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Abstract: The SOTIF-standard (ISO 21448) establishes scenario-based test-
ing as state-of-the-art for verifying and validating Advanced Driver Assis-
tance Systems (ADAS) and Automated Driving Systems (ADS). However,
the SOTIF standard lacks details for selecting scenarios used as test cases.
Consequently, missing details of SOTIF hinder its practical application. In
this paper, we analyze existing scenario generation techniques and discuss
whether they generate SOTIF-compliant scenario suites. Subsequently, we
leverage variability modeling techniques to address two essential challenges
that remain open: How to model an overall scenario space and how to cover it
practically? We elaborate on sampling strategies and coverage criteria that are
relevant for generating SOTIF-compliant scenario suites. Finally, we assess
and compare generated scenario suites using mutation testing indicating the
ability of scenario suites to detect potential failures.

1 Introduction

Highly automated Advanced Driver Assistance Systems (ADASs) are widely spread in
modern vehicles, aiming to increase comfort, safety, and sustainability in road traffic.
Increasing the autonomy of ADAS up to Automated Driving Systems (ADSs) potentially
improves both aspects even further. However, increasing autonomy simultaneously in-
creases the testing requirements. Testing strategies that are sufficient for testing ADAS
become insufficient for verifying and validating ADS. For example, Wachenfeld and
Winner [WW16] state that distance-based testing is practically not suitable to verify and
validate highly automated ADAS/ADS due to the extremely large number of possible test
kilometers required. Instead, the current Safety of the Intended Functionality (SOTIF)
standard (ISO 21448) [iso22] establishes scenario-based testing as state-of-the-art to test
highly automated ADAS/ADS. Scenario-based testing includes the environment of the
vehicle in the testing process to evaluate the interaction of the System Under Test (SUT)
with the environment. A scenario is a test case in scenario-based testing describing the
environment of a vehicle, including the road infrastructure, static/dynamic actors, and
weather conditions. In practice, to perform scenario-based testing, a scenario suite, a set of
scenarios, is required. The SOTIF standard [iso22] has two requirements for those scenar-
ios suites: (Req-1) The scenario suite needs to sufficiently cover all possible scenarios that
potentially occur in the operational design domain of the ADAS/ADS. (Req-2) Scenarios
need to minimize the set of hazardous scenarios. A scenario is hazardous if it contains
triggering conditions turning functional insufficiencies of the SUT into hazardous behavior
potentially causing harm [iso22].



Although the SOTIF standard describes requirements for scenario suites, it lacks details
on how to generate them. Modeling and testing all possible real-world scenarios is
practically not feasible due to the extremely large number of possible scenarios [iso22].
Thus, regarding (Req-1), it is unclear how to define a coverage criterion to sufficiently cover
the space of possible scenarios. Regarding (Req-2), it is unclear how to determine whether
a scenario contributes to minimizing the set of hazardous scenarios. Moreover, the SOTIF
standard lacks details for assessing scenarios. Thus, for test engineers, it is not possible to
evaluate whether a scenario suite is good for testing ADAS/ADS. Without defining those
missing details, concrete methodologies to generate scenarios suites, or metrics to assess
generated scenarios, it is not possible to apply the SOTIF standard practically.

In this paper, we pursue the overarching research goal: Generation of SOTIF-compliant
scenario suites to practically verify and validate ADAS/ADS. We discuss existing scenario
generation methods wrt. the SOTIF standard and identify current research gaps towards
SOTIF-compliant scenario generation. We introduce a combinatorial scenario generation
concept capable of generating scenario suites according to a coverage criterion (Req-1).
Subsequently, we contribute two improvements towards closing existing research gaps.
The improvements extend combinatorial scenario generation for generating scenario suites
that additionally comply with (Req-2). We assess generated scenario suites by their
ability to detect potential failures in an SUT and evaluate the proposed improvements for
combinatorial scenario generation using a large-scale automotive case study.

2 State of the Art: Scenario Generation

To determine whether existing scenario generation approaches can already generate SOTIF-
compliant scenario suites, we performed an Systematic Literature Review (SLR) [BKS23]
according to the guidelines of Kitchenham [Kit04]. We defined a search string that we ap-
plied to search engines of scientific databases and defined objective inclusion/exclusion to
collect relevant literature proposing scenario generation approaches for testing ADAS/ADS.
In total, the following findings are based on 150 selected articles. We observe that existing
scenario generation approaches are systematic, i.e., not random. Prime examples for
systematic scenario generation approaches that can automatically generate large-scale
scenario suites are data-driven, optimization-based, or combinatorial approaches.1

To analyze existing scenario generation approaches for SOTIF-compliance, we determined
which entities, potentially occurring in a scenario, are covered (Req-1). Moreover, we
determined whether existing scenario generation approaches consider knowledge of the
SUT. The SUT-knowledge is relevant for generating scenario suites that comply with
(Req-2); holistically considering the scenario space independently of the SUT, in turn,
is relevant for generating scenario suites that comply with (Req-1). Additionally, we
determined whether the behavior of the SUT for scenario generation has to be known or
unknown and whether a generated scenario is hazardous or not hazardous, as the SOTIF
standard [iso22] requires to minimize the set of (unknown) hazardous scenarios (Req-2).

Although existing scenario generation approaches can in principle address all types of

1Techniques to generate scenarios are ordered according to their share in current literature.



scenario entities,2 they do not cover each possible entity potentially occuring in the real
world. Optimization-based approaches contribute to minimizing the set of hazardous
scenarios (Req-2) since they consider the knowledge of the SUT to exploit the space of
possible scenarios. These approaches assume that critical scenarios will likely trigger
hazardous behavior of the SUT. Combinatorial scenario generation approaches, in turn,
are beneficial to generate scenario suites covering the scenario space (Req-1) since they
holistically explore the scenario space independently of the SUT. We conclude that none
of the existing scenario generation approaches generates SOTIF-compliant scenario suites.
Existing scenario generation approaches either address (Req-1) by exploring the possible
scenario space or (Req-2) by exploiting the possible scenario space. Based on our findings,
we identify two research gaps that remain open: (1) combining existing scenario gener-
ation techniques to address both requirements of the SOTIF standard, and (2) balancing
exploration vs. exploitation.

3 Combinatorial Scenario Generation

In this paper, we combine scenario generation approaches addressing both SOTIF-
requirements to close existing research gaps hindering the practical application of the
SOTIF standard. As a basis, we describe a combinatorial scenario generation approach
complying with (Req-1). Moreover, we describe a method for assessing scenario suites in
accordance with SOTIF.

Scenario Generation: In [BPV+22], we propose a combinatorial scenario generation
approach leveraging variability modeling techniques for generating scenario suites. Vari-
ability modeling techniques use feature models to capture the space of possible configu-
rations [ABKS13]. In simulation tools used to test ADAS/ADS, a feature of the feature
model describes an atomic scenario entity. Thus, the feature model represents the space of
all possible scenarios that might be simulated using the simulation tool. Selecting a set
of features from the feature model results in a scenario in the simulation tool. We apply
established sampling strategies (namely uniform random sampling and feature interaction
coverage sampling) to derive suites of scenarios from the scenario space feature model.
Uniform random sampling selects scenarios randomly, while feature interaction coverage
sampling covers all interactions of features systematically, i.e., the interaction of a specific
number of atomic scenario entities.

Scenario Assessment: In [BPV+22], we propose mutation testing to assess generated
scenario suites. Mutation testing is an established method in software engineering to
assess test cases according to their ability to detect potential failures in an SUT [JH10].
In mutation testing, artificial errors are seeded in the SUT to represent faults potentially
occurring in the real world. A mutation score indicates the share of killed mutants (i.e.,
number of detected faulty SUT). To decide whether a mutant is killed or alive, mutation
testing refers to a kill criterion. In accordance with the SOTIF standard, we develop a kill
criterion explicitly focusing on safety-critical incidents [BPV+22].

Our results in [BPV+22] demonstrate that feature models are suitable for representing
scenario spaces. Moreover, feature interaction coverage sampling can reduce the number

2We define types of scenario entities, according to the classification proposed by Bagschik et al. [BMM18]



of test scenarios up to 96% while maintaining their fault detection capabilities in terms of
a high mutation score. We conclude that variability modeling techniques are beneficial for
generating scenario suites that sufficiently cover a scenario space (Req-1).

4 SOTIF-compliant Scenario Generation

We propose two concepts to improve the combinatorial scenario generation approach
towards SOTIF-compliant scenario generation by additionally addressing (Req-2).

Selective Sampling: The first improvement addresses the coverage criterion. Since the
SOTIF standard lacks details of a concrete coverage criterion, in [BPV+22], we applied
feature interaction coverage sampling using a combinatorial interaction coverage criterion.
However, Kaltenecker et al. [KGS+19] state that feature interaction coverage sampling
does not consider the number of features included in a configuration. In the scenario
generation context, the number of features correlates to the complexity of a scenario. A
crowded scenario is more complex than a scenario without road traffic. Thus, a scenarios’
complexity is relevant for defining sufficient coverage.

To realize a complexity-aware coverage criterion, in [BPRS24], we adapt and modify the
distance-based sampling approach provided by Kaltenecker et al. [KGS+19]. We introduce
selective sampling considering the complexity distribution of an overall scenarios space.
The intention is to generate a scenario suite with the same complexity distribution as
the overall scenario space. Additionally, similar to distance-based sampling [KGS+19],
we combine selective sampling with feature coverage criterion by prioritizing scenarios
containing atomic scenario entities (i.e., features) that are not covered in the current
scenario suite [BPRS24].

Our results in [BPRS24] indicate that selective sampling maintains the testing quality
of generated scenario suites in terms of mutation scores compared to feature interaction
coverage and distance-based sampling. Additionally, selective sampling generates scenario
suites that cover the complexity distribution of an overall scenario space.

Parameter Sampling: The second improvement expands combinatorial scenario genera-
tion regarding (Req-2) by combining combinatorial scenario generation with parameter
sampling [BFGS23]. We observe that scenarios contain discrete and continuous parame-
ters. In combinatorial scenario generation [BPV+22], we discretize continuous parameters
using equivalence classes based on expert knowledge assuming all parameter values of
an equivalence class trigger equivalent behavior of the SUT. However, in [BFGS23], we
demonstrate that equivalence classes are not sufficient.

Instead, in [BFGS23], we propose splitting the scenario sampling process into two consec-
utive steps: First, we select discrete scenario entities using feature interaction coverage
sampling, and second, we select concrete parameter values of continuous parameters
using parameter sampling. To realize parameter sampling, different sampling techniques
such as random, equidistant, or optimization-based sampling can be applied. A feedback
mechanism can improve parameter sampling by producing critical scenarios potentially
minimizing the set of (unknown) hazardous scenarios. Depending on the definition of the
parameter ranges and sampling strategy, test engineers can balance exploration vs. exploita-



tion of the scenario space. For example, subdividing the full possible parameter range into
small subparameter ranges enables a strong coverage criterion.

Our results in [BFGS23] demonstrate that random parameter sampling outperforms expert-
defined equivalence classes. Concerning the requirements of the SOTIF standard, parameter
sampling enables to optimize continuous scenario parameters for minimizing the set of
(unknown) hazardous scenarios (Req-2) while sufficiently covering a scenario space wrt.
discrete scenario entities (Req-1). Thus, parameter sampling extends the combinatorial
scenario generation approach towards SOTIF-compliant scenario generation. The feedback
mechanism and the definition of subparameter ranges enable testers to balance exploration
(Req-1) vs. exploitation (Req-2) while generating scenario suites.

5 Evaluation

In this section, we evaluate combinatorial scenario generation and its improvements [Bir25].
The fundamental experiment setup is as follows: We generate scenario suites with different
strategies and assess generated scenario suites using the mutation score.

Subject System: In this evaluation, we use an Adaptive Cruise Control (ACC) case study.
An ACC is an ADAS controlling the longitudinal velocity of a vehicle considering the
traffic ahead. We implement a large-scale scenario space feature model covering highway
scenarios relevant to test ACC functionality. To discretize continuous scenario parameters
such as velocity, rain rate, or temperature, we define three equivalent classes each. The
resulting feature model consists of 197 features representing a space of 152 · 1012 concrete
scenarios.3

Sampling Strategies: We generate scenario suites with feature interaction coverage sam-
pling (namely the YASA algorithm [KTS+20]) using feature-wise (t=1) and pair-wise
(t=2) coverage. We also generate scenario suites using selective sampling replicating the
complexity distribution of the overall scenario space. To apply parameter sampling, we
consider the continuous range of possible scenario parameter values. We generate scenario
suites with purely random parameter sampling and in combination with the feedback
mechanism. The feedback mechanism resamples scenario parameters until a scenario
contains road traffic triggering ACC functionality. As baselines, we generate scenario
suites using uniform random sampling and distance-based sampling [KGS+19]. Since
most scenario sampling strategies are non-deterministic, we average over ten versions of
generated scenario suites each. Inspired by the two feature interaction coverage criteria
feature-wise and pair-wise, we generate scenario suites of 7 and 80 scenarios with all
considered approaches.

Scenario Assessment: We generate a set of 62 unique mutants of the ACC case study that im-
plement exactly one artificial error using the SIMULTATE mutation framework [PRWN16].
We use the same set of mutants to assess each scenario suite. As a domain-specific kill
criterion, we focus on safety-critical incidents [BPV+22]

Results and Findings: In Figure 1, we present the mutation scores we determine for
scenario suites generated using several sampling strategies: (a) for the smaller scenario

3Counted with SharpSAT: https://github.com/marcthurley/sharpSAT

https://github.com/marcthurley/sharpSAT
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(a) Small scenario suites containing 7 scenarios
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(b) Large scenario suites containing 80 scenarios
Figure 1: Mutation scores for scenario suites generated using different sampling strategies.
The higher the mutation score, the better is the scenario suite in detecting potential failures.

suites of 7 scenarios; (b) for the larger scenario suites of 80 scenarios. The higher the
median mutation score, the better is the scenario suite in detecting potential failures. A
mutation score of 1 means that the scenario suite is capable of killing all mutants, while
a mutation score of 0 means none of the potential failures is detected. A mutation score
of 0.5 means that the scenario suite kills 50% of all mutants, which is as good as chance.
For feature interaction coverage sampling, we observe that scenario suites generated
using pair-wise coverage lead to better scenario suites than feature-wise coverage. Indeed,
random sampling leads to similar median mutation scores, but the mutation scores scatter
more, which impacts the reliability of a single test run. For complexity-aware sampling,
the results reveal that distance-based sampling and selective sampling lead to similar
median mutation scores compared to feature interaction coverage sampling. Standard
distance-based sampling slightly improves the median mutation score for the small scenario
suites. These results indicate that considering the complexity of scenarios is relevant for
generating scenario suites. The additional benefit of selective sampling is an additional
complexity-aware coverage criterion, which is in accordance with (Req-1). For parameter
sampling, our results indicate that random parameter sampling improves scenario suites
for small scenario suites compared to feature interaction coverage sampling and selective
sampling. For large scenario suites, the median mutation scores are similar. Adding a
feedback mechanism to parameter sampling further improves the generated scenario suite.



6 Conclusion

In this paper, we consider the research challenge of generating SOTIF-compliant scenario
suites. To close the research gaps highlighted in [BKS23], we combine and evaluate exist-
ing concepts for generating scenario suites regarding the SOTIF standard. The combined
scenario generation concept is based on a combinatorial approach proposed in [BPV+22].
Two improvements extend the combinatorial scenario generation approach towards SO-
TIF-compliance: 1) We improve the coverage criterion (Req-1) for sufficiently covering a
scenario space using selective sampling [BPRS24] taking into account scenario complexity.
2) We combine combinatorial scenario sampling with parameter sampling [BFGS23] for
generating (unknown) hazardous scenarios (Req-2) and enabling balancing exploration
(Req-1) vs. exploitation (Req-2). Using a mutation score as a metric, we evaluated and
compared the proposed concepts based on a large-scale ACC case study [Bir25]. Our
results indicate that higher feature interaction coverages lead to better scenario suites.
Moreover, a complexity-aware coverage criterion generates scenario suites leading to
similar median mutation scores, but realizes an additional coverage criterion that is relevant
wrt. (Req-1) of the SOTIF standard. Parameter sampling that uses a feedback mechanism
improves the median mutation scores while generating SOTIF compliant scenario suites
by addressing both requirements (Req-1) and (Req-2).

We conclude: Combining existing scenario generation approaches leads to scenario suites
compliant to both requirements of SOTIF. Thus, the proposed improvements close the
research gap addressed in [BKS23] towards SOTIF compliant scenario generation. In the
future, we plan to determine the impact of balancing (Req-1) vs. (Req-2), i.e., focusing on
covering the scenario space vs. focusing on scenarios that minimize the set of hazardous
scenarios. Moreover, we aim to transfer the proposed concepts to further ADAS/ADS case
studies to determine their generality. Lastly, we plan to identify the space of scenarios
relevant for specific (types of) SUT to further minimize the number of test scenarios
required to verify and validate ADAS/ADS.
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