KIT | KIT-Bibliothek | Impressum | Datenschutz

Spatio-Temporal Interface Reconstruction by Means of Glare Points and Deep Learning (research data)

Dreisbach, Maximilian ORCID iD icon 1
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Forschungsdaten
Publikationsdatum 24.01.2025
Erstellungsdatum 01.01.2021 - 01.01.2025
Identifikator DOI: 10.35097/mmnxkbqqeye8p5tx
KITopen-ID: 1000177716
Lizenz Creative Commons Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
Liesmich

This repository contains all data relevant for the PhD thesis "Spatio-Temporal Interface Reconstruction by Means of Glare Points and Deep Learning" by Maximilian Dreisbach that has not been previously published elsewhere.
This includes image data from experiments and the weights of neural networks trained for the spatio-temporal reconstruction of the gas-liquid interface on the basis of this measurement data. In particular glare-point shadowgraphy experiments involving droplet impingement on patterned substrates and the respective trained networks can be found in this repository.

Art der Forschungsdaten Dataset
Relationen in KITopen

Seitenaufrufe: 21
seit 24.01.2025
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page