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ABSTRACT
As global trends like individualisation continue to drive significant changes in industrial production
within international networks, it has become increasingly crucial for companies tomaintain compet-
itiveness through the efficient utilisation of resources. The rising complexity in production networks
originates from an increasing number of constraints due to company-specific requirements, cou-
pled with expanding networks that broaden the solution space, ultimately leading to prolonged
planning processes. Furthermore, current planning tasks are predominantly performed manually,
as the extensive efforts required for data acquisition often render the use of solution algorithms
infeasible due to incomplete or inaccurate data. Therefore, this study explores robust planning of
production networks, employing Monte–Carlo simulation and clustering for scenario generation,
stochastic modelling concepts to tackle the mathematical problem, and utilising DT concepts for
data integration at the network level.
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Introduction

Product lifecycles in industries such as microprocessors,
consumer electronics, personal computers, and auto-
motive have become increasingly short in recent years
(Becker, Stolletz, and Stäblein 2017). This has resulted
in an increase in product variety and a higher num-
ber of production ramp-ups. Combined with increasing
competition from new competitors in developing mar-
kets, this has resulted in a need for companies to reduce
manufacturing costs by distributing production activities
globally.

However, the constantly changing range of product
variants and shortened product lifecycles contrast with
the long-term and irreversible nature of network plan-
ning decisions. Thus, product-mix allocation (PMA),
which means allocating products to global production
network (GPN) entities while utilising and adapting
global production structures and capacities is a com-
plex task for companies. In real-world environments,
production planning must therefore consider different
sources and resulting influences of uncertainties (Table 1
– Requirement R1) such as the nondeterministic nature
of demand. This nondeterministic nature has increased
in recent years due to different global developments
(Matthews et al. 2022). Accordingly, optimal supply
chain and production configurations change for different

CONTACT Moritz Hörger moritz.hoerger@kit.edu wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12,
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realisations of demand (Govindan and Fattahi 2017).
The predominant method used to quantify diverging
demand in industries is scenario analysis. Therefore,
extreme scenarios (best-/worst case) of the scenario fun-
nel are usually depicted for ease of understanding for
planners. The advantages of quantitative scenario anal-
ysis lie in the possibility of covering more extensive parts
of the future space and thus increasing the robustness of a
plan. The disadvantages compared to qualitativemethods
lie in the required probability estimates, the difficulty of
explaining the results, and the high number of scenarios
(Kosow and Gassner 2008).

As a promising strategy to cope with these uncer-
tainties, companies tend to implement flexibility in their
GPN (Table 1 – Requirement R2). Using flexibility poten-
tials, e.g. redundancies like capacity buffers or flexibil-
ity strategies like multiple sourcing, flexibility allows to
quickly adapt to the realisation of uncertainties and thus
maintain a stable network performance (Peukert, Hörger,
and Zehner 2023). The literature on production sys-
tems highlights product-mix and volume flexibility as
the crucial types of flexibility (Hochdörffer et al. 2022).
Volume flexibility of a production system is the abil-
ity to operate profitably at different overall production
volumes (Sethi and Sethi 1990). Product-mix flexibil-
ity is characterised by the ability to produce multiple
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Table 1. Comparison of relevant approaches from the state of the art.

distinct products at one site withoutmajor cost disadvan-
tages. However, quantifying the impact of corresponding
flexibilitymeasures remains amajor problem (Hochdörf-
fer et al. 2022).

Together, taking into consideration both, uncertainty
and flexibility, manual PMA in GPN becomes even
more challenging. Therefore, companies increasingly use
model-based decision support systems for GPN plan-
ning tasks to increase planning reliability and solution

robustness in medium- and long-term planning (Table 1
– Requirement R3) (Melo, Nickel, and Saldanha-da-
Gama 2009). The robustness of results compares sev-
eral possible scenarios. The more minor the scenario-
dependent deviations of the planning result and its deci-
sions are, the more result-robust the plan is (Scholl
2001).

In addition, due to the ever faster-changing environ-
ment of GPN, also medium- and long-term decisions
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must be made with increasing frequency and based on
the most current and valid data. However, respective
tasks, e.g. PMA, require gathering explicit information
from different parties, e.g. logistics, sales, and produc-
tion planning hindered by intransparency, local optimi-
sation, slow reactions, non-standardised databases, and
high coordination effort. In the case of the use case part-
ner Bosch, according to internal experts, this leads to
more than 40% of the planning headcount regarding the
current manual PMA processes is spent on acquiring
data. To achieve high-quality results with reduced mod-
elling effort, digital network twins (DT) are therefore
increasingly being discussed (Table 1 – Requirement R4),
the use of which was previously limited due to the irreg-
ularity of the planning tasks (Benfer, Peukert, and Lanza
2021).

To overcome the aforementioned problems, the
present approach aims to support and accelerate manu-
facturing companies in making robust decisions regard-
ing PMA taking into account business environment
uncertainties and flexibilities as potential mitigation
strategies. Therefore, information from scenarios gener-
ated by Monte–Carlo is processed using a model-based
optimisation approach which considers product vari-
ants, GPN entities, transportation connections between
manufacturing network entities, customers, periods, and
production resources. Apart, the connection to various
enterprise information systems and the continuous syn-
chronisation of the optimisation model with these data
sources enables the model to be used repeatedly with the
latest information.

To successfully implement the solution approach, the
remainder of the paper is structured as follows: Chap-
ter 2 discusses relevant literature approaches in the field
of robust decision-making in GPN. Chapter 3 introduces
the methodology for a DT-based PMA in GPN which is
validated against the use case of an automotive supplier
in Chapter 4. Chapter 5 condenses themajor insights and
concludes with future research directions.

Literature review

To develop an approach that addresses the problems
described above integratedly, various requirements are
defined (R1–R4), againstwhich the current state of the art
is compared. Table 1 summarises the relevant approaches
which are elaborated in detail in the following.

Research on incorporating uncertainty in GPN
planning

When designing GPN structures and building allocation
strategies, considering uncertainty (R1) of influencing

factors is of crucial importance. However, the number
of scenarios must allow an appropriate interpretation
of the results (Lanza et al. 2019). Uncertain influencing
factors that trigger changes within the GPN are referred
to as change drivers (Wiendahl et al. 2007). Research on
including uncertainty in network planning mostly use
representative forecast models (Petropoulos and Siem-
sen 2023), parameter variations (Cuong et al. 2022) or
stochastic models, e.g. Brownian Motion (Cuong et al.
2024) or Monte–Carlo simulation (Bihlmaier, Kober-
stein, and Obst 2009; Stähr, Englisch, and Lanza 2018)
to consider change drivers in a variety of quantita-
tive scenarios and representatively map a scenario fun-
nel. Santoso et al. (2005) and Azaron, Venkatadri, and
Doost (2021) develop stochastic scenarios using the
Monte–Carlo simulation and reduce their number by
applying a sample average approximation. To be appli-
cable for the optimisation of order allocation, Buergin
et al. (2019) reduce the number of scenarios through
clustering. Khatami, Mahootchi, and Farahani (2015)
include uncertainty scenarios, including the consider-
ation of demand correlations by applying Cholesky’s
factorisation method. The number of initial scenarios
is reduced by applying the K-means algorithm, where
the optimal number of representative scenarios is deter-
mined by weighing computation time with the desired
optimality gap. Baringo and Conejo (2013) build scenar-
ios for investment decisions. First, they combine intervals
of two uncertain parameters. Second, historical combi-
nations of the uncertain parameters are clustered using
K-means algorithm.

Approachesmodelling flexibility in GPN

Numerous specific decision support models for PMA
in GPN focus on one decision objective at a particu-
lar company. Comprehensive overviews are given e.g. by
Lanza et al. (2019). The utilised models are often MILP
models that focus on cost or net present value opti-
misation and may include additional objectives. How-
ever, considering flexibilities inGPNmodelling (R2) to
cope with uncertainties is necessary to broaden the solu-
tion space and find robust solutions. Originating from
contributions focusing on defining flexibility in princi-
ple (e.g. Graves and Jordan 1995) and developing met-
rics for measuring flexibility (e.g. Sethi and Sethi 1990),
authors like Bachlaus et al. (2008) incorporate flexibility
in GPN modelling by considering two objective func-
tions: one consists of several cost terms and the other
objective function represents volume flexibility. In addi-
tion to an objective function cost component, factors
such as delivery time, quality, and flexibility are also con-
sidered by Lanza and Moser (2014). Hochdörffer et al.
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(2022) consider flexibility through a constraint and by
adding a cost parameter in the objective function.

Approaches on robust decision-making in GPN

To cope with the increasing uncertainties mentioned
above, deriving robust decisions in GPN (R3) is of major
importance. Similarly to flexibility considerations, many
approaches in this research area use single or multi-
objective MILP to support PMA (Azaron, Venkatadri,
and Doost 2021; Fattahi 2020; Khatami, Mahootchi, and
Farahani 2015; Lanza and Moser 2014; Lotfi et al. 2021).

To model the decision-makers’ willingness to take
risks, many robust approaches incorporate risk aversion
into their models. An entirely risk-aversemodel will con-
sider equal scenario probabilities (Bertsimas and Sim
2003). As pointed out by Mulvey, Vanderbei, and Zenios
(1995), modelling stochastic environments while only
accounting for the worst-case outcome has been stan-
dardised in the literature despite them being exceptional
cases of robust optimisation. Instead, approaches such as
Govindan and Fattahi (2017) build on Bertsimas and Sim
(2003) to investigate the deviation inmodel performance
and outcome for such risk-averse robust objectives for all
scenarios.

Approaches for DT of GPN

To overcome the hurdle of costly data acquisition and
repeated modelling efforts also for medium- and long-
term decisions, representing GPN as DT (R4) is a
rather new but rapidly growing area of research. First
approaches like Bergmann, Stelzer, and Strassburger
(2011), automatically generate discrete event simula-
tion models emphasising the need for precise simulation
model initialisation in online simulations for depend-
able predictions. Their approach uses core manufactur-
ing simulation data (CMSD) with necessary extensions
and presents a prototype implementation. In the context
of GPN, Gölzer et al. (2015) firstly introduced a big data
approach to integrate ERP data into NoSQL databases.
This approach aims to address the deficiencies of current
methods and their practical implementation within real
GPN, which often miss network-wide dependencies, by
using Big Data techniques to enhance decision-making
across the entire network. Ivanov and Dolgui (2021)
introduce the concept of a digital supply chain twin, a
real-timemodel representing network states. They inves-
tigate the implementation conditions of these twins in
managing disruption risks within supply chains. Milde
andReinhart (2022) propose a concept to streamline sim-
ulationmodel development for order processing in GPN,
focusing on enhancing efficiency by automating data

preparation, model creation, and parameterisation. This
approach, currently being developed for implementa-
tion in a German car manufacturer’s engine production,
aims to allow users to focus on executing and analysing
simulation studies.

Synthesis and research gap

As depicted in Table 1 and elaborated in the previous sec-
tions, although several research approaches address some
challenges in robust decision-making in GPN, none of
the papers identified jointly fulfils all requirements for a
holistic approach.

Regarding a combined consideration of uncertainties
and flexibilities in the context of PMA, many approaches
concentrate only on one individual aspect of both. On
the one hand, in the context of uncertainty considera-
tions, difficulties in deciding upon the number of sce-
narios in stochastic models and the need for effective
methods to condense information from multiple sce-
narios into fewer ones for robust, cost-minimal deci-
sions arise. On the other hand, in the context of flex-
ibilities, insufficient attention is paid to solutions that
simultaneously consider both, volume and product-mix
flexibility integratedly. Considering the increasing vari-
ant complexity of products requiring special line fea-
tures to be producible, identifying feasible product-mix
allocations constitutes a complex task by itself. Further
considering that lines may be upgraded by investments
to let both, the capacity of the lines and volumes of
thereby eligible variants at other plants to be recog-
nised for volume flexibility represent important mitiga-
tion strategies for dealing with uncertainties. Hence, an
integrated inclusion of representative scenarios and flex-
ibility aspects is required for robust decision-making in
the context of PMA. (ResearchGapRG1 –Table 1 – green
area).

In addition, the approaches identified in the context
of robust decision-making in GPN are predominantly
designed for single usage and neglect the digital repre-
sentation of the models as well as the connection and
continuous synchronisation with data sources. Hence,
the research gap involves the challenge of integrating data
from diverse sources within organisations to construct
effective DT for GPN, emphasising the need for method-
ologies and strategies for data acquisition and integration
in GPN decision-making contexts. (RG2 – Table 1 – red
area). In contrast, approaches focusing on DT in GPN
are rather conceptional and lack in practical applicabil-
ity. However, integrating data from diverse sources in a
real-world environment to create effective DT for GPN
presents a significant challenge due to data sensitivity
and diversity. Current research approaches therefore lack
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Figure 1. Robust planning of GPN (cf. Stark, Kind, and Neumeyer 2017).

in combining foundational decision-making frameworks
and efficient structuring of simultaneous data acquisition
from various systems, in one approach, which promises
better decision-making in GPN (RG3 – Table 1 – yellow
area).

Framework for robust planning of GPN

To overcome the shortcomings identified in the literature
review, the present paper introduces a novel approach for
finding robust decisions in PMA including flexibility and
uncertainty aspects simultaneously. Therefore, a real sys-
tem is first formalised during model design generating a
digital master. Second, different production demand sce-
narios are forecasted, based on which robust decisions
for the underlying real system are derived (RG1). All
parameters, including the uncertainties, shall be gathered
from a GPN data model to implement a DT (RG2) that
guarantees the repetitive usability of the model for real-
world use cases (RG3). The structure of the approach
is depicted in Figure 1 and described in detail in the
following.

Model design

In this section, the circumstances for the selection of the
modelling techniques are described based on the spe-
cific needs of the company. Each site in the GPN of a
particular product consists of several production lines.
Each line has a nominal capacity boundary correspond-
ing to regular working shifts. By utilising additional
shifts and incurring corresponding costs, line capac-
ity can be extended up to an absolute capacity bound-
ary penalised by overutilisation costs per time unit. If
planned shifts are not used, underutilisation applies.
Product variants require specific technical production
features. Each line has specific existing features and

the possibility to purchase additional features through
upgrades. The upgradeability differs for each line since
not all technical specifications can be installed on every
line. Customer orders may be produced on any line that
possesses the necessary set of features. A production
line may be shut down to save fixed costs. Similarly,
new production lines may be constructed if utilisation
exceeds capacity on existing lines. In addition to line
features that are technically required, production can
only take place if the customer has inspected the line
for the fulfilment of quality requirements and issued a
release. This release mechanism applies to entire pro-
duction facilities as well, necessitating both line and site
releases. Any release can be initiated by purchasing the
release. Supplying production with relevant input mate-
rials or components may incur inbound logistics costs
which accrue for orders that require pre-processing while
considering site-specific pre-processing capacities. After
production, finished goods are packaged and shipped
either directly to the customer or to an intermediate
warehouse, incurring outbound logistics costs. Both, in-
and outbound logistics costs are defined per order and
unit. Although seasonal demand may require interme-
diate inventories, due to the long-term nature and plan-
ning in half-year increments inventories and buffers are
not considered. To incorporate volume and product-mix
flexibility, sites possess outbound and inbound flexibility
measures. Outbound flexibility is defined by the produc-
tion volume that is anticipated to be produced at the
site under consideration but could also be produced at
another site. Inbound flexibility is defined by the pro-
duction volume that the site under consideration would
be able to take over from another site. For applicabil-
ity in real GPN, the model must consider hard strategic
constraints, like site contracts assuring a specific vol-
ume of produced products at a site. As these constraints
are non-negotiable, techniques that find near-optimal
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solutions while considering consistently changing hard
constraints were focused on. Optimisation models have
a distinct advantage over heuristics in terms of flexibil-
ity. They possess the ability to automatically adapt to
diverse decision variables and accommodate changing
goals, constraints, and complexities prevalent in chang-
ing settings. The aspects considered allow for a linear
mapping of the optimisation problem. Since this results
in a complex combinatorial problem with a large num-
ber of possible discrete decisions, the model is built
as a MILP.

Sets
Formally, the notation used denotes production facili-
ties s ∈ S composed of production lines l ∈ L that receive
and produce orders o ∈ O over discrete time periods
in a planning horizon t ∈ T and are located in a triad
γ ∈ � (e.g. Asia-Pacific, Europe . . . ). Note that a sin-
gle order may span multiple periods, incurring differ-
ent production volumes in each period. Production lines
may possess or be upgraded to possess features f ∈
F. In the context of modelling inbound logistics costs,
pre-processing facilities s̃ ∈ S̃ and corresponding pre-
processing orders v ∈ V are considered necessary to ful-
fil orders. Every order entails an explicit set of ‘sister
orders’ õ ∈ Õo. The sister orders of an order are those
produced for the same customer and product, sharing
the same required customer release. The optimisation
framework considers diverse demand scenarios denoted
as ω ∈ � emphasising joint optimisation across these
scenarios.

Parameters
The parameters that capture the characteristics of the
GPN are described in Appendices Table A2. Those
parameters requiring a more detailed description are
presented next. Individual realisations of the uncertain
parameter of demand are represented for each order
o in period t of scenario ω with volume η as param-
eter ηo,t,ω. Scenario probability weights p′

ω are intro-
duced to account for the likelihood of each demand
scenario. Capacities are modelled as production time
kstandard,existingl,t on line l in period t. The production cycle
time parameter �o,l,t , i.e. the time required for produc-
ing one unit of a corresponding order on a line in a given
period, adjusts the nominal cycle time ζo,l,t by the rel-
ative decrease through learning effects for later periods
ψo,l,t in 1:

�o,l,t = ζo,l,t ·
∏
t∈T

(
1 − ψo,l,t

100

)
(1)

Table 2. Variables.

Meaning

Continuous variables

δoverutilizationl,t,ω Degree to which utilised capacity exceeds available capacity

δunderutilizationl,t,ω Degree to which available capacity exceeds utilised capacity

υo,l,t,ω Production duration of an order
qo,l,t,ω Production volume of an order

qflexo, s1,s2,t,ω Indicates the flexible volume of producing an order on a line at
a site s1 which would also be producible at s2

ρv,s̃,s,t,ω Amount of pre-processing orders v that are transported from s̃
to s

f ins,t,ω Inbound flexibility of a site in a period

f outs,t,ω Outbound flexibility of a site in a period

Binary variables

el,t,ω Indicates if a new line is opened in a certain period

uexistingl,f ,t,ω Indicates that a line possesses a particular feature

ureceivingl,f ,t,ω Indicates that a line receives a particular feature upgrade in a
single period

ylineo,l,ω Indicates if a customer release purchase is available for a line

yfacilityo,s,ω Indicates if a customer release purchase is available for a site

yflexo,ω Indicates if an order is flexible or not
zl,t,ω Indicates if a line is active

Variables
The variables are summarised in Table 2 and explained
more in detail in the following. The allocation of pro-
duction volume qo,l,t,ω in pieces of an order o to a line
l in period t and scenario ω is introduced and trans-
formed into υo,l,t,ω as the corresponding utilised capacity
measured in time units. Binary variables are introduced
to model various investment decisions. For constructing
new lines, the variable el,t,ω is used. Lines acquiring fea-
tures f are denoted by ureceivingl,f ,t,ω , and zl,t,ω is introduced
to indicate whether line l in period t and scenario ω
is active for production. Furthermore, customer releases
on lines ylineo,l,ω and sites yfacilityo,s,ω can be acquired. Based
on the defined minimum values for inbound and out-
bound flexibility invests are necessary to introduce the
shipment of certain orders through warehouses, making
them flex types yflexo,ω . This means these orders can be ful-
filled from different sites. The produced volume of these
flex types is declared as the flexible volume qflexo, s1,s2,t,ω,
where s1 denotes the nominal site and s2 the available
alternative. From the variable describing the produced
volume qflexo, s1,s2,t,ω, the inbound and outbound flexibility
are calculated. This is described in the formulas 31-38.

Objective function
The MILP model entails a minimisation objective func-
tion consisting of individual cost components where c
mentions the accordingly defined cost factor and p′

ω

as weights for scenario probability. The model rewards
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delayedmonetary flows bymultiplying the incurred costs
with the internal rate of return irl .

min
∑
ω∈�

p′
ω ·

(∑
t∈T

1
(1 + irl )

t ·
(∑
o∈O

∑
l∈L

υo,l,t,ω

· cvariablel · (1 + ihcl )
t (2)

+
∑
l∈L

δoverutilizationl,t,ω · coverutilizationl · (1 + ihcl )
t (3)

+
∑
l∈L

δunderutilizationl,t,ω · cunderutilizationl · (1 + ihcl )
t (4)

+
∑
l∈L

zl,t,ω · cfixedl (5)

+
∑
v∈V

∑
s̃∈S̃

∑
s∈S

ρv,s̃,s,t,ω · cinbounds̃,s,v,t (6)

+
∑
o∈O

∑
l∈L

qo,l,t,ω · coutboundo,l,t (7)

+
∑
f∈F

∑
l∈L

ureceivingl,f ,t,ω · cfeature,existingl,f (8)

∑
l∈L

el,t,ω · (cbuild + cfeature,newl )

)
(9)

+
∑
o∈O

∑
l∈L

ylineo,l,ω · creleaselineo,l

+
∑
o∈O

∑
s∈S

yfacilityo,s,ω · creleasefacilityo,s (10)

+
∑
o∈O

yflexo,ω · cflexibleo

)
(11)

In Equation (2), variable costs of lines are consid-
ered for the required production duration of orders and
multiplied by the expected annual cost increase for pro-
duction. This is mostly dependent on the wage increase
parameter ihcs .

In Equation (3), overutilisation costs incurred from
capacity utilisation exceeding the available standard
capacity for each line in each period are summed.

In Equation (4), underutilisation costs incurred from
available standard capacity exceeding the utilised capac-
ity for each line in each period are summed.

For active lines, fixed costs specific to that line are
incurred in 5. These costs are applied period-wise and are
not dependent on the amount of production.

In Equation (6), inbound logistics costs are consid-
ered for the facilities s receiving semi-finished goods
v that have been produced in a pre-processing site s̃.
The inbound logistics costs per unit are multiplied peri-
odically by the volume ρv,s̃,s,t,ω of pre-processing units
shipped.

In Equation (7), the production quantities are multi-
plied by the individual outbound logistics costs depend-
ing on the line.

Formula 8 involves accounting for upgrade costs
incurred during the period when a feature upgrade is
purchased for an existing line.

In Equation (9), build costs are incurred for building
a new line, encompassing the expenses associated with
installing features during the line’s construction.

Formula 10 includes the summation of release costs
for lines and facilities corresponding to specific orders.

Finally, in 11, flexibility costs associated with the num-
ber of flex types planned to be served from different sites
concurrently are aggregated. These costs arise because
orders served from two sites simultaneously require coor-
dination through a joint warehouse, necessitating addi-
tional investment planning. Due to the high number of
individual binary variables (dependent on o), a period-
specific consideration is dispensed for releases and flex
types in favour of shortening the calculation time. That
also leads to no consideration of the internal cost rate.

Constraints
The model is subject to constraints, constituting the
model’s solution space. These are explained in the follow-
ing subsection. Equation (12) guarantees that the produc-
tion volume equals demand, ensuring demand is always
fulfilled.∑

l∈L
qo,l,t,ω = ηo,t,ω ∀o ∈ O, t ∈ T,ω ∈ � (12)

In Equation (13), the production duration for orders
must match the production quantity multiplied by the
cycle time adjusted by the equipment effectiveness of
existing lines. Big-M is utilised to set this constraint inac-
tive for new lines, where el,t,ω = 1, since it ensures the
right-hand side term to become negative, if the line was
newly built in any period t. Note that θ existingl,t is the
individual utility rate of the specific line.

υo,l,t,ω ≥ qo,l,t,ω · �o,l,t

θ
existing
l,t

− M ·
∑
t∈T

el,t,ω

∀o ∈ O, l ∈ L,ω ∈ � (13)

In Equation (14), the production duration for orders
is set to match the cycle time of production volumes
adjusted by the equipment effectiveness of new lines. Big-
M guarantees this constraint becomes active only when
considering lines that are built in period t1-t2.

υo,l,t1,ω ≥ qo,l,t1,ω · �o,l,t1
θnewl,t2

− M · (1 − el,t1−t2,ω)

∀t1, t2 ∈ T, o ∈ O, l ∈ L, t1 ≥ t2,ω ∈ � (14)
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In Equation (15), the formulation ensures that pro-
duction requires an active line, where the right-hand side
becomes 0, if zl,t,ω = 0, correspondingly setting qo,l,t,ω
to 0.

qo,l,t,ω ≤ zl,t,ω · ηo,t,ω ∀o ∈ O, l ∈ L, t ∈ T,ω ∈ �
(15)

In Equation (16), lines remain inactive if the line was
inactive in the preceding period and the line is not
being opened in the current period. A line cannot be
re-activated, since a shutdown often results in decon-
struction to utilise the space for other production lines.

zl,t,ω ≤ zl,t−1,ω + el,t,ω ∀l ∈ L, t ∈ T, t > 0,ω ∈ �
(16)

In Equation (17), the formulation ensures production
is only possible if all required features for the order ιo,f
are available at the line uexistingl,f ,t,ω .

qo,l,t,ω · ιo,f ≤ uexistingl,f ,t,ω · ηo,t,ω
∀o ∈ O, l ∈ L, t ∈ T, f ∈ F,ω ∈ � (17)

In Equation (18), uexistingl,f ,t,ω can only become 1 if either
the feature was initially available at a line dl,f , the fea-
ture upgrade had been available in the previous period
uexistingl,f ,t−1,ω or the feature upgrade was purchased in the cur-

rent period ureceivingl,f ,t,ω . For the initial period of t = 0, prior
periods cannot be considered.

uexistingl,f ,t,ω ≤
⎧⎨
⎩
dl,f + uexistingl,f ,t−1,ω + ureceivingl,f ,t,ω , if t > 0

dl,f + ureceivingl,f ,t,ω , otherwise

∀l ∈ L, f ∈ F, t ∈ T,ω ∈ � (18)

In Equation (19), the formulation necessitates a release
being available for production. Parameter μ enables or
disables the consideration of sister orders in this con-
straint. Existing releases for an order and its sister orders
are taken into consideration with rlineo,l and rlineõ,l , respec-
tively. If a release for the order is already available, the
right-hand side of the inequation becomes 0, and no
release can be purchased. If there is no release for the
order available yet, a release is purchased if there is also
no release for any sister order.⎛

⎝ylineo,l,ω + μ ·
∑
õ∈Õo

rlineõ,l + ylineõ,l,ω

⎞
⎠ · ηo,t,ω ≥ (1 − rlineo,l )

· qo,l,t,ω ∀o ∈ O, l ∈ L, t ∈ T,ω ∈ � (19)

In Equation (20), the formulation ensures that the cus-
tomer release for a line requires the customer release for

the site. Again, releases for sister orders are considered
with ylineõ,l,ω and yfacilityõ,s,ω . Whether a line belongs to a site
is indicated by bl,s. Parameter μ is applied to enable or
disable redundant release purchasing for sister orders.⎛
⎝ylineo,l,ω + rlineo,l + μ

∑
õ∈Õo

(rlineõ,l + ylineõ,l,ω)

⎞
⎠ · bl,s

≤
⎛
⎝yfacilityo,s,ω + rfacilityo,s + μ

∑
õ∈Õo

(rfacilityõ,s + yfacilityõ,s,ω )

⎞
⎠ · M

∀o ∈ O, l ∈ L, s ∈ S,ω ∈ � (20)

In Equation (21), the formulation ensures that capac-
ities are available when allocating production volumes.
Therefore, the sum of production quantities of a period
multiplied by the respective cycle time must be less
or equal to the corresponding available maximum line
capacity in this period. When allocating production
volumes to an existing line, the maximum capacity of
this line kmaximum,existing

l,t1 , adjusted by the overall equip-

ment effectiveness for existing lines θ existingl,t1 , can not be
exceeded. Once production volumes are allocated to a
newly built line, θnewl,t2 must be employed to the maxi-
mum capacity of the new line kmaximum,new

l,t2 , since new
lines exhibit much lower operational efficiency as exist-
ing lines. This means for any period t1, where t1 indicates
the distance to the period inwhich the new line is opened,
the capacity of this line adheres to the initial operational
efficiency of new lines θnewl,t2 for that period t2. The model
is confronted with a dynamically shifting variable θnewl,t2
that is directly dependent on the manifestation of el,t,ω.∑

o∈O
qo,l,t1,ω · �o,l,t1 ≤

∑
t2∈T

kmax,new
l,t2 · θnewl,t2 · el,t1−t2,ω

+ kmax
l,t1 · θ existingl,t1 ∀l ∈ L, t1 ∈ T, t2 ∈ T,

t1 ≥ t2,ω ∈ � (21)

Closely following the logic of Equation (21), where the
capacity and equipment effectiveness of new and existing
lines are considered separately, the required production
duration of an order on a line is subtracted from the
capacity of the line to determine the underutilisation
δunderutilizationl,t1,ω in Equation (22) and the overutilisation of
a line δoverutilizationl,t1,ω in Equation (23).

δunderutilizationl,t1,ω ≥ kstandard,existingl,t1 · θ existingl,t1 · zl,t1,ω
+

∑
t2∈T

kstandard,newl,t2 · θnewl,t2 · el,t1−t2,ω

−
∑
o∈O

qo,l,t1,ω · �o,l,t1
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∀l ∈ L, t1 ∈ T, t2 ∈ T, t1 ≥ t2,ω ∈ � (22)

δoverutilizationl,t1,ω ≥
∑
o∈O
(qo,l,t1,ω · �o,l,t1)

− (kstandard,existingl,t1 · θ existingl,t1 · zl,t1,ω
+

∑
t2∈T

kstandard,newl,t2 · θnewl,t2 · el,t1−t2,ω)

∀l ∈ L, t1 ∈ T, t2 ∈ T, t1 ≥ t2,ω ∈ � (23)

In Equation (24), the formulation ensures that pre-
process volumes equal the order volumes if a pre-process
is required. χo,v is 1 if a pre-process v is required for an
order o, and 0 otherwise.∑

s̃∈S̃
ρv,s̃,s,t,ω =

∑
o∈O

∑
l∈L

qo,l,t,ω · χo,v · bl,s

∀t ∈ T, v ∈ V , s ∈ S,ω ∈ � (24)

In Equation (25), it is defined that the required pre-
process volume does not exceed the available production
capacity of the pre-processing site.∑

s∈S
ρv,s̃,s,t,ω ≤ kpreprocessv,s̃,t ∀v ∈ V , s̃ ∈ S̃, t ∈ T,ω ∈ �

(25)

In Equation (26), the decision maker gets enabled to
assign orders to specific facilities for all periods.∑

l∈L
qo,l,t,ω · bl,s ≤ ηo,t,ω · mo,s,t

∀o ∈ O, s ∈ S, t ∈ T,ω ∈ � (26)

In Equation (27), fixating of orders and respective
sister orders to specific facilities gets offered.∑
õ∈Õ

∑
l∈L

qõ,l,t,ω · bl,s +
∑
l∈L

qo,l,t,ω · bl,s ≥
∑
õ∈Õ

xo,s,t + xo,s,t

∀o ∈ O, s ∈ S, t ∈ T,ω ∈ � (27)

In addition, Equations (28 and 29) implement that the
model can ensure that a facility receives a minimum pro-
duction volume and that a triad is served by a minimum
share locally within the triad.∑

o∈O

∑
l∈L

qo,l,t,ω · bl,s ≥ wfacility
s,t

∀o ∈ O, s ∈ S, t ∈ T,ω ∈ � (28)∑
o∈O

∑
l∈L

∑
s∈S

qo,l,t,ω · bl,s · κs,γ · ςo,γ

≥ wtriad
γ ,t ·

∑
o∈O

ηo,t,ω · ςo,γ

∀γ ∈ �, t ∈ T,ω ∈ � (29)

In Equation (30), the formulation ensures that an
order can only be declared as a flex type if releases for
two different locations are existing or purchased.

2 · yflexo,ω ≤
∑
s∈S

rfacilityo,s +
∑
s∈S

yfacilityo,s,ω

∀ o ∈ O,ω ∈ � (30)

The proposed model combines volume and product-
mix flexibility on the site level by implementing KPIs’
for outbound and inbound flexibility. Three constraints
determine the flexible production volume. Formula 31
specifies that the flexible production volume of an order
must not be greater than the volume produced at that
location. In Equations (32–34), the parameter M is used
to specify that the volume produced is only deemed flexi-
ble if the corresponding order is declared as a flexible type
and the corresponding releases are available.

qflexo, s1,s2,t,ω ≤
∑
l∈L

qo, l,t,ω · bl,s1

∀ s1, s2 ∈ S, t ∈ T, o ∈ O,ω ∈ � (31)

qflexo, s1,s2,t,ω ≥
∑
l∈L

qo, l,t,ω · bl,s1

− M · (2 − (yfacilityo,s2,ω + rfacilityo,s2 )− yflexo,ω)

∀ s1, s2 ∈ S, t ∈ T, o ∈ O,ω ∈ � (32)

qflexo, s1,s2,t,ω ≤ M · yflexo,ω

∀ s1, s2 ∈ S, t ∈ T, o ∈ O,ω ∈ � (33)

qflexo, s1,s2,t,ω ≤ M · (yfacilityo,s2,ω + rfacilityo,s2 )

∀ s1, s2 ∈ S, t ∈ T, o ∈ O,ω ∈ � (34)

In Equations (35) and (36), the inbound flexibility,
the outbound flexibility, and the flexibility between loca-
tions are calculated. In Equations (37) and (38), the lower
bound, which the planner can define, is applied for the
existing in- and outbound flexibility.

f outbounds1,t,ω =
∑
s2∈S

∑
o∈O

qflexo, s1,s2,t,ω −
∑
o∈O

qflexo, s1,s1,t,ω

∀ s1 ∈ S, t ∈ T,ω ∈ � (35)

f inbounds1,t,ω =
∑
s2∈S

∑
o∈O

qflexo, s2,s1,t,ω −
∑
o∈O

qflexo, s1,s1,t,ω

∀ s1 ∈ S, t ∈ T,ω ∈ � (36)

f inbounds,t,ω ≥ f mininbound
s ·

∑
o∈O

∑
l∈L

qo,l,t,ω · bl,s

∀s ∈ S, t ∈ T (37)
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Table 3. Explanation of change drivers.

Change parameter Indication

Reference Defines the affected category and instance.
Possible categories are order, customer,
region, or variant, whereas instance defines
the manifestation.

Probability (P(C)) The occurrence probability of the change
driver.

Influence (I) Relative change caused by the change
driver on occurrence.

Earliest period of entry (T1) Lower bound of the affected period range.
Latest ending period (T2) Upper bound of the affected period range.
Dependency Describes how change drivers affect each

other up to mutual exclusivity or condition.
Therefore, keys have to be defined and set
for orders which are dependent.

f outbounds,t,ω ≥ f minoutbound
s ·

∑
o∈O

∑
l∈L

qo,l,t,ω · bl,s

∀s ∈ S, t ∈ T (38)

Methodology to forecast representative production
demand scenarios

To obtain amanageable number of scenarioswith high
significance, the following approach showed good results.
The approach entails three core operations:

(1) Identify demand change drivers and their individual
effects on demand volumes.

(2) Generate demand scenarios by applying a Monte–
Carlo Simulation, which simulates the occurrences
of change drivers.

(3) Reduce the number of scenarios with the K-Means
algorithm to obtain a set of scenario clusters and
their Euclidean centres as the final scenario set.

The results are published in Bruetzel et al. (2022).

Identifying change drivers
Scenario generation relies on the predictions of market
researchers. For one, the automotive supplier forecasts
the expected demand volumes for individual products.
Additionally, individual market developments are pre-
dicted, and their expected effect on the current demand
forecast for individual products or product groups is esti-
mated. These market developments are referred to as
demand change drivers. A change driver consists of the
information listed in Table 3.

Monte–Carlo simulation
For generating a particular demand scenario ω̃, the sim-
ulation process randomly iterates through the list of
change drivers and generates random values within the
defined bounds of the following three stochastic param-
eters for each change driver C. The realisation of the

first stochastic parameter Xω̃,C ∈ R|0 ≤ Xω̃,C ≤ 1 deter-
mines whether the change driver occurs. If the stochastic
parameter iswithin the probability spacePC of the change
driver, Xω̃,C ≤ PC, the change driver occurs. In this case,
the two further stochastic parameters Yω̃,C and Zω,C,
determine the period of entry and the period of end in
which the change driver takes effect. The period of entry
is defined by the realisation of Y , within bounds Y ∈
[T1,T2].Y is then set as the new lower bound for the real-
isation of the stochastic parameter that determines the
period of endZ, whereZ ∈ [Y ,T2]. The demand volumes
of the orders affected by the change driver are adjusted
by the influence of the change driver I within the gen-
erated period bounds accordingly, where I ∈ [−1,∞].
Mutual exclusivity or condition of a change driver is
enabled through the dependency parameter, once one
of these change drivers occurs. The process is repeated
100,000 times before the scenario reduction method
is applied.

Scenario reduction
Finally, following the methodology proposed by Bruetzel
et al. (2022), the large set of scenarios is reduced to aman-
ageable set of representative scenarios� : |�| = K. Since
the scenarios resulting fromMonte–Carlo simulation are
described by numerous (correlated) factors, e.g. volume
per period, customer, andproduct variant groups, and are
formalised by high-dimensional vectors, first, a principal
component analysis (PCA) is applied to reduce scenario
dimensionality while minimising the loss of information.
With the reduced feature vectors of scenarios, K-means
algorithm is applied, using random cluster centroids with
adequate distancing to avoid local minima. The cluster
assignment of each scenario vector is based on Euclidean
distance. The algorithm optimises the cluster centroids
by minimising the sum of squared Euclidean distances
between all scenario vectors xi and their corresponding
assigned cluster centroid ck. Onceminimisation has been
achieved, the nearest point xi to a cluster centroid ck con-
stitutes the representative scenario since ck may not be
a scenario but just an empty point in the space. These
points construct the set of representative scenarios �.
The size of a cluster is defined by the number of points in
the cluster xi ∈ k. The relative size of clusters corresponds
to the scenario probabilities pω.

Methodology for identifying robust decisions

The generalised framework follows the robust planning
approach of Mulvey, Vanderbei, and Zenios (1995) based
on stochastic programming, where variables are classi-
fied into recourse and non-recourse variables. Accord-
ingly, an optimisation model of the following structure
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is considered,

Minimise cTx + dTy, x ∈ Rn1 , y ∈ Rn2
s.t. Ax ≥ b,

Bx + Cy = e,
x, y ≥ 0

(39)

where x ∈ Rn1 and y ∈ Rn2 constitute the non-recourse
and recourse variable vectors, respectively. The first con-
straint in Equation (39) represents those constraints
unaffected by uncertainty, where A is a m x n1 coeffi-
cient matrix and b represents a variable m− vector. The
second constraint represents all those constraints con-
taining coefficients subject to uncertainty. This general
optimisation model can be extended to include the indi-
vidual realisations of the uncertain parameter, which are
characterised by individual scenarios ω ∈ � with occur-
rence probability pω, given

∑
ω∈�

pω = 1. Hence, the over-

all model minimises the expected value of the overall
costs across all scenarios ω ∈ � weighted by their asso-
ciated probabilities pω, allowing decision-makers to set
variables el,t,ω, u

receiving
l,f ,t,ω , and zl,t,ω to be non-recourse,

i.e. fixed across the scenarios under consideration, for
specific periods, constructing the sets �e, �ureceiving , and
�z. The sets �yline and �yfacility ensure consistency for
the period-independent variables ylineo,l,ω and yfacilityo,s,ω . Vari-
ables deemed non-recourse in specific periods must
be the same across all scenarios ω ∈ �. The variables
δoverutilizationl,t,ω , δunderutilizationl,t,ω , υo,l,t,ω, qo,l,t,ω, ρv,s̃,s,t,ω and
uexistingl,f ,t,ω always remain recourse, following the assump-
tion that the final allocation of volumes can be decided
in the future on short notice, depending on the applying
scenario.

Equations (40), (41), (42), (43), and (44) are con-
structed for the decision variables that may be deemed
non-recourse. To ensure that each variable is non-
recourse in the specific periods indicated by the deci-
sion maker, the respective sets of time periods for non-
recourse variables�(·) get considered in each constraint.
Equating the decision variables for all scenarios in the
periods of�(·) guarantees them becoming non-recourse
for the indicated periods.

el,t,ω1 = el,t,ω2
∀l ∈ L,ω1,ω2 ∈ �, t ∈ T, t ∈ �e (40)

ureceivingl,t,ω1 = ureceivingl,t,ω2

∀l ∈ L,ω1,ω2 ∈ �, t ∈ T, t ∈ �ureceiving (41)

ylineo,l,ω1 = ylineo,l,ω2 ∀l ∈ L,ω1,ω2 ∈ �,�yline �= Ø (42)

yfacilityo,s,ω1 = yfacilityo,s,ω2 ∀l ∈ L,ω1,ω2 ∈ �,�yfacility �= Ø
(43)

zl,t,ω1 = zl,t,ω2 ∀l ∈ L,ω1,ω2 ∈ �, t ∈ T, t ∈ �z (44)

Second, the principles for modelling conservatism
from Bertsimas and Sim (2003), who consider a risk-
aversion parameter λi of the i−th constraint, get imple-
mented in a simplified stochastic version to handle cal-
culation time while at the same time enabling decision-
makers to state the desired level of aversion by setting
the risk-aversion parameter in range λ ∈ [0, 1]. Based
on λ, adapted probability weights p′

ω, are defined in the
following equation:

p′
ω =

⎧⎨
⎩

(
1

|�| − pω
)

· λ+ pω, if λ > 0

pω, otherwise
(45)

The risk-aversion parameter increases the weight of
unlikely scenarios while decreasing the weight of likely
scenarios.

Connection initialisation and optimisation

The following describes how the mentioned methods
are transformed into a DT of a GPN. Stark, Kind, and
Neumeyer (2017) structure the DT into a digital mas-
ter and digital shadow, where the former is a generalised
description of a group or class of entities, and the lat-
ter is a collection of all data related to a concrete entity
throughout its lifecycle. When the digital master is logi-
cally linked to the digital shadow of a concrete instance,
a DT is formed (see Figure 2). For further literature, the
reader is referred to Jones et al. (2020).

The present approach for establishing a DT in GPN
relies on a central database structured using the cross-
divisional data model of GPN introduced by Benfer et al.
(2023), which represents GPN and their characteristics
in an object-oriented form. The generic architecture,
consisting of four main object clusters (orders, prod-
ucts, production resources, and logistics), is devised and
can be adapted to meet the specific requirements of an
organisation. The database directly acquires data from
various relevant data sources dispersed throughout an
organisation including MES, ERP, CRM, and sometimes
additional data sources for master data. These data may
be complemented by additional manual inputs, e.g. the
strategic premises, when optimisation runs are triggered
by planners. The database comprises appropriate version-
ing that covers customisable deletion policies, current
version flagging, and time validity features to ensure his-
torical data integrity of themodel in- and outputs. There-
fore, each optimisation run relies on input data stored in
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Figure 2. Components of the DT (cf. Stark, Kind, and Neumeyer 2017).

the database. Each run then is solved by the optimiser
core. The corresponding optimisation results are written
back to the respective run and directly may be visualised
by Power BI so that planners can interactively gain an
understanding of changes in the GPN decisions. Thus,
linking the formalised optimisation core (Digital Mas-
ter) to the central database fed by dispersed data sources
(Digital Shadow) for each optmisation run creates a DT
of the GPN.

Integration and quantification of results on an
industrial GPN

The model is validated against the real use case of a
Bosch Powertrain Solutions GPN, which is responsi-
ble for the final assembly, testing, and completion of
combustion engine components. Given the anticipated
changes in the car engine market, including a decline
in demand for combustion engines shortly, the pro-
duction system will require frequent modifications in
the coming years to accommodate an increasing num-
ber of product variants while overall production volume
decreases.

The product group in question comprises 1160 indi-
vidual orders over 16 half-year periods, and its GPN
comprises four production facilities with 15 lines in total
located in Europe and Asia. Production is planned for up
to 5–6 days a week in three 8-h shifts, depending on the
site. The product is sold to 65 customers located in 21

different countries and based on the combination of 16
different features.

Evaluation of flexibility restriction without
forecasting

Initially, the focus is on the quantification of the flexibil-
ity constraints 35–38 by applying inbound and outbound
flexibility requirements, with f mininbound

s and f minoutbound
s

of 50% compared to no constraints on flexibility. Figure 3
shows the associated results by depicting the rela-
tive/percentual change in the objective function value
compared to optimisation without flexibility constraints
for each cost component and cumulatively.

Overall costs increased by +11.90% compared to no
flexibility requirements. As the model must ensure suf-
ficient flexibility, it is forced to purchase more releases
at several sites (+4.54%), make more product volumes
producible on different lines by purchasing flex types
(+4.01%), and upgrade the remaining lines in later peri-
ods (+0.31%). Furthermore, the lines in the high-cost
location are consistently being used more intensively, as
these lines are the most advanced in terms of existing
features, thereby suffering higher variable costs (+3.9),
but at the same time decreasing overutilisation costs in
low-cost sites (−0.97%).

Forecasting of representative demand scenarios

In total, 29 change drivers are provided. An exem-
plary excerpt of change drivers is shown in Table 4. An
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Figure 3. Relative change of the individual cost components by flexibility requirements.

Table 4. Examples of change drivers.

Change driver Category Instance
Probability

(P(C)) Influence (I)
Earliest period
of entry (T1)

Latest period of
end (T2) Dependency

W3: New eFuel Triad EUR 0.1 0.2 7 16 –
W7: Quality problem Part Number 1 0.05 −1 1 16 –

occurrence of W3 influences all products of the triad
‘EUR’, whereas W7 influences all products with the part
number ‘1’.

With the data provided, a set of K = 10 representa-
tive demand scenarios is calculated (see Figure 4). The
figure shows the cumulated periodic demand per half-
year period. The line thickness indicates the probabil-
ity weight pω of each scenario. The red baseline sce-
nario represents the demand forecast without any change
drivers.

Table 5 lists individual scenario probability weights
and the cumulated demand volumes for all periods to
provide comparability. On a more detailed level, these
generated scenarios provide precise information on the
order size of each order in the specific scenario ηo,t,ω,
enabling the robust modelling approach.

Application of themethodology to identify robust
decisions

The transformation process of the originally determin-
istic model to a stochastic optimisation model that con-
siders uncertainty must be weighed through quantitative
comparison. The goal is to provide more robust deci-
sions that collectively consider the produced demand
scenarios. In this regard, the solution to the stochastic
optimisation problem entails the costs incurred for inte-
grated consideration of the demand scenarios by their
respective probabilities.

To determine this cost disparity, a first experiment
performs the most general means of comparison by uni-
formly setting �(·) to be non-recourse for all demand
periods (robust model) and contrast the objective value
with that of the deterministic model, where�(·) is gener-
ally recourse.

Considering the non-recourse nature of the decision
variable zl,t,ω, the decision of which lines are active is
made once for all scenarios, contrary to the determin-
istic model, where lines are deactivated in each sce-
nario individually, as best fits. Cumulatively, the robust
model shuts down lines over 52 periods exactly. In con-
trast, the deterministic model shuts down lines over
69.5 periods on average (25.2% increase), which is very
similar to the 68 periods of the aforementioned flex-
ibility approach. This results in more than triple the
underutilisation costs in the robust optimisation model
since capacity then exceeds utilisation in the low-volume
scenarios.

Figure 5 shows an increase in underutilisation costs for
the robust optimisation model. The relative cost increase
when applying robust optimisation under these condi-
tions amounts to 2.15% for 10 scenarios, which is consid-
erable relative to potential savings due to the large-scale
nature of this use case.

The costs of the robust and deterministic model are
displayed on a periodical level in Figure 6 for each sce-
nario. An increased parallelity in the non-recourse graph,
especially for periods 8–9, can be observed. This directly
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Figure 4. Diagramm for K = 10 representative demand scenarios.

Table 5. Scenario probabilities.

Scenario (ω)

0 1 2 3 4 5 6 7 8 9

Probability weight (pω) 0.1266 0.0896 0.0789 0.1303 0.1314 0.09 0.1870 0.0642 0.0578 0.0437
Cumulated demand 0.9097 0.9795 0.8439 0.9332 0.9574 0.9022 0.9226 0.9378 1 0.8833

Figure 5. Periodical utilisation costs for the non-recourse and recourse decision of zl,t,ω .

relates to the fact that the non-recourse decision variables
are decided upon once for all scenarios.

Next, as summarised in Table 6 the effects of aversion
are analysed by evaluating the performance of the robust
model for different values of the risk-aversion parame-
ter λ. For a thoroughly conservative model, where λ = 1,
the overall costs slightly increase by 0.24% compared to
the baseline scenario with unchanged scenario proba-
bilities (λ = 0). To contrast this against the change in
how demand is respected in the conservative model, a
sum–product calculation (i.e.

∑
ω∈�

p′
ω · ∑

o∈O
∑
t∈T
ηo,t,ω) for

both λ = 0 and λ = 1 is performed, leading to a reduc-
tion of 0.08% of overall demand in the risk-averse sce-
nario compared to the baseline scenario. This shows that
the slight decrease in the overall demand is offset by the
increasing probability of high-demand scenarios, such as
scenarios 1 and 8.

The following analyses how the model performs
for more exceptional situations since λ is specifically
intended to mitigate the impact when facing more
severe demand changes. Concerning existing production

capacities, a fictive increase of the demand volume of
high-volume, low-probability scenario 8 by 10% is per-
formed to simulate overestimation. To enable an outcome
comparison for this setting, the demand for low-volume,
low-probability scenario 2 is decreased by 10% as under-
estimation.

The scenario probabilities for λ = 0 remain unch-
anged. The increase in demand affects the objective
value far more (+1.21%) than the decrease (−0.46%).
When setting λ = 1, the divergence of the objective value
impact is strongly decreased. The objective value change
for the demand increase (+1.53%) outweighs the objec-
tive value change for the demand decrease (−0.89%) far
less than for λ = 0.

The final section of the results analysis discusses the
impact different recourse settings of decision variables
have on the overall cost of the GPN. The objective val-
ues for three additional fictive extreme recourse settings
are listed in Table 7 to see strong effects and quantify the
reaction of the optimisation each compared to the fully
recourse setting set0.
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Figure 6. Periodic costs for 10 Scenarios.

Table 6. Impact of λ on the objective value for demand changes.

λ = 0 λ = 1

Changed
scenario (ω)

Demand
change

Relative sum–product of
cumulated demand change

Relative objective
value increase

Relative sum–product of
cumulated demand change

Relative objective
value increase

Baseline Baseline Baseline Baseline −0.08% +0.24%
8 +10% +0.65% +1.21% +1.1% +1.53%
2 −10% −0.72% −0.46% −0.83% −0.89%

Table 7. Result comparison for different recourse decisions.

Recourse indication for decision variables

Setting el,t,ω ureceivingl,t,ω ylineo,l,ω yfacilityo,s,ω zl,t,ω

Relative
objective
value

change (%)

Fully recourse:
set0

1 1 1 1 1 0.00

Fully
non-recourse:
set1

0 0 0 0 0 2.15

set2 0 0 0 0 1 1.10
set3 0 0 1 1 0 2.02
set4 0 1 0 0 0 1.89

Deviating from the original model, set2 only sets the
line activity to be a recourse decision variable. In this case,
the objective value increases by 1.1%. When only setting
release purchases to be recourse decision variables (set3),
some reduction in the average release costs is observed,
amounting to an objective value increase of 2.02%. Simi-
larly, when setting the decision variable for line upgrade
purchases to be recourse (set4), high-volume scenarios
no longer drive the model to place upgrade investments
to ensure sufficiently available capacity on lines for all
scenarios. This results in an objective value increase of
1.89%.

Industrial application of themethodology for
identifying robust decisions

The concrete settings of which variables are not recourse
have to be derived from the company strategy and

depend on the speed of implementation of decisions. E.g.
for a test at Bosch, decisions on investments in new fea-
tures and the activity of existing ones were considered
non-recourse for three years in this early time period.
Releases were considered to be recourse. A performed
experiment shows that reducing the reaction time of the
three years by half to one and a half-years led to expected
savings of 0.01% for all scenarios but 0.32% for the edge
scenario with low volume. A last experiment compares
how identified robust decisions perform against today’s
decisions from the deterministic model at the baseline
scenario. Therefore, the decisions of the first three years
are predetermined, such that these investments must be
made, and no others are possible. Then, the model is
applied deterministically 30 times on completely new,
randomly drawn scenarios from the Monte–Carlo simu-
lation, each by each. The result shows that the fixed deci-
sions of the robust planning approach lead to expected
relative objective decreases of 0.29% and outperform the
baseline in 29 of 30 scenarios.

Conclusion and research perspectives

In summary, this study introduces a method to incorpo-
rate and quantify outcomes within an industrial Global
Production Network (GPN) using typical demand sce-
narios. The approach was applied to Bosch’s GPN as
a case example, illustrating its implementation. The
research underscores the influence of flexibility demands
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on costs and exhibits the process of creating repre-
sentative demand scenarios. Moreover, it showcases
the application of these scenarios in identifying robust
decisions.

The study’s findings reveal shifts in cost struc-
ture with the new approach, emphasising alterations
in line utilisation and corresponding costs. Addition-
ally, it was determined that when assuming all orders
are met, robust decisions are more impacted by over-
estimates than underestimates of demand scenarios. It
can be derived that edge scenarios benefit the most
from shorter implementation cycles. Lastly, the pre-
sented robust planning approach leads to more robust-
ness in scenarios that were not used for optimisation
itself.

Apart from the economic advantages, on-site pro-
duction is favoured due to the logistics costs and thus
implicitly the emission costs. The approach therefore not
only improves the cost structure, but also sustainability
aspects. The method can be extended to other GPN, and
different types of scenarios. Overall, themethod provides
a valuable tool for decision-makers to plan and optimise
GPN under uncertain circumstances.

It is planned to examine the approach of daydreaming
factories running optimisations if computational capaci-
ties exist (Nassehi et al. 2022). Analysing switching points
of costs between different scenarios will help to under-
stand bottlenecks in the GPN and solve them by broad-
ening the solution space.
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Appendices

Table A1. Sets.

Set Indication

� Set of triads
� Set of scenarios
�(·) Set of time periods in which decision variables are non-recourse
F Set of possible line features
L Set of production lines (existing and new)
O Set of orders
Õo Set of sister orders
S Set of production facilities
S̃ Set of pre-processing facilities
T Set of time periods (half-years)
V Set of pre-processing orders
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Table A2. Parameter.

Parameter Meaning

χo,v Indicates the amount of pre-processing products required to produce a specific order.
ηo,t,ω Indicates the order size in units.
ιo,f Indicates if a technical feature is required for an order.
μ Enables the decision maker to decide if sister orders are to be respected when considering release

purchases.
τ Number of periods required to build a new line.

θ
existing
l,t Overall equipment effectiveness for existing lines. It is used to adjust the capacities by operational

efficiency and includes local shift breaks and maintenance requirements.
θnewl,t Overall equipment effectiveness for new lines. New lines initially have efficiency drawbacks after

construction.
ϕl,f Indicates whether a line can be potentially upgraded by a feature.
ψo,l,t Indicates the periodical relative decrease of production cycle time.
ςo,γ Indicates the triad where the customer of an order is located.
κs,γ Indicates if a site is in a triad.
ζo,l,t Indicates the nominal cycle time for producing one unit of an order.
�o,l,t Indicates the cycle time for producing one unit of an order.

alineo,l Indicates if an order is initially assigned to a line in period 0.

afacilityo,s Indicates if an order is initially assigned to a site in period 0.
bl,s Indicates if a line belongs to a site.

cbuild Basic Costs for building a new line.

cfeature,existingl,f Costs for upgrading an existing line with a feature.

cfeature,newl Costs for having a feature built together with building a new line.

cfixedl Fixed costs of a line.

cinboundv,s,s̃ Inbound logistics costs per unit.

coutboundo,l,t,ω Outbound logistics costs per unit per scenario.

coverutilizationl Costs for overutilisation of a line. These costs are incurred once the standard capacity of a line is
exceeded.

creleaselineo,l Costs for purchasing a customer release for a line.

creleasefacilityo,s Costs for purchasing a customer release for a site.

cunderutilizationl Costs for underutilisation of a line. These costs are incurred once the standard capacity of a line is
not reached.

cvariablel Variable costs for lines.

cflexibleo Costs for purchasing a order to be flexible
dl,f Indicates if a feature is initially available at a line.

fmininbounds Minimum required inbound flexibility at a site

fminoutbounds Minimum required outbound flexibility at a site

ihcl Parameter for the periodic percentage cost increase of headcount

iinvestl Parameter for the periodic percentage cost increase of investments (internal interest rate) per line

kmaximum,exisitingl,t Maximum capacity of an existing line.

kstandard,existingl,t Standard capacity of an existing line.

kmaximum,newl,t Maximum capacity of a new line.

kstandard,newl,t Standard capacity of a new line.

kpreprocessv,s̃,t Capacity of the site that manufactures the pre-processing products.

M Large number used to influence the sing of a term
mo,s,t Indicates whether an order should be fixated to a site during specific periods.

rlineo,l Indicates whether a customer release is available for a line.

rfacilityo,s Indicates whether a customer release is available for a site.

wfacility
s,t Indicates the requirement for a minimum share of total production volume at a site.

wtriad
γ ,t Indicates the requirement for a minimum share of total production volume in a triad.

xo,s,t Defines a minimum volume share of production per order to be fixed to a site.
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