied to prevent burglary. Another advantage are

fast transactions. Unlike traditional cashless payment solutions like credit or debit cards,

strict requirements for operating these systems have not to be ful�lled, which reduces

costs.

At the Karlsruhe Institute of Technology (KIT) the system is provided by the Studieren-
denwerk Karlsruhe, the student service of Karlsruhe. At KIT, about 25.000 students

1
are

matriculated and therefore also have access to the payment system, as well as students

from other universities in Karlsruhe and Pforzheim. According to their annual report

[SWKA18], the Studierendenwerk Karlsruhe made about 10 million Euro in sales with its

culinary o�erings. It can be expected, that most of this money was transferred via the

cashless micropayment system. Therefore, the information security of the system is vital,

to protect the money of the users and the provider of the system.

The vendor of the system used by the Studierendenwerk is the British company Counter
Solutions Limited. They o�er solutions including hardware and software to provide a

cashless payment system for vending machines, laundry, cash desks, copy and other

services. With their current version introduced in August 2018 at the Studierendenwerk
Karlsruhe, the system is completely cloud-based. This means, that the NFC-Card is only

used as authorization and the account balance is stored on a server in the internet. Cards

are charged (this process is also called "revaluing") in special revaluing devices called

"Kiosk". Devices built into vending machines are called "Vending Reader". Both need to

communicate with a server over a network connection.

In this thesis, we analyze the prepaid card payment solution at KIT. We focus on the

software of the Counter Solutions Cashless Campus components "Kiosk" (from now on

referred as "Revalue Device") and "Vending Reader", as well as small parts of the backend

server. We will analyze them, by observing the behavior and network tra�c, as well by

reverse engineering of the software on those devices.

1https://www.kit.edu/downloads/Statistik_WS2017.pdf

1

https://www.kit.edu/downloads/Statistik_WS2017.pdf

1. Introduction

There are also terminals to retrieve and display the account history and check the NFC

card integrity (from now on referred as "Card Terminal") and Revalue Devices based on

the same base hardware as the Vending Readers. These two devices will not be analyzed

in-depth in this thesis, because they were not available for analysis. We will neither

analyze the security of the NFC cards nor the security of peripheral components like

vending machines or point of sale computers.

We will structure the analysis along the risk assessment process described in ISO27005,

as this is a common industry standard which gets widely applied to identify and evaluate

possible threats in the IT infrastructure of a company. To get an overview over the

analyzed product, we �rst describe the system in chapter 3. After de�ning our method of

analysis in chapter 4, we identify possible weaknesses of the product in chapter 5. The risk

identi�cation corresponds to the �rst steps of ISO27005. After the identi�cation process,

we analyze these identi�ed weaknesses in chapter 6 to be able to estimate the likelihood

and impact. Afterwards, a risk level score by weakness is derived from those parameters.

This allows a classi�cation of the weaknesses. In chapter 7 we will develop a list of possible

mitigations for the described weaknesses. After the analysis of the product, we will discuss,

whether existing security standards are applicable for this kind of system in chapter 8.

Finally, we conclude the �ndings of this work in chapter 9.

2

2. RelatedWork

In the following chapter, we will give a short summary of basic cashless vending termi-

nology, an overview of the information security framework used in this work as well as

similar research in the speci�c area of security in cashless micropayment applications.

2.1. Cashless Vending

The cashless vending industry is organized in several associations: One of them is the Euro-

pean Vending & Co�ee Service Association (EVA) and another one the National Automatic

Merchandising Association (NAMA, USA). EVA’s Electronic Payment Speci�cation (EPS)

[EVA-EPS] de�nes basic requirements for the physical security, internal protocols and the

user interface for vending machines. According to EPS, we can di�erentiate between the

following electronic (cashless) payment card types:

Debit cards are used to pay directly from a customer’s bank account. By using the card

number or the card itself, payments are directly "debited to the customer’s bank account

and credited to the merchant’s account." [EVA-EPS, Section 3.1, p. 10] Credit cards are

not directly debited from the customer’s bank account, but "charged to the card holder at

�xed intervals in total [. . .], or in partial credit amounts." [EVA-EPS, Section 3.2, p. 11]

While the card types above are somehow linked to a bank account, prepaid cards are

charged beforehand and are not linked to a bank account. We can di�erentiate between

three types of prepaid cards: Open loop cards are accepted by a wide range of merchants,

restricted loop cards can be used in a limited range of companies and closed loop cards

can be only used in one company. Closed loop cards are according to the EVA [EVA-EPS,

Section 3.4.1, p. 12] the most common electronic payment scheme (95%) in vending food

and beverage industry.

2.2. Information Security

To be able to analyze a product systematically, security goals have to be de�ned. This

allows to check, if a weakness breaks any of those goals. According to [Eck18, pp. 7-15]

the following basic security goals can be de�ned:

• Authenticity
The authenticity and credibility of a subject or object can be veri�ed, like e.g. the

identity of a debit card used at a payment terminal.

• Integrity
Data cannot be altered unauthorized or unnoticed. E.g. a man-in-the-middle cannot

change the content of a transaction without getting noticed.

3

2. Related Work

• Con�dentiality
Information cannot be obtained unauthorized. E.g. a man-in-the-middle is unable to

see the content of a transaction in cleartext.

• Availability
Authenticated and authorized users cannot be impaired while exercising their rights.

E.g. it is not possible to send requests to a server in a way which makes the server

unable to respond to genuine requests properly.

• Non-Repudiation
An action by a subject or object cannot be denied afterwards. E.g. a customer cannot

deny, that they made a transaction, if a transaction succeeded.

• Anonymization and pseudonymization
Anonymization does not allow the reconstruction of personal data or renders it very

hard to reconstruct the data. Pseudonymization is the mapping to a pseudonym.

Reconstruction requires access to this mapping. E.g. a username, which is only

stored as random text without any information of the real name is a anonymized

username. If the real name is associated (or can be associated) with the random

username somewhere, the username is only a pseudonym.

The structure of this thesis is roughly based on the risk assessment process described in

[ISO27005]: In the �rst phase, the product is analyzed for risks (Risk Identi�cation). These

risks are thereafter evaluated for the likelihood and impact of an incident, resulting in a

qualitative risk level score (Risk Analysis). In the �nal phase (Risk Evaluation), each risk

level score of the risks is compared against acceptance criteria. After prioritizing them,

possible mitigations are evaluated and implemented. In this work, we omit the comparison

with acceptance criteria, since we do not operate the system and can not evaluate the

business impact of the risks we might identify.

2.3. Similar Research

Matteo Pisani perfomed a small analysis of the near-�eld communication and Bluetooth

based payment system, which allows payment using a smartphone app at vending machines

by the vendor Argenta [Pis18]: The user account balance is also stored in a SQLite database

on the smartphone. The vending machine trusted the account balance, communicated by

the smartphone to the vending device. This allowed manipulation of the local database

on the smartphone and even the complete emulation of the payment app with arbitrary

account balances, to "pay" the goods in the vending machines.

Mathias Dalheimer did research on electric vehicle charging stations with a custom

cashless payment system [Dal17], which revealed signi�cant issues on update mechanisms,

authentication and user authorization: Automatic code execution and leakage of the

complete con�guration data to a removable USB storage was possible by just removing

some screws on the device. For user authentication, just the plain, consecutively assigned

card numbers of the user cards were required and no further authorization by the user

4

2.3. Similar Research

was required to enable the vehicle charging. In this case, the payment system is a �xed

part of these charging stations and is designed only to be used for charging vehicles. In

the system, custom protocols for communication with the power supply and the network

were de�ned. In comparison, the solution used at KIT is designed to be integrated into

vending machines, cash desks and other application as generically as possible. Therefore,

the system analyzed in this thesis is used in a lot more di�erent types of devices and di�ers

from the implementation at the charging stations by the used protocols, interfaces and

operating procedures.

5

3. SystemOverview

The system is a closed loop system with prepaid cards. Each member of the site gets a

Near-Field Communication (NFC) card issued by the KIT, which is used for identi�cation

on the site as well as for payment on vending machines and in cantines. As NFC cards,

MIFARE Classic and, from August 2018 on, its successor DESFire by NXP-Semiconductors

are used at the KIT since the Mifare Classic system has been proven insecure [Noh+08;

KHG08; Sch+]. These cards contain a small amount of storage, divided into sectors. The

data in the sectors is stored encrypted with individual keys, which allows di�erent usage

of the card by di�erent applications. One of those applications is the cashless payment

on the campus, provided by the Studierendenwerk Karlsruhe and Counter Solutions, the

vendor of the payment system. In this chapter, we describe the cashless payment system

used at KIT and how it is supposed to work.

3.1. Roles and Components

The payment system interacts with several entities of di�erent types. Therefore, we de�ne

the key entities of the payment system in this section.

Roles

User The user uses a NFC card to buy goods on the site. Users are for example employees,

students, researchers and guests on a university campus.

System Administrator The System Administrator has access to the administration inter-

face of the backend and has the permission to access Vending Reader, Unattended
POS (UPOS),Attended POS (APOS) andCard Terminal (physically and remote).

Cashier A Cashier operates the Attended POS (APOS).

Components

Revalue Device The revalue device (also called "Kiosk") reads the card of the User, accepts

bank notes or electronic cash and revalues the account of the User. They are placed

at strategically important places on the site, such as in the canteens.

Card Terminal The Card Terminal is operated as stand-alone device and reads the card of

the User, veri�es the card’s integrity and displays recent �nancial transactions.

Point of Sale A Point of Sale (POS) is the location where a sale is completed. We can

distinguish between two basic types of POSes:

7

3. System Overview

Attended POS (APOS) An Attended Point of Sale is a Point of Sale operated by a

person, like non-self-service cash desks in a canteen.

Unattended POS (UPOS) An unattended Point of Sale is a Point of Sale with no

attendance, like a vending machine, which provides small goods (like snacks,

co�ee or beverage).

Vending Reader The vending reader reads the card of the User, executes transactions and

con�rms transactions to a Point of Sale. It acts as an adapter between the Point
of Sale and the Backend Server.

Backend Server The backend server handles transactions and stores con�guration for the

Vending Reader, Revalue Device and Card Terminal.

3.2. Processes

Within the payment system, multiple processes are de�ned. In this section, we describe

the four most important processes vending, auditing, maintenance and update.

3.2.1. Vending

For �nancial transactions, three di�erent transaction types are de�ned. These types can

also be found in the [NAMA-MDB] and [EVA-EPS] standards:

1. Vend
Vending, e.g. when buying something

2. Negative vend
When getting money in return for something, e.g. deposit for bottles or cups

3. Revalue
When "recharging" a account with "real" money using banknotes, debit cards or any

other system implemented on the site.

A basic vending machine setup is composed as follows: The vending reader is placed into

the vending machine and connected via MDB (Multi-Drop Bus) [NAMA-MDB] to the

vending machine controller (VMC) inside the vending machine. Now, the VMC waits for

the vending reader to become ready. If ready, the VMC initializes the vending reader. After

initialization, the vending machine is ready to serve.

If a customer wants to buy something, they �rst taps his NFC-Card at the vending

reader. The reader does a lookup of the ID at the backend and gets data like the account

balance of the user, if the card is valid (known and readable). Then the balance is displayed

on the device and is sent to the machine.

Depending on the con�guration, the product price may be de�ned in the vending

machine or in the vending reader. The product prices may depend on a user speci�c price

band (e.g. guests may pay more at the canteen than students). As soon as the user selects

a product, the information about the selected product is sent to the vending reader, in case

8

3.2. Processes

VendingReader

User

User

VMC

VMC

VendingReader Backend

Backend

InsertCard

CardInserted

GetAccountData

AccountData

SelectProduct

ProductSelected

LookupPrice

UpdateAccountBalance

Con�rm

Con�rm

Con�rm

Figure 3.1.: Simpli�ed �ow of vending process with UPOS in a vending machine with

prices de�ned by the vending reader

the vending reader de�nes the price. If the machine de�nes the price, the price is sent to

the vending reader.

After this step, the vending reader updates the account balance and con�rms the success

of the vending process to the machine, which dispenses the product to the user. A simpli�ed

process of a vending machine with prices de�ned by the vending reader can be found in

Figure 3.1. If con�gured, o�ine vending is possible: In case of a lost network connection,

the vending reader does a lookup in the previously downloaded database of valid card IDs.

If the card id is found in this database, no account balance is displayed on the vending

reader and a dummy balance of 11,11€ is sent to the machine. To be able to be o�ine

temporarily, the devices retrieve a list of valid card or wallet ids from the server (action

14) and store them into a local database (see section 3.4), as well as the stored o�ine

transactions. Those transactions are sent to the server as soon as the device’s connection

gets recovered.

There are basically four types of vending setups, including those described above:

9

3. System Overview

1. Unattended POS (UPOS) with prices de�ned by vending reader, e.g. Vending

machines, canteen turnstile (see Figure 3.1)

2. Unattended POS (UPOS) with prices de�ned by POS, e.g. Revalue of third party

accounts, washing machines (see Figure A.1)

3. Attended POS (APOS) connected with vending reader with prices de�ned by POS,

e.g. Cash desks operated by personnel (see Figure A.2)

4. Attended POS (APOS) connected with simple reader with prices de�ned by POS,

e.g. Cash desks operated by personnel

The communication with the backend is achieved via the APIX HTTP API (see subsec-

tion 3.5.2).

3.2.2. Audit

For audit purposes, both, the backend and the devices log the actions that have happened.

The devices maintain a log �le, which logs important internal function calls. APIX inter-

actions are stored into a local database. The server maintains an account history which

stores entries created by the LogTransaction APIX-Action (see subsection 3.5.2). The audit

data from the devices can be retrieved with an USB storage device or via the USB slave

port of the devices, by copying a log �le (cs_core.log) and the local database which have

to be decrypted using a special database decryption tool.

3.2.3. Maintenance and Update

Updates to the devices’ con�guration can be deployed by storing the local con�guration

database (see section 3.4) for each device in the backend. The devices retrieve them using

the Heartbeat HTTP API (see subsection 3.5.1).

Updates for the core software are also possible via USB or via the vending readers’ USB

slave ports. If a USB storage contains an XML (eXtensible Markup Language) �le called

cmd.xml, the sequence of XML tags in the �le is interpreted as sequence of commands.

This allows an automated update procedure or retrieval of �les. A list of commands can

be found in Table A.1.

Additionally, a VNC (Virtual Network Computing) server is available on the vending

readers. This access is just used for diagnostic purposes because the �le upload and

download feature of the server is disabled in the read only con�guration of the VNC

software. On revalue devices, TeamViewer is used. In TeamViewer, �le uploads and

downloads are enabled to do updates or maintenance.

As the vending readers’ operating system is stored on a read only memory, updates

of the operating system and software embedded into the system can only be done by

reprogramming the hardware e.g. by using JTAG. Just the payment application software

is stored on a writable section of the memory.

10

3.3. Device Hardware

USB MDB

Vending Reader

Board

USB->RJ45

Card Reader

Vending

Machine

Display

Figure 3.2.: Simpli�ed block diagram of a vending reader

3.3. Device Hardware

At the point of sales, vending readers are connected to the cash desks or to the vending

machine. Each vending reader has its own network connection through a RJ-45 wire.

To send and receive information to the connected device (e.g. vending machine, cash

desk, turnstile) the vending readers are equipped with either a MDB [NAMA-MDB] or

RS485 (both serial protocols) interface. The vending reader itself contains a custom ARM

microcomputer board with a native MDB interface and 3 USB host ports as well as one

USB slave port. Network connectivity is gained via an USB to RJ-45 Ethernet adapter. The

card reader unit at the front of the device is connected via USB. A block diagram of a

vending reader can be found in Figure 3.2.

The Revalue Devices are powered by a full-size desktop computer with a touch screen

and utilize their integrated USB and RJ-45 interfaces to communicate with the server and

its peripherals such as bank note acceptors or debit card terminals. There is also an option

to build and operate a Revalue Device using the hardware of the Vending Readers. This

allows a cost e�cient transition from the predecessor system (old casing and peripheral

hardware can be kept like in Figure 6.1). This type of setup di�ers from a Vending Reader

only by the con�guration of the software and the connected peripheral hardware.

3.4. Device So�ware

On all devices, the software "cs_core" is used to provide the service. The software can

provide di�erent user interfaces for each use case like small character displays as well as

big touchscreens.

The software is con�gured using three AES encrypted SQLite databases:

11

3. System Overview

• static.db

Used for con�guration like the API URLs, price bands or con�guration for peripheral

devices

• work.db

Used for working data, statistics and audit

• advertising.db

Optional database for advertisements on the display

An XML based con�guration �le de�nes fallback and default values in case of a missing or

corrupt con�guration database and is evaluated at startup.

The Vending Readers are using Microsoft Windows CE6, the Revalue Devices are using

Microsoft Windows 7 and the Card Terminals are using Microsoft Windows 10 as their

operating system.

3.5. Backend Server So�ware

The backend server o�ers API endpoints over HTTPS for the di�erent applications. It is

located on a server on the internet, so the complete API interaction is carried out over a

public network. In theory it is possible to provide the server locally, since the API URLs

are con�gured in the device con�guration, but we have not observed this in the test setup.

There are two interfaces: The Heartbeat API and APIX.

3.5.1. Heartbeat API

The heartbeat HTTP API is located at /HEARTBEAT/HANDLER.ASHX and structures informa-

tion with XML. It is used for con�guration and monitoring of the software. It is called on

startup and in a regular interval while the software is running.

On each call, the following attributes may be sent to the server (depending on con�gu-

ration and mode of operation), grouped by the XML hierarchy:

• Platform: Processor architecture and serial number (also called "platform ID" in

the heartbeat XML and "board number" on the display during startup). On non-

ARM based devices (Revalue Device and Card Terminal), the serial number is

equivalent to the MAC address of the primary network interface.

• Kernel version

• Local system time and date, as well as information of the local network con�guration

(IPv4 address and netmask, gateway)

• Version of cs_core.exe, outlet name, device name, device ID, group ID, site ID and

hash of the cs_core.exe

• Hash of the static.db and advertising.db

12

3.5. Backend Server Software

Index Key
0 Action (see Table 3.2)

1 Application ID

2 Business ID

3 Group ID

4 Site ID

5 Location ID

6 Device ID

7 Message sequence number

Table 3.1.: APIX base structure

Action Description
1 GetAccountData

2 UpdateAccountDetails (vending, negative vending)

3 Revalue

4 LogTransaction

5 Observed but unknown

6 Observed but unknown

7-13 Unobserved and unknown

14 GetAccounts (all registered accounts in the system)

Table 3.2.: APIX Actions

The response attributes are similar to the attributes used in the request and may con-

tain base64 encoded binary data of databasees or a new version of cs_core.exe. The

cs_core.exe update feature does not seem to be used or implemented in the current

software version.

3.5.2. APIX

The APIX HTTP API is the endpoint for everything related to the user accounts and the

payment process. The information is structured by comma separated values (CSV). The

�rst 8 values always have the same key in both, requests and responses (see Table 3.1).

The remaining keys are action (index 0 in Table 3.1) speci�c.

13

4. Method

In the following sections, we will describe our analysis and risk management approaches

as well as techniques used for the phases Risk Identi�cation, Risk Analysis and Mitigation.

4.1. Risk Identification

The risk identi�cation was done by investigating a dedicated test Vending Reader pro-

vided by the Studierendenwerk Karlsruhe (Figure 4.1), as well as a Revalue Device (like in

Figure 7.1) operated against the vendor’s staging server, running the payment applica-

tion software cs_core version 5.7.0.4 T12. Most of the tests were done with the vending

reader, as the revalue device was not permanently available for testing. There was no

documentation or source code provided.

First, a port scan using the tool "nmap" was done to detect open TCP and UDP
1

network

ports of the vending reader. Next, the network tra�c of the devices was captured and

analyzed using a personal computer as man-in-the-middle utilizing the package capture

tool "Wireshark" and a self-implemented man-in-the-middle HTTPS proxy written in

Java. The custom implementation of the proxy server was required to meet the low cipher

speci�cation by the vending reader and the handling of the SSLv2 handshake, because in

current standard libraries like OpenSSL, old SSLv2 mechanisms and ciphers are removed or

disabled. The proxying was achieved by spoo�ng the name server requests (DNS spoo�ng)

and network address translation (NAT) to capture hard-coded IP addresses as illustrated

in Figure 4.2: A DHCP server runs on the man-in-the-middle computer (MITM), which

distributes addresses in the subnet of the MITM and announces itself as gateway and DNS

server. This DNS server is con�gured to resolve all requested names to the IP of the MITM

such that all requests should be addressed to the MITM. In case of a hard-coded IP address,

foreign addresses are translated to the MITM’s address in the �rewall of the MITM (NAT).

This con�guration allows all HTTP requests to be redirected to the proxy server, which is

bound to the MITM’s address as well.

The payment application binary cs_core.exe, which runs on all devices of the system

at KIT, was analyzed using the interactive disassembler "IDA Pro". The cs_core.exe was

obtained from the vending reader via the slave USB port and the software "Microsoft

Windows Mobile Device Center", which allows �le transfers from Windows CE devices.

The binary does not contain debug symbols, but the analysis was simpli�ed due to the

very verbose logging of the software. Each important function call is logged, so tracing

the strings used for log output helped a lot identifying the used functions and APIs in

the disassembled code. Therefore, a lot of the original function names can be recovered

1
Because UDP is not connection based, ports have to be tested using known protocols. Custom or

uncommon protocols may not be detected, if there is now answer to the probing packages.

15

4. Method

Figure 4.1.: Test Setup: A Vending Reader (lower left) embedded into a washing machine

controller

Figure 4.2.: Concept for a man-in-the-middle proxy setup

16

4.1. Risk Identi�cation

Figure 4.3.: An excerpt from a IDA call graph of a subroutine. The subroutine can be

identi�ed by the log output function calls ("cs_print_log_format", marked

blue). In this case it is "fs_isexesafe()" (marked red).

and mapped to the subroutines. An example of a reconstruction of a subroutine name

is shown in Figure 4.3: In the subroutine, the result of the subroutine is written into a

log �le. Therefore, a string starting with "fs_isexesafe(’%s’):" is loaded (marked in red in

the �gure). Then the subroutine, previously identi�ed in the analysis, which we named

"cs_print_log_format" is called (blue marking) to print the previous format string. By the

format string used, we can identify the subroutine we are looking at as "fs_isexesafe()".

The analysis of the used database encryption in the software required debugging of

x86 libraries used by the database decrypt tool. In theory, it is also possible to debug the

encryption mechanism in cs_core.exe, but this would require to debug an ARM Windows

CE6 process, which is complicated because of unavailable, old or unusable debug tools.

Emulating the device was also rendered to be hard because of the expensive software tools

required for creating a Windows CE6 image.

The decryption tool is implemented using .NET, which is compiled to bytecode and exe-

cuted in a runtime environment. Disassembling the tool revealed a very straight forward im-

plementation: The tool loads the shared library DBCreatorClasses.dll, which exports util-

ity functions for SQLite interaction. After a �le open dialog is shown to let the user pick an

encrypted database �le, the DBCreatorClasses.dll function Decrypt(string fileName)

is called with the chosen �le path as fileName parameter. This function then reads the

database �le and encodes it using Base64. This string is used, to call the cs_dbpack.dll

shared function unpack([out] char[] out_bin, unsigned int32 out_sz, char[] in_b64)

with in_b64 as the Base64 encoded string, the result bu�er out_bin and the uint32 out_sz,

storing the size of the resulting data. This function was the main debugging target to

17

4. Method

understand the implementation of the database encryption. Because of problems when

attaching a debugger directly to the .NET process of the decryption tool to analyze the

x86 library, we wrapped the required library call unpack() into an own, minimalist binary.

The library call in the custom binary fails for an unknown reason, but during the process

of the call, the database gets decrypted into a temporary �le, which was su�cient for

debugging the decryption process. The code of this application can be found in Listing A.1.

This binary was successfully debugged using IDA’s remote debugger feature with IDA’s

remote debugging server running on a Windows 10 virtual machine.

4.2. Risk Analysis

As described in [ISO27005], we analyzed the risk of an attack by identifying the conse-

quences (impact) and the likelihood of an attack utilizing the identi�ed risks. The impact

was estimated by the data obtained or modi�ed. To evaluate the likelihood of an attack, we

de�ned di�erent attacker types with their capabilities as well as the likelihood of an attack

by such an attacker. If an attack scenario matches the capabilities of one or multiple attack-

ers, the highest likelihood out of the attackers with the required capabilities to perform

the attack is used as scenario likelihood. We evaluated the risk in a qualitative fashion.

Therefore, we de�ned a consequence probability matrix, which assigns all combinations

of de�ned likelihoods and impacts to a risk level.

4.3. Mitigation

The proposed mitigations are derived from industry best practices like the weakness mitiga-

tions proposed by the MITRE CWE list
2
, OWASP

3
and standards like the BSI Grundschutz.

The MITRE CWE list is a community driven list of common software weakness types.

The weakness types are organized in an abstract class tree such that detailed weakness

types are member of more abstract classes of types. The types are containing a detailed

description of the weakness, common consequences, a common exploitation likelihood,

in which software development phase the weakness occurs (such as "Architecture and

Design"), some examples and common mitigations.

The Open Web Application Security Project (OWASP) is a non-pro�t organisation, which

publishes documents and tools, to improve the security of web applications and services.

OWASP is most commonly known for its "Top 10" project of most critical vulnerability

types out of the over 700 weakness types currently de�ned in the CWE database. The list

is regularly updated and contains the most common and critical CWEs in applications

with additional comments and background information.

2https://cwe.mitre.org
3https://www.owasp.org

18

https://cwe.mitre.org
https://www.owasp.org

5. Risk Identification

The �rst step of the risk assessment process is the identi�cation of possible risks and

weaknesses. In the following, we documented all weaknesses we found by analyzing the

product as in section 4.1 described. The following list may not contain all weaknesses of

the product because of the complexity of the software. Furthermore, there was no access

to the server software. To classify the weakness types of software issues, we used the

common weakness enumeration list (CWE), which applies to software only, not e.g. the

composition of a system.

5.1. Outdated Operating Systems

A�ected components Vending Reader, Revalue Device

According to Microsoft, the extended support of Windows CE 6 (used for vending readers)

ended on 2018-04-10 [Mica]. The mainstream support of Windows 7 (Service Pack 1, used

for revalue devices) ended in January 2015, while the extended support will continue until

the beginning of 2020 [Micb]. This means, that there are no operating system updates and

security patches anymore from Microsoft for the vending readers, and only less than two

more years of updates for the revalue devices.

5.2. Usage of an Operating Systemwith Desktop Environment

A�ected components Revalue Device, Card Terminal

The Revalue Device software is operated in the desktop environment of Windows 7, the

Card Terminal software in the desktop environment of Windows 10. In case of a crash

of the software, users may get access to critical functions of the operating system as well

as data stored on the device.

19

5. Risk Identi�cation

5.3. Remote Management

A�ected components Vending Reader

A port scan using the port scan tool "nmap" reveals, that there is an open Virtual Network

Computing (VNC) server port and a RealVNC web service port accessible. The page title of

the web service indicates, that the used version of RealVNC is 4.0, which is vulnerable to

CVE-2006-2369 [Int06]. The vulnerability allows for an remote unauthenticated attacker

to gain desktop access to the target system, by sending a null authentication. If exploited

during the startup phase of the vending reader, full access
1

to the Windows CE desktop is

possible.

5.4. Missing Server Certificate Verification

Weakness type: [CWE-295] Improper Certi�cate Validation

Weakness type: [CWE-300] Channel Accessible by Non-Endpoint

(’Man-in-the-Middle’)

CVE-ID CVE-2018-18292

A�ected components Vending reader, Revalue device

For the given test devices it was possible to intercept all network connections (HTTPS)

by using a man in the middle proxy without injecting an authoritative certi�cate into the

target systems. This indicates, that there is no veri�cation of the server’s certi�cate on the

client side.

5.5. Usage of Weak Cipher Algorithms

Weakness type: [CWE-327] Use of a Broken or Risky Cryptographic Algorithm

A�ected components Vending Reader

By capturing the Secure Socket Layer version 2 (SSLv2) protocol handshake of a vending

reader to the server, the supported cipher algorithms can be inspected (SSLv2 Client Hello).

All of them are considered weak and some of them have practical attacks. A cipher is

considered "weak", if the block size or key length is below the minimum recommended size

[BSI18a; NIST15] or there exists an attack, which signi�cantly reduces the cryptographic

complexity. None of the ciphers are perfect forward secrecy ciphers (PFS-ciphers). A list

of the client’s supported ciphers and the cipher overlap with the backend server is shown

20

5.6. Weak Binary Integrity Check

Algorithm Weak? Practical at-
tacks?

TLS_RSA_WITH_RC4_128_MD5 Yes [FMS01] Yes [VP15]

TLS_RSA_WITH_RC4_128_SHA Yes [FMS01] Yes [VP15]

TLS_RSA_WITH_3DES_EDE_CBC_SHA Yes (block size) Yes, requires

much data

[BL16a]

SSL2_RC4_128_WITH_MD5 Yes [FMS01] Yes [VP15]

SSL2_DES_192_EDE3_CBC_WITH_MD5 Yes (block size) Yes [Gil98]

SSL2_RC2_128_CBC_WITH_MD5 Yes [KSW97] Yes, requires

much data

[BL16a]

TLS_RSA_WITH_DES_CBC_SHA Yes (block size) Yes [Gil98]

SSL2_DES_64_CBC_WITH_MD5 Yes (block size) Yes [Gil98]

TLS_RSA_EXPORT1024_WITH_RC4_56_SHA Yes [FMS01] Yes [VP15]

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA Yes (block size) Yes [Gil98]

TLS_RSA_EXPORT_WITH_RC4_40_MD5 Yes [FMS01] Yes [VP15]

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Yes [KSW97] Yes, requires

much data

[BL16a]

SSL2_RC4_128_EXPORT40_WITH_MD5 Yes [FMS01] Yes [VP15]

SSL2_RC2_128_CBC_EXPORT40_WITH_MD5 Yes [KSW97] Yes, requires

much data

[BL16a]

Table 5.1.: Supported SSL and TLS Ciphers. Highlighted: Cipher overlap with the backend

server

in Table 5.1. If there is a practical attack on 3DES or the SSLv2 handshake
2

to manipulate

the cipher negotiation within the given time constraints to use a weak cipher like RC4, it

is possible to decrypt the TLS tra�c.

5.6. Weak Binary Integrity Check

Weakness type: [CWE-328] Reversible One-Way Hash

A�ected components Vending Reader

In the software, a function called "fs_isexesafe()" is called at startup. It calculates the

cyclic redundancy check (CRC) sum of the binary located at \Intel\cs_core.exe and

1
It is possible to see the desktop and to generate mouse and keyboard inputs.

2
Currently, SLOTH [BL16b] requires a lot of computation power and can therefore not considered as

"practical".

21

5. Risk Identi�cation

compares it to a static sum saved in the software. If the check fails, the software refuses to

continue the startup process and quits.

The name of the function indicates, that the CRC sum is used as a counter measure

against unauthorized modi�cation of the cs_core binary. This is not a su�cient method

to achieve this goal, because

1. CRC is an error correcting code - it is not designed to be an cryptographic safe

method to check the integrity of data, since it is easy to extend a modi�ed binary in

that way, that it produces the same CRC sum as the "correct" binary (no collision

resistance).

2. The path of the checked binary is static. If someone modi�es the binary, this path

could also be changed in the modi�ed binary. Alternatively, a correct version of the

�le have to placed to the hard-coded location while running a modi�ed binary in

another location.

3. When modifying the binary, the CRC check can be simply bypassed by patching the

instructions that return the result of the check.

5.7. Broken AES Implementation

Weakness type: [CWE-325] Missing Required Cryptographic Step

CVE-ID CVE-2018-18295

A�ected components Vending Reader, Revalue Device

To understand the risk, introduced by the Advanced Encryption Standard (AES) imple-

mentation in this subsection, we roughly describe the AES process �rst, before we analyze

the actual implementation.

5.7.1. AES Overview

AES as described in [FIPS01] is a symmetric block cipher. Each block of 128 bits (represented

as 4× 4 byte matrix) is encrypted by combining the block with a round key using exclusive

or (XOR, ⊕). The operation of applying the corresponding round key to the current

intermediate result (state) is called AddRoundKey. The round keys are extracted from the

encryption key by expanding it using the key expansion algorithm as described later.

To gain di�usion, three additional invertible transformations are applied before each

AddRoundKey operation:

1. SubBytes

Substitute bytes (SubBytes) replaces all bytes of the current state with the corre-

sponding one in a �xed lookup table (S-box).

22

5.7. Broken AES Implementation

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization Vector

Figure 5.1.: Cipher Block Chaining (CBC) mode of operation [Whi13]

2. ShiftRows

In this operation, each row of the state matrix gets shifted left cyclically by its row

index (the �rst row is shifted zero bytes to the left, the second by one byte, . . .).

3. MixColumns

The MixColumns step combines each four bytes columns to another four byte

columns so each input byte a�ects all output bytes. This is achieved using a linear

transformation with a �xed matrix.

In the initial round, just AddRoundKey is applied onto the plain text block:

state0 = plaintext_block ⊕ r_key
0

(5.1)

After the �rst round, the di�usion steps followed by AddRoundKey are repeated multiple

times on each block, where the number of rounds (N) depend on the encryption key

length:

staten =fMixColumns(fShiftRows(fSubBytes(staten−1))) ⊕ r_keyn

with n initialized with N − 1
(5.2)

In the �nal round, only SubBytes, ShiftRows and AddRoundKey are performed:

ciphertext = fShiftRows(fSubBytes(state)) ⊕ r_keyN (5.3)

To be able to encrypt more than one block without leaking information about patterns in

the plain text, di�erent block cipher modes of operation are de�ned. One of them is the

Cipher Block Chaining mode (CBC): In this mode, the encryption result of the previous

block and the plain text of the current block are combined using XOR and encrypted to

build the resulting cipher text of each block as illustrated in Figure 5.1. For encryption of

the �rst block, a randomly chosen initialization vector (IV) is used instead of the previous

(empty) block result. The IV is therefore also required for decryption. This allows di�usion

beyond the margin of a block; blocks with equal plain text are not encrypted to the same

cipher text.

The key expansion (also called "Rijandael Key Schedule") utilizes the following four

Operations:

23

5. Risk Identi�cation

• Rotate

All bytes are rotated cyclically to the left

• Round constant ("rcon(i)")
Exponentiation of 2 to a value i

• S-box

Byte substitution using a �xed lookup table (S-box) as in SubBytes above.

• Key schedule round

The 32 bit input gets rotated by 8 to the left and the S-box is applied.

Next, the �rst (leftmost) byte is combined with rcon(i) using XOR, where i is the

round number of the key schedule iteration.

Depending on the key size and block size, a required key length has to be reached: For

a block size of 128 bit and a 256 bit key, the key has to be expanded to a total length of

240 bytes. During each iteration until the required size is reached, i gets incremented by

one, initialized with the value 1. The intermediate results are stored into a state variable,

which is initialized with the (unexpanded) encryption key.

Each round starts by using the least 4 bytes of the expanded key and applying the key

schedule round on it. The result is combined with the 4-byte block n bytes before the new

expanded key part. n depends on the key size – for 256 bits n = 32. At this point, i gets

incremented by one. The next twelve bytes of the expanded key are generated by applying

XOR to the last 4 bytes to the four-byte block n bytes before the current expanded key part

three times. If the initial key size is 256 bits, the next four bytes are obtained by applying

the S-box to the last four bytes and XOR with the four bytes block n bytes before the

current expanded key part.

5.7.2. AES Implementation in the Payment System

The AES encryption with CBC is used to encrypt the con�guration SQLite databases

work.db and static.db. Due to an implementation error in the key expansion, the array

designated for the expanded keys stays 0, except the last 4 double words (4 · 32bit). In each

expansion round, the last 4 dwords are overwritten until there is only the last round key

at end of the array, while the rest remains zero. This leads to the following reduction of

the AES block decryption process:

ftransform(ciphertext) = f −1
SubBytes

(f −1
ShiftRows

(f −1
MixColumns

(ciphertext ⊕ r_keyn)))∀n ∈ [1,N − 1]

r_keyn=0∀n
= (f −1

SubBytes
◦ f −1

ShiftRows
◦ f −1

MixColumns
)N (text)

(5.4)

cleartext = f −1
SubBytes

(f −1
ShiftRows

(ftransform(ciphertext))) ⊕ r_key
0

(5.5)

Due to the known basic structure of the database �le, r_key
0

can be calculated by picking

a block with known content (for example 0-byte blocks in SQLite database �les) and its

24

5.8. Hard-Coded Database Encryption Key and Weak Integrity Check

predecessor to resolve the CBC mode of operation:

r_key
0
=f −1

SubBytes
(f −1

ShiftRows
(ftransform(known_ciphertext)))

⊕ predecessor ⊕ known_plaintext

(5.6)

After applying this step, the data is decrypted except the �rst block of each 0x400 bytes

block because of the used con�guration of the CBC mode of operation: The CBC is

reinitialized every 0x400 bytes with a new IV (in total �ve) which are cycled in the �le.

This allows incrementally updating the �le without re-encrypting the whole �le. Without

the IVs, the �le is not a valid SQLite database, but most of the information is readable in

an editor. The IVs can be either acquired from the software, or calculated by inferring the

content behind the �rst block of each 0x400 bytes block, based on the SQLite structure,

whereas the �rst IV can be trivially inferred because of the known SQLite �le magic string.

Afterwards, the �le can be opened in a SQLite browser.

5.8. Hard-Coded Database Encryption Key andWeak Integrity
Check

Weakness type: [CWE-321] Use of Hard-coded Cryptographic Key

Weakness type: [CWE-649] Reliance on Obfuscation or Encryption of

Security-Relevant Inputs without Integrity Checking

CVE-ID CVE-2018-18293

A�ected components Vending Reader, Revalue Device

We have discovered, that the same AES key is used for all databases for all devices at least

since the introduction of the predecessor of the current system (old con�guration databases

can also be decrypted using the method described in section 5.7). Further analysis of the

software revealed, that the encryption key is hard-coded into the software. The encryption

of the database thereby degrades to a form of complex encoding rather than a security

measure against unauthorized access of the databases. Additionally, encryption is not a

security measure against unauthorized modi�cation. In the software, the plain text just

has to be a SQLite database. No further integrity checks are performed.

It is possible to obtain the key and the IVs from a cs_core binary or the vendor’s database

decrypt tool by debugging and analyzing them in an interactive disassembler and debugger

or using the method described in section 5.7.

25

5. Risk Identi�cation

5.9. Automatic Execution of Script from Removable USB
Storage

Weakness type: [CWE-284] Incorrect Access Control

CVE-ID CVE-2018-18294

A�ected components Vending reader, probably: Revalue Device (not tested

due to limited device availability, but code fragments

were found in the cs_corex86.exe binary)

When plugging a FAT32 formatted USB storage containing a �le called "cmd.xml" (see

subsection 3.2.3) to one of the USB host ports, the �le gets executed automatically without

any check of authorization or authenticity. Arbitrary code execution and leakage of all data

on the device and con�guration to the USB storage is possible as well as recon�guration

of the device.

5.10. Unauthenticated Access to Configuration

Weakness type: [CWE-306] Missing Authentication for Critical Function

A�ected components Vending Reader, Revalue Device, Backend

It is possible to craft a malicious request to the heartbeat API, which retrieves a device’s

encrypted static.db just by using the device’s board number ("platform ID"). This ID is

shown on the display during startup of the devices as demonstrated in Figure 5.2 and is

therefore not a secret. Additionally, the board number is equivalent to the MAC address

of the primary network interface for the non-ARM based devices (Revalue Device and

Card Terminal). Thereby it is possible to obtain the board number of all those devices in

their broadcast domain via the address resolution protocol (ARP).

5.11. Missing Transaction Authorization by User

Weakness type: [CWE-653] Insu�cient Compartmentalization

Weakness type: [CWE-862] Missing Authorization

A�ected components Vending Reader, Revalue Device, Backend

When making an APIX request, those requests are authenticated by application ID, business

ID, group ID, site ID, location ID and device ID. If a �nancial transaction is executed, there

is no possibility to prove, that the card owner (or at least users’ card) explicitly authorized

a transaction (non-repudiation). Valid transactions can be created without any knowledge

26

5.12. Missing Replay Protection

Figure 5.2.: Displayed board number on startup of a vending reader

about an user secret – an attacker only needs to know the IDs mentioned above to

authenticate itself as e.g. a vending reader against the server.

5.12. Missing Replay Protection

Weakness type: [CWE-294] Authentication Bypass by Capture-replay

A�ected components Vending Reader, Revalue Device, Backend

Even if the transaction gets authorized by the correct card, the internal protocol still has a

lack of a replay protection. If an attacker gains access to a raw �nancial transaction APIX

request, the transaction can be replayed and remains valid – users’ previous authorization

gets bypassed.

5.13. Lack of Basic Sanity Checks for Transaction History

Weakness type: [CWE-223] Omission of Security-relevant Information

A�ected components Backend

When submitting a �nancial transaction without sending an audit message, no history log

entry is created on the server. Therefore, �nancial transactions sent without audit log are

hard to trace. On the other hand it is possible to create transaction logs without an actual

transaction. There are no referential integrity checks between �nancial transactions and

the history log. It is even possible to date back entries or create entries in the future as

demonstrated in Figure 5.3.

27

5. Risk Identi�cation

(a) Malicious history entry in the Way2Pay manager web interface

(b) Real account balance in the Way2Pay manager web interface

Figure 5.3.: Excerpts from the management web interface, which shows the missing refer-

ential integrity and sanity check

28

6. Risk Analysis

In this chapter the previously in chapter 5 identi�ed risks are analyzed, by evaluating the

the composition of vulnerabilities and the probability of occurrence.

6.1. Method

We will use a qualitative fashion of risk analysis to assess the risk, since we do not have

enough statistical data to evaluate an attack quantitatively. Therefore we �rst need to

de�ne possible attacker types with their capabilities and the likelihood of an attack of

each type. Then, we de�ne the target data, to evaluate the impact of an attack. Finally,

the likelihood and the impact are combined to a risk level in the consequence probability

matrix. On all these steps, we assume the worst case scenario.

6.1.1. Attacker Model

To evaluate the probability of an incident, we de�ne di�erent attackers and the likelihood

of an attack by the attacker as well as their capabilities.

Curious Student A curious student has advanced technical knowledge and is thereby for

example capable to create an analysis setup like a man-in-the-middle proxy. A

curious student is not willing to cause any physical, �nancial or image damage

and just wants to gain knowledge for personal interest. This attacker type can be

considered to be quite likely on a technical university campus like the KIT.

Likelihood: Likely

Script Kiddie A script kiddie has only basic technical skill and is not able to do own

analysis and sophisticated attacks. As the name implies, a script kiddie usually

uses already implemented exploits ("scripts") to attack a system so a script kiddie

depends on previous work by attackers with higher skill (e.g. by using tools like

Metasploit
1
). There is a low to medium criminal motivation, so a �nancial or image

damage is possible. This attacker type is a more likely, preliminary attacker type of

the Criminal with Advanced Technical Skill.
Likelihood: Possible

Criminal with Advanced Technical Skill A skilled criminal is capable of doing a full analysis

of the system (hardware and software) and is motivated to use that knowledge to

create a damage for own enrichment. For gaining information, physical force may be

applied. According to the Studierendenwerk Karlsruhe, the count of damaged devices

1https://www.metasploit.com/

29

https://www.metasploit.com/

6. Risk Analysis

containing cash money is very low – the count of damaged devices not containing

cash money is near zero. Therefore, the Likelihood for this (technically skilled) kind

of attacker is unlikely.

Likelihood: Unlikely

Intelligence Agency Intelligence Agencies are capable of very advanced attacks with po-

tentially publicly unknown methods and knowledge of weaknesses as well as a lot

of resources. It can be considered to be very rare, that such organisations will attack

a target like the payment system analyzed in this work.

Likelihood: Rare

6.1.2. Target Data

In the following we lists data, which may be extracted by an attacker. If any of this data

can be obtained by an attack, the impact is at least medium. If the data can be altered and

injected into an system, or can be used to alter other data, the impact is high.

Device Authentication Data Data used for authentication of a device against APIX (appli-

cation ID, business ID, group ID, site ID, location ID, device ID)

User Account Data Data used for identifying the user (card identi�er, internal account ID)

User Account History User transactions over time

Configuration Data Data a�ecting the behaviour of a device (e.g. static.db)

Configuration Secret Secret for device con�guration

6.1.3. Consequence Probability Matrix

We de�ne the consequence probability matrix in Table 6.1 to evaluate the resulting risk

created by a weakness or vulnerability. Each likelihood is represented by an attacker. To

meet the way more unlikely attacker type Intelligence Agency, the resulting risk for a

rare likelihood is always "Very Low".

Likelihood

Impact

Negligible Marginal Critical

Rare Very Low Risk Very Low Risk Very Low Risk

Unlikely Low Risk Low Risk Medium Risk

Possible Low Risk Medium Risk High Risk

Likely Medium Risk High Risk High Risk

Table 6.1.: Consequence probability matrix

30

6.2. Weaknesses

6.2. Weaknesses

Weaknesses are implementation or design problems, which do not directly lead to attacks.

An overview of the analyzed weaknesses can be found in Table 6.2. In the following

subsections, we will analyze the risk level score of attacks, indirectly caused by the

weaknesses.

6.2.1. Outdated Operating Systems

Outdated operating systems are not receiving (security) updates anymore (End Of Support,

EOS). An attacker, capable of obtaining zero day exploits (publicly unknown attacks), may

be able to attack the system (e.g. intelligence agencies). Publicly known attacks with

existing exploits published after the EOS of an operating system may also lead to an impact.

The probability of this attack increases by the time of usage after EOS: The longer the

operating system is used after EOS, the more publicly known attacks are available.

Likelihood: Unlikely, Impact: Critical, Risk: Medium

6.2.2. Usage of an Operating Systemwith Desktop Environment

In case of a software crash, it is possible for the user to interact with the desktop envi-

ronment of the underlying operating system. An attacker is thereby able to extract data,

install malware or cause a denial of service (DOS). An attack already happened after the

introduction of the system in August: A Card Terminal in a canteen had to be shut down,

after students opened a web browser and played a video full screen (see Figure A.3). The

software crashed for a currently unknown reason.

Likelihood: Likely, Impact: Critical, Risk: High

6.2.3. Usage of Weak Cipher Algorithms

Due to the weak cipher algorithms available at the client (see section 5.5), there is only

one cipher with no known practical attack yet: 3DES. As it is very unlikely, to capture

the required amount of data in the lifetime of a the device (about 780GB [BL16a]) it may

only be possible for an highly equipped attacker to decrypt captured packages using brute

force. A decryption of the tra�c allows the extraction of the Device Authentication
Data, User Account Data, User Account History and the encrypted Con�guration
Data. Depending of the speed, in which the data gets decrypted, it may also be possible to

alter this data during transport.

Likelihood: Rare, Impact: Critical, Risk: Very Low

6.2.4. Weak Binary Integrity Check

The binary integrity check used can be easily bypassed, is weak and does not work in

general in the way it is implemented. This weakness does not create a real attack surface.

Likelihood: Possible, Impact: Negligible, Risk: Low

31

6. Risk Analysis

6.2.5. Hard-Coded Database Encryption Key andWeak Integrity Check

A hard-coded encryption key for the con�guration databases may lead to access to the

Device Authentication Data, if someone obtains the Con�guration Secret. This may

be possible by exploiting a vulnerability, requesting a sample device, stealing a device,

breaking into a device or acquiring a disposed, not properly wiped device. Once obtained,

all device con�gurations worldwide can be decrypted and therefore all Device Authenti-
cation Data. Furthermore, a System Administrator of one site can decrypt databases

from other sites.

Likelihood: Likely, Impact: Critical, Risk: High

6.2.6. Lack of Basic Sanity Checks for Transaction History

The lack of sanity checks for audit logs makes it hard to detect properly crafted attacks as

a System Administrator.

Likelihood: Unlikely, Impact: Marginal, Risk: Low

6.3. Vulnerabilities

A vulnerability is a weakness or a group of weaknesses previously identi�ed in chapter 5,

which can directly be used to perform an attack. An overview of the analyzed vulnerabilities

can be found in Table 6.3. In the following subsections, we will analyze the risk of attacks,

caused directly by the identi�ed vulnerabilities.

6.3.1. Remote Management

Due to the implementation error in the software used on the devices, a denial of service

attack is possible, as well as extraction of the audit log �le, which may contain sensitive

private user data.

Likelihood: Likely, Impact: Critical, Risk: High

6.3.2. Missing Server Certificate Verification

As man-in-the-middle it is possible to capture each APIX and Heartbeat request as clear

text due to the lack of server certi�cate veri�cation (section 5.4). Thereby, Device Au-
thentication Data, User Account Data and Con�guration Data can be obtained. This

allows enough data like user card IDs, device secrets and general API behaviour for ad-

vanced attacks to be collected. By analyzing the captured requests (e.g. pattern matching

with prices) it is not necessary to have an o�cial API documentation to interact with the

API.

Furthermore, a man-in-the-middle can also modify data. It is even possible to modify

the encrypted Con�guration Data of the device, which is sent via the Heartbeat API.

Because of weak integrity checks (the clear text only has to be a SQLite database, see

section 5.8), modi�cations of the con�guration may not be detected.

32

6.3. Vulnerabilities

(a) Old revalue device. (b) The network connection is freely accessible.

Figure 6.1.: A typical revalue device setup on an university campus.

To be able to act as man-in-the-middle, physical access to the network somewhere

between the device and the server is required. A straightforward way to access the network

connection of the devices is directly at the device itself. This is possible (like in Figure 6.1)

because physical securing the wires is not always feasible on a site like an university

campus. In addition to that, a man-in-the-middle is hard to detect remotely, because he

can proxy requests using the same IP and MAC-Address as the device. Interception devices

like the "Hak5 Packet Squirrel"
2

are small and easy to hide and may intercept the tra�c

for a very long time without getting revealed.

Likelihood: Likely, Impact: Critical, Risk: High

6.3.3. Automatic Execution of Script from Removable USB Storage

Automatic execution of a script on a USB-Stick (section 5.9) allows arbitrary code execu-

tion (e.g. using the executefile command) and placement of malicious �les like malware

(copyfile) to in�ltrate the device or the network. Also, extraction of Device Authentica-
tion Data, User Account Data, User Account History, Con�guration Data and the

Con�guration Secret (via cs_core.exe) is possible.

2https://www.hak5.org/gear/packet-squirrel/docs

33

https://www.hak5.org/gear/packet-squirrel/docs

6. Risk Analysis

To gain access to the port, an attacker have to gain access to the back of the vending

reader in a machine setup (break into the machine) or mill o� the front cover to access the

USB cable connecting the card reader to the main device.

Likelihood: Unlikely, Impact: Critical, Risk: Medium

6.3.4. Broken AES Implementation

The AES implementation error as described in section 5.7 allows the modi�cation of

existing Con�guration Data, extraction of Device Authentication Data as well as the

creation of new con�guration. In combination with subsection 6.3.2 or subsection 6.3.3 a

device can be hijacked by changing the APIX URL con�gured in the database or prices

can be updated.

Likelihood: Likely, Impact: Critical, Risk: High

6.3.5. Unauthenticated Access to Configuration

As in section 5.10 described, it is possible to acquire the device con�guration database just

by knowing the device serial number (also referred as "Board number" or "Platform ID").

In combination with the broken AES implementation (subsection 6.3.4), Device Au-
thentication Data can be acquired remotely. This information allows a remote attacker

to do malicious transactions and User Account History entries due to the Missing Au-

thorization of the transaction by the User as in section 5.11 described.

Likelihood: Likely, Impact: Critical, Risk: High

6.3.6. Missing Authorization by User

Just by using the Device Authentication Data it is possible to do �nancial transactions

(see section 5.11). This allows a remote attacker to do transactions without user’s autho-

rization. An attacker can obtain all cards via APIX action 14 (if available) and then obtain

the card info (action 1) containing the current balance. The attacker may now redistribute

("steal") money from the cards and charge it to other accounts. Thereby, the total sum of

money in the pool is not changed and the provider of the system does not receive �nancial

damage. Given a large site with > 20.000 users, just "stealing" a value of 0.01€ from just

2.000 evenly distributed users and add 20€ to the attacker’s account may not be noticed by

the victims. Due to the lack of referential integrity (see section 5.13) this kind of fraud is

hard to reveal and to investigate.

In addition to that, users can – technically speaking – deny that each of their transactions

was actually done (non-repudiation). It is only possible, to compare device’s audit logs

with the server’s, but both can (mathematically) not be fully trusted.

Likelihood: Unlikely, Impact: Critical, Risk: Medium

34

6.3. Vulnerabilities

6.3.7. Missing Replay Protection

User authorization for transactions can be bypassed due of the missing replay protection

(see section 5.12). If an attacker gains the plain text of a request (e.g. by using section 5.4

or by bypassing the certi�cate veri�cation or transport encryption using other methods)

containing an authorized �nancial transaction, the transaction can be replayed, because it

does not contain any kind of nonce or timestamp, which would be part of an authorization

(if even existent).

Likelihood: Unlikely, Impact: Critical, Risk: Medium

Weakness Likelihood Impact Risk Level

Outdated Operating Systems Unlikely Critical Medium

Usage of an Operating System with Desktop

Environment

Likely Critical High

Usage of Weak Cipher Algorithms Rare Critical Very Low

Weak Binary Integrity Check Possible Negligible Low

Hard-Coded Database Encryption Key and

Weak Integrity Check

Likely Critical High

Lack of Basic Sanity Checks for Transaction

History

Unlikely Marginal Low

Table 6.2.: Overview of the weaknesses

Vulnerability Likelihood Impact Risk Level

Remote Management Likely Critical High

Missing Server Certi�cate Veri�cation Likely Critical High

Automatic Execution of Script from Removable

USB Storage

Unlikely Critical Medium

Broken AES Implementation Likely Critical High

Unauthenticated Access to Con�guration Likely Critical High

Missing Authorization by User Unlikely Critical Medium

Missing Replay Protection Unlikely Critical Medium

Table 6.3.: Overview of the vulnerabilities

35

7. Risk Mitigation

There are multiple ways to repair the weaknesses and vulnerabilities described above. In

this case, we di�erentiate our proposed mitigations between techniques, which can be

applied outside of the software or the physical devices (external mitigations) and those,

which can be applied on the device’s software or the device itself (internal mitigations).

7.1. Internal Mitigations

Internal mitigations have to be applied to the codebase of the software or the �rmware

image. An overview of all weaknesses with internal mitigations can be found in Table 7.1.

7.1.1. Remote Management

An upgrade of the RealVNC server used to a current version should be done, or the VNC

server should be completely removed to reduce the attack surface. The server is never

used in practice, because it can be only used to inspect a crashed or not starting software

(see subsection 3.2.3), so removing the server would not signi�cantly reduce the features

of the device. In case the server software is kept on the device, a proper update process

should be de�ned, to address future vulnerabilities.

7.1.2. Missing Server Certificate Verification

The certi�cate of the backend APIX and Heartbeat server should be veri�ed at all times.

Therefore, the root certi�cate of the certi�cation authority used or the server certi�cate

itself should be placed on the devices to ensure a secure and authentic data exchange

between the device an the server.

7.1.3. Usage of Weak Cipher Algorithms

To reduce the risk of future exploits, weak or broken cipher algorithms should be disabled

on the client and the server side. On vending readers, this may require the usage of a

dedicated SSL/HTTP library instead of the library provided by the operating system’s

default API.

7.1.4. Weak Binary Integrity Checks

To ensure binary integrity, the binary should be signed and the operating system should

check the integrity of the binary. Self-checking can always be bypassed and is therefore

non-e�ective as described in section 5.6.

37

7. Risk Mitigation

Additionally, integrity checks should be done with cryptographically safe one-way

hashes, not using an error correcting code. As described in [Kat+96], a cryptographic

one-way hash function h(x) = y ful�lls the following properties:

• preimage resistance
It is hard to �nd for a given y a value x , such that h(x) = y.

• 2nd-preimage resistance
It is hard to �nd a x′ , x for a given x such that h(x) = h(x′).

• collision resistance
It is hard to �nd a x′ , x for any x and x′ such that h(x) = h(x′).

Any collision resistant function is also 2nd-preimage resistant and any 2nd-preimage

resistant function is also preimage resistant. The property "collision resistance" is not

ful�lled by CRC, as it is not preimage resistant.

Protection against unauthorized code execution could also be reached by using a trusted

platform module (TPM). This is a hardware module, which acts like a smart card: It can

execute code and the execution can be veri�ed externally e.g. by the vendor.

7.1.5. Broken AES Implementation

The AES implementation should be tested against the o�cial test vectors (see [NIST01]).

This tests should be included into the unit tests as part of the quality assurance. The usage

of an external library, which has been proven relatively secure could be another solution.

7.1.6. Hard-Coded Database Encryption Key andWeak Integrity Check

Hard-coded keys should be avoided because if the key of one device is compromised,

the key of all devices are compromised. Each device should at least have its individual

encryption key. This key needs to be deployed on the devices using a secure method.

Additionally, the con�guration databases should have a cryptographic signature (like

e.g. in [FIPS-DSS] de�ned) to ensure authenticity and integrity, since encryption alone

does not provide this attribute.

7.1.7. Automatic Execution of Script from Removable USB Storage

External resources (even if physically protected) should not be trusted. Therefore we

propose to sign the cmd.xml cryptographically (like e.g. in [FIPS-DSS] de�ned) to ensure,

that only authentic scripts are executed. The signature should be issued by a trusted

instance (e.g. the vendor), which gets veri�ed before the execution of cmd.xml.

7.1.8. Unauthenticated Access to Configuration

The con�guration database should not be accessible just by knowing the board ID, since it

is not a secret. Access should be authenticated using a proper, individual device secret.

38

7.2. External Mitigations

This may be a token, a client certi�cate or any other authentication mechanism. This

applies independently to the database encryption in subsection 7.1.6.

7.1.9. Missing Authorization by User & Missing Replay Protection

Financial transactions should be signed by the user (e.g. by using a secret) or only by the

card of the user, to ensure the authenticity of the transaction. This is only possible, if the

card system used supports smart card features like signing a message using a challenge-

response method. Alternatively, it may be possible to store an encrypted, card speci�c key

to the user’s card and sign transactions with this key in the device, but this "shortens" the

chain of trust, because the user needs to trust the device, that it handles the user secret

correctly. [FIPS-DSS] speci�es a set of algorithms and methods to generate and verify

digital signatures. Furthermore, this kind of signature should contain a timestamp or a

nonce to prevent replay attacks. These methods would prevent an attacker from making

transactions without deeper knowledge of each user’s transaction secret.

7.1.10. Lack of Basic Sanity Checks for Transaction History

To ensure a sane audit trail, transaction history and the transaction itself should not

be handled separately. If the transaction request would contain the timestamp of the

transaction, the history can be created implicitly using the information from the transaction

request. This method ensures a transaction history with correct referential integrity and

each transaction is logged correctly. Additionally, sanity checks for date and amounts

should be introduced, which rejects the transaction in case of an invalid transaction, which

violates the rules de�ned by those checks. If the o�ine feature is used, transactions cannot

be revoked afterwards, because the product or service is already payed – so the o�ine

feature increases the risk of invalid transactions.

7.2. External Mitigations

External mitigations can be applied independently from the vendor by the System Ad-
ministrator to the system, to mitigate weaknesses or vulnerabilities. This generally

results into additional actions required by the System Administrator (higher costs), if

the vendor does not supply a �x within time or not at all. Additionally, not all weaknesses

can be mitigated externally, as Table 7.1 shows.

7.2.1. Securing the Network connection

To mitigate the missing certi�cate veri�cation (see section 5.4), we evaluated two external

mitigations: Physically securing the connection as well as securing the communication

using a encrypted VPN (Virtual Private Networking) tunnel.

Securing Physically The RJ-45 wire can be physically secured as in Figure 7.1 by making

it inaccessible for users without applying physical force. This solution is not always

39

7. Risk Mitigation

Figure 7.1.: Revalue devices secured by a solid enclosure

applicable or reliable: Installing a solid enclosure surrounding the device and the cable is

not always possible because of �re prevention or available space. Alternatively, lockable

RJ-45 outlets can be used, but they can be bypassed by cutting the cable and crimping new

plugs to the ends. Additionally, these methods do not prevent man-in-the-middle attacks

on a higher network level like in a data center or at access switches.

Securing with Encrypted VPN The connection can be secured using an additional device

which encrypts the tra�c from the vending device by tunneling it through a VPN tunnel

terminated by a VPN server.

Figure 7.2.: Securing the connection using a VPN tunnel and a proxy server

40

7.2. External Mitigations

This requires a dedicated device build into the machine to establish the tunnel, because

the operating system image of the vending readers is hard to modify (see subsection 3.2.3).

This kind of device should physically �t into a vending machine, should be cost e�ective

and should be able to securely establish a tunnel to a tunnel endpoint as in Figure 7.2

illustrated.

We evaluated two devices to accomplish this:

1. MikroTik Router

Small Linux based routers with inaccessible, closed operating system and two to �ve

ports in a cost range from about 30€ to 60€

2. Ubiquiti Edge Router X

Small Linux based router with freely accessible Debian based operating system and

5 ports for about 40€

During evaluation, we discovered a missing certi�cate veri�cation vulnerability in the

MikroTik OpenVPN client custom implementation [JS18], whereas the Ubiquiti Router is

based on a Debian distribution, so the OpenVPN client is the original implementation and

receives (security) updates by the original project.

Overall this solution is not applicable since it introduces signi�cant costs, may increase

the attack surface, increases the maintenance and update overhead, and does not secure

the connection end-to-end, as the tra�c behind the local network to the backend server

is still not secured. The end-to-end security may be provided by installing a transparent

HTTPS proxy into the VPN endpoint, which uses the man-in-the-middle attack to verify

the server certi�cates. This may be a temporary solution, if the risk of a local attack on

the network connection is not acceptable.

7.2.2. Securing the Desktop Environment

To reduce the risk of an attack caused by the underlying desktop environment (see sec-

tion 5.2), the capabilities of the desktop environment should be reduced to a minimum, by

deactivating, restricting or uninstalling features. Windows 10 provides a single-app kiosk

mode
1
. Alternatively, an operating system without requirement for a desktop environment

(like a Linux distribution) may be used.

For the Card Terminal, the touchscreen can be disabled to reduce the attack surface

exposed to an attacker in case of a software crash. This does not signi�cantly reduce the

functionality of the terminal, as all displayed information disappears after a few seconds

automatically, without the need to touch any button.

1https://docs.microsoft.com/en-us/windows/configuration/kiosk-single-app

41

https://docs.microsoft.com/en-us/windows/configuration/kiosk-single-app

7. Risk Mitigation

Weakness External Internal
Outdated Operating Systems 7 3

Usage of an Operating System with Desktop

Environment

3 3

Remote Management 7 3

Missing Server Certi�cate Veri�cation 3 3

Usage of Weak Cipher Algorithms 7 3

Weak Binary Integrity Check 7 3

Broken AES Implementation 7 3

Hard-Coded Database Encryption Key and Weak

Integrity Check

7 3

Automatic Execution of Script from Removable USB

Storage

7 3

Unauthenticated Access to Con�guration 7 3

Missing Transaction Authorization by User 7 3

Missing Replay Protection 7 3

Lack of Basic Sanity Checks for Transaction History 7 3

Table 7.1.: Overview of weakness mitigations

42

8. Discussion

The analysis in the chapters 3-7 revealed signi�cant implementation and design issues in

the payment system. In this chapter we will discuss, whether the issues could have been

avoided, if existing standards and guidelines would have been applied. First we discuss if

the system can be operated in compliance with the BSI Grundschutz in section 8.1. After this

we discuss in section 8.2 whether the industry standard PCI PA-DSS is applicable and if it

could reduce the risks found in the security analysis, if applied during the implementation

of the system. This discussion allows us to conclude whether the evaluated standards are

su�cient for closed loop payment systems like the system analyzed in this thesis.

8.1. Comparison with BSI Grundschutz

The BSI Grundschutz [BSI18c] provides detailed baselines for information security. Its

core is divided into "building blocks". These blocks are containing recommendations

and requirements for operating an IT infrastructure such as for the information security

management system (ISMS), organisation and personnel (ORP), conception and procedures

(CON), operations (OPS), detection and reaction (DER), applications (APP), IT systems

(SYS), industrial IT (IND), network and communication (NET) and infrastructure (INF).

One of the systems contained in SYS is the generic internet of things (IoT) device (ger.:

Allgemeines IoT-Gerät, SYS.4.4). SYS.4.4 de�nes possible threats by and requirements for

operating such IoT devices. By the de�nition of SYS.4.4, the payment system used at KIT is

a embedded system (SYS.4.3 [BSI18b]), because the vending machines are part of a larger

product. SYS.4.3 is currently not an o�cial part of the BSI Grundschutz yet, so it cannot

be assumed that it gets implemented. Therefore, we focus on SYS.4.4 as an alternative,

which is in some points similar to the draft of SYS.4.3. While SYS.4.4 does not provide

implementation requirements, the draft of SYS.4.3 does provide some implementation

requirements. In the following subsections we will check, if the devices, given the identi�ed

weaknesses, can still be operated in compliance with the BSI Grundschutz. Therefore, also

external mitigations proposed in section 7.2 are taken into account.

8.1.1. Remote Management

According to SYS.4.4.A3, devices and its components must be checked regularly for updates.

In case of security issues, updates must be applied as soon as possible.

In case of the used RealVNC software version, the bug is known since 2006. If this

requirement would have been ful�lled, the risk identi�ed in section 5.3 would have been

avoided. Since the software is part of the image, the update must be provided by the

vendor. It is not possible to update the RealVNC software as System Administrator.

43

8. Discussion

Additionally, SYS.4.3.A2 requires for the developer of the product, that only required

services should be activated. Not required services, like the RealVNC server seems to be

(it is only available for diagnostic purposes), must be disabled. Furthermore, access to all

application interfaces must be protected with authentication and debugging interfaces

should be disabled (SYS.4.3.A6).

8.1.2. So�ware Integrity and Operating System

According to SYS.4.3.A8, the operating system used on devices should be adapted for the

secure use in the embedded application. The operating system should be capable of the

required security mechanisms. As the usage of a operating system with full capabilities

of the underlying desktop environment available (see section 5.2) and the weak binary

integrity check (see section 5.6) demonstrate, this requirement is not ful�lled. Additionally,

the usage of a trusted platform module (TPM) is recommended, to prevent unauthorized

code execution.

8.1.3. Missing Server Certificate Verification

The requirement SYS.4.4.A11 de�nes, that secure protocols like SSL/TLS should be used.

However, SYS.4.4.A11 does not require proper veri�cation of the communication explicitly.

Therefore, the risk identi�ed in section 5.4 would not haven been covered by SYS.4.4

explicitly.

If we interpret "secure" in a way, that veri�cation is included, the vending system does

not use a secure connection. In this case, SYS.4.4.A11 requires the usage of a VPN tunnel,

to secure the communication. Therefore, the device can be operated in compliance with

the BSI Grundschutz regarding the missing certi�cate veri�cation, if a VPN is used like in

section 7.2.1 proposed.

8.1.4. Usage of Weak Cipher Algorithms

SYS.4.4.A11 de�nes the usage of SSL/TLS, but does not de�ne minimum requirements for

those protocols. If we apply general BSI recommendations for key sizes [BSI18a] during

implementation, most of the weak ciphers would have been disabled.

8.2. Comparison with PCI PA-DSS

The PCI Security Standards Council is an organisation founded by American Express,

Discover, JCB, Mastercard and VISA and has participations from banks, hardware and

software developers and POS vendors. The "Payment Card Industry (PCI) – Payment

Application Data Security Standard (PA-DSS)" [PA-DSS] is a payment industry security

guideline for payment application vendors and developers. It de�nes several requirements

for payment systems with focus on credit card cashless payment. In the following subsec-

tions we will check, if the payment industry’s software security standard covers the issues

found in this work.

44

8.2. Comparison with PCI PA-DSS

8.2.1. Cryptographic Weaknesses

PCI PA-DSS requirement 11 "Encrypt sensitive tra�c over public networks" [PA-DSS,

p. 68] de�nes "if the payment application sends, or facilitates sending, cardholder data

over public networks, the payment application must support use of strong cryptography

and security protocols to safeguard sensitive cardholder data during transmission over

open, public networks" [PA-DSS, p. 68]. "Public networks" include connections through

the internet. The protocol should at least only accept trusted keys and certi�cates. This is

not ful�lled in the application, as the missing certi�cate veri�cation in section 5.4 shows.

Requirement 11 also de�nes, that "SSL and early TLS are not considered strong cryp-

tography. Payment applications must not use, or support the use of, SSL or early TLS.

Applications that use or support TLS must not allow fallback to SSL" [PA-DSS, p. 68].

Again, this requirement is clearly not ful�lled, as section 5.4 shows.

Requirement 5 "Develop secure payment applications", section 5.2 explicitly requires to

"develop all payment applications to prevent common coding vulnerabilities in software-

development processes" [PA-DSS, p. 46] and explicitly mentions the OWASP Top 10, SANS

CWE Top 25 and others. The AES implementation error as described in section 5.7 could

have been prevented, if the quality assurance and review processes of security relevant

code would have been implemented along PCI PA-DSS.

8.2.2. Management Weaknesses

PCI PA-DSS requirement 7 states to "test payment applications to address vulnerabilities

and maintain payment application updates" [PA-DSS, p. 59]. This is also required for

"any underlying software or systems that are provided with or required by the payment

application" [PA-DSS, p. 59]. The vendor must "identify new security vulnerabilities using

reputable sources for obtaining security vulnerability information" [PA-DSS, p. 59]. Such

sources to identify security vulnerabilities may be the MITRE CVE Database. Additionally,

the vendor must "assign a risk ranking to all identi�ed vulnerabilities" [PA-DSS, p. 60],

"test payment applications and updates for the presence of vulnerabilities prior to release"

[PA-DSS, p. 60] and "must establish a process for timely development and deployment of

security patches and upgrades" [PA-DSS, p. 60]. The bug in the RealVNC implementation

as described in section 5.3 is in the MITRE CVE database since 2006 [Int06]. If the product

would have been maintained in compliance to PA-DSS, the RealVNC server would have

been updated as soon as possible.

The USB-Feature of the devices is mainly used for updates. "Patches and updates are

delivered to customers in a secure manner with a known chain of trust" [PA-DSS, p. 61].

The unveri�ed data on the USB-Stick with arbitrary code execution (see section 5.9) breaks

the chain of trust. Additionally, "Patches and updates are delivered to customers in a

manner that maintains the integrity of the patch and update code" [PA-DSS, p. 61]. This is

not ful�lled. The cmd.xml is executed without any veri�cation of the script or the content.

Con�guration deployment (see section 5.10) is not directly covered by PCI PA-DSS, but

it requires generally secure authentication for administration of those systems (require-

ment 3). This may indirectly imply also securely authenticated channels for automated

deployment processes.

45

8. Discussion

8.2.3. Weaknesses in Financial Transaction Handling

The missing authorization by the user for �nancial transactions as described in section 5.11

is not covered by PCI PA-DSS, since the guideline is originated in the credit card payment

industry. In this industry branch, it is by design impossible to do a transaction without

the authorization of the user.

Transaction audit logs are not directly covered by PCI PA-DSS, too, as this part is covered

by the banks in open loop/credit card systems.

8.3. Summary

Most of the requirements de�ned by the BSI Grundschutz SYS.4.4 cannot be ful�lled by

the operator of the system and require updates by the vendor.

PCI PA-DSS does provide a strong guideline for the implementation of a payment

application. Nevertheless it is designed to apply to the existing credit card system and

does therefore not cover design baselines for a "new" payment system. Whereas it de�nes

requirements for secure maintenance and update processes in detail, it lacks requirements

for secure, automated con�guration rollout and management for large setups with multiple

instances of an application, which becomes increasingly important on large, centrally

managed appliances.

Implementing a strictly PCI PA-DSS compliant payment application is more expensive

than implementing a system, which does not necessarily need to be PCI PA-DSS compliant,

due to the high requirements. For a system like that one analyzed in this work, a cost

e�ective trade-o� between a strict PCI compliance and su�cient security has to be found.

The following aspects rendered to be vital in the system used at KIT:

1. Security of the network connection

Check encryption and veri�cation of cryptographic signatures, as well as veri�cation

of the server identity at client side and client identity at server side

2. Security of management interfaces and con�guration deployment

Ensure that management interfaces are only accessible by the System Administrator,

and that they are su�ciently secured

3. Security of secrets

Ensure that there are no secrets exposed to the User or other unauthorized roles

4. De�nition of update process

Ensure that there is an update process de�ned and that updates are su�ciently

secured (transport as well as veri�cation of the updates)

5. De�nition of risk management process

Ensure, that the vendor provides a process to handle possible security issues

46

9. Conclusion & Future Work

In this thesis, we analyzed the cashless payment solution used at KIT by observing the

behavior of the software and the network tra�c, as well as reverse engineering the payment

application software "cs_core" to identify security weaknesses.

The analysis methods used were e�ective to analyze the system. To detect open network

ports, a port scan was done. A man-in-the-middle attack was used to observe the inter-

action of the devices with the backend server’s API, which allowed us to understand the

mechanisms and usage of the API. The software was then extracted from the Vending

Readers used at vending machines, as well as from Revalue Devices, used to recharge

the user accounts. By disassembling the software, it was possible to investigate more

functions like update procedures and integrity checks. To understand the local database

encryption as well, we debugged a part of an utility program by wrapping the required

library call into an custom binary. The analysis revealed 13 weaknesses in the cashless

payment system.

The operation of the system poses a significant risk. After identifying weaknesses, we

analyzed them to evaluate the risk of attacks, composed using the weaknesses. We

therefore created an attacker model to estimate the likelihood of an attack. The impact

was evaluated by de�ning the target data: If the target data can be modi�ed, the impact is

higher as if the data can be obtained, and negligible if the data can neither be obtained nor

modi�ed. Those values where then combined to a risk score in a qualitative fashion using

a consequence probability matrix. Six of the identi�ed weaknesses were ranked with a

high risk level during the risk analysis.

It is the vendor’s responsibility, to mitigate the risks. We proposed mitigations for the

weaknesses found. To mitigate the weaknesses identi�ed, we di�erentiated between two

mitigation types: Internal mitigations, which have to be applied to the �rmware image or

the code of the software by the vendor, and external mitigations, which can be applied

by the system administrator independently form the vendor. External mitigations are

causing additional costs for the operator of the system. We proposed internal mitigations

for all the weaknesses identi�ed. For two of the weaknesses, we also proposed external

mitigations. While the evaluation of network devices, to build a secure VPN tunnel as

external mitigation, we discovered a vulnerability in the �rmware of one of those network

devices.

The payment system in the current state cannot be operated BSI Grundschutz compliant.
The discussion showed, that the system with the weaknesses discovered, cannot be op-

47

9. Conclusion & Future Work

erated in compliance with the BSI Grundschutz, as most of the requirements cannot be

ful�lled by the system administrator. For example, the BSI Grundschutz requires that

updates for security issues must be applied. However, a security vulnerability known

and �xed since 2006 is still present on the system and the a�ected component cannot be

updated by the system administrator.

PCI PA-DSS could have helped, to prevent some of the problems. Comparison of the weak-

nesses with PCI PA-DSS requirements revealed, that most of the implementation errors

would have been prevented, if the software was developed to be compliant with this

standard. But PCI PA-DSS also lacks of de�nitions for scenarios with a lot of distributed

components involved: There are no process de�nitions for secure con�guration manage-

ment and mechanisms for mass deployment.

The payment system still has potential for future analysis. There was no access to the

backend server software and no source code of any component was provided. Additionally,

only the Vending Readers were available for analysis all the time, whereas the Revalue

Device was only available for short time periods. The Card Terminals were not available

at all for analysis. By the �ndings of this work it can be expected to �nd more weaknesses

in the components, which were not available during this work.

Competing systems should be analyzed. A future work might be the analysis of online

cashless vending systems by other vendors, as there may be similar �aws in other systems.

For future analysis, we created a brief list of requirements for this type of cashless payment

application. This list also provides a brief guidance for the implementation of such systems.

Application specific standards and guidelines are needed. To provide a cost e�ective trade

o� between the expensive implementation along strict security standards and a high risk

of operation, the de�nition of best practice guidelines regarding the secure implementation

of cashless online payment systems may be created. The guidelines should include secure

deployment and maintenance processes for a large number of instances. This may help to

increase the general information security of those systems to reduce risks, while preserving

the advantages of this type of payment process.

48

Bibliography

[BL16a] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-)Security

of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and Open-

VPN”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16. Vienna, Austria: ACM, 2016,

pp. 456–467. isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.2978423.

url: http://doi.acm.org/10.1145/2976749.2978423.

[BL16b] Karthikeyan Bhargavan and Gaëtan Leurent. “Transcript collision at-

tacks: Breaking authentication in TLS, IKE, and SSH”. In: Network and
Distributed System Security Symposium–NDSS 2016. 2016.

[BSI18a] Bundesamt für Sicherheit in der Informationstechnik. Kryptographische
Verfahren: Empfehlungen und Schlüssellängen. May 2018. url: https:

//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/

TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile

(visited on 2018-07-19).

[BSI18b] Bundesamt für Sicherheit in der Informationstechnik. IT-Grundschutz-
Kompendium – SYS.4.3 Eingebettete Systeme. Guideline (Final Draft). May

2018. url: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/

Grundschutz / IT - Grundschutz - Modernisierung / BS _ Eingebettete _

Systeme.pdf?__blob=publicationFile%5C&v=2 (visited on 2018-10-26).

[BSI18c] Bundesamt für Sicherheit in der Informationstechnik. IT-Grundschutz-
Kompendium, Edition 2018. Guideline. Feb. 2018. url: https://www.bsi.

bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/

IT_Grundschutz_Kompendium_Edition2018.pdf?__blob=publicationFile%

5C&v=7 (visited on 2018-08-31).

[CWE-223] Common Weakness Enumeration (CWE) ID 223: Omission of Security-
relevant Information. url: https://cwe.mitre.org/data/definitions/

223 (visited on 2018-08-08).

[CWE-284] Common Weakness Enumeration (CWE) ID 284: Incorrect Access Control.
url: https://cwe.mitre.org/data/definitions/284 (visited on 2018-

08-08).

[CWE-294] Common Weakness Enumeration (CWE) ID 294: Authentication Bypass by
Capture-replay. url: https://cwe.mitre.org/data/definitions/294

(visited on 2018-08-08).

49

https://doi.org/10.1145/2976749.2978423
http://doi.acm.org/10.1145/2976749.2978423
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-Grundschutz-Modernisierung/BS_Eingebettete_Systeme.pdf?__blob=publicationFile%5C&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-Grundschutz-Modernisierung/BS_Eingebettete_Systeme.pdf?__blob=publicationFile%5C&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-Grundschutz-Modernisierung/BS_Eingebettete_Systeme.pdf?__blob=publicationFile%5C&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2018.pdf?__blob=publicationFile%5C&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2018.pdf?__blob=publicationFile%5C&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2018.pdf?__blob=publicationFile%5C&v=7
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2018.pdf?__blob=publicationFile%5C&v=7
https://cwe.mitre.org/data/definitions/223
https://cwe.mitre.org/data/definitions/223
https://cwe.mitre.org/data/definitions/284
https://cwe.mitre.org/data/definitions/294

Bibliography

[CWE-295] Common Weakness Enumeration (CWE) ID 295: Improper Certi�cate Val-
idation. url: https://cwe.mitre.org/data/definitions/295 (visited

on 2018-08-08).

[CWE-300] Common Weakness Enumeration (CWE) ID 300: Channel Accessible by
Non-Endpoint (’Man-in-the-Middle’). url: https://cwe.mitre.org/
data/definitions/300 (visited on 2018-08-08).

[CWE-306] Common Weakness Enumeration (CWE) ID 306: Missing Authentication for
Critical Function. url: https://cwe.mitre.org/data/definitions/306

(visited on 2018-08-08).

[CWE-321] Common Weakness Enumeration (CWE) ID 321: Use of Hard-coded Cryp-
tographic Key. url: https://cwe.mitre.org/data/definitions/321

(visited on 2018-08-08).

[CWE-325] Common Weakness Enumeration (CWE) ID 325: Missing Required Cryp-
tographic Step. url: https://cwe.mitre.org/data/definitions/325

(visited on 2018-08-08).

[CWE-327] Common Weakness Enumeration (CWE) ID 327: Use of a Broken or Risky
Cryptographic Algorithm.url: https://cwe.mitre.org/data/definitions/

327 (visited on 2018-08-08).

[CWE-328] Common Weakness Enumeration (CWE) ID 328: Reversible One-Way Hash.

url: https://cwe.mitre.org/data/definitions/328 (visited on 2018-

08-08).

[CWE-649] Common Weakness Enumeration (CWE) ID 649: Reliance on Obfuscation
or Encryption of Security-Relevant Inputs without Integrity Checking. url:

https://cwe.mitre.org/data/definitions/649 (visited on 2018-08-

08).

[CWE-653] Common Weakness Enumeration (CWE) ID 653: Insu�cient Compartmen-
talization. url: https://cwe.mitre.org/data/definitions/653 (visited

on 2018-08-08).

[CWE-862] Common Weakness Enumeration (CWE) ID 862: Missing Authorization.

url: https://cwe.mitre.org/data/definitions/862 (visited on 2018-

08-08).

[Dal17] Mathias Dalheimer. Schwarzladen: Die Schwachstellen ö�entlicher Strom-
tankstellen. 2017. url: https://gonium.net/schwarzladen.html (visited

on 2018-08-27).

[Eck18] Claudia Eckert. IT-Sicherheit : Konzepte - Verfahren - Protokolle. Berlin,

2018. url: https://doi.org/10.1515/9783110563900.

[EVA-EPS] European Vending & Co�ee Service Association. Electronic Payment
Speci�cation For Unattended Point Of Sale (UPOS). Speci�cation. Nov.

2013.

[FIPS-DSS] FIPS PUB 186-4, Digital Signature Standard (DSS). U.S.Department of

Commerce/National Institute of Standards and Technology. July 2013.

50

https://cwe.mitre.org/data/definitions/295
https://cwe.mitre.org/data/definitions/300
https://cwe.mitre.org/data/definitions/300
https://cwe.mitre.org/data/definitions/306
https://cwe.mitre.org/data/definitions/321
https://cwe.mitre.org/data/definitions/325
https://cwe.mitre.org/data/definitions/327
https://cwe.mitre.org/data/definitions/327
https://cwe.mitre.org/data/definitions/328
https://cwe.mitre.org/data/definitions/649
https://cwe.mitre.org/data/definitions/653
https://cwe.mitre.org/data/definitions/862
https://gonium.net/schwarzladen.html
https://doi.org/10.1515/9783110563900

[FIPS01] FIPS PUB 197, Advanced Encryption Standard (AES). U.S.Department of

Commerce/National Institute of Standards and Technology. 2001.

[FMS01] Scott Fluhrer, Itsik Mantin, and Adi Shamir. “Weaknesses in the Key

Scheduling Algorithm of RC4”. In: Selected Areas in Cryptography. Ed. by

Serge Vaudenay and Amr M. Youssef. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 1–24. isbn: 978-3-540-45537-0.

[Gil98] John Gilmore. Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design. 1998.

[Int06] IntelliAdmin LLC i.a. CVE-2006-2369. The MITRE Corporation, 2006. url:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2369

(visited on 2018-07-16).

[ISO27005] ISO 27005: Information technology – Security techniques – Information
security risk management. Norm. 2018.

[JS18] Janis Streib. On Mikrotik OpenVPN Security (CVE-2018-10066). 2018. url:

https://janis-streib.de/2018/04/11/mikrotik-openvpn-security/

(visited on 2018-08-19).

[Kat+96] Jonathan Katz et al. Handbook of applied cryptography. CRC press, 1996.

[KHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia.

“A Practical Attack on the MIFARE Classic”. In: Smart Card Research
and Advanced Applications. Ed. by Gilles Grimaud and François-Xavier

Standaert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 267–

282. isbn: 978-3-540-85893-5.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. “Related-key cryptanaly-

sis of 3-way, biham-des, cast, des-x, newdes, rc2, and tea”. In: International
Conference on Information and Communications Security. Springer. 1997,

pp. 233–246.

[Mica] Microsoft Corporation. Windows CE Product Lifecycle. url: https://
support.microsoft.com/en-us/lifecycle/search/1143 (visited on

2018-07-17).

[Micb] Microsoft Corporation. Windows lifecycle fact sheet. url: https : / /
support.microsoft.com/en- us/help/13853/windows- lifecycle-

fact-sheet (visited on 2018-07-17).

[NAMA-MDB] National Automatic Merchandising Association (NAMA). Multi-Drop Bus
/ Internal Communication Protocol (MDP/ICP). Speci�cation. Feb. 2011.

[NIST01] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. U.S.Department of Commerce/National Institute

of Standards and Technology. 2001.

51

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2369
https://janis-streib.de/2018/04/11/mikrotik-openvpn-security/
https://support.microsoft.com/en-us/lifecycle/search/1143
https://support.microsoft.com/en-us/lifecycle/search/1143
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Bibliography

[NIST15] National Institute of Standads and Technology. Transitions: Recommen-
dation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths. Nov. 2015. url: https : / / nvlpubs . nist . gov / nistpubs /

SpecialPublications/NIST.SP.800-131Ar1.pdf (visited on 2018-07-

19).

[Noh+08] Karsten Nohl et al. “Reverse-Engineering a Cryptographic RFID Tag.” In:

USENIX security symposium. Vol. 28. 2008.

[PA-DSS] PCI Security Standards Council. Payment Card Industry (PCI) – Payment
Application Data Security Standard. Guideline. May 2016. url: https:

/ / www . pcisecuritystandards . org / documents / PA - DSS _ v3 - 2 . pdf

(visited on 2018-08-31).

[Pis18] Matteo Pisani. How I hacked modern Vending Machines. Oct. 2018. url:

https://hackernoon.com/how-i-hacked-modern-vending-machines-

43f4ae8decec (visited on 2018-10-12).

[Sch+] Ronny Wichers Schreur et al. Security Flaw in MIFARE Classic.

[SWKA18] Studierendenwerk Karlsruhe AöR. Geschäftsbericht 2017. 2018. url: http:

//www.sw-ka.de/media/?file=5038_geschaeftsbericht_2017_web.

pdf&download (visited on 2018-08-19).

[VP15] Mathy Vanhoef and Frank Piessens. “All Your Biases Belong to Us: Break-

ing RC4 in WPA-TKIP and TLS.” In: USENIX Security Symposium. 2015,

pp. 97–112.

[Whi13] WhiteTimberwolf. Encryption using the Cipher Block Chaining (CBC)
mode. June 2013. url: https://commons.wikimedia.org/wiki/File:

CBC_encryption.svg (visited on 2018-08-08).

52

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://www.pcisecuritystandards.org/documents/PA-DSS_v3-2.pdf
https://www.pcisecuritystandards.org/documents/PA-DSS_v3-2.pdf
https://hackernoon.com/how-i-hacked-modern-vending-machines-43f4ae8decec
https://hackernoon.com/how-i-hacked-modern-vending-machines-43f4ae8decec
http://www.sw-ka.de/media/?file=5038_geschaeftsbericht_2017_web.pdf&download
http://www.sw-ka.de/media/?file=5038_geschaeftsbericht_2017_web.pdf&download
http://www.sw-ka.de/media/?file=5038_geschaeftsbericht_2017_web.pdf&download
https://commons.wikimedia.org/wiki/File:CBC_encryption.svg
https://commons.wikimedia.org/wiki/File:CBC_encryption.svg

A. Appendix

A.1. Vending Setups

User

User

Turnstile

Turnstile

VendingReader

VendingReader

Backend

Backend

InsertCard

GetAccountData

AccountData

LookupPrice

UpdateAccountDetails

Con�rm

Con�rm

LetThrough

Figure A.1.: Simpli�ed �ow of vending process with UPOS and turnstile with prices de�ned

by the POS

53

A. Appendix

User

User

Cashier

Cashier

CashDesk

CashDesk

VendingReader

VendingReader

Backend

Backend

BuyProducts

EnterProducts

CalculateSum

InsertCard

GetAccountData

AccountData

SendPriceBand

SendPrice

UpdateAccountDetails

Con�rm

Con�rm

Con�rm

Con�rm

Figure A.2.: Simpli�ed �ow of vending process with POS operated by a cashier with prices

de�ned by the POS

A.2. Commands for cmd.xml

Command Description Example
savedisplay Save the current state of the

display

<savedisplay></savedisplay>

restoredisplay Restore the saved display state <restoredisplay>

</restoredisplay>

display Display a text on row <display row="2"

text="Please wait">

</display>

executefile Execute a �le fn. Path

substitutions $stick and $rdr

are supported.

<executefile

fn="$stick\updater.exe">

</executefile>

54

A.2. Commands for cmd.xml

Command Description Example
copyfile Copy a �le from a source src to

a destination dst. Path

substitutions $stick and $rdr

are supported.

<copyfile

src="$stick\cs_core.exe"

dst="$rdr\cs_core.new">

</copyfile>

delay Delay for ms milliseconds by

calling the architecture’s native

sleep function.

<delay ms="1000"></delay>

wait Delay for ms milliseconds by

busy waiting.

<wait ms="1000"></wait>

dismount Unmount the device containing

the executed cmd.xml.

<dismount></dismount>

reboot Restart cs_core. If

skip_onerror is set, it does only

restart, if no step before failed. If

if_update is set, it will only

restart, if a update was applied.

<reboot skip_onerror="true">

</reboot>

hardreboot Reboot the hardware. <hardreboot></hardreboot>

deletefile Delete the �le fn. Path

substitutions $stick and $rdr

are supported.

<deletefile

fn="$stick\cs_core.exe">

</deletefile>

copyaudit Copy the audit log to dst. Path

substitutions $stick and $rdr

are supported.

<copyaudit

fn="$stick\audit.xml">

</copyaudit>

legicupdate Load new �rmware �le fn for

card readers made by the vendor

LEGIC. Path substitutions

$stick and $rdr are supported.

<legicupdate

fn="$stick\legic.bin">

</legicupdate>

purgelogs Purge logs. <purgelogs></purgelogs>

unprotectaudit Not fully known. Needs to be

executed before purgelogs

<unprotectaudit>

</unprotectaudit>

xmlputstr Put string value in XML �le fn

for location speci�ed in the

XPath expression xpath. Path

substitutions $stick and $rdr

for the fn attribute are

supported.

<xmlputstr value="bar"

fn="$rdr\sample.xml"

xpath="/element/@attribute">

</xmlputstr>

engineer Unknown. Requires argument

password.

heartbeat Trigger an heartbeat (see

subsection 3.5.1).

<heartbeat></heartbeat>

55

A. Appendix

Command Description Example
updateprogram Update program dst with

program src. If cmp is set, the

update will only executed if the

contents of src and dst are not

equal. Path substitutions $stick

and $rdr for the fn attribute are

supported.

<updateprogram

src="$stick\cs_core.exe"

cmp="true"

dst="$rdr\cs_core.exe">

</updateprogram>

inserttotals Unknown <inserttotals>

</inserttotals>

updatekernel Not fully known. Update the

base system with the image �le

in img using library lib, which

is loaded during the process.

Table A.1.: Commands usable in cmd.xml. Documentation was obtained by analyzing the

cs_core and may therefore not be complete.

A.3. Debugging of the x86 Library cs_dbpack.dll

#include <windows.h>

#include <stdio.h>

#include <string.h>

void main(int argc, char* argv[]){

HINSTANCE dllHandle = LoadLibrary("cs_dbpack.dll");

// Get function pointer of the "unpack" function

int (*unpack)(char *, int , char *) = GetProcAddress(dllHandle, "unpack");

// Read a previously base64 encoded, encrypted work.db

FILE *f = fopen("work.b64", "rb");

fseek(f, 0, SEEK_END);

long fsize = ftell(f);

fseek(f, 0, SEEK_SET); //same as rewind(f);

char *workdb = malloc(fsize + 1);

fread(workdb, fsize, 1, f);

fclose(f);

// 0-terminate string

workdb[fsize] = 0;

// Result

char data[fsize];

/* This call fails, but during the process (before the failure), the database gets

decrypted into a temp-file.

To analyze the decryption process, this is sufficient. */

unpack(data, fsize, workdb);

}

Listing A.1: Wrapper code for the unpack function of cs_dbpack.dll

56

A.4. Proof of the Attacker Model "Curious Student"

A.4. Proof of the Attacker Model "Curious Student"

Figure A.3.: A Card Terminal playing a video (with audio output!) in a browser, 2018-10-

11. Photo by anonymous source.

57

	Sperrvermerk
	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Related Work
	Cashless Vending
	Information Security
	Similar Research

	System Overview
	Roles and Components
	Processes
	Vending
	Audit
	Maintenance and Update

	Device Hardware
	Device Software
	Backend Server Software
	Heartbeat API
	APIX

	Method
	Risk Identification
	Risk Analysis
	Mitigation

	Risk Identification
	Outdated Operating Systems
	Usage of an Operating System with Desktop Environment
	Remote Management
	Missing Server Certificate Verification
	Usage of Weak Cipher Algorithms
	Weak Binary Integrity Check
	Broken AES Implementation
	AES Overview
	AES Implementation in the Payment System

	Hard-Coded Database Encryption Key and Weak Integrity Check
	Automatic Execution of Script from Removable USB Storage
	Unauthenticated Access to Configuration
	Missing Transaction Authorization by User
	Missing Replay Protection
	Lack of Basic Sanity Checks for Transaction History

	Risk Analysis
	Method
	Attacker Model
	Target Data
	Consequence Probability Matrix

	Weaknesses
	Outdated Operating Systems
	Usage of an Operating System with Desktop Environment
	Usage of Weak Cipher Algorithms
	Weak Binary Integrity Check
	Hard-Coded Database Encryption Key and Weak Integrity Check
	Lack of Basic Sanity Checks for Transaction History

	Vulnerabilities
	Remote Management
	Missing Server Certificate Verification
	Automatic Execution of Script from Removable USB Storage
	Broken AES Implementation
	Unauthenticated Access to Configuration
	Missing Authorization by User
	Missing Replay Protection

	Risk Mitigation
	Internal Mitigations
	Remote Management
	Missing Server Certificate Verification
	Usage of Weak Cipher Algorithms
	Weak Binary Integrity Checks
	Broken AES Implementation
	Hard-Coded Database Encryption Key and Weak Integrity Check
	Automatic Execution of Script from Removable USB Storage
	Unauthenticated Access to Configuration
	Missing Authorization by User & Missing Replay Protection
	Lack of Basic Sanity Checks for Transaction History

	External Mitigations
	Securing the Network connection
	Securing the Desktop Environment

	Discussion
	Comparison with BSI Grundschutz
	Remote Management
	Software Integrity and Operating System
	Missing Server Certificate Verification
	Usage of Weak Cipher Algorithms

	Comparison with PCI PA-DSS
	Cryptographic Weaknesses
	Management Weaknesses
	Weaknesses in Financial Transaction Handling

	Summary

	Conclusion & Future Work
	Bibliography
	Appendix
	Vending Setups
	Commands for cmd.xml
	Debugging of the x86 Library cs_dbpack.dll
	Proof of the Attacker Model "Curious Student"

