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Abstract

We consider the time reversal (T) transformation in neutrino oscillations in a model-

independent way by comparing the observed transition probabilities at two different

baselines at the same neutrino energy. We show that, under modest model assumptions,

if the transition probability Pνµ→νe around Eν ≃ 0.86 GeV measured at DUNE is

smaller than the one at T2HK the T symmetry has to be violated. Experimental

requirements needed to achieve good sensitivity to this test for T violation are to obtain

enough statistics at DUNE for Eν ≲ 1 GeV (around the 2nd oscillation maximum),

good energy resolution (better than 10%), and near-detector measurements with a

precision of order 1% or better.
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1 Introduction

One of the top priorities in current neutrino oscillation research is the determination of

leptonic CP violation, which thanks to the CPT theorem is directly related to T violation.

The presence of this phenomenon in neutrino oscillations has been pointed out long ago [1–3].

From the operational point of view the usual search method is rather model-dependent: one

assumes a particular model for neutrino mass, mixing and interactions and then performs

a model-dependent fit to the observed event spectra, and checks if the fit shows preference

for CP violating complex phases in the model. Indeed, in the standard three-flavour model,

this amounts to determining a single complex phase in the lepton mixing matrix [4–6], the

so-called Dirac phase δCP [7].

This method is intrinsically model-dependent, as it does not allow to construct model-

independent measures of (intrinsic) CP violation. One challenge in this respect is the pres-

ence of matter effects [8] which induces enviromental CP violation and obscures fundamental

(or intrinsic) CP violation of the theory [9]. In contrast, T violation provides in principle a

cleaner signature, as the matter effect does not introduce environmental T violation if the

fundamental theory is T invariant, as long as the matter density is symmetric between the

source and the detector [10, 11]. An incomplete list of papers on T violation in neutrino

oscillations is [1, 10–20].
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Applying the time reversal transformation to the oscillation probability, one finds

T [Pα→β(L)] = Pβ→α(L) . (1.1)

Constructing T asymmetric observables based on this property is challenging, as it amounts

to an interchange of neutrino flavours of source and detector. Modern long-baseline exper-

iments have good sensitivity to the Pνµ→νe and Pν̄µ→ν̄e appearance channels, but it is much

more difficult to search for the T reversed transitions, due to experimental obstacles to work

with electron neutrino beams, see [21] for a recent proposal along these lines.

To overcome this problem, in Ref. [22] a method has been proposed, based on the well-

known observation, that the transformation in eq. (1.1) is formally equivalent to the trans-

formation L→ −L:
T [Pα→β(L)] = Pα→β(−L) . (1.2)

Hence, we can search for T violation by looking for an L-odd component of Pνα→νβ(L)

considered as a function of L at a fixed neutrino energy. It has been shown in [22, 23] that

under rather weak assumptions about neutrino properties such a test can be performed in a

model-independent way in principle by combining measurements at three different baselines

plus a near detector.

In the present work we elaborate further on this idea, and we show that under certain

conditions a test for T violation can be constructed by combining only two experiments. We

identify a largely model-independent observable XT , built out of the observed probabilities

Pνµ→νe(L) at two baselines L1, L2 and at a near detector (ND) at L ≈ 0, all determined at

the same neutrino energy Eν , being defined as

XT ≡ Pνµ→νe(L2)− Pνµ→νe(L1)− δ0P
ND
νµ→νe , (1.3)

where δ0 is a calculable coefficient. An analogous quantity can be derived also from the

corresponding anti-neutrino measurements. The purpose of the ND measurement is to con-

strain zero-distance effects due to unitarity violation; it is not needed if 3-flavour unitarity is

imposed as model assumption. As we show below, there exist combinations of L1, L2 and Eν ,

where XT is strictly positive if T is conserved, under modest assumptions on the underlying

model of neutrino properties, similar to the ones adopted in [22, 23]. Hence, if observations

can establish that the combination XT is negative for the suitable combination of L1, L2, Eν ,

the time reversal symmetry is violated in nature.

Below we perform a systematic scan of possible L1, L2, Eν combinations. Indeed it turns

out, that this test can be performed by combining the appearance probabilities measured at

the T2HK [24] and the DUNE [25, 26] experiments at a neutrino energy around 0.86 GeV.

In this work we will study this possibility in detail, and identify the experimental require-

ments for the test to work by performing simulations using the GLoBES software [27, 28].

While these requirements may turn out to be challenging, our observation opens an excit-

ing opportunity for a model-independent search for T-violation with experiments already in

preparation.

The outline of the paper is as follows. In section 2 we introduce the general framework for

the model independent test for T violation and then introduce the test for two experiments.

We study in some detail the experimental configurations where the test can be applied and
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identify the T2HK/DUNE as suitable combination. In section 3 we discuss the experimental

set up and analysis details used in our simulation of the T2HK and DUNE experiments and

provide sensitivity estimates based on the expected event numbers and statistical errors.

In Section 4 we present our main numerical results and study in detail how the sensitivity

depends on the various assumptions adopted in our analysis. In section 5 we summarize

our findings. In appendix A we elucidate the equivalence of time reversal symmetry and

the transformation L → −L using the quantum field theory (QFT) framework for neutrino

oscillations. In appendix B we provide details on the constraint related to the near-detector

measurements at zero distance.

2 Model-independent test for T violation

2.1 Framework and assumptions

Let us review the assumptions adopted for the T-violation test introduced in [22, 23] and

discuss some minor modifications in the present work. The assumptions are:

(i) We assume that the propagation of the three Standard Model (SM) neutrinos is gov-

erned by a hermitian Hamiltonian H, which depends on neutrino energy and the matter

composition along the neutrino path. The evolution of the flavour state |ψ⟩ is described
by the Schrödinger equation

i∂t|ψ⟩ = H(Eν)|ψ⟩ . (2.1)

(ii) We are interested in experiments, where the matter density along the neutrino path can

be taken as approximately constant and approximately the same for all experiments.

This implies that the Hamiltonian is constant in space and time. The validity of this

assumption and the size of corrections due to small deviations from it for the relevant

experiments have been studied in [23].

(iii) Let us denote flavour states relevant for detection (d) and production at the source (s)

by |νd,sα ⟩, respectively, and the eigenstates of the propagation Hamiltonian H(Eν) by

|νi⟩. Then we allow for arbitrary (non-unitary) mixing between them

|νs,dα ⟩ =
3∑

i=1

(N s,d
αi )

∗|νi⟩ (α = e, µ, τ) , (2.2)

where ∗ denotes complex conjugation. We impose no a-priori constraints on the mixing

parameters N s,d
αi .

(iv) We assume that effects of beyond SM physics for the Hamiltonian H(Eν) of the evo-

lution equation eq. (2.1) are small, and the eigenvalues of the Hamiltonian and their

energy dependence resembles approximately the one following from the effective neu-

trino mass squared differences in matter in the SM. We will quantify this requirement

below.

These assumptions cover of course the standard three-flavour oscillation framework and

include also a broad range of beyond SM effects, such as non-standard neutrino interactions

4



in production, propagation and detection as well as non-unitarity mixing. It allows also the

presence of sterile neutrinos, as long as their mass-squared differences are much smaller or

much larger than the two standard three-flavour mass-squared differences ∆m2
21 ≈ 7.4 ×

10−5 eV2 and ∆m2
31 ≈ 2.5 × 10−3 eV2 [29] (Nu-Fit 5.3). But assumption (i) excludes the

possibility of neutrino decay on length-scales relevant for the experiments (but our framework

does include neutrino decay with a decay-length much shorter than the distance between

neutrino source and the closest near detector).

Comment on time reversal. The fundamental quantum mechanical evolution equa-

tion, eq. (2.1), describes evolution in time. Applied to neutrino oscillations, the common

assumption is t ≈ x, motivated by a neutrino wave packet picture with wave packets prop-

agating close to the speed of light, and to consider evolution in space instead of time. For

neutrino production at the position xs at time ts and detection at position xd and time td the

assumption x ≈ t implies T ≡ td − ts = xd − xs ≡ L. Hence, the time reversal transforma-

tion t → −t leads to an effective transformation in space, L → −L, see also the discussion

in Ref. [23] in the context of non-standard mixing scenarios. While the equivalence of the

transformations eq. (1.1) and eq. (1.2) follows immediately from the standard formula for

oscillation probabilities, this somewhat hand-waving argumentation relies on the association

x ≈ t, which emerges as an a-posteriori result of a consistent wave-packet treatment [30].

We show in appendix A, that eqs. (1.1) and (1.2) and their equivalence can be derived also

from a quantum-field theoretical approach to neutrino oscillations [31].

Transition probabilities. For the sake of definiteness, let us consider the νµ → νe
appearance probability, introducing the abbreviation P ≡ Pνµ→νe , with the L and Eν depen-

dence left implicit. All arguments apply in a straight-forward way to anti-neutrinos as well.

Under the above stated assumptions the probability is given by

P =

∣∣∣∣∣
3∑

i=1

cie
−iλiL

∣∣∣∣∣
2

, ci ≡ N s∗
µiN

d
ei , (2.3)

where λi are the eigenvalues of the effective Hamiltonian from eq. (2.1). We write P as

P =
∣∣c2(e−i(λ2−λ1)L − 1) + c3(e

−i(λ3−λ1)L − 1) + ϵ
∣∣2 , (2.4)

where we have defined the parameter

ϵ ≡
3∑

i=1

ci . (2.5)

In the unitary-mixing case, N s
αi = Nd

αi = Uαi, and it follows from the definition of ci in

eq. (2.3) that ϵ = 0 for unitary mixing. Hence, ϵ describes deviation from unitarity and

leads to a “zero-distance effect”, which we generically denote by “near detector” (ND):

PND ≡ P (L→ 0) = |ϵ|2 . (2.6)
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For the analytical discussion it is convenient to use the three independent parameters ϵ, c2, c3
instead of c1, c2, c3. One can split the probability into T-even and T-odd parts:

P = Peven + Podd , (2.7)

with

Peven = |ϵ|2 + 4Re[c∗2(c2 − ϵ)] sin2 ϕ21 + 4Re[c∗3(c3 − ϵ)] sin2 ϕ31

+ 8Re[c∗2c3] sinϕ21 sinϕ31 cos(ϕ31 − ϕ21) (2.8)

Podd = 2Im[ϵ∗c2] sin 2ϕ21 + 2Im[ϵ∗c3] sin 2ϕ31

+ 8Im[c∗2c3] sinϕ21 sinϕ31 sin(ϕ31 + ϕ21) , (2.9)

where

ϕij ≡
λi − λj

2
L . (2.10)

As stated in assumption (iv) above, we assume that new-physics contributions to λi are

small, i.e.,

ϕij ≈
∆m2

ij,eff(Eν)L

2Eν

, (2.11)

where ∆m2
ij,eff(Eν) are the effective mass-squared differences in matter, assuming the stan-

dard matter effect. In our numerical work we obtain them by diagonalizing the effective

Hamiltonian in matter numerically, assuming the best fit oscillation parameters from [29]

(Nu-Fit 5.3) and an average matter density of ρ = 2.84 g cm−3.

2.2 T-violation test for two experiments

Let us consider the T-even part, i.e., we assume that T is conserved by the fundamental

theory. This implies that the parameters ϵ, c2, c3 are real. We write

Peven = γ2c2(c2 − ϵ) + γ3c3(c3 − ϵ) + γ23c2c3 + ϵ2 (2.12)

with the abbreviations

γi = 4 sin2 ϕi1 (i = 2, 3) ,

γ23 = 8 sinϕ21 sinϕ31 cos(ϕ31 − ϕ21) .
(2.13)

These coefficients are functions of neutrino energy and baseline. Following [22], we can

establish that the fundamental theory violates T if data cannot be fitted with the T-even

part alone. Since eq. (2.12) depends on three parameters (c2, c3, ϵ) one may conclude that

there is always a fit for two experiments plus a near detector, which provide three data

points. In the following we show, that this argument is actually not true and under certain

conditions the quadratic nature of the parameter dependence does not provide a solution for

three data points, even imposing no further condition on c2, c3, ϵ.
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Let us consider the difference of the appearance probability at two baselines, L1 and L2

but at the same energy:

Peven(L2)− Peven(L1) = δ2c2(c2 − ϵ) + δ3c3(c3 − ϵ) + δ23c2c3 (2.14)

with

δi = γi(L2)− γi(L1) (i = 2, 3, 23) . (2.15)

If ϵ ̸= 0, a suitable shift of variables can be performed

c2 → c2 + ϵ
δ3δ23 − 2δ2δ3
δ223 − 4δ2δ3

, c3 → c3 + ϵ
δ2δ23 − 2δ2δ3
δ223 − 4δ2δ3

, (2.16)

such that

XT ≡ Peven(L2)− Peven(L1)− ϵ2δ0 = δ2c
2
2 + δ3c

2
3 + δ23c2c3 (2.17)

with

δ0 =
δ2 + δ3 − δ23
δ223/(δ2δ3)− 4

. (2.18)

In eq. (2.17) we have defined the quantity XT introduced already in eq. (1.3).

Without loss of generality we assume δ2 > 0, which can be achieved by ordering L1 and

L2 accordingly.1 The important observation is now that the right-hand side of eq. (2.17) is

a non-negative function of c2 and c3 iff

δ3 > 0 and δ2 > 0 , and (2.19)

|δ23| < 2
√
δ2δ3 . (2.20)

Using eq. (2.6), we can now consider the observed value of the quantity XT ,

Xobs
T = P obs

νµ→νe(L2)− P obs
νµ→νe(L1)− δ0P

ND,obs
νµ→νe , (2.21)

and obtain the following test for T violation:

If it can be established within experimental uncertainties that Xobs
T < 0 and the

conditions eqs. (2.19) and (2.20) are fulfilled then T has to be violated in Nature.

In other words, if Xobs
T < 0 and eqs. (2.19) and (2.20) hold, a T-odd component needs

to be present in the transition probability to make XT negative, because eq. (2.17) implies

that the T-even contributions alone have to be non-negative, regardless of the values of the

mixing parameters ci.

Note that the condition XT < 0 is somewhat conservative. We can still use PND,obs to

fix ϵ and P obs at one of the far positions, let’s say L1, to impose a constraint on c2 and c3.

If P obs(L1) ̸= PND,obs then c2 and c3 cannot both be zero, which implies that the right-hand

side of eq. (2.17) is positive. Numerically, however, we find that if no further restriction on
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Figure 1: Regions in energy and distance where the conditions eqs. (2.19) and (2.20) are fulfilled. Blue

and red regions correspond to eq. (2.19) and eq. (2.20), respectively, and purple regions to both conditions

simultaneously. In the upper panels we fix L1 to LT2K and LDUNE, respectively, vary L2 on the vertical

axis and show the neutrino energy on the horizontal axis. In the lower panels we show the two distances

L1,2 on the axes for four fixed energies Eν = 0.85, 1.0, 1.3, 1.6 GeV in each triangle section of the panels,

respectively. We assume neutrinos and normal mass ordering.
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c2 and c3 is imposed, there is always a combination of them which makes the right-hand

side of eq. (2.17) very small while keeping Peven(L1) = P obs(L1). In our numerical analysis

presented in the next section these effects are consistently taken into account, including also

experimental uncertainties.

Can the conditions be fulfilled in realistic experiments? Note that the coefficients

δi are functions of neutrino energy and baseline and depend on the effective energy eigenval-

ues in matter, see eqs. (2.11), (2.13) and (2.15). Hence, according to assumption (iv) they are

primarily determined by the neutrino mass-squared differences and show a (typically weak)

dependence on the leptonic mixing angles due to the matter effect. We adopt the best-fit

values from [29] (Nu-Fit 5.3) to calculate δi as a function of L1, L2 and Eν and search for

regions where the conditions eqs. (2.19) and (2.20) are satisfied. The results of this analysis

are shown in fig. 1, where in the purple regions both conditions are satisfied simultaneously.

To guide the eye, we indicate by the dotted lines the baselines of a few representative future

long-baseline experiments, namely T2HK [24] (L = 295 km), ESSνSB [32] (L = 360 km),

T2KK [33] (L = 1100 km), and DUNE [25, 26] (L = 1300 km). Several comments are in

order:

1. Purple regions of small L and/or large Eν (bottom-right corners in upper pannels

and bottom-left corners in lower pannels) correspond to regions of very low values of

the probabilities below the first oscillation maxima; here the conditions are formally

satisfied, but irrelevant for practical purposes due to negligible event numbers.

2. Focusing on the upper left panel with L1 = 295 km corresponding to the T2HK baseline,

we find a potentially sensitive region at L2 corresponding to the DUNE baseline around

Eν ≈ 0.86 GeV. This is also visible in the upper-right and lower-left panels. This energy

is well suited for the T2HK beam, but at the low-energy tail for DUNE. In the next

section we will study in detail the experimental requirements to explore that region.

3. Apart from the T2HK/DUNE region we find also a potential region for T2HK/T2KK

around Eν ≈ 0.75 GeV. Numerically it turns out that this combination does not provide

as good sensitivity as the T2HK/DUNE combination. Otherwise, none of the other

baselines crosses a suitable purple region when combined with T2HK.

4. In the upper-right panel, with L1 = 1300 km equal to the DUNE baseline, we find in

addition to T2HK a potential combination with NOvA at Eν ≈ 0.9 GeV (also visible

in the lower-left panel). However, at these energies, NOvA has no events and therefore

this window cannot be used. Furthermore, the conditions are met as well for the

T2KK/DUNE combination around Eν ≈ 0.8 GeV. In this case the baselines L1 and L2

are comparable, and the probability difference is very small, which again prevents us

to use this combination in practice.

5. Apart from these cases, no other combination of the selected experiments falls in the

region where all conditions for the XT test can be fulfilled for useful energies. For

the figure we assumed neutrino mode and the normal neutrino mass ordering. For

other combinations, the regions shift slightly due to the modified matter effect, but

1Numerically we have ϕ21 < π/2 for the experiments of interest, which implies that δ2 > 0 for L2 > L1.

9



the qualitative picture remains the same. Specifically, the energy intervals where the

conditions eqs. (2.19) and (2.20) are fulfilled for the T2HK/DUNE combination are:

Eν ∈ [0.80, 0.92]GeV (neutrinos/NO and anti-neutrinos/IO) ,

Eν ∈ [0.86, 0.99]GeV (neutrinos/IO and anti-neutrinos/NO) .
(2.22)

6. In addition to the conditions eqs. (2.19) and (2.20), also Xobs
T needs to be negative

for this L1, L2, Eν combination in order to establish T violation. This will depend on

the actual mechanism for T violation realised in nature. The simplest hypothesis is

just standard 3-flavour oscillations, with T violation induced by the Dirac phase in the

PMNS matrix, δCP. We denote this case by “Standard Model” (SM) in the following.

Indeed, for the T2HK/DUNE combination at Eν ≈ 0.86 GeV we find that XSM
T (δCP ≈

π/2) ≈ −0.012 for neutrinos, while it is positive for δCP ≈ 3π/2. For anti-neutrinos the

situation is the opposite: XSM
T is positive (negative) for δCP ≈ π/2 (3π/2). For these

estimates we assumed PND ≈ 0. The coefficient relevant for PND is δ0 ≈ −0.24. These

numbers set the required precision on the three probabilities to establish Xobs
T < 0 at a

useful significance (see detailed simulations below).

7. Finally, going beyond the considered experiment proposals, we see from fig. 1 that

there is also a potentially interesting region for combining a hypothetical experiment at

L2 ≃ 2000−3000 km with DUNE at energies between 1 and 1.6 GeV (see right panels).

In that region it turns out that XSM
T is positive for neutrinos (for both, δCP = 90◦ and

270◦). But the test could potentially work for anti-neutrinos in the standard 3-flavour

case, where XSM
T can become negative.

In summary, the conditions eqs. (2.19) and (2.20) are necessary, but not sufficient that

the XT test can be applied realistically. We find that the T2HK/DUNE combination is

the most promising configuration, which we therefore have investigated in some detail with

numerical simulations.

3 Simulation details

In section 3.1 we give the experimental specifications of the DUNE and T2HK setups assumed

in this work to explore the sensitivity to T-violation, which is then followed in section 3.2 by

a description of the analysis adopted for our statistical analysis. In section 3.3 we provide

an analytical estimate of the sensitivity based on the expected event numbers.

3.1 Experimental setups

DUNE is an upcoming long-baseline accelerator neutrino experiment designed to explore

the nature of neutrinos by sending them from Fermilab to a far-detector situated deep un-

derground at the Sanford Lab in South Dakota at a distance of 1300 km. To estimate

the experiment’s sensitivity, we utilize the configurations outlined in the Technical Design

Report (TDR) [25, 34], along with an alternative configuration featuring enhanced energy

resolution as suggested in Refs. [35,36] (see also [37,38]). The TDR configuration includes a

10
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Figure 2: Number of νµ → νe (left) and ν̄µ → ν̄e (right) signal events per 0.125 GeV reconstructed neutrino

energy bins. For T2HK we assume an exposure of 607.75 (1823.25) kt MW yr for neutrino (antineutrino)

running. For DUNE we show spectra for a nominal exposure of 168 kt MW yr by green curves, as well as

exposures increased by a factor 5 (10) for neutrinos (antineutrinos) as red curves. Dashed curves indicate

events due to the wrong-sign beam component, i.e., ν̄µ → ν̄e for the left panel (hardly visible) and νµ → νe

for the right panel. The vertical bar indicates the energy bin sensitive to the T-violation test. The insets

show a zoom into the relevant energy range. We assume standard oscillations with the parameters given in

table 1 and δCP = 90◦ (left panel) and δCP = 270◦ (right panel).

40 kt Liquid Argon Time Projection Chamber (LArTPC) as the far detector (current plan-

ning considers a staged approach with up to 4 detector modules of 17 kt each), paired with

a 120 GeV proton beam delivering 1.2 MW of beam power, which translates to 1.1 × 1021

protons on target (P.O.T) per year. For further details on systematic errors and efficiencies,

please refer to Ref. [34].

T2HK (Tokai to Hyper-Kamiokande) is an off-axis, accelerator-based future superbeam

experiment with a 295 km baseline. To estimate the detector’s physics potential, we ad-

here to the experimental configurations outlined in [24]. This experiment will utilize the

same 30 GeV proton beam from the J-PARC facility, previously used for T2K, to gener-

ate (anti)neutrino fluxes. The Water Cherenkov far detector is expected to have a fiducial

volume of 187 kt, and the total exposure will be 1.3MW × 10 × 107 seconds, equivalent to

2.7×1022 protons on target (P.O.T). In this simplified scenario, we consider an uncorrelated

5% (3.5%) signal normalization error, a 10% background normalization error, and a 5% en-

ergy calibration error for both ν and ν̄ appearance (disappearance) channels.

Figure 2 shows the expected signal spectra for the νµ → νe appearance channel, assum-

ing standard three-flavour oscillations with parameters given below in table 1 and δCP =

90◦ (270◦) for neutrino (antineutrino) beam mode. In the left panel we consider the neutrino

mode, where for T2HK we have assumed an exposure of 608 kt MW yr, which corresponds

to about 2.5 yr of neutrino beam running with the above mentioned assumptions on detector

mass and beam power. We see from the figure, that the sensitive energy window identified

in eq. (2.22) falls close to the peak of the event spectrum in T2HK with about 180 events.
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sin2 θ12 sin2 θ13 sin2 θ23 ∆m2
21 [eV2] |∆m2

3ℓ| [eV2]

0.307 0.022 0.572 7.41× 10−5 2.51× 10−3

Table 1: Standard three-flavour parameters adopted in the numerical analysis, with ℓ = 1 (2) for normal

(inverted) mass ordering [29] (NuFit 5.3).

For DUNE, however, the relevant energy range is located at the low-energy tail of the event

spectrum, suffering from low event numbers for a nominal exposure of 168 kt MW yr. There-

fore, we have assumed an optimistic exposure of 840 kt MW yr, which would give about

18 events in the sensitive energy bin for the chosen oscillation parameters. According to

current detector installation and beam power planning [39], this exposure will be achieved

roughly after 13 years of operation. Note that here we assumed that the total exposure is

collected with neutrino running. Unless otherwise specified, this will be our default exposure

assumptions for both T2HK and DUNE in the following.

In the right panel we show event spectra for antineutrino running. With the T2HK

exposure of 1823 kt MW yr we find ≃ 140 events in the relevant energy range, however, event

numbers for DUNE are very small. Even an (unrealistically) high exposure of 1680 kt MW yr

pure antineutrino exposure would lead to only 6 events in the relevant energy range and a

“wrong-sign” beam component giving an even larger signal of about 12 events. Hence, we

expect that the application of our proposed test for antineutrinos will suffer from too low

statistics.

Finally, we see from fig. 2 that the sensitive energy bin is located at the 1st and 2nd

oscillation maxima for the T2HK and DUNE baselines, respectively. Hence, the T-violation

test is based on the comparison of the probabilities at the 1st and 2nd oscillation maxima,

see also the discussion in [22] (supplementary material).

3.2 Analysis details

To estimate the sensitivity to T-violation, we have used the GLoBES [27, 28] package with

the required modifications of the probability engine. We have explicitly implemented the

transition probabilities according to eq. (2.3). In our analysis we only use the appearance

channel. We assume that the eigenvalues of the Hamiltonian are determined according to

eq. (2.11) by the effective mass-squared differences in matter as in the SM, where the values

of ∆m2
21 and ∆m2

31 are fixed due to external constraints with sufficient precision (to be

quantified below). Hence, the free parameters in our fit are the coefficients ci (i = 1, 2, 3)

introduced in eq. (2.3).

The test for T violation is based on the comparison of transition probabilities at fixed

energies. Therefore, we choose identical bins in reconstructed neutrino energy for both,

T2HK and DUNE, and consider a χ2-function for a given energy bin:

χ2
k(ci) =

∑
x

min
ξx

[
2

(
Nx

k (ci, ξx)−Nx,obs
k −Nx,obs

k ln
Nx

k (ci, ξx)

Nx,obs
k

)
+
∑
ξx

ξ2x
σ2
ξ

]
+

[
ϵ(ci)

2

σϵ

]2
.

(3.1)

12



Here k labels the energy bin and Nx
k (ci, ξx) is the number of events predicted in the model

eq. (2.3) for experiment x = T2HK,DUNE, calculated including backgrounds and various

systematics as described in section 3.1. The latter are parametrised by pull parameters,

generically denoted by ξx in eq. (3.1). Nx,obs
k is the corresponding “observed” number of

events, which will depend on the true mechanism of neutrino conversion realised in Nature.

In this study we will—as a specific example—always assume the standard three-flavour

scenario and calculate Nx,obs
k accordingly, using the oscillation parameters shown in table 1.

Then we study the sensitivity of the T-violation test as a function of the assumed true

value of δCP, as N
x,obs
k (δCP). Hence, χ2

k(ci) → χ2
k(ci, δ

true
CP ). Obviously, there can only be

sensitivity for T-violation for values δCP ̸= 0, π. To calculate Nx,obs
k in the standard three-

flavour case we use a line-averaged constant matter density of 2.84 g/cm3 [40, 41] for both,

DUNE and T2HK, which is a good approximation for these baselines [23]. The same value

is then adopted to calculate the oscillation frequencies in the T conserving model according

to eq. (2.11).2

The last term in eq. (3.1) takes into account a constraint on the zero-distance effect, which

is implemented as external prior in GLoBES. The parameter ϵ(ci) =
∑

i ci has been defined

in eq. (2.5) and it induces non-zero transitions at zero-distance due to unitarity violation.

We assume that its size is constrained with an effective uncertainty σϵ, which emerges from

a combination of near-detector measurements, correlated systematic uncertainties as well as

external constraints on non-unitarity, see appendix B for a detailed discussion. Recent global

analyses on non-unitarity can be found e.g., in Refs. [42–45]. For instance, the parameter

ηeµ used in Ref. [45] is related to our ϵ by |ϵ| ≈ 2|ηeµ| and the results of Ref. [45] imply an

external constraint of |ϵ| < 1 (1.4)× 10−5 at 68% (95%) CL (“GUV analysis”), which taken

at face value would imply a negligible zero-distance transition probability PND = ϵ2 for all

practical purposes. We note, however, that typically these analyses are to some extent model

dependent, for instance by assuming a certain energy dependence of non-unitarity effects.

Here we allow the ci coefficients to vary independently in each energy bin, i.e., remaining

fully agnostic about their energy dependence. The analysis in [45] assumes non-unitarity

due to “heavy” new physics; in the presence of light sterile neutrinos non-unitarity effects

may be larger; e.g., ref. [44] finds PND < 4 × 10−4 (90% CL). Furthermore, in the presence

of correlated uncertainties (such as flux uncertainties) the effective uncertainty on ϵ2 will be

much larger than the external constraint mentioned above and dominated by the accuracy of

near detector measurements, see appendix B. Below we will study how the sensitivity of our

T violation test depends on the size of σϵ. If not stated otherwise, the default assumption is

σϵ = 10−3.

Departing from eq. (3.1), we define

∆χ2
T =

∑
k

min
ci

[
χ2
k(ci)

]
, (3.2)

which we interpret as sensitivity to T violation by evaluating it for 1 dof. The statistical

interpretation is as follows: for a single bin in the Gaussian approximation,
√

∆χ2
T can be

interpreted as the number of standard deviations at which the observable XT < Xmin
T , where

2In this approximation the model implemented by eq. (2.3) can reproduce event numbers for T conser-

vation δCP = 0, π exactly.
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Xmin
T is the minimum value of XT allowed for T conservation. (As proven in section 2.2 we

always have Xmin
T ≥ 0.) When using several bins, the significances are just added by adding

the individual χ2’s for each bin.

Note that the sum over energy bins k is done after minimising with respect to the

parameters ci in eq. (3.2), contrary to the usual model-dependent standard fitting procedure.

Hence, in our model-independent approach we allow different best-fit parameters ci in each

energy bin, and therefore the number of free parameters in the fit depends on the number of

bins. This procedure is adopted to allow for an unknown energy dependence of possible new

physics effects. As a result a subtle interplay between the chosen number of bins as well as

the assumed energy resolution emerges. From the discussion in section 2.2 we expect that

only in the true neutrino energy interval eq. (2.22) there is sensitivity. However, because

of smearing effects due to finite energy resolution also neighbouring bins will show some

sensitivity. As a default configuration we will adopt 3 bins, where the central bin is given by

the interval in eq. (2.22), plus one bin of the same size above and below this interval. Below

we will discuss also the dependence of the results on this choice.

3.3 Sensitivity estimate

Before we discuss the results of our statistical analysis, let us provide a rough estimate for the

sensitivity to T violation of the considered T2HK and DUNE configurations. We consider the

quantity XT from eq. (2.21) and estimate the significance with which it is negative assuming

neutrino exposures and the benchmark parameters as adopted in fig. 2. For Eν = 0.85 GeV

we find

P (LDUNE) = 0.0233 , P (LT2HK) = 0.0357 , P (LND) = 0 ⇒ XT = −0.0124 . (3.3)

We can estimate the statistical uncertainty on XT by using the number of events predicted

in the sensitive energy bin of NDUNE ≈ 18 and NT2HK ≈ 180 (c.f. fig. 2) as

σXT
=

√
P (LDUNE)2

NDUNE

+
P (LT2HK)2

NT2HK

+ δ20σ
2
ϵ (3.4)

≈ 3.2× 10−3

[
3.0

18

NDUNE

+ 0.71
180

NT2HK

+ 0.006
( σϵ
0.001

)2]1/2
, (3.5)

where σϵ is the effective uncertainty on the zero-distance effect (see appendix B for a discus-

sion) and δ0 ≈ −0.243. Hence, we obtain a significance ofXT being negative of |XT |/σXT
≈ 2

standard deviations. This estimate turns out to be in rough agreement with the more elab-

orate statistical analysis presented below (which typically will lead to slightly better sensi-

tivities, depending on the assumed energy resolution).

4 Results

4.1 Exposure and energy resolution

We now present the results of our numerical sensitivity calculations. Figure 3 shows the

value of the χ2 statistic eq. (3.2) as a function of the assumed true value of the 3-flavour
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Figure 3: T2HK + DUNE sensitivity to T violation as a function of true CP phase δtrueCP . The top-right

panel corresponds to the predicted sensitive energy window [0.80-0.92] GeV, eq. (2.22), top-left and bottom-

left show its lower and upper neighboring bins; in the bottom-right panel we show the combination of the

three bins. Green curves correspond to the default energy resolution according to eq. (4.1); for blue and

red curves we re-scale the width of the resolutions globally by a factor 0.5 and 0.2, respectively. We assume

exposures of 608 (840) kt MW yr for T2HK (DUNE) in the neutrino mode.

CP phase for our default T2HK and DUNE configurations. The final sensitivity is displayed

in the bottom-right panel, which includes the full energy range relevant for the test. We

observe that there is only sensitivity in the range 0 < δCP < 180◦. The reason is because for

this figure we assume only the neutrino beam mode. For 180◦ < δCP < 360◦, antineutrinos

offer sensitivity in principle [22], which however, turns out to be very poor for realistic

experimental configurations, as we will discuss below in section 4.3. Therefore, we focus on

neutrino running, in which case we obtain sensitivities slightly below 3σ for δCP ≃ 90◦.

The top-right panel of fig. 3 shows ∆χ2
T using only the energy bin from eq. (2.22),

where we expected sensitivity for normal ordering and neutrino mode, whereas top-left and

bottom-left panels correspond to the neighbouring bins below and above. According to our

model-independent approach, we independently minimize with respect to the ci coefficients

in each bin. Clearly, the bulk of the sensitivity is provided by the predicted energy bin,

confirming our analytical estimates. The neighbouring bins do provide minor sensitivity,

mostly because of smearing effects due to finite energy resolution, which we are going to

15



Eres= 0.2*σdef

Eres= 0.5*σdef

Eres= 1*σdef

Eres= 2*σdef

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

DUNE exposure (kt.MW.yr)

Δ
χ

T2
(T

2
H

K
+

D
U

N
E
)

NO,[0.68-0.80]+[0.80-0.92]+[0.92-1.04] GeV

Figure 4: ∆χ2
T as a function of the DUNE neutrino exposure for true δCP = 90◦ summing the three relevant

energy bins. The T2HK exposure is kept fixed at 608 kt MW yr. Different curves correspond to different

assumptions on the neutrino energy resolutions. The green curve represents our default resolution according

to eq. (4.1), for the red (blue) curve the resolutions for both, T2HK and DUNE have been re-scaled by a

factor of 0.2 (0.5), while for the magenta curve only the DUNE resolution has been re-scaled by a factor 2.

discuss in more detail now.

We consider a Gaussian detector resolution with σ = αEν + β
√
Eν + γ, where Eν is the

neutrino energy in GeV. We adopt the following default configuration (units are GeV)

(α, β, γ) =


(0.12, 0.07, 0.0) T2HK neutrinno

(0.12, 0.0, 0.09) T2HK antineutrino

(0.045, 0.001, 0.048) DUNE neutrino

(0.026, 0.001, 0.085) DUNE antineutrino

(4.1)

For T2HK these numbers have been chosen in order to match the results provided in the

design report [24]; for DUNE we adopt an improved energy resolution based on [36,38]. For

Eν = 0.86 GeV, these assumptions imply a neutrino energy resolution of about 19% for T2HK

and 10% for DUNE. Figure 3 shows the sensitivity for this default assumption as green curves

as well as the impact of improved energy resolutions, multiplying the numbers from eq. (4.1)

by a factor 0.5 (blue curves) or 0.2 (red curves). We see that the main impact of improving

the energy resolution is to shift sensitivity from the lower energy bin (sensitivity decreases

with improved resolution) towards the central bin (sensitivity improves with resolution).

This behaviour again supports our analytical arguments, that the sensitivity is dominated

by true neutrino energies corresponding to the central bin from 0.8 to 0.92 GeV.

Let us now study the interplay of energy resolution and exposure. The estimates in

section 3.3 suggest that the statistical uncertainty is dominated by DUNE under our default

assumptions of 608 (840) kt MW yr for T2HK (DUNE), see eq. (3.5). Figure 4 shows
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the T violation sensitivity for δtrCP = 90◦ as a function of the DUNE exposure in neutrino

mode for different assumptions on the energy resolutions in both experiments. We see that

an improved energy reconstruction can somewhat reduce the required exposure to reach

a certain sensitivity. Note that our default assumption for DUNE according to eq. (4.1)

corresponds already to an improved resolution according to [36]. The magenta curve in fig. 4

shows the sensitivity for a DUNE resolution reduced by a factor to compared to eq. (4.1),

which corresponds to good accuracy to the value from the DUNE TDR [25,34]. We see that

the improved reconstruction is essential to obtain good sensitivity with reasonable exposures.

4.2 Zero-distance effect and prior on oscillation frequencies

According to assumption (iv) stated in section 2.1, the oscillation frequencies λi − λj differ

only slightly from the corresponding standard 3ν case. In our default analysis we have

fixed the oscillation phases to the value given in eq. (2.11), where ∆m2
ij,eff is the standard

effective mass-squared difference in matter for our assumed constant matter density and the

central neutrino energy of the relevant energy bin. In order to quantify the accuracy with

which ∆m2
ij,eff has to be known we treat ∆m2

31,eff as an additional free parameter in the fit

constrained by a Gaussian prior whose uncertainty is shown on the horizontal axis in fig. 5

centered around the standard model value. The interpretation of this prior width is two-fold:

first, it quantifies the assumption that new-physics contributions to the oscillation frequencies

have to be “small” and second, it provides a measure of the precision needed on the standard

mass-squared differences from additional data, e.g., from the disappearance data of the

same experiments (see [22]) or, under more model-dependence, also from external data on

the oscillation frequencies. We have checked that our results are completely insensitive to

uncertainties on ∆m2
21,eff up to 6%. Therefore, fixing ∆m2

21,eff to its SM value is a very good

assumption and we focus our discussion below on the uncertainty of ∆m2
31,eff .

Second, we want to study the impact of the near detector constraint σϵ. The “near

detector” prior constrains the deviation from unitarity parametrized by the parameter ϵ =∑
i ci, see eqs. (2.5) and (3.1). As discussed in section 3.2 and appendix B this constraint

corresponds to an effective constraint which emerges from a combination of genuine new-

physics non-unitarity as well as the actual near-detector measurements of the considered

experiments. We treat σϵ as an effective parameter which we set to 0.1% in our default

analysis, whereas in fig. 5 we study the dependence of the sensitivity on this assumption.

Figure 5 shows a non-trivial interplay of the near-detector constrains (curves with differ-

ent colors), the energy resolution (solid curves: default assumption, dashed curves: improved

by a factor 0.5), and the oscillation frequency prior. A crucial role is played by the quantity

δ0 defined in eq. (2.18), which multiplies the non-unitarity factor ϵ2 in the observable XT , see

eq. (2.17). The value of δ0 is determined by the oscillation frequencies and therefore depends

on energy. Hence, effectively we have to average δ0 over the width of the considered energy

bin and fold it with the resolution function. It turns out that the energy-averaged value

of δ0 monotonically decreases from about −0.09 for our default energy resolution to −0.21

for a resolution improved by a factor 0.2. Hence, we expect that the impact of the zero-

distance effect becomes more important for better energy resolution. This is the behaviour

visible in fig. 5: while the solid curves are rather insensitive to the value of the near-detector
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Figure 5: Sensitivity to T violation for δtrueCP = 90◦ as a function of the prior on the effective mass-squared

difference in matter, ∆m2
31,eff , for different assumptions on the near detector constraint on the zero-distance

effect, σϵ = 0.1%, 1%, 5% for the green, blue, red curves, respectively. For the solid curves we assume the

default energy resolution from eq. (4.1), for the dashed curves the energy resolution is re-scaled by a factor

0.5 for both experiments. Exposures have been set to our default assumptions.

constraint even up to σϵ = 5%, we see a rather strong dependence on σϵ for the improved

energy resolution (dashed curves) and the sensitivity degrades significantly for uncertainties

σϵ ≳ 1%. This behaviour is consistent with the estimate in eq. (3.5). Note that for σϵ = 5%

the better resolution leads to a worse sensitivity, which is a manifestation of the larger value

of |δ0| due to the non-trivial energy averaging, see also eq. (3.4).

This effect is further entangled with the uncertainty on ∆m2
31,eff . A large uncertainty on

∆m2
31,eff has a similar effect as the energy smearing. The conditions eqs. (2.19) and (2.20)

which have to be fulfilled in order for the observable XT being sensitive to T violation depend

on the oscillation frequency. Sizeable uncertainties in the frequencies allow to change the

values such that the conditions eqs. (2.19) and (2.20) no longer hold in certain regions in

the relevant energy range, which degrades the over-all sensitivity. We conclude from fig. 5

that the precision on the oscillation frequency should be better than about 2% before the

sensitivity degrades significantly.

For the improved energy resolution we notice also a flat plateau when increasing the

frequency prior for σϵ ≳ 1% (blue and red dashed curves). The origin of this behaviour is

related to multiple minima in the χ2 in the ci space which appear when allowing for non-

unitarity. For large enough σϵ a minimum appears which has a best fit point of ∆m2
31,eff

very close to its central value, and is therefore independent of the assumed prior width. The

curve starts to deviate from the plateau when another minimum becomes the global one,

which then is affected by the ∆m2
31,eff prior.

To summarize, for uncertainties on the oscillation frequency and/or the zero-distance
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Figure 6: Sensitivity to T violation as a function of true CP phase δtrueCP combining 608 kt MW yr (T2HK)

and 840 kt MW yr (DUNE) exposure in the neutrino beam mode with 1823 kt MW yr (T2HK) and

1680 kt MW yr (DUNE) in the antineutrino beam mode. We show results for the energy bin [0.80-0.92] GeV.

Green curves correspond to the default energy resolution according to eq. (4.1); for blue and red curves we

re-scale the width of the resolutions globally by a factor 0.5 and 0.2, respectively. For the dashed curves we

remove the “wrong sign signal” due to the ν̄µ (νµ) beam component in the neutrino (antineutrino) beam

mode.

effect ≳ 1% a complicated interplay appears, leading to counter-intuitive behaviour with

respect to energy resolution because of non-trivial energy-averaging effects. For robust results

of the proposed T violation test, constraints on the zero-distance effect and on the oscillation

frequency better than ≃ 1% are desirable.

4.3 Antineutrino beam mode

Before concluding let us briefly comment on the sensitivity of the antineutrino beam mode.

Antineutrinos can in principle provide sensitivity for 180◦ < δCP < 360◦ [22] as for these

values of δCP, XT is negative for standard oscillations. However, in the experimental setup

considered here, the sensitivity is only very poor for two main reasons. First, event numbers

for DUNE in the relevant energy bin are very small, and second, there is a large neutrino

component in the antineutrino beam, which leads to a dilution of the T violation effect.

In fig. 6 we show the sensitivity by analysing neutrino and antineutrino exposure simulta-

neously, with independent ci coefficients. In order to obtain a meaning full number of events

in DUNE we assume the very large exposure of 1680 kt MW yr for antineutrinos, which gives

only 6 signal events for δCP = 270◦, c.f. fig. 2. It is apparent from fig. 6 that in the region

180◦ < δCP < 360◦ only limited sensitivity can be achieved, despite the (unrealistically) large

DUNE exposure.

Another reason is the relatively large neutrino component in the “antineutrino” flux
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mode. Indeed, in the relevant energy bin for DUNE we expect even more “wrong-sign” neu-

trino events than antineutrino events: from fig. 2 we find 12 neutrino versus 6 antineutrino

events. Also for T2HK the wrong-sign component is sizable with 26 neutrino versus 140 an-

tineutrino events. Note that in our model-independent approach, neutrino and antineutrino

transition probabilities are governed by a different set of ci coefficients. For this reason, a

meaning-full analysis of antineutrino beam running is only possible together with data from

the neutrino mode, in order to constrain both set of ci’s.
3 This is further illustrated by the

dashed curves in fig. 6, for which we switch off the “wrong-sign” beam components for illus-

tration purposes. However, even in this hypothetical case we can achieve at best sensitivities

up to 2σ due to the small event numbers in DUNE.

5 Summary and discussion

In this work we have pointed out that by combining measurements of the νµ → νe transition

probabilities at T2HK and DUNE the fundamental time reversal symmetry can be tested

model-independently. We have proposed a simple test, based on the observable XT intro-

duced in eq. (2.21), which is the difference of the transition probabilities at DUNE, at T2HK

and at zero-distance. An observation of XT < 0 around a neutrino energy of Eν ≃ 0.86 GeV

implies violation of the T symmetry. If a sufficiently strong constraint on the zero-distance

effect is available, XT < 0 just implies a probability at the DUNE baseline smaller than at

the T2HK baseline.

Under the assumption of oscillation frequencies approximately as in the three-flavour

standard neutrino case, we have searched for possible two-baseline and neutrino energy

combinations and identified the T2HK/DUNE combination at Eν ≃ 0.86 GeV as a rather

unique spot where the test can be applied. Another potentially interesting region has been

found for baselines around 2000 to 3000 km combined with DUNE at neutrino energies

around 1.4 GeV; a more detailed investigation of which is left for future work.

We have performed numerical studies based on GLoBES to investigate the experimental

requirements for the DUNE/T2HK test, using T violation due to the standard three-flavour

Dirac CP phase as example. The most important conclusions are the following:

• The sensitive energy interval is located close to the maximum of the appearance event

spectrum for T2HK, but for DUNE it appears in the low energy tail of the event

spectrum and suffers from limited statistics. Therefore, possibilities to increase event

numbers in the sub-GeV region for DUNE are required to obtain sufficient statistical

precision for the test. With current DUNE beam and detector configuration, run times

of order 10 years in neutrino mode are required.

• A somewhat improved energy resolution is important to reach good sensitivities to T

violation. For DUNE, at least a resolution of around 10% at Eν = 1 GeV (as suggested

3Note that in the neutrino beam mode, the wrong-sign component is very small: 3 versus 180 signal

events for T2HK and 1 versus 18 for DUNE for our default exposures. Therefore, it is sensible to consider

neutrino data independently. For any reasonable values of cν̄i the contribution of the antineutrinos will be

negligible.
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e.g., in [36]) is required, whereas any further improvement in energy reconstruction for

both, T2HK and DUNE would increase the T violation sensitivity.

• A sufficiently strong constraint on νµ → νe transitions at zero distance is required,

at least at the ≲ 1% level. As this requirement is typically looser than the allowed

size of non-unitarity effects from generic new physics [42–45], this can be interpreted

as the required near-detector measurement precision to constrain the impact of flux

uncertainties.

• In the antineutrino beam mode we do not reach relevant sensitivity to T violation. The

two main reasons are the limited statistics in the sub-GeV region in DUNE as well as

the large neutrino component in the antineutrino flux mode, which leads to a dilution

of the T violation effect. To explore our proposed test for antineutrinos substantial

improvements with respect to the current experimental configuration for DUNE are

necessary.

Let us summarize in which sense our approach is model-independent: our analysis is

very general in terms of the effective mixing parameters relating the flavour states and

the eigenstates of the propagation Hamiltonian. We treat the ci coefficients (see eqs. (2.2)

and (2.3)) completely unconstrained in each energy bin and separate for neutrinos and

antineutrinos. The strongest assumption is that only two oscillation frequencies are relevant,

and that they are numerically close (within ≲ 2%) to the standard oscillation frequencies

in matter assuming the Standard Model matter effect. Note that this assumptions does not

only involve the (rather precisely measured) vacuum mass-squared differences but also the

impact of non-standard interactions potentially modifying the matter effect. The oscillation

frequencies determine the conditions eqs. (2.19) and (2.20) on the neutrino energy and the

two baselines which have to be fulfilled in order for the observable XT being sensitive to T

violation. Sizeable uncertainties in the frequencies lead to a complicated interplay of energy

resolution and zero-distance effects, affecting the sensitivity to T violation in a non-trivial

way, see discussion in section 4.2.

To conclude, we encourage the neutrino oscillation community to take our proposal into

consideration, as it offers a unique possibility to search for fundamental T violation in neu-

trino oscillations in a rather direct and model-independent way. Under the well founded

assumption of CPT conservation, this would allow for an independent test of the CP sym-

metry and offer complementary information on the symmetries of the fundamental theory

of leptons.
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A Time reversal in the QFT formalism for neutrino

oscillations

The test for T violation considered in this work is based on the property described in eq. (1.2),

which states that time reversal is equivalent to the operation L→ −L, which actually corre-

sponds to inversion of space. While the equivalence of these transformations is explicit in the

standard formula for oscillation probabilities, it remains unclear on a more fundamental level

in what sense the transformation L→ −L can be considered as “time reversal”. The origin

of this association emerges as follows. Fundamentally the evolution equation in quantum

mechanics, i.e., the Schrödinger equation is expressed as an equation in time. However, the

neutrino flavour system is special in the sense, that source and detector are macroscopically

separated. Taking into account that source an detector particles necessarily need to be lo-

calised and described by wave packets, neutrino propagation can be effectively described by

the approximation x ≈ vt ≈ t [30]. This a posteriori result can then be used to re-write the

Schrödinger equation in terms of space, leading to the usuall oscillation probability in terms

of distance.

In this appendix we provide a short derivation of the equivalence of eqs. (1.1) and (1.2)

based on the quantum-field theoretical (QFT) approach to neutrino oscillations [31, 46–49].

We consider the time reversal transformation T of the neutrino oscillation amplitude in the

QFT formalism and show that the well-known relation

T [Pα→β(L)] = Pβ→α(L) = Pα→β(−L) . (A.1)

can be derived from the time reversed transition amplitude in QFT.

Neutrino oscillations in the QFT formalism. Let us consider the neutrino oscillation

process where a neutrino of flavour α is produced at time tP at the location xA and detected

as flavour β at time tD at the location xB:

(να, tP ,xA) → (νβ, tD,xB) , (A.2)

We describe this process using the QFT formalism, following the notation of [50]. We depart

from Eq. (3.4) of [50] for the transition amplitude of the process eq. (A.2), which we rewrite

in the following way:

iAα→β(T, L) =
1

4πL

( ∏
i=A,B,f

Ni

)
π4

σ3
pPσEPσ3

pDσED

iMP
α iMD

β iAred
α→β(T, L) , (A.3)

iAred
α→β(T, L) =

∑
j

U∗
αjUβj

∫
dp0

2π
exp

[
−ip0T + ipjL− fj(p

0)
]
. (A.4)
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where ,

T = tD − tP , L = |xB − xA| , pj =
√
(p0)2 −m2

j . (A.5)

The real function fj(p
0) takes into account the approximate energy conservation according

to the wave packet spread of external particles. Here we have reduced the d4p integral

over the neutrino 4-momentum by performing the d3p integral using the Grimus-Stockinger

theorem [48]. This allows us to take into account the macroscopic separation of source and

detector such that neutrinos go on-shell.

In eq. (A.3) we have factorized the total amplitude into the amplitudes MP
α and MD

β de-

scribing the production and detection processes, respectively, and the amplitude Ared
α→β(T, L)

responsible for the flavour oscillation process. The assumptions are that MP
α and MD

β are

independent of the neutrino mass j and are sufficiently slow functions of the neutrino energy,

such that they can be pulled out of the dp0 integral. In eq. (A.4) we have isolated the reduced

amplitude, which describes the flavour transition and which we will use below to study the

time reversal operation.

In the above approximation, one can identify an oscillation probability, independent of

the production and detection process, which will be proportional to |Ared
α→β(T, L)|2. However,

in general the time of neutrino production is not observed (or not known with sufficient preci-

sion), such that an average over the production time tP has to be performed, or equivalently

an integral over T :

Pα→β(L) ∝ |Ared
α→β(T, L)|2 ∝

∫
dT |Ared

α→β(T, L)|2 (A.6)

∝
∑
jk

U∗
αjUβjUαkU

∗
βk

∫
dp0 exp

[
i
∆m2

kjL

2p0
− fj(p

0)− fk(p
0)

]
(A.7)

≈
∑
jk

U∗
αjUβjUαkU

∗
βk exp

[
i
∆m2

kjL

2Eν

]
Djk . (A.8)

In the step from the first to the second line we have used that the T -integral gives a δ-

function in p0 and we have taken into account that neutrino masses are small, mj ≪ p0,

and expand the square root in the neutrino momenta as pj ≈ p0 − m2
j/(2p

0). In the last

line, Eν is an effective neutrino energy and the coefficient Djk takes into account possible

decoherence effects emerging from the dp0 integral and the function fj(p
0). For all cases

of interest we have Djk ≈ 1 to very good approximation and eq. (A.8) corresponds to the

“standard” oscillation formula.

The time reversal transformation. Let us now consider the time reversal transfor-

mation T and study how it affects the final oscillation probability by departing from the

QFT amplitude eq. (A.4). The time reversed process to the one considered in eq. (A.2) is

the following:

T [(να, tP ,xA) → (νβ, tD,xB)] = [(νβ, tP ,xB) → (να, tD,xA)] , (A.9)

i.e., we consider a neutrino of flavour β produced at a time tP at the position xB and a

neutrino of flavour α detected at time tD at the position xA. Hence, if T is conserved, this
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would be the process seen if a hypothetical video recording of the original process eq. (A.2)

would be run backwards.4 The amplitude for the time reversed process therefore is

T [iAred
α→β(T, L)] = iAred

β→α(T, L) =
∑
j

U∗
βjUαj

∫
dp0

2π
exp

[
−ip0T + ipjL− fj(p

0)
]

(A.10)

= [iAred
α→β(−T,−L)]∗ . (A.11)

We note that L is defined as modulus in eq. (A.5) and remains positive although we exchange

xA and xB.
5

Using the relation between the amplitude and the probability in eqs. (A.6) to (A.8) the

relation eq. (A.1) follows immediately from eqs. (A.10) and (A.11). Hence, we confirm that

also in the QFT formalism the time reversal transformation corresponds to

1. swaping initial and final flavour of the probability, or equivalently

2. applying the transformation L→ −L in the probability.

The above argument applies in a straight forward way to oscillations in matter in the limit

of approximately constant matter potential [51] as well as to the non-standard scenarios

considered in [22,23].

B Constraints on the zero-distance effect

Let us first assume that the zero-distance effect ϵ, eq. (2.6), is constrained only by the near

detectors of the two experiments used to construct the observableXT . The covariance matrix

for two measurements for the transition probabilities at the far and near detectors of one

experiment is then given by

Si =

(
σ2
i,f 0

0 σ2
i,n

)
+ σ2

i,c

(
1 1

1 1

)
, (B.1)

where σi,f (σi,n) are the statistical and uncorrelated systematic errors of the far (near) de-

tector measurements and σi,c is a fully correlated error including for instance flux and cross

section uncertainties as well as common systematics. The index i = 1, 2 labels the two ex-

periments. Note that σi,n is the uncertainty on the Pνµ→νe transition probability at the near

detector. Hence, it will be dominated by the statistical and systematic errors of the νe beam

background.

We can calculate the combined covariance matrix of the three quantities P (L1), P (L2), ϵ
2 ≡

P (L = 0) by summing the inverse covariance matrices of the two experiments. Straight-

forward application of error propagation allows then to calculate the total uncertainty on

XT . We write

σ2
XT

= σ2
1,f + σ2

2,f + δ20σ
2
ϵ,eff , (B.2)

4Note that this differs from the standard time reversal operation in quantum physics, which would reverse

also the helicity of the neutrino states, whereas here we want to maintain neutrino helicity.
5The term pjL originates from a term p · (xA−xB), and the Grimus-Stockinger theorem makes sure that

the d3p integral picks momenta aligned with the vector pointing from the production to the detection point,

such that p · (xA − xB) → pjL > 0.
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where σϵ,eff is the effective “near detector” constraint on ϵ2 used in our numerical simulations.

In terms of the uncertainties introduced above it is given by

δ20σ
2
ϵ,eff =

δ20(σ
2
1,n + σ2

1,c)(σ
2
2,n + σ2

2,c) + (σ2
1,n + σ2

2,n)(σ
2
1,c + σ2

2,c) + 2δ0(σ
2
1,nσ

2
2,c − σ2

2,nσ
2
1,c)

σ2
1,n + σ2

2,n + σ2
1,c + σ2

2,c

.

(B.3)

Assuming that correlated errors (such as flux uncertainties) are much larger than statistical

and uncorrelated errors at the near detectors, the effective uncertainty will be dominated by

the correlated errors:

σ2
ϵ,eff →

σ2
1,cσ

2
2,c

σ2
1,c + σ2

2,c

for σi,n ≪ σi,c . (B.4)

Hence, we see that in this most general framework, correlated uncertainties will not cancel

by the near/far combination and will actually dominate the effective uncertainty on ϵ.

This is the most conservative case, when only information on the νµ → νe transitions is

used. However, typically we can assume that additional external constraints are available:

1. Fully correlated uncertainties in an experiment are usually constrained by additional

near detector measurements, in particular the νµ flux measurement. Under modest

model-dependence, we can therefore assume that σi,c is of the order of the near detector

measurement uncertainty in the νµ channel, which typically is much smaller than the

one in the νe channel. In this limit we will have

σ2
ϵ,eff →

σ2
1,nσ

2
2,n

σ2
1,n + σ2

2,n

for σi,c ≪ σi,n , (B.5)

i.e., the zero-distance transition probability ϵ2 is indeed constrained by the νµ → νe
measurement at the near detector (which still would be dominated by the uncertainty

on the intrinsic νe beam background).

2. Under modest model-dependent assumptions we can apply external constraints on the

zero-distance effect, which set tight limits on the ND probability ϵ2, see the discussion

in section 3.2. Let us denote the uncertainty of such external constraints by σϵ,ext. In

this case we obtain for the effective uncertainty

δ20σ
2
ϵ,eff =

σ2
ϵ,extN + (σ2

1,n + σ2
2,n)σ

2
1,cσ

2
2,c + σ2

1,nσ
2
2,n(σ

2
1,c + σ2

2,c)

σ2
ϵ,extD + σ2

1,nσ
2
2,n + σ2

1,cσ
2
2,c + σ2

1,nσ
2
2,c + σ2

1,cσ
2
2,n

, (B.6)

where N (D) is the numerator (denominator) of eq. (B.3). In the limit of small σϵ,ext
we obtain

δ20σ
2
ϵ,eff →

{
δ20σ

2
ϵ,ext + σ2

1,n + σ2
2,n for σϵ,ext, σi,n ≪ σi,c ,

δ20σ
2
ϵ,ext + σ2

1,c + σ2
2,c for σϵ,ext, σi,c ≪ σi,n .

(B.7)

Hence, the final uncertainty is set by the smaller of σi,c and σi,n. The total uncertainty

on the observable XT is then typically dominated by the far-detector uncertainties, see

eq. (B.2).

25



In summary, the zero-distance constraint σϵ introduced in eq. (3.1) in section 3 should

be understood as σϵ,eff as given in eq. (B.6). It emerges as a combination of uncorrelated

near detector uncertainties, near-far correlated errors, and external constraints on the zero-

distance effect.
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