Zugehörige Institution(en) am KIT | Institut für Strömungsmechanik (ISTM) |
Publikationstyp | Forschungsdaten |
Publikationsdatum | 24.01.2025 |
Erstellungsdatum | 01.12.2023 - 04.01.2025 |
Identifikator | DOI: 10.35097/egqrfznmr9yp2s7f KITopen-ID: 1000177715 |
Lizenz | Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International |
Schlagwörter | Two-phase flow, Adhering droplet, Shear flow, Interface reconstruction, Deep learning |
Liesmich | This repository contains the supplementary data to our article "Interface reconstruction of adhering droplets for distortion correction using glare points and deep learning". The weights of the neural networks for the reconstruction of the droplets gas-liquid interface trained on the aforementioned data are contained in this repository as well. The code repository for the neural network training and evaluation, including documentation on how to deploy the trained neural networks on the measurement data can be found on GitHub (https://github.com/MaxDreisbach/Droplet-PIFu) |
Art der Forschungsdaten | Dataset |