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Abstract: As a key strategy for achieving a circular economy, remanufacturing involves bringing
end-of-use (EoU) products or cores back to a ‘like new’ condition, providing more affordable and
sustainable alternatives to new products. Despite the potential for substantial resources and energy
savings, the industry faces operational challenges. These challenges arise from uncertainties sur-
rounding core quality and functionality, return times, process variation required to meet product
specifications, and the end-of-use (EoU) product values, as well as their new life expectancy after
extended use as a ‘market product’. While remanufacturing holds immense promise, its full potential
can only be realized through concerted efforts towards resolving the inherent complexities and
obstacles that impede its operations. Machine learning (ML) and data-driven models emerge as trans-
formative tools to mitigate numerous challenges encountered by manufacturing industry. Recently,
the integration of cutting-edge technologies, such as sensor-based product data acquisition and stor-
age, data analytics, machine health management, artificial intelligence (AI)-driven scheduling, and
human–robot collaboration (HRC), in remanufacturing procedures has received significant attention
from remanufacturers and the circular economy community. These advanced computational tech-
nologies help remanufacturers to implement flexible operation scheduling, enhance quality control,
and streamline workflows for EoU products. This study embarks on a comprehensive review and
in-depth analysis of state-of-the-art algorithms across various facets of remanufacturing processes
and operations. Additionally, it identifies key challenges to advancing remanufacturing practices
through data-driven and ML methods and uncovers research opportunities in synergy with smart
manufacturing techniques. The study aims to offer guidelines for stakeholders and to reinforce the
industry’s pivotal role in circular economy initiatives.

Keywords: remanufacturing; circular economy; machine learning; data-driven models; sustainability

1. Introduction

Remanufacturing is one of the key elements in a circular economy, aiming to restore
full or partial value of end-of-use (EoU) products to a ’like new’ or refurbished condition
through processes such as disassembly, cleaning, repair, component replacement, and re-
assembly [1,2]. As depicted in Figure 1, through extending the life cycles of products
by restoring their values to a near-new condition and keeping the resources in a closed
loop as long as possible, remanufacturing conserves valuable resources and reduces the
environmental footprint associated with the extraction, processing, and transportation
of raw materials for creating brand new products, thereby enhancing sustainability [3,4].
The benefits of remanufacturing are substantial, in terms of resource preservation [5,6], re-
duced energy intensity [7], lower environmental impact [8], and notable economic gains [9],
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owing to significant reduction in the use of new materials, water, and other energy sources
required for traditional manufacturing processes [10–13].

Figure 1. Value recovery over time in a product’s life cycle (adapted from [14]).

Among several strategic decisions, in terms of reuse, remanufacturing, recycling,
or disposal, as shown in Figure 1, remanufacturing is crucial for enhancing manufacturing
sustainability, preserving the value of products, and fostering techno-economic benefits.
However, the conceptualization and implementation of remanufacturing involves several
significant challenges. First, the inherent uncertainty in product condition and mechanical
functionality arises from the duration and environment of the product’s use, as well as
the consumer’s independent decision to return it. Guide et al. highlighted that uncer-
tainties regarding the timing, quantity, and condition of materials recovered from cores
are critical factors complicating decision-making in remanufacturing [15]. Factors such
as component condition, disassembly sequence, and market values are crucial in trading
off between sustainability and profitability [16]. Additionally, the remanufacturing pro-
cess necessitates an effective reverse logistics system to facilitate the acquisition of cores
from the market. The complexity of adapting to customer behaviors and incentives for
participating in reverse logistics further complicates the coordination of various stages.
This necessitates enhanced data visibility in areas such as product quality, material flow,
energy flow, shopfloor operations, and inventory management [17,18]. Therefore, efficient
tracking of products and usage information across the life cycle are vital for optimizing
remanufacturing efforts [12,19].

The heterogeneous quality conditions of returned products require customized produc-
tion and planning strategies during remanufacturing and associated procedures. Variability
in core conditions leads to fluctuating processing times, different reconditioning paths,
variable inventory control and resource allocation, and complex re-entrant routings [20,21],
creating a dynamic and challenging operational environment [20]. Accordingly, these
variations demand extensive manual operation [22], involving core assessment, operation
sequencing, and selection of disassembly and reconditioning techniques. The complexity of
planning the remanufacturing process requires a deep knowledge of product design, failure
modes, and production capabilities [23]. A study on the remanufacturing procedure of EoU
returned products indicated that grading cores into different quality classes by involving
humans can enhance profitability by only up to 4% [24]. To address the above-mentioned
challenges, thereby improving remanufacturing efficiency and overall plant profits, re-
cent advancements have introduced automation and HRC technologies that facilitate the
adaptation of processes to varying core conditions. This includes incorporating advanced
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in-line/in situ inspection technologies, collaborative robots, decision support systems,
and automated disassembly planning tools [1].

The advent of Industry 4.0 and advanced computational methods, such as ML and
data-driven analysis, offer promising solutions to address the challenges faced by the
remanufacturing industry [25]. Technologies such as the Industrial Internet of Things
(IIoT) [26], Digital Twins [27], Cobot [28], Virtual Reality (VR), and Augmented Reality
(AR) [29,30] could help fast and accurate data acquisition, real-time data access, and support
improving efficiency during remanufacturing activities in different ways [31]. Data-driven
and ML methods are poised to improve remanufacturing by enabling more precise pre-
diction and classification of product conditions [32], thereby improving quality control
and waste management [21]. Additionally, these advanced techniques can optimize in-
ventory management and operational scheduling [1,33], leading to further cost reductions,
improved operational efficiency, and resource utilization. Despite the potential alignment,
research on developing ML and data-driven methods for remanufacturing systems is still
in its early stages [34], indicating that a comprehensive baseline and critical discussion of
existing research opportunities and gaps is critically required.

This review study systematically explores the synergistic impacts of advanced com-
putational technologies on remanufacturing activities. Our approach makes a three-fold
contribution to the existing research as follows: (i) a systematic review of the existing
literature on remanufacturing to understand current trends, major topics, and potential
synergies with advanced computational methods (refer to Section 2); (ii) the development of
a conceptual framework that integrates data-driven and ML methods into remanufacturing
processes, advancing theoretical understanding of their interactions and impacts (Section 3);
and (iii) the identification of research gaps and opportunities related to the implementation
of smart technologies and advanced computing methods in remanufacturing procedure in
industry (Section 4). Section 5 presents our findings and outlooks in the context of smart
manufacturing, followed by concluding remarks in Section 6.

2. Remanufacturing Literature Topic Analysis

A topic model is utilized to understand the underlying topics in remanufacturing re-
lated research. This approach enables us to understand the current state, underlying topics,
and trend of remanufacturing-related research. By mapping out the existing knowledge
base, we can better assess how advanced computational methods intersect with remanufac-
turing practices and pinpoint areas for further investigation and development. To ensure
a comprehensive and technically relevant literature review, we deliberately focused on
high-impact journals and peer-reviewed conference papers sourced from the Web of Science,
prioritizing sources that contribute to the understanding and development of remanufac-
turing systems. Our query, executed on 10 June 2024, utilized the keyword “remanufactur*”
(Topic), resulting in a collection of approximately 6000 articles related to remanufacturing.

Figure 2 illustrates the upward trend in remanufacturing-related publications over the
past 50 years, with a notably steeper increase since 2008. This surge indicates a significant
rise in scholarly interest and activity in the remanufacturing field, likely driven by advance-
ments in smart manufacturing technologies and an increasing emphasis on manufacturing
sustainability and global decarbonization goals. Since 2014, propelled by advancements in
information and communication technologies, there has been a clear, sustained increase in
the application of data-driven and AI/ML methods in remanufacturing research, with a
growth rate exceeding 30% annually, underscoring the field’s growing attention to and
methodological alignment in tackling remanufacturing challenges.
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Figure 2. Annual publication trends in remanufacturing (blue bars) and in AI/ML and data-driven
methods applied to remanufacturing (black solid line) over the past 60 years (as of July 2024).
Projected 2024 values for remanufacturing publications and AI/ML data-driven publications are
shown by grey bars and a dashed line, respectively. Source: Web of Science—Remanufacturing—
https://www.webofscience.com/wos/woscc/basic-research accessed on 10 July 2024.

To uncover the latent topics and their distributions within the collected remanufactur-
ing literature, we employed the Latent Dirichlet Allocation model [35], a widely recognized
technique for topic modeling, to the abstracts of all collected articles. Given the limited body
of literature specifically addressing AI/ML and data-driven methods in remanufacturing,
the topic model may have limitations in identifying themes within this smaller subset. Our
analysis seeks to clarify the dominating topics of remanufacturing-related research and
reveal potential avenues for understanding the synergistic effects of integrating ML and
data-driven methods with remanufacturing practices. Table 1 presents the results of the
model, which identified nine distinct topics across the collected 6000 articles. Each topic
was named based on the most frequently occurring terms in the associated articles to aid in
interpreting the thematic content. For instance, ‘Topic 0’ prominently features words such
as ‘closed_loop’ and ‘closed_loop supply chain’, leading to the topic name ‘Closed-Loop Supply
Chain’.

Table 1. Overview of identified remanufacturing topics based on their frequent keywords.

Index Topic Names Frequent Words

0 Closed-Loop Supply Chain ‘closed_loop’, ‘closed_loop supply chain’
1 Reverse Logistics ‘reverse’, ‘logistics’
2 Carbon Emission ‘carbon’, ‘emission’, ‘reduction’
3 Life Cycle Management ‘life_cycle’, ‘circular_economy’, ‘reuse’
4 Inventory Policy ‘inventory’, ‘policy’, ‘return’
5 Collaborative Business Models ‘retailer’, ‘third-party’, ‘manufacturer’
6 Process Optimization ‘disassembly’, ‘assembly’, ‘planning’
7 Repair Technologies ‘laser’, ‘cladding’, ‘coating’
8 Techno-Economic Assessment ‘economic’, ‘sustainable’, ‘company’

To further analyze the topics and their interrelationships, we used the t-distributed
Stochastic Neighbor Embedding (or t-SNE), which is a nonlinear dimensionality reduction
technique that can visualize high-dimensional data in a low-dimensional space. Figure 3
presents the topic distributions in a two-dimensional space to help understand the rela-
tionships in the data. The x- and y-axes of the plot represent new abstract coordinates
derived by the t-SNE algorithm. These 2-dimensional (2D) coordinates are not tied to any
specific features or values from the original data. Instead, they are designed to visualize
the high-dimensional topic labels in a lower-dimensional space. Each dot in the scatter
data represents an article, with the color of the dot indicating the corresponding topic

https://www.webofscience.com/wos/woscc/basic-research


Algorithms 2024, 17, 562 5 of 26

category. The distance between dots reflects the similarity of topics; dots of the same color
are typically located in close topic proximity, while the spatial arrangement of different
clusters indicates the degree of similarity among various topics.

Figure 3. Articles clustered by topics visualized in the 2D space across the collected 6000 articles.

By visualizing the topics and their interrelationships using the Latent Dirichlet Allocation
model, we identified key themes and areas of focus within the field and pinpointed where
advanced computational technologies may have the most impact, particularly in topics such
as closed-loop supply chain, reverse logistics, carbon emission, life cycle management, inventory
policy and process optimization. Additionally, the identified individual articles’ thematic
alignments, and how these themes interact and overlap within themselves underscore the
potential for collective advancements across various facets of remanufacturing through the
application of ML and data-driven methods.

3. ML and Data-Driven Models for Remanufacturing

ML and data-driven models leverage algorithms and statistical techniques to analyze
and interpret complex and high-volume data in many fields including manufacturing [36–39].
In remanufacturing, these technologies offer significant potential to enhance various aspects,
such as the automated sorting of a wide range of products, improving asset management,
facilitating real-time decision-making, and optimizing the entire product life cycle. These
technologies can deliver innovative solutions for sequence optimization, quality control,
and predictive analysis throughout remanufacturing processes. In this section, we present
a detailed summary of key ML and data-driven methods, including explanations of their
potential benefits for remanufacturing.

IIoT: By connecting industrial machinery and devices to data collection systems, cloud
platforms, and the internet, the Industrial Internet of Things (IIoT) supports extensive data
acquisition and real-time analysis across the manufacturing ecosystem [31,40,41]. For re-
manufacturing, IIoT facilitates fast and accurate asset tracking and inventory management
by providing detailed core histories and spare parts availability. Emerging sensing tech-
nologies allow accessibility by installing sensors on the inner structure of machines to
better understand the machine’s operational statuses [42] and support automation by al-
lowing machines to communicate and coordinate with each other [43], resulting in coherent
remanufacturing processes.
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Traceability: Traceability systems, such as digital product passports (DPP), track the
history, location, and status of products throughout their life cycle [44]. For the purpose of
remanufacturing, these tools provide detailed histories of cores, ensuring remanufactur-
ers can access all relevant information about previous repairs, modifications, and usage
conditions [45]. These data help in assessing the condition of returned EoU products and
determining the best remanufacturing approach. The systems also ensure compliance with
regulatory standards and build consumer confidence by offering transparency about the
origins of materials and processes involved in remanufactured products [46].

ML models: Supervised and unsupervised learning and reinforcement learning (RL)
technologies can analyze vast amounts of data to make informed decisions, optimize
processes, and predict future outcomes [47,48]. In remanufacturing, these technologies
enable predictive analytics to evaluate which parts will need remanufacturing, provide
dynamic planning for the timely streamlining of workflows, and support quality assurance
to ensure that remanufactured products meet stringent standards [49,50]. AI can also help
in designing and facilitating efficient remanufacturing processes by learning from historical
data and continuously improving process quality [42] and equipment healthiness [51]. Key
ML models applied in remanufacturing include neural networks, deep learning models,
and reinforcement learning algorithms as follows: (i) Neural Networks and Deep Learning
Models, such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, have found significant applications in remanufacturing. CNNs excel
in visual inspection tasks, enabling automated defect detection and quality control in
remanufactured products [52]. LSTM networks, with their ability to process sequential
data, are particularly useful for predicting equipment health and product life cycles, crucial
for optimizing maintenance schedules and remanufacturing timing [53,54]; (ii) RL models,
including Q-Learning, Deep Q-Network (DQN), and Proximal Policy Optimization (PPO),
have emerged as powerful tools for dynamic decision-making in remanufacturing processes.
These algorithms can optimize workflows, resource allocation, and adaptive quality control
processes, learning from continuous feedback to improve remanufacturing strategies over
time [55–57].

Data-Driven and Optimization Models: Data-driven and optimization models utilize
quantitative algorithms to enhance decision-making. These models include: (i) Graph-
based models, such as AND/OR Graphs [58,59] and Petri Nets [60], which provide a
framework for modeling complex remanufacturing systems and processes, especially in
HRC. These models are particularly effective in optimizing disassembly sequences, model-
ing production workflows, and task allocation within humans and robots; (ii) Mathematical
Programming Models, including Convex Optimization [61], Linear Programming (LP) [62]
and Nonlinear Integer Programming (NLIP) [63,64], offer robust solutions for complex
planning and scheduling problems; (iii) Meta-Heuristics are optimization methods de-
signed to generate or select heuristics that provide sufficiently good solutions to complex
optimization problems [65,66]. In remanufacturing, meta-heuristics, such as the Genetic
Algorithm (GA), Bees Algorithm (BA), and Particle Swarm Optimization (PSO), can be
used to solve intricate problems related to scheduling, resource allocation, and process
optimization [67]. These techniques are particularly useful when dealing with multiple
objectives [68] and dynamic remanufacturing environments [69]; (iv) Probabilistic Models,
including Monte Carlo simulation [70] and Markov chains [71], play a crucial role in model-
ing uncertainty and stochastic processes inherent in remanufacturing. These models assist
in assessing risks, and optimizing decision-making under uncertainty, which is essential
given the variable nature of returned products in remanufacturing.

It is important to highlight advanced manufacturing technologies that can provide
additional opportunities that could be synergized with the aforementioned algorithms to
further enhance remanufacturing processes. Immersive technologies like VR and AR could
enhance remanufacturing by providing real-time, detailed visualization and simulation,
thereby improving training, design, and troubleshooting processes. VR simulates complex
scenarios, while AR assists in assembly, disassembly, and maintenance activities by over-
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laying digital information onto the physical world, thus enhancing accuracy and reducing
training time [72]. Cobots work alongside humans to increase productivity, precision,
and safety by handling automated disassembly, cleaning, and reassembly tasks. Cobots
are versatile and can be programmed for various tasks, thereby reducing injury risk and
ensuring consistent quality in remanufacturing operations [73].

4. Literature Review

In this section, we aim to gain a comprehensive understanding of the field and identify
research gaps and opportunities by providing a literature review on the synergies between
data-driven and ML methods in remanufacturing. We systematically sorted the literature
by matching identified remanufacturing topics in Table 1 with advanced computational
methods, as summarized in Table 2. First, we examined the application and associated
impacts of the IIoT on life cycle management and closed-loop supply models, emphasiz-
ing how these technologies facilitate data-driven decision-making in support of circular
economy initiatives (Topics 0–4 in Figure 2). Next, we discuss the potential of optimization
and ML techniques to enhance dynamic scheduling and HRC within remanufacturing
processes (Topic 6), enabling optimized decision-making amidst uncertainties. Finally, we
present our review work on utilizing ML models to understand and manage the quality of
remanufacturing processes and products, addressing Topics 6–7.

Figure 4 provides a comprehensive overview of the interactions between machine
learning (ML) and data-driven models within remanufacturing tasks, highlighting their
connections to life cycle management, scheduling and planning, quality control, and HRC.
These areas are supported by a variety of ML and data-driven models, ranging from neural
networks to probabilistic approaches. Each model is associated with specific tasks in
remanufacturing research, as identified in our literature review.

Figure 4. Machine learning and data-driven models and their role in remanufacturing. Abbreviations:
CNN—Convolutional Neural Network, LSTM—Long Short-Term Memory, DQN—Deep Q-Network,
PPO—Proximal Policy Optimization, LP—Linear Programming, NLIP—Nonlinear Integer Program-
ming, GA—Genetic Algorithms, BA—Bees Algorithm.
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Table 2. Applications of machine learning and data-driven models in key remanufacturing topics.

Topics Applications Algorithms Key Findings

Life cycle
management

Cylinder heads [44], Energy
labeling [46], Aerospace
blades [74], E-waste [75],
Battery [76,77], Automated
vehicle [78], Engine [79]

IIoT [74], Life cycle assessment
(LCA) [80], Cobot [77], Digital
Twin [78,79], Digital
Passport [44–46,75,76]

• Real-time monitoring systems with IIoT and
DT enhance the precision, efficiency and
success rates of recovering high-value
components and materials, thereby
contributing to extending product life cycles.

• Digital twins and predictive analytics can
help forecast EoL scenarios, support
proactive maintenance, and ensure that
products are effectively remanufactured
or recycled.

Reverse logistics

Manufacturers [45],
Engine [81], Tactical
decisions [82], Solid
waste [83], Laptop [84]

Digital passport [45], Digital
Twin [81,82], IIoT [81,83,84]

• Digital tools like RFID and cloud-based
systems enhance traceability in reverse
logistics, minimizing uncertainties in
product returns and waste collection.

• The integration of advanced technologies
supports dynamic management of stochastic
demand and material flows, leading to more
efficient reverse logistics.

Carbon emission Food supply chain [85,86],
Wind turbine [87]

IIoT [85–87], LCA [80,86],
Blockchain [80]

• Integrating LCA with emerging technologies
such as IIoT and Blockchain enables accurate
real-time monitoring.

• IIoT, smart sensors and Blockchain can
reduce carbon emissions by optimizing
resource utilization, but the energy required
for their production and disposal might
introduce additional emissions, necessitating
a balance in these trade-offs.

Closed-loop supply
chain

Manufacturers [45], Food
supply chain [85,86], Wind
turbine [87], A manufacturing
facility [80], Information
technology [88],
Smartphone [89], Battery [90],
Trade-in policy [91]

Digital passport [45], IIoT [85–92],
LCA [80,86], Blockchain [88,91]

• Digital integration in the supply chain
facilitates better tracking of product returns
and efficient materials management,
contributing to the overall sustainability of
the supply chain.

• Successful closed-loop supply chains require
improved collaboration among stakeholders,
which could be supported by digital
platforms that enable data sharing
and coordination.

Process optimization

Acquisition
strategy [61–64,93–96], Price
optimization [97], Process
planning [98], Sequence
planning [70,99,100], Job shop
scheduling [55,101], Carbon
footprint [102], System
control [56,57,103,104]

Convex Optimization [61],
Nonlinear programming [63,64],
Linear programming [62], Monte
Carlo simulation [70], GA [101],
BA [28,100], Deep
Q-learning [55,57], PPO [56,103],
Root cause analysis [105], Deep
belief networks [106]

• Data drive models and ML can help
optimize remanufacturing processes through
integrating production, planning,
and process control mechanisms.

• Smart technologies reduce human errors,
eliminate individual subjectivity and
contribute towards efficient
resource utilization.

Repair technology Process control [107–109],
Sorting [105]

RL [32], CNN [105], Transfer
learning [106], Gaussian process
regression model [107]

• Advanced computational algorithms help
devise efficient inspection strategies that
play a key part in remanufacturing.

• ML assists in continuous improvement and
enhances quality assurance through
establishing and maintaining product and
process key characteristics.

HRC

Assembly [59,60,71,110–112],
Quality inspection [58,113],
Disassembly [28,70,99,114–121],
Remanufacturing [95,100]

AND/OR graphs [58,59],
Fuzzification [70], BA [28,99,100],
PSO [118],
Optimization [115–117,120,122],
Transfer learning [121],
RNN [111,113], Markov
Chains [71], Petri Nets [60],
RL [112]

• Balancing of different objectives is essential
in HRC

• The selection of algorithms varies based on
the specific problem types and
remanufacturing applications.
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4.1. Life Cycle Management

Digital technologies, such as the IIoT, digital twins, and cyber-physical systems, are cru-
cial for implementing data-driven and ML models and for optimizing various facets of the
remanufacturing, including process quality control, operational efficiency, LCA, and supply
chain management. IIoT techniques facilitate data collection, storage, and analysis, and real-
time monitoring, thereby enhancing the visibility and management of the remanufacturing
process and the entire life cycle [81]. One study found that integrating machine vision
systems and IIoT techniques into aerospace remanufacturing significantly enhances the
process by enabling intelligent sensing, real-time data acquisition, and advanced mon-
itoring systems, resulting in higher repair yields, reduced human error, and improved
operational safety [74]. Adopting data-driven decision-making in remanufacturing reduces
costs, optimizes operations, and enhances quality through real-time insights and predictive
analytics [77].

Cyber-physical systems and digital twins create real-time, digital replicas of physical
processes, aiming to strengthen synchronization, efficiency, and predictive capabilities
across the entire remanufacturing system [123]. A proposed control mechanism based
on big data analysis, incorporating cyber-physical systems and digital twin techniques,
aims to mitigate uncertainty in remanufacturing using real-time perception and predictive
optimization [78]. Moreover, a digital twin model enhanced with a neural network and
the Bees Algorithm (BA) for real-time data-driven decisions was presented to optimize
remanufacturing planning [79]. Figure 5 presents a proposed conceptual framework to
integrate data across the various stages of life cycle management [124].

Figure 5. Conceptual framework for integrating big data into product life cycle management (taken
from [124]).
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The framework includes four major components: data sensing and acquisition, data
processing and storage, model development and data mining, and big data application for
product life cycle management. The data sensing and acquisition phase gathers information
from various life cycle stages through product-embedded devices such as Radio Frequency
Identification (RFID) tags and smart sensors, enabling real-time tracking of the status of
products, materials and machines. The data processing and storage phase handles the
collected data using distributed systems such as Hadoop and Storm, allowing for real-time
and non-real-time data analysis and storage. The model development and data mining
phase creates models to extract knowledge from big data, including both general models
(such as classification, clustering and prediction) and specific models tailored to tasks like
enhancing product development and optimizing manufacturing processes. The big data
application for product life cycle management phase utilizes the analyzed data to support
real-time decision-making, enabling efficient production, logistics and maintenance [124].

Figure 6 illustrates a conceptual model from [125] that integrates IIoT concepts into
remanufacturing, establishing a framework for real-time information capture and integra-
tion, aiming to facilitate the implementation of data-driven production scheduling on the
shop floor [125]. Digital technologies have contributed significantly to LCA methodolo-
gies and environmental impact evaluations. LCA is an effective method for measuring
the environmental impacts of a system throughout its entire life span [126]. The envi-
ronmental benefits of smart sensors in reducing food loss were assessed using an LCA
model, which highlighted the need to manage potential environmental burdens from sen-
sor manufacturing and disposal for overall sustainability [85]. Zhu et al. introduced a
novel four-layer LCA framework integrating IIoT technology to improve real-time data
collection and monitoring, demonstrated through a wind turbine case study [87]. Addi-
tionally, Zhang et al. developed a new LCA model incorporating blockchain, IIoT, and big
data analytics to enhance the efficiency and reliability of LCA, improving data integrity
and decision-making [80]. Figure 7 illustrates a multi-level blockchain-based LCA system
designed in [80] that connects the manufacturing infrastructures and activities at different
stages with a diverse range of applications and users. Moreover, an open-source LCA
tool utilizing IIoT to track food quality and assess environmental impacts across multiple
stages of the food supply chain was also introduced [86]. Digital technologies have been
applied to waste management, playing a critical role in improving product design for
remanufacturing. Waste streams of automotive products were analyzed to support product
design that facilitates remanufacturing [127] and to determine factors that impede the reuse
of parts [128]. Wang et al. introduced WRCloud, a novel service-oriented remanufacturing
platform based on cloud manufacturing principles, designed to improve interoperability,
intelligence, and adaptability in managing waste electrical and electronic equipment [129].

IIoT is crucial for advancing data acquisition and sharing throughout various closed-
loop supply chain stages and remanufacturing processes [130]. AI and blockchain tech-
nologies can strengthen supply chain resilience and sustainability by facilitating operations
such as just-in-time manufacturing, streamlined automation, and remanufacturing [88].
Additionally, Pan and Miao presented a model for assessing risks in closed-loop supply
chains for remanufacturing using neural networks to improve risk assessment accuracy
and supply chain management [92]. Yu proposed a novel mathematical model to assist
decision-making in reverse logistics for remanufacturing and discussed the impacts of
IIoT technology on remanufacturing companies [82]. Innovative approaches in closed-
loop supply chain management leverage digital technologies to enhance efficiency and
sustainability. For instance, a closed-loop supply chain model utilizing IIoT data has been
proposed to optimize the life cycle of products, focusing on EoL recovery processes, includ-
ing cost and demand for remanufacturing [89]. Similarly, Tavana et al. designed a circular
supply chain network for handling electric vehicle lithium-ion batteries, leveraging IIoT
and big data technologies to address uncertainties and enhance overall management effi-
ciency [90]. The integration of IIoT with a kanban system has enabled real-time monitoring
and dynamic scheduling in reverse logistics, improving waste collection and recycling pro-
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cesses [83]. Additionally, Tozanlı et al. investigated trade-in strategies within closed-loop
supply chains, optimizing disassembly decisions through simulations integrated with IIoT
and blockchain technologies [91]. The use of embedded IIoT devices to evaluate product
designs for EoL recovery helps determine the most effective designs for remanufacturing,
increasing profitability and reducing waste [84].

Figure 6. IIoT-integrated scheduling model for engine remanufacturing (adopted from [125]).

The acquisition and collection of cores depend not only on customers and usage
history as identical products can be different in quality [131]. A DPP can enhance the
acquisition and collection of cores by providing detailed, real-time data on product history
and condition, which improves the predictability of recovery processes and differentiates
between varying quality levels [132]. Plociennik et al. introduced a Digital Life Cycle
Passport, utilizing a cloud-based platform and the Asset Administration Shell, which
enabled comprehensive data sharing across the product life cycle, as described in Figure 8.
This was exemplified by an e-waste sorting case study that showcased its potential to
automate and optimize sorting decisions [75]. Adisorn et al. also explored the role of
DPPs as a policy tool for supporting a circular economy, emphasizing their capacity to
provide critical product-related information to stakeholders throughout the product life
cycle [46]. Additionally, Berger et al. identified key information requirements for Digital
Battery Passports, including specifications, diagnostics, and maintenance data, which
were essential for managing and making decisions throughout the electric vehicle battery
life cycle [76]. Jensen et al. further detailed the data needs for DPPs to enhance circular
supply chain management, identifying seven crucial data clusters through a mechatronics
case study [45]. Szaller et al. investigated the impact of DPPs on information sharing in
remanufacturing processes, demonstrating that increased information availability through
DPPs reduced production uncertainties, lowered non-productive time, and improved the
remanufacturing ratio [44].
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Figure 7. LCA system utilizing blockchain technology (taken from [80]).

Figure 8. Data management via the digital life cycle passport (DLCP) (modified from [75]).
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4.2. Scheduling and Planning

Effective scheduling and planning are essential for remanufacturing management as
they ensure optimal resource allocation, minimize downtime, and enhance overall opera-
tional efficiency. To address the challenges of process complexity and demand uncertainties,
data-driven optimization and RL models have been developed. Various types of uncertain-
ties impact the scheduling and planning of the remanufacturing process. The most studied
uncertainty is the quality of returned cores [55,61,62,93–95,97,98,103], which significantly
impacts the remanufacturing process requirements, resource needed, and cost estimates.
Another crucial uncertainty is the disassembly time [70,99,101,102], which affects process
planning and resource management. Additionally, uncertainties related to the cores and
demands [93,94,96] affect production planning and inventory management, with variations
arising from differences in core return timing and quality [61,63]. Furthermore, reman-
ufacturing failure rates [55,101,102] are crucial for robust process planning and quality
assurance. While these uncertainties are well documented, others like the resources needed
for remanufacturing [63], are less discussed.

ML and data-driven models are powerful tools to address the challenges in scheduling
and planning, particularly through meta-heuristic, mathematical optimization, and RL
techniques. Mathematical optimization techniques are utilized to maximize profit and
minimize costs in scheduling and planning in remanufacturing. These methods typically
target optimizing acquisition qualities and quantities, remanufacturing decisions, and re-
source allocation. For instance, Yang et al. formulated a convex optimization, an extended
multi-product Newsvendor Problem, to maximize overall profit [62]. Similarly, a nonlinear
integer programming (NLIP) model was developed to minimize the total cost of acquisition,
remanufacturing, and scrapping of cores [63]. Other data-driven approaches integrate with
linear programming to maximize total profit [62], applying nonlinear programming models
considering carbon emissions [64]. The objectives of these models are often costs, revenue,
and environmental benefits. Meta-heuristic techniques address complex, multi-objective
optimization problems in scheduling and planning. Examples include a modified discrete
BA for disassembly sequence planning [100], and an improved discrete BA for workstation
optimization [28]. Zheng et al. proposed a GA combined with an improved random
forest classifier to intelligently select the optimal rescheduling method based on system
status, as shown in Figure 9. The system status is characterized by factors such as machine
utilization, job processing times, and the total time required for reworked operations [101].

RL has proven to be effective in handling uncertainties in remanufacturing, such as
the quality of returned products, machine failures, and varying initial states. Bai et al. used
Q-learning and DQN algorithms to minimize total production time, continuously adapting
to dynamic conditions [55]. Wurster et al. dynamically controlled a hybrid disassembly
system, consisting of various types of stations, using DQN to minimize labor costs, idling
costs, makespan, and failures [57]. Paschko et al. dealt with the control of job release in a
hybrid disassembly line, minimizing work in progress and maximizing throughput using
PPO [56]. Peng et al. employed PPO to optimize disassembly scheduling and minimize
makespan, utilizing the strength of RL to adapt to various uncertainties and improve
decision-making over time [103].

Hybrid approaches that combine multiple algorithms have also demonstrated effec-
tiveness. For example, one study integrated fuzzy dynamic modeling and Monte Carlo
simulations with RL for robotic disassembly optimization [70]. The combination of different
techniques holds significant potential for developing robust and adaptive systems capable
of navigating the dynamic landscape of remanufacturing scheduling and planning. Future
research could focus on further integrating these approaches to leverage their respective
strengths and address increasingly complex challenges in remanufacturing.
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Figure 9. Flowchart of adaptive (re)scheduling strategy (taken from [101]).

4.3. Quality Control

Quality control in remanufacturing involves assessing and validating the condition of
returned components or remanufactured products to ensure they meet specified standards
before reprocessing or market release. Remanufacturing models in the literature often
assume quality to be homogeneous; however, it has wide variations due to customer
usage, usage length, and special product characteristics [133]. These variations make
inspection processes in remanufacturing labor-intensive and time-consuming. Advanced
computational methods, such as object detection and defect identification, can aid in
evaluating the condition, reusability, and quality grade of returned cores, addressing the
high uncertainty and subjective bias associated with manual assessments [134]. In this
section, we review and categorize the literature on the use of data-driven and ML methods
for automating remanufacturing quality control. These technologies help overcome issues
related to individual subjectivity, time constraints, and high labor costs by excelling in
learning complex geometries and patterns [135].

Kaiser et al. highlighted the challenges of high uncertainty in the inspection pro-
cess related to cores and addressed these by utilizing RL models to capture cores, and an
unsupervised learning model for anomaly detection [32], as demonstrated in Figure 10.
The figure demonstrates the model capability of handling uncertainty in remanufacturing
through its adaptable architecture. As shown in the figure, the model starts with process-
ing, comparing the core’s expected and inspected conditions. Deviations are flagged for
review. Sensors capture data during the perception stage, which the quality controller
analyzes for defects. Finally, during decision-making, the system decides if the core is
reusable or should be rejected, automating the entire inspection process. Few-shot learning
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techniques were employed to categorize anomalies and to precisely assess the core’s quality
grade [32]. Nwankpa et al. presented a novel inspection process with a deep convolution
neural network for mild steel plates to detect eight fault conditions and their combina-
tions [105]. The high accuracy of the model on a small dataset demonstrated its robustness
and efficiency, making it an ideal solution for smart inspection strategy in remanufacturing.

Islam et al. presented an automated sorting system utilizing a smart conveyor with
multiple cameras, reflective sensors, and a PC running Python applications. It leverages
inception transfer learning for image classification and the YOLO model for object detection,
ensuring robust and high-accuracy identification and sorting of remanufacturing parts
through the combination of classifiers [106]. Mongan et al. used a Gaussian process regres-
sion model to predict the performance of ultrasonically welded joints and unanticipated
process variation based on the process inputs and feedback (integrated sensor data) [107].
The proposed method, capable of detecting process variations and anomalies, has proven
effective in both manufacturing and remanufacturing environments. It enhances quality
control by identifying anomalies throughout operations and enabling informed decisions
regarding the reusability and remanufacturability of cores and parts.

Figure 10. A scheme of core condition assessment through image and point cloud analysis, detecting
quality deviations like corrosion or missing parts, which are then compared to expected conditions to
determine reusability and quality grade (recreated from [32]).

In addition to implementing an effective inspection strategy for cores and reman-
ufactured products, it is crucial to monitor various processes within remanufacturing
operations. Statistical process control is a valuable tool for achieving process stability and
reducing variability [136]. It facilitates continuous improvement and enhances quality
assurance throughout the operations [137], which can be significantly augmented by ML
models. ML excels in pattern recognition, allowing control charts to detect complex pat-
terns, automate root cause analysis, and examine relationships between process data [108].
The integration of AI and ML into remanufacturing process control ensures adherence to
high quality and standards. Moreover, the remanufacturing time of the equipment also
influences quality standards and the economic effectiveness of remanufacturing decisions.
Wang. et al. proposed a deep belief networks model to predict the optimal remanufac-
turing time by analyzing the historical equipment multi-life cycle and cost composition
data [109]. The integrated automated inspection, condition monitoring and optimized plan-
ning and production can make the remanufacturing and maintenance plan more efficient
and cost-effective [138].

In remanufacturing, it is necessary to define an optimal inspection plan following the
identification of critical-to-quality parameters—key product characteristics (KPCs) and
key control characteristics (KCCs) [139]. Product characteristics may be categorized into
standard and key product characteristics. KPCs dictate quality parameters that could be
determined through quality engineering tools and techniques such as Quality Function
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Deployment, Failure Mode and Effects Analysis, Design for Manufacture and Assem-
bly [140]. KCCs are established to precisely control them within specified limits to check
variability within the processes to maintain both the process and KPC target values [141].
The remanufacturing scenario presents a complex challenge regarding the efficiency and
effectiveness of inspection owing to the products designed and manufactured by some
third-party enterprises and the high variability in the core inputs [142]. ML and data-driven
models offer significant potential to improve parameter evaluation and maintain inspection
efficiency in complex and variable remanufacturing scenarios [143].

4.4. HRC

HRC in remanufacturing enhances productivity and precision by merging human
dexterity and decision-making capabilities with the consistency and strength of robots. This
synergy not only boosts efficiency and adaptability to uncertainties but also holds promise
for effectively managing process complexities and uncertainties in product disassembly,
component inspection, and reassembly through the strategic allocation of tasks between
humans and robots/cobots. This synergy forms effective teams with unique capabilities
in operational tasks, information perception, and learning [144]. HRC enhances precision
and adaptability in assembly [110], integrates human expertise with robotic sensing in
inspection [58], and addresses the unpredictable challenges of disassembly. While full
automation is often impractical, HRC enables efficient task distribution between humans
and robots [114]. This approach addresses the unpredictable nature of returned products
while balancing workload and economic outcomes. However, implementing HRC in
remanufacturing systems faces challenges ranging from technological integration to worker
adaptation and process changes [114].

In HRC for remanufacturing, process planning objectives include human-related fac-
tors alongside traditional profit-oriented goals like minimizing disassembly time, cost,
and workstation numbers [28,59,70,95,99,100,115–118,122]. While efficiency remains cru-
cial, its definition shifts in HRC scenarios. Instead of focusing solely on throughput and
resource utilization, efficiency in HRC emphasizes optimal task allocation between humans
and robots [28,59,100,115–118,122]. This addresses the challenges of workload distribution
in manual and automated operations, as noted by [114]. Unique to HRC are objectives re-
lated to worker well-being, including human fatigue, safety, and workload [59,115–117,122].
These human-centric considerations are crucial in HRC scenarios, recognizing the impor-
tance of worker well-being and safety in the remanufacturing process. Environmental
factors such as energy consumption are sometimes considered [59], further expanding the
multifaceted nature of HRC in remanufacturing planning and scheduling. Balancing these
diverse objectives makes optimal task allocation between humans and robots a central
research question in HRC for remanufacturing.

ML and data-driven methods drive the utilization of HRC to enhance the efficiency
and quality of remanufacturing processes. For example, Belhadj et al. conducted an
extensive product analysis based on a CAD file to customize suitable operations for each
returned core [119]. This has been extended to access the properties, complexity of parts and
tool requirements [120]. Connecting elements are often of particular interest because their
detachment affects the complexity and forces required for a remanufacturing operation,
which, in turn, influences whether a task is best performed by a human or a robot [121].
To effectively allocate tasks in inspection, Karami et al. propose an AND/OR graph-based
approach, improving efficiency by enabling parallel operations like simultaneous retrieval
and inspection, allowing human intervention for issue management [58]. Another study
implemented a voice-controlled collaborative inspection system where robots performed
AI-powered visual inspections of predefined areas while humans provided oversight
and performed parallel tasks, reducing the cycle time by 33.4% compared to manual
inspection [113].

While the remanufacturing literature rarely focuses specifically on reassembly, re-
search on general assembly has identified various ML and data-driven approaches for task
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allocation in HRC. Traditional methods such as Markov chains [71] and Petri nets [60] have
been successfully applied, showing significant improvements in efficiency and cycle times.
Figure 11 shows an exemplary workflow of HRC for disassembly designed to flexibly and
efficiently complete the disassembly process in remanufacturing [100]. The disassembly
process begins with establishing a model to define the disassembly precedence of products,
allowing the generation of feasible disassembly sequences. Disassembly tasks are then clas-
sified, and the disassembly sequence for the robot and operator is optimized and evaluated
based on time, cost, and difficulty [100]. Specifically, a prediction mechanism is employed
to infer the human’s current activity and anticipate their next assembly steps. The results
from this algorithm are then fed into a scheduling algorithm, enabling the robot to deter-
mine its actions in a way that is both assistive and productive. Deep learning techniques
like LSTM have been employed for multimodal recognition of subtasks in collaborative
human–robot tasks [111]. Additionally, RL approaches have shown promise in adaptive
task scheduling for interactive HRC assembly processes [112].

Figure 11. The workflow of HRC for disassembly (taken from [100]).

5. Discussion

The literature analysis reveals that integrating data-driven and ML models advances
remanufacturing systems by enabling real-time monitoring, enhancing quality control,
and facilitating dynamic scheduling, thereby supporting circular economy initiatives.
Leveraging advanced sensors and connectivity, the IIoT and DPP enable comprehensive
data collection and analysis across various stages of the remanufacturing process. Data-
driven models derived from IIoT data play a vital role in supporting LCA and closed-
loop supply chain management. They provide a thorough evaluation of environmental
impacts throughout the product life cycle and aid in making informed decisions to promote
sustainability. This capability provides critical insights into operational performance and
product life cycle management. It is particularly effective in addressing uncertainties
associated with the timing, quality, and quantity of returned parts, which significantly
impact inventory control, product design, and production planning for remanufactured
products [145].

Advanced ML techniques, such as deep learning and RL, further refine this process by
enabling precise defect detection, anomaly management, and dynamic scheduling, thereby
addressing uncertainties and improving operational effectiveness. For example, CNNs and
YOLO models can be used in automated quality inspection systems to analyze images of
remanufactured components, detecting defects with high accuracy, reducing inspection
time, and ensuring consistent adherence to quality specifications. Predictive analytics can
forecast potential failures, allowing for preemptive interventions that minimize operational
disruptions and associated costs. RL optimizes dynamic scheduling and operational
strategies to address uncertainties effectively. These advanced techniques not only improve
operational effectiveness but also ensure that remanufactured products meet high standards
of quality and reliability.

From the literature review, it is understood that, despite their advantages, the imple-
mentation of data-driven and ML methods in remanufacturing presents several challenges
and may require the comprehensive adoption of smart manufacturing technologies. Smart
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manufacturing technologies utilize cutting-edge solutions, such as the IIoT, AI, ML algo-
rithms, advanced sensor networks, and cyber-physical systems, to create digital simulations
of production processes, manage computer-controlled equipment, and track and report real-
time production data [146]. ML and data-driven models, as part of smart manufacturing
techniques, support predictive maintenance, and analytics, enabling more accurate control
and optimization of manufacturing processes [147]. Existing studies have discussed smart
manufacturing in support of environmental sustainability. Huang et al. reviewed the litera-
ture on Industry 4.0, emphasizing its potential to enhance manufacturing sustainability
through interconnected, smart technologies. The review examines how internet-connected
machines and sensors improve productivity, energy efficiency, and environmental impact
by optimizing processes and reducing waste [37]. Sutherland et al. reviewed recent re-
search on the environmental impacts of industrial activities, focusing on work from the
past 10–20 years, organizing their findings around the product life cycle and key topics in
environmental impact [148]. Their review also systematically summarizes challenges in
design, process improvement, and material efficiency within the framework of a circular
economy, all within the context of Industry 4.0 advancements [148]. Kara et al. reviewed the
evolution of emerging information and communication technologies to enhance material
efficiency and environmental sustainability, adopting a holistic approach that redefines
human–nature relations within planetary boundaries [149]. In this study, we further investi-
gate the opportunities offered by smart manufacturing in remanufacturing, as illustrated in
Figure 12, emphasizing how the integration of data-driven and ML methods with advanced
manufacturing technologies can significantly enhance remanufacturing practices.

Figure 12. Future research directions in using smart manufacturing technologies for remanufacturing.

Developing smart manufacturing methodologies for dynamic LCA is essential for
providing real-time feedback on the environmental impacts of remanufacturing processes.
Identifying effective methods for measuring and reducing carbon emissions, as well as cre-
ating new LCA frameworks that capture the long-term benefits of remanufacturing across
multiple life cycles, is crucial. Digital manufacturing technologies significantly enhance
remanufacturing processes by enabling dynamic LCA that provides real-time feedback
on environmental impacts, allowing for immediate adjustments to improve sustainability.
These technologies also support the development of multi-cycle LCA frameworks, which
accurately capture the long-term benefits of remanufacturing across multiple product life
cycles. Additionally, life-cycle data-driven scheduling and management optimize pro-
cesses by leveraging detailed insights into product histories to improve efficiency and
decision-making. Moreover, digital tools play a crucial role in reducing carbon emissions
by identifying and mitigating inefficiencies in processes and logistics, contributing to more
environmentally responsible remanufacturing practices.

For remanufacturing system automation, it is important to balance conflicting objec-
tives, such as profit maximization, cost reduction, environmental benefits, and adaptability
to real-time changes and uncertainties. Furthermore, enabling robots to effectively learn
from human operators and developing adaptive robotic support systems tailored to indi-
vidual worker’s skills, work styles, and ergonomic needs are critical. Additionally, using AI
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and ML in remanufacturing presents several significant challenges. One key challenge is the
curation of data. Unlike in other manufacturing applications where data are often assumed
to be complete due to the continuous monitoring and collecting from mass production lines,
remanufacturing deals with highly heterogeneous data spanning a wide range of temporal
scales, core specifications, and process requirements. This diversity makes it extremely
difficult to align and fuse data to build the necessary context for effective AI analysis.

The explainability of results is another critical issue, as many AI models, particularly
complex ones, operate as “black boxes”, making it difficult to interpret their decisions and
ensure they align with industry standards and expectations. The environmental impact
of training is also a concern, as training sophisticated AI models can require substan-
tial computational resources, leading to significant energy consumption, substantial data
computing/storage costs, and a larger carbon footprint. Finally, model customization
for returned products and processes poses a challenge. AI systems need to be tailored
to handle the variability and complexity of returned items and diverse remanufacturing
processes, which can vary greatly in terms of quality and characteristics. Addressing these
challenges is essential for effectively integrating AI and ML into remanufacturing. To ad-
dress remanufacturing challenges, cohesive models should integrate automated inspection,
production planning, and time prediction, with a focus on low data storage and computa-
tional efficiency to support enterprises in different scales. Research may also target effective
predictive maintenance methods, anomaly detection algorithms, and model architecture
design and optimization to customize models for diverse products and processes.

Applying digital technologies to remanufacturing could focus on exploring innovative
business models that enhance economic competitiveness while offering societal benefits.
These models might leverage the circular economy by promoting closed-loop manufac-
turing practices, helping to reduce waste, conserve resources, and create sustainable jobs.
Additionally, research could aim to optimize reverse logistics through digital solutions,
potentially improving the efficiency of handling returned products by refining inventory
management, reducing transportation costs, and enhancing product quality control. Such
efforts could be important for demonstrating the economic and environmental benefits of
closed-loop manufacturing, thereby increasing its attractiveness and encouraging broader
industry adoption. Moreover, future studies could consider using life cycle data to further
refine process optimization and emphasize economic advantages, while also considering
the broader economic, environmental, and social benefits of closed-loop supply chains
in remanufacturing.

The potential of integrating data-driven and ML methods into remanufacturing ex-
tends well beyond the computational techniques examined within the smart manufacturing
framework. The advent of emerging advanced manufacturing technologies, when cou-
pled with these data-driven and ML methods, unveils opportunities that remain largely
untapped. Additive manufacturing (e.g., 3D-printing) offers significant benefits for reman-
ufacturing by enabling the rapid repair of damaged components and the production of
custom parts on demand [150,151]. This technology allows for precise material deposition
and can create complex geometries that traditional manufacturing methods cannot easily
achieve, potentially reducing lead times and lowering costs. Laser cladding, another ad-
vanced technology, provides a method for adding material to worn or damaged surfaces
with high precision, restoring parts to their original dimensions and enhancing their per-
formance [152]. Significant challenges involve addressing material compatibility issues
in advanced manufacturing processes, overcoming barriers to fully automating reman-
ufacturing systems. Data-driven models enhance this process by accurately predicting
material properties and optimizing process parameters, while ML supports the customiza-
tion and personalization of parts and improves quality control through real-time defect
detection [153]. Together, these integrated approaches hold great promise for advancing
the efficiency and sustainability of remanufacturing processes.
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6. Conclusions

In this study, we investigated the integration of data-driven and ML technologies
into remanufacturing processes to improve both operational efficiency and sustainability.
Our findings highlighted how technologies such as the IIoT and DPP facilitate real-time
monitoring, thereby supporting real-time LCA and closed-loop supply chain manage-
ment. We further explored advanced ML techniques for precise defect detection, anomaly
management, and process optimization. Additionally, we evaluated the impact of dy-
namic scheduling and HRC on mitigating uncertainties in remanufacturing. This research
review effort not only identifies key gaps and challenges but also uncovers opportuni-
ties for advancing remanufacturing practices through advanced computational methods
and smart manufacturing technologies, emphasizing their potential to deliver economic,
environmental, and societal benefits.

Future work should focus on providing clearer categorizations of the challenges and
pros and cons of ML and data-driven methods in remanufacturing, along with guidelines
for selecting the most effective AI techniques for specific problems. Additionally, sum-
marizing and comparing various AI applications in remanufacturing, providing practical
examples of AI adoption in remanufacturing, would also be valuable for industry practition-
ers and researchers. Furthermore, future research should also explore the human-centric
benefits of advanced computational algorithms and smart manufacturing technologies, con-
sidering not only personal well-being but also higher-level human needs, such as personal
growth and self-actualization. This approach will ensure that advanced computational
algorithms contribute positively to the workforce and create broader societal benefits.
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