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Abstract
A k-graph G is asymmetric if there does not exist an automorphism on G other than
the identity, and G is called minimal asymmetric if it is asymmetric but every non-
trivial induced sub-hypergraph ofG is non-asymmetric. Extending a result of Jiang and
Nešetřil (J Comb Theory Ser B 164: 105–118, 2024), we show that for every k ≥ 3,
there exist infinitelymanyminimal asymmetric k-graphswhich havemaximumdegree
2 and are linear. Further, we show that there are infinitely many 2-regular asymmetric
k-graphs for k ≥ 3.

1 Introduction

For k ≥ 2, a k-uniform hypergraph, or k-graph, is a pair G = (V(G), E(G)) such
that the edge set E(G) consists of k-element subsets of the vertex set V(G). Note that
2-graphs are commonly known as graphs. An automorphism on a k-graph G = (V, E)

is a bijection φ : V → V such that for every E ∈ E , {φ(v) : v ∈ E} ∈ E . An
automorphism which is not the identity is called non-trivial. We say that a k-graph G
is symmetric if there exists a non-trivial automorphismonG and asymmetric otherwise.
G is minimal asymmetric if it is asymmetric and every induced sub-hypergraph H of
G with 2 ≤ |V(H)| < |V(G)| is symmetric.

Asymmetry of graphs was first considered by Frucht [6] in 1949. It was famously
observed by Erdős and Rényi [5] that random graphs are asymmetric with high prob-
ability. In 1988, Nešetřil conjectured that the number of minimal asymmetric graphs
is finite, see [1]. After several partial results [10–12], this conjecture was recently
confirmed by Schweitzer and Schweitzer [13] who showed that there are exactly 18
minimal asymmetric graphs. In the hypergraph setting, Ellingham and Schroeder [4]
studied a connection between asymmetric hypergraphs and color-preserving vertex
partitions. Jiang and Nešetřil showed in [9] (also published as an extended abstract in
[8]) that the natural generalization of Nešetřil’s conjecture to k-graphs does not hold.
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Theorem 1 (Jiang, Nešetřil [9]) Let k ≥ 3 be a positive integer. Then there exist
infinitely many minimal asymmetric k-graphs.

They provided an explicit construction where each k-graph has maximum degree 3,
i.e. every vertex is contained in at most three edges. It is a natural follow-up question
to study how sparse a minimal asymmetric k-graphs can be. In this paper, we consider
sparsity with respect to maximum degree and maximum codegree. In a k-graph G =
(V, E) for any two distinct vertices u, v ∈ V the codegree of u and v is the number of
edges in E which contain both u and v. The maximum codegree of G is the maximum
over the codegrees of all vertex pairs u, v ∈ V , u �= v. Here we prove the following
strengthening of Theorem 1.

Theorem 2 Let k ≥ 3 be a positive integer. There exist infinitely many minimal asym-
metric k-graphs which have maximum degree 2 and maximum codegree 1.

We remark that a k-graph with maximum codegree 1 is commonly referred to as
linear. Equivalently, a k-graph is linear if any two edges intersect in at most one vertex.
Note that every k-graphwithmaximumdegree 1 ormaximumcodegree 0 is symmetric,
so our result is best possible with respect to both parameters. In our construction for
Theorem 2, most vertices have degree 2, but crucially some vertices have degree 1.
This raises the question whether there exist (minimal) asymmetric k-graphs where
every vertex has the same degree. We say that a k-graph G is r-regular if every vertex
has degree r . Based on a result by Izbicki [7] we obtain the following.

Theorem 3 There are infinitely many 2-regular, asymmetric k-graphs for every k ≥ 3.

It remains open if this result extends tominimal asymmetric k-graphs. We raise the
following question.

Questions 4 For k ≥ 3 and r ≥ 2, is there an r-regular, minimal asymmetric k-graph?

Note that this question can be answered negatively for k = 2 and arbitrary r : None
of the 18 minimal asymmetric graphs characterized by Schweitzer and Schweitzer
[13] is regular.

In this paper we use standard graph theoretic notions; for formal definitions we refer
the reader to Diestel [3]. We denote by [n] the set of the first n integers {1, . . . , n}.
For consistency, let [0] = ∅. Given a function φ : V → V and a subset W ⊆ V , we
denote the image of W by φ(W ) := {φ(v) : v ∈ W }.

The organization of this paper is as follows. In Sect. 2.1we present the constructions
needed for the proof of Theorem 2, in Sects. 2.2 and 2.3 we show some properties of
these constructions. Subsequently, in Sect. 2.4 we prove Theorem 2 and in Sect. 3 we
give a proof of Theorem 3.
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Fig. 1 The 6-graph G6,3

2 Sparse Minimal Asymmetric k-Graphs

2.1 Constructions

Our asymmetric hypergraph is constructed in two steps. The basic framework is the
following (symmetric) construction given by Jiang and Nešetřil [9]. Throughout this
section, all indices in [tk] are considered modulo tk. In particular, tk ≡ 0.

Construction 5 (Jiang, Nešetřil [9]) Let k ≥ 3 and t ≥ 2. Let Gk,t be the k-graph with
vertices

V(Gk,t ) = {
ui : i ∈ [tk]} ∪ {

vi : i ∈ [tk]} ∪ {
wi, j : i ∈ [tk], j ∈ [k − 3]}

and edges E(Gk,t ) = EL ∪ Ecyc. Here EL = {
Ei : i ∈ [tk]} is the set of L-edges

Ei =
{
vi , ui , vi+1, wi,1, . . . , wi,k−3

}
.

Furthermore, the set of cyclic edges is Ecyc = {
Ei, j : j ∈ [k−3], i = j+sk, s ∈ [t]}

where
Ei, j =

{
wi, j , . . . , wi+k−1, j

}
.

An illustration of this construction is given in Fig. 1.

Jiang and Nešetřil [9] proved Theorem 1 by adding a single edge to Gk,t . In this
paper, we extend Construction 5 as follows.
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Fig. 2 The k-graphH(t1, . . . , tk−1)

Construction 6 Let k ≥ 3 and let ti ∈ N for i ∈ [k − 1] such that 2 ≤ t1 < t2 <

· · · < tk−1. We denote by G� = (V�, E�) a copy of Gk,t� as introduced in Construction
5, such that the vertex sets V� are pairwise disjoint. For every � ∈ [k − 1], we write
u�
i when referring to the vertex of G� corresponding to ui in Gk,t� and similarly for

v�
i , w

�
i, j , E

�
i and E�

i, j .

Now let x0 be an additional vertex which is not contained in any V�, � ∈ [k − 1].
We define H(t1, . . . , tk−1) = (V, E) such that

V = V1 ∪ · · · ∪ Vk−1 ∪ {x0} and E = E1 ∪ · · · ∪ Ek−1 ∪ {E0},

where E0 = {x0, u11, u21, . . . , uk−1
1 }. See Fig. 2 for an illustration of H(t1, . . . , tk−1).

The k-graphH(t1, . . . , tk−1) is non-asymmetric if k = 3 or k = 5, because Lemma
10 does not hold for such k, see also Fig. 4. Therefore, we provide two additional
constructions covering those cases.

Construction 7 Let k ∈ {3, 5} and 2 ≤ t < t ′. Let G and G′ be vertex-disjoint copies
of Gk,t and Gk,t ′ , respectively. We denote by u′

i the vertex corresponding to ui in Gk,t ′
and similarly for v′

i , w
′
i, j , E

′
i and E ′

i, j . For the vertices in G we use the same labels as
defined for Gk,t , e.g. ui refers to the vertex in G corresponding to ui in Gk,t . Let x0, y
and y′ be three distinct vertices, disjoint from V(G) ∪ V(G′).
For k = 3, let E0 = {x0, u1, u′

1}, Ey = {y, u2, u3} and E ′
y = {y′, u′

2, u
′
3}. We define

the 3-graph

H3(t, t ′) = (V(G) ∪ V(G′) ∪ {x0, y, y′}, E(G) ∪ E(G′) ∪ {E0, Ey, E
′
y}

)
.

For k = 5, let E0 = {x0, u1, u2, u′
1, u

′
2} and define the 5-graph

H5(t, t ′) = (V(G) ∪ V(G′) ∪ {x0}, E(G) ∪ E(G′) ∪ {E0}
)
.

Both constructions are illustrated in Fig. 3.
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Fig. 3 The hypergraphsH3(t, t ′) andH5(t, t ′)

2.2 Properties ofGk,t

First we state slight reformulations of two properties shown by Jiang and Nešetřil [8].

Lemma 8 (Jiang, Nešetřil [8]) Let k ≥ 3 and t ≥ 2. Let G′ be an induced sub-
hypergraph of Gk,t on at least two vertices.
(i) There is a non-trivial automorphism on G′, i.e. G′ is symmetric.
(ii) If E1 ∈ E(G′) and |V(G′)| < |V(Gk,t )|, then there is a non-trivial automorphism

φ on G′ such that φ(E1) = E1 and φ(u1) = u1.

A stronger version of Lemma 8(i) is given in Lemma 4(2) of [8], where weak sub-
hypergraphs are considered. Lemma 8(ii) follows from the proof of Lemma 3(3) of
[8].

Lemma 9 Let k ≥ 3 and t ≥ 2. Let φ be an automorphism on Gk,t .
(i) Then {φ(ui ) : i ∈ [tk]} = {ui : i ∈ [tk]}. Furthermore, φ(E) ∈ EL for every

E ∈ EL and {φ(vi ) : i ∈ [tk]} = {vi : i ∈ [tk]}.
(ii) There is a j ∈ [tk] such that either φ(Ei ) = Ei+ j−1 for every i ∈ [tk] or

φ(Ei ) = E j−i+1 for every i ∈ [tk], where the indices are considered modulo tk.

We remark that the statement of Lemma 9(i) is given implicitly in [8]. A statement
similar to Lemma 9(ii) appears as Lemma 9(1) in [9].

Proof of Lemma 9 Note that the ui ’s are exactly the vertices of degree 1 inGk,t . Observe
that, since φ is an automorphism, v and φ(v) have the same degree for every vertex
v, thus φ({ui : i ∈ [tk]}) = {ui : i ∈ [tk]}. This implies (i).

A consequence of (i) is that φ(E1) = E j for some j ∈ [tk], so {φ(v1), φ(v2)} =
{v j , v j+1}. If φ(v1) = v j and φ(v2) = v j+1, then φ(E2) = E j+1 and thus φ(v3) =
v j+2. Iteratively, we find that φ(Ei ) = Ei+ j−1 for every i ∈ [tk]. Now suppose that
φ(v1) = v j+1 and φ(v2) = v j . Then φ(E2) = E j−1 and iteratively φ(Ei ) = E j−i+1
for every i ∈ [tk]. This completes the proof of (ii). ��
Lemma 10 Let k = 4 or k ≥ 6 and t ≥ 2. Let φ be an automorphism on Gk,t . If
φ(E1) = E1, then φ is the identity.
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Fig. 4 Non-trivial automorphism φ on G5,2 with φ(E1) = E1

A result closely related to Lemma 10 is given in Lemma 9(2) of [9] without a proof.
Note that Lemma 3(2) of [8] almost corresponds to our Lemma 10, but it does not
hold for k = 3 and k = 5, see for example the non-trivial automorphism illustrated in
Fig. 4.

Proof of Lemma 10 Assume that φ is not the identity. Then Lemma 9(ii) provides that
φ(Ei ) = E2−i for every i ∈ [tk].

If k = 4, then Lemma 9(i) implies that {φ(wi,1) : i ∈ [tk]} = {wi,1 : i ∈
[tk]}. Since φ(E1) = E1 and φ(E2) = Etk , we find that φ(w1,1) = w1,1 and
φ(w2,1) = wtk,1, respectively. Observe that the edge E1,1 contains vertices w1,1
and w2,1. However, there is no edge in Gk,t containing φ(w1,1) = w1,1 and φ(w2,1)

= wtk,1, a contradiction.
Now suppose that k ≥ 6. Then consider the edge E3,3 = {w3,3, . . . , wk+2,3}.

It intersects each of the edges E3, . . . , Ek+2. Because φ is an automorphism,
φ(E3,3) has a non-empty intersection with each of the edges {φ(E3), . . . , φ(E2+k)}
= {E(t−1)k, . . . , Etk−1}. However, it is easy to see from our construction that in Gk,t
such an edge does not exist. ��

2.3 Connectivity

Next we introduce a notion of connectivity between two vertices of a k-graph. In a
k-graph G, a v1vr+1-path is an alternating sequence (v1, E1, v2, E2, . . . , Er , vr+1) of
r + 1 distinct vertices vi ∈ V(G) and r distinct edges Ei ∈ E(G) such that both vi
and vi+1 are contained in Ei for any i ∈ [r ]. Such paths are commonly known as
Berge paths. Two xy-paths are edge-disjoint if the underlying edge sets of the paths
are disjoint. We say that x and y are t-connected if there are t pairwise edge-disjoint
xy-paths. It is a simple observation that an automorphism leaves the connectivity
invariant:

Proposition 11 Let G be a k-graph and x, y ∈ V(G). Let φ be an automorphism on
G. Then x and y are t-connected if and only if φ(x) and φ(y) are t-connected.
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Lemma 12 Let k ≥ 3 and t ≥ 2 and consider G := Gk,t . Let E ∈ E(G) and let
x, y ∈ E be distinct vertices of degree 2, i.e. x, y /∈ {u1, . . . , utk}. Then x and y are
2-connected.

Proof Consider G′, the k-graph obtained from G by deleting the edge E . We shall
show that x and y are 1-connected in G′. Recall that the edge set E(G) = EL ∪ Ecyc
consists of L-edges Ei and cyclic edges Ei, j .

If E ∈ Ecyc, then x and y are contained in distinct L-edges of G, say without loss
of generality x ∈ E1 and y ∈ E j . Then (x, E1, v2, E2, v3, . . . , E j , y) is a xy-path in
G′.

If E ∈ EL , assume that E = Ei for some i . Note that the L-edges of G′ form a
vi+1vi -path containing all v j , j ∈ [tk]. Therefore, if there is a xv j -path and a yv j ′ -
path in G′ for any j, j ′ ∈ [tk], then we also find a xy-path in G′. If x ∈ {v1, v2}, there
is a trivial xvi -path. Otherwise, x ∈ E ′ for some cyclic edge E ′ ∈ Ecyc. Let z be an
arbitrary vertex in E ′ \ {x}. Then z is also contained in some L-edge E j ∈ EL where
j ∈ [tk]. Then (x, E ′, z, E j , v j ) is a xv j -path. Similarly, we find a yv j ′ -path, which
completes the proof. ��

2.4 Proof of themain result

Proof of Theorem 2 For the first part of the proof, let k = 4 or k ≥ 6. Let ti ∈ N for
i ∈ [k − 1] be an integer such that 2 ≤ t1 < t2 < · · · < tk−1. We shall show that
H := H(t1, . . . , tk−1) is minimal asymmetric. In order to verify thatH is asymmetric,
letφ be an arbitrary automorphismonH. Recall that E0 is an edge ofHwhich connects
otherwise disjoint copies of Gk,ti , i ∈ [k − 1].

First, we show that φ(E0) = E0. We know that φ(E0) ∈ E(H), so assume that
φ(E0) = E for some E �= E0. Then E ∈ E(G�) for some � ∈ [k − 1]. Consider
two distinct vertices u, v ∈ E0 \ {x0}. Both vertices have degree 2 in H. Since φ is
an automorphism, φ(u) and φ(v) are distinct vertices in E with degree 2. By Lemma
12, φ(u) and φ(v) are 2-connected in G�, so in particular 2-connected inH. However,
in our construction the vertices u and v are not 2-connected, because the only path
between them is (u, E0, v). This contradicts Proposition 11. Therefore, we conclude
φ(E0) = E0, so in particular φ(x0) = x0.

Since φ(E0) = E0, φ is also an automorphism on the k-graph H − E0, which is
the disjoint union of an isolated vertex x0 and k-graphs G�. Recall that the t�’s are
pairwise distinct, therefore the G�’s are pairwise non-isomorphic. This implies that
{φ(E) : E ∈ E(G�)} = E(G�) for every � ∈ [k − 1], i.e. φ maps each G� to itself.

Nowweshow thatφ is the identity, thusH is asymmetric. Fix an arbitrary� ∈ [k−1].
Note that φ(u�

1) ∈ φ(E0) ∩ φ(E�
1), thus φ(u�

1) ∈ E0 ∩ V(G�). This implies that
φ(u�

1) = u�
1 and therefore φ(E�

1) = E�
1. Now Lemma 10 provides that φ restricted to

G� is the identity. Since �was chosen arbitrarily, the entire automorphism φ : H → H
is an identity function. We conclude that H is asymmetric.

Now let H′ be an arbitrary induced sub-hypergraph of H with 2 ≤ |V(H′)| <

|V(H)|. We shall show that that H′ is symmetric. We can assume that |E(H′)| ≥ 2,
otherwiseH′ is trivally symmetric.
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Case 1: E0 /∈ E(H′).

Let E ∈ E(H′) with E �= E0, i.e. E ∈ E(G�) for some fixed � ∈ [k − 1]. Let H′′
be the sub-hypergraph of H′ induced by the vertex set V(G�). Because E ∈ E(H′′),
H′′ has at least two vertices. Now Lemma 8(i) provides a non-trivial automorphism ψ

onH′′. We extend this automorphism toH′ as follows. Let φ : V(H′) → V(H′) with
φ(w) = ψ(w) for every w ∈ V(H′′) and φ(w) = w for every w /∈ V(H′′). Then φ is
a non-trivial automorphism on H′, soH′ is symmetric.

Case 2: E0 ∈ E(H′).

If there is some � ∈ [k − 1] such that E�
1 /∈ E(H′), then consider the function

φ : V(H′) → V(H′) with φ(u�
1) = x0, φ(x0) = u�

1 and φ(w) = w for every
w ∈ V(H′) \ {u�

1, x0}. Observe that this is a non-trivial automorphism onH′.
If E�′

1 ∈ E(H′) for every �′ ∈ [k − 1], fix � such that there is a vertex v ∈
V(G�) \ V(H′) and let H′′ be the sub-hypergraph of H′ induced by V(G�). Then
2 < |V(H′′)| < |V(G�)|, thus Lemma 8(ii) yields a non-trivial automorphism ψ on
H′′ withψ(u�

1) = u�
1. Similarly to Case 1, we extend ψ to a non-trivial automorphism

onH′.
This completes the proof for k = 4 and k ≥ 6. For k = 3 and k = 5, let t and t ′ be

arbitrary integers with 2 ≤ t < t ′. We show thatH3 := H3(t, t ′) andH5 := H5(t, t ′)
are minimal asymmetric. The proof is similar to the argumentation presented above,
so we only provide a sketch. A detailed proof is given in the first author’s thesis [2].

If k = 3, let φ be an arbitrary automorphism on H3. Then φ(E0) = E0, and thus
{φ(E) : E ∈ E(G)} = E(G) as well as {φ(E) : E ∈ E(G′)} = E(G′). Therefore,
φ(u1) = u1 and φ(u′

1) = u′
1. There are six edges in which every vertex has degree 2,

namely Ei and E ′
i for i ∈ [3]. It is easy to see that each of them is invariant under φ,

which then implies that φ is the identity. Thus,H3 is asymmetric.
Now consider an induced sub-hypergraph H′ ofH3 with 2 ≤ |V(H′)| < |V(H3)|.

We can suppose that there is no edgewhich contains two vertices of degree 1, otherwise
H′ is clearly symmetric. If E0 /∈ E(H′), then there is a non-trivial automorphism φ

on H′ with φ(u2) = u3 and φ(u3) = u2. If E0 ∈ E(H′), then E1, E ′
1 ∈ E(H′).

Let E ∈ E(H3) \ E(H′) and say that E ∈ E(G). Now if Ey /∈ E(H′), we can apply
Lemma 8(ii) as in Case 2, so suppose that Ey ∈ E(H′). Since no edge contains two
vertices of degree 1, we find that E(H′) ∩ E(G) = {E1, E2, E3, Ey}. Then there is an
automorphism φ on G with φ(Ey) = E3 and φ(E3) = Ey .

If k = 5, given an automorphism φ on H5, we see that φ(E0) = E0, thus
{φ(u1), φ(u2)} = {u1, u2}. If φ(u1) = u2 and φ(u2) = u1, then φ(E1) = E2,
φ(E2) = E1 and φ(E3) = Etk . Note that the edge E1,1 intersects each of E1, E2 and
E3, but there does not exist an edge in E(H5) which intersects φ(E1) = E2, φ(E2) =
E1, φ(E3) = Etk , a contradiction. Thus φ(u1) = u1 and φ(u2) = u2, and similarly,
φ(u′

1) = u′
1 and φ(u′

2) = u′
2. By Lemma 9(ii), φ is the identity, soH5 is asymmetric.

Let H′ be an induced sub-hypergraph of H5 such that 2 ≤ |V(H′)| < |V(H5)|.
If E0 /∈ E(H′), we proceed as in Case 1. Otherwise, we can suppose that
E1, E2, E ′

1, E
′
2 ∈ E(H′) by a similar argument as in Case 2. Then a variant of Lemma

8(ii), see Lemma 2.9(i) of [2], provides a non-trivial automorphism on H′. ��
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Fig. 5 The 3-regular Frucht graph (left) and its hypergraph dual (right)

3 Regular Asymmetric k-Graphs

In order to prove Theorem 3, we need a result by Izbicki [7].

Theorem 13 (Izbicki [7]) For every k ≥ 3, there exist infinitely many k-regular asym-
metric 2-graphs.

Given a k-regular 2-graph G = (V, E), the (hypergraph) dual of G is the k-graph
H = (E, {A(v) : v ∈ V}) where A(v) = {E ∈ E : v ∈ E} is the adjacency set of
v. Note that |A(v)| = k for every v, thus H is a well-defined k-graph. An example
for a hypergraph dual is provided in Fig. 5. Observe that adjacency sets are unique in
regular 2-graphs:

Proposition 14 Let G be an r-regular 2-graph, r ≥ 2. Let u, v ∈ V(G) be two distinct
vertices of G. Then A(u) �= A(v).

Lemma 15 Let G be an r-regular asymmetric graph for some r ≥ 3. Then the hyper-
graph dual of G is also asymmetric.

Proof Let G = (V, E). Let φH be an arbitrary automorphism on the dualH of G. By
the definition of a dual we know that φH : E → E is a bijection such that for any v ∈ V ,
the edges in its adjacency set A(v) are mapped to

{
φH(E) : E ∈ A(v)

} = A(wv) for
some vertex wv ∈ V . By Proposition 14, wv is uniquely determined.

We define the function φG : V → V , φG(v) = wv . Observe that φG is a bijec-
tion. Now we show that φG is an automorphism on G. Consider an arbitrary edge
Euv = {u, v} ∈ E . Then Euv ∈ A(v), thus φH(Euv) ∈ {

φH(E) : E ∈ A(v)
}

= A(wv) = A(φG(v)). Similarly, we obtain φH(Euv) ∈ A(φG(u)). Therefore,

φH(Euv) = {φG(u), φG(v)}. (1)

This implies that {φG(u), φG(v)} ∈ E , so φG is an automorphism on G. Since G is
asymmetric, φG is the identity. Then for every edge Euv = {u, v} ∈ E , (1) implies that
φH(Euv) = {u, v} = Euv , i.e. φH is the identity. Consequently, H is asymmetric.

Proof of Theorem 3 Let k ≥ 3. LetG1,G2, . . . be an infinite family of pairwise distinct
k-regular, asymmetric graphs as provided by Theorem 13. Let Hi be the hypergraph
dual of Gi , i ∈ N. Observe that the Hi ’s are pairwise distinct 2-regular k-graphs.
Lemma 15 provides that the Hi ’s are asymmetric. ��
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