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Abstract
Efficient and timely organisational healthcare processes are urgent for patient sat-
isfaction and medical success in hospitals. Despite process analysis and problem 
identification, there are especially challenges in evaluating and implementing plan-
ning alternatives. This is also valid for the planning of resource capacities. There 
are currently few use cases that offer data-driven, automated solutions and typically 
significant effort in modeling complex processes and systems is involved. Therefore, 
we explore the use of a combination of neural networks and metaheuristic algo-
rithms to optimise organisational capacity planning in healthcare. These techniques 
allow for autonomous learning and optimisation of processes. A Multilayer Percep-
tron (MLP) is developed in a use case utilising data from approximately 3.5 years 
of accompanied intra-hospital patient transport in a German hospital in order to be 
able to make accurate predictions about delayed transports on a day of the week 
basis. A data preprocessing was performed, aggregating case-wise transportation 
information into hourly information to serve as input and labelling data for the MLP 
training. Using a genetic algorithm (GA), hourly input variables such as the num-
ber of active transporters, the number of planned transports, or the automation rate 
of transport dispatching are adapted in order to reduce the model predicted number 
of delayed transports throughout a day. Through this approach, a theoretical reduc-
tion in delayed transports on a day of the week ranging from 27% to 42% could be 
achieved merely through resource reallocating, without adding additional resources. 
The performance of both MLP and GA are validated using various measures.
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1  Introduction

The growing emphasis on patient-centred care within healthcare organisations 
underlines the importance of providing efficient and timely healthcare services to 
patients. Lenz and Reichert (2007) distinguishes between two types of processes 
that take place in hospitals: on the one hand there are the medical treatment pro-
cesses, that are directly linked to the patients’ health and on the other hand there are 
the organisational processes. Ensuring that organisational processes function seam-
lessly is the basis for the success of medical processes (Lenz and Reichert 2007). 
This paper will aim to optimise the process of intra-hospital patient transportation 
(IHPT), as it is an important organisational healthcare process. Due to its wide-
spread use, IHPT plays a crucial role to provide efficient and timely medical treat-
ments (Beckmann et al. 2004; Hendrich and Nelson 2005; Ulrich and Zhu 2007). 
IHPT refers to the internal transfer of patients within a hospital, such as between dif-
ferent wards and functional areas (Nakayama et al. 2012). The effectiveness of this 
service and its associated processes have a significant impact on clinical outcomes 
and patient satisfaction (Beckmann et al. 2004). For instance the research findings of 
a cross-sectional analysis of 191 IHPT incidents showed that 31% of these incidents 
resulted in adverse outcomes (Beckmann et al. 2004). Another study reported that 
of 288 transport cases involving brain-injured patients, 36% had at least one signifi-
cant complication (Picetti 2013). Patient complications can be rooted in increased 
waiting time due to insufficient service capacity (Meephu et al. 2023). Kropp et al. 
(2023) highlights inappropriate resource allocation causing waiting times in IHPT 
as well as the necessity of continuous data-based monitoring of the workflows to 
improve the IHPT. Due to the heterogeneous nature of hospital organisations, no 
general IHPT problem can be defined and literature considers different goals and 
approaches (Klein and Thielen 2024).

Hospital information systems (HIS), but also other software systems, can bear 
information on logistical processes, like the IHPT  (van der Aalst 2016; Martin 
2020). Jaroon (2018) has already indicated that the use of a computer-based online 
patient transfer system could help improve work efficiency and lead to an increase 
in the overall on-time service delivery rate from around 56% to 66% (and thus by 
around 18%) in a Southern Thailand hospital case study. The relevant process infor-
mation is collected in the software systems during the planning and execution of 
IHPT. Information, that is collected and stored in so called event logs can be very 
detailed, i.e. specific to single events that took place within a transport (“event 
attributes”), or somewhat higher-level, i.e. transport case-specific (“case attrib-
utes”)  (van der Aalst 2016). There may even be further general information about 
the process, such as general responsibilities or guidelines in the process, that are not 
directly linked to e.g. a transport case or the specific activities during the transport 
process of this case. Analyzing event logs through process mining techniques can 
yield valuable insights into the actual execution of healthcare processes and thus 
help to improve the provided services (van der Aalst 2016; Martin 2020).

We adopt the 4-phase model of Aguirre et  al. (2017), that describes differ-
ent steps of process mining projects, as a basis in order to generally situate our 
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investigations (see Fig. 1). Generally, process mining projects aim to exploit event 
data in a meaningful way in order to improve processes (van der Aalst 2016). The 
aim of this paper is to provide a decision support for the last stage in a process 
mining project, process redesign phase (see Fig. 1). In this paper the event data 
of the IHPT of around 3.5 years of operation in a German public hospital are 
being processed for an Artificial Neural Network (ANN) in order to finally enable 
improved transport capacity planning by solving an optimisation problem through 
a genetic algorithm (GA) after model development. The implementation of the 
derived optimisation in real operation will not be investigated in this paper.

 de Roock and Martin (2022) analysed 263 papers on process mining in health-
care and emphasises that only about 7.6 per cent of the papers deal with analyses of 
organisational processes and only another 15.2 per cent deal with organisational pro-
cesses in part. Most of the analyses deal with medical treatments. Furthermore (de 
Roock and Martin 2022) concludes, among others, that currently research tends to 
focus primarily on the analysis stage, but the true value lies in the ability to convert 
analysis results into concrete actions that drive process improvement within health-
care organisations. The last stage of a process mining project, the process redesign 
phase, is barely addressed (de Roock and Martin 2022). This highlights the impor-
tance of our approach, as our research allows us to propose specific adjustments to 
the allocation of IHPT resources that are projected to optimise efficiency.

In primary healthcare processes there are already several applications of ANN 
to optimise process redesign. For instance, Amato et al. (2013) regards ANN as an 
invaluable tool to aid doctors in diagnosis and analysis, encompassing tasks such 
as data processing, reducing the likelihood of overlooking relevant information and 
shortening diagnosis time, thereby enhancing the reliability of doctors’ ultimate 
diagnostic decisions. Yang et al. (2017a; b) developed a logistic regression model 
based process recommender system that provides data-driven step-by-step treatment 
recommendations. The framework introduced in Yang et  al. (2017a, b) begins by 
clustering treatment procedures of trauma resuscitation patients according to con-
text attributes (patient attributes and hospital factors). When a new set of context 

Fig. 1   Process mining project methodology (adapted from Aguirre et al. 2017). The focus of this paper is 
on process redesign



	 T. Kropp et al.

attributes is fed into the trained regression model, it generates a suggested execution 
of the patient treatment process (Yang et al. 2017a, b).

In summary, there are few studies providing insights on data analysis of organ-
isational processes in hospitals and furthermore there are no studies for IHPT in 
which process data were analysed in order to be able to automatically derive process 
improvements. In Nas and Koyuncu (2019) it is furthermore emphasised that few 
applications are found in the literature in hourly patient arrival problems. We aim to 
provide hourly predictions for delayed IHPT depending on several resource condi-
tions in order to optimise overall delayed cases per day of the week by optimising 
the resource planning.

Our paper is structured as follows: Sect. 2 presents the relevant literature and out-
lines the contribution of our work, Sect. 3 introduces to fundamentals of the tech-
niques used, Sect. 4 describes our approach in detail and shows our obtained find-
ings, Sect.  5 discusses the results and finally Sect.  6 concludes on our work and 
indicates future work.

2 � Literature review

Subsection 2.1 focuses on literature that generally aims to optimise in a data sup-
ported way the process redesign phase of organisational processes in healthcare, 
especially in the IHPT domain. Subsequently Subsect.  2.2 specifically presents 
capacity optimisation approaches through the application of ANNs. Based on 
this, our approach to reorganising the capacity planning of IHPT is outlined in 
Subsect. 2.3.

2.1 � Data supported process redesign in organisational healthcare

Agostinelli et  al. (2020) investigated patient care flows in a real case study with 
process mining. The authors in Agostinelli et al. (2020) were able evaluate e.g. the 
value of last investments or the temporal distribution of abandonments from emer-
gency room and examinations that had no reservation. Hints for starting points for 
future improvement ideas to solve some identified problems in the care flow pro-
cess are given but there were neither specific improvement measures developed nor 
assessed.

Andrews et  al. (2020) analysed transport pathways discovered across the time-
critical phase of pre-hospital care for persons involved in road traffic crashes. With 
the help of domain experts, improvement concepts are proposed that are aimed at 
improving data quality on the one hand and at future automated decision support 
through e.g. AI on the other (Andrews et al. 2020). However, specific measures and 
their effects have not been evaluated.

Badakhshan and Alibabaei (2020) investigated data from an automation system 
of a pre-hospital emergency room. After process discovery and conformance checks 
there are some specific improvement ideas given based on previous bottleneck iden-
tification (Badakhshan and Alibabaei 2020). No quantitative evaluation of effects of 
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the proposed solution ideas is conducted and furthermore no alternatives to the in 
Badakhshan and Alibabaei (2020) proposed improvement ideas were investigated.

Canjels et al. (2021) uses process mining techniques to improve the care process 
for arthrosis patients so that the provided care matches better with the facilities and 
resources used. The knowledge gained through the process mining analysis of his-
torical data is used to cluster and redistribute potential patient pathways depending 
on the necessary complexity of the patient care between two hospital sites, so that in 
the future potentially more patients can be fully or partly treated in the cost-effective 
outpatient clinic environment (Canjels et al. 2021).

Stefanini et al. (2017) propose a methodology exploiting the benefits of process 
mining techniques in the healthcare systems to support service reconfiguration 
and apply it furthermore to historical data of a lung cancer unit. The investigations 
unveil e.g. the average demand of activities and related resource consumption of an 
average patient and thus help support managers in taking decisions about the imple-
mentation of a new lung cancer unit (Stefanini et  al. 2017). Process improvement 
ideas and what-if analysis are proposed but in the further not conducted or evaluated 
within Stefanini et al. (2017).

Antunes et  al. (2019) optimised waiting times, queue length and queue occur-
rences in an Emergency Department through a rescheduling of the weekly and 
hourly available number of physicians with a mixed-integer programming (MIP) 
mathematical model. To evaluate the success of the mathematical optimisation, the 
adapted schedule is tested with Discrete-Event simulation (DES) through a model 
that was designed and validated with the historical process data and knowledge 
gained through process mining analysis (Antunes et al. 2019).

van Hulzen et  al. (2022), Pourbafrani and van der Aalst (2023), Zhou et  al. 
(2014), Abohamad et al. (2017) developed DES models on the basis of process min-
ing analyses to optimise organisational healthcare processes. In van Hulzen et  al. 
(2022) improvement alternatives of capacity management decisions in the radiol-
ogy department are evaluated using data-driven Process Simulation through DES. 
Recommendations regarding the required number of radiology devices, waiting area 
size, and reception staffing could be derived in van Hulzen et al. (2022). But it is 
also concluded, that the conformity of a developed simulation model relies highly 
on the modeler (van Hulzen et  al. 2022). Domain knowledge is necessary during 
the data-driven development and validation of a simulation model (van Hulzen et al. 
2022). Pourbafrani and van der Aalst (2023) introduces a reference model for data-
driven Simulation, with DES, in Process Mining for production systems. In order 
to develop the reference model, especially literature on practical approaches for 
generating DES models of processes is investigated (Pourbafrani and van der Aalst 
2023). Also Pourbafrani and van der Aalst (2023) highlights the impact of human 
factors in creating accurate simulation models of processes. Zhou et al. (2014) uses 
DES, where the simulation model is based on knowledge obtained from process 
mining analysis, to evaluate the impact of the number of receptionists, nurses, and 
doctors to improve the performance of an outpatient clinic. Specific scenarios are 
quantitatively evaluated to determine the impact of operational changes and sensitiv-
ity analyses are furthermore conducted to evaluate when increasing the number of 
specific personnel resources runs up against an improvement threshold level (Zhou 
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et al. 2014). Abohamad et al. (2017) also uses DES with a simulation model, that is 
developed through process mining based knowledge, to identify performance bottle-
necks and to explore improvement strategies to reduce patients’ length of stay in the 
Emergency Department (ED LOS). Specific scenarios for variation in medical staff-
ing, increasing clinical assessment space, or incorporating a policy, where patients 
that wait more than a specific time threshold to be admitted to a hospital bed are 
dismissed, were simulated and quantitatively evaluated (Abohamad et al. 2017).

Akbari et al. (2023), Yazır et al. (2023), Li et al. (2021) optimise home healthcare 
routing and scheduling with mathematical models and also metaheuristic algorithms. 
Akbari et  al. (2023) use a level-based integer programming (IP) mathematical 
model, for smaller instances, and a generalised variable neighborhood search-based 
(GVNS) metaheuristic algorithm, for larger instances. The solutions proposed by 
Akbari et  al. (2023) optimise the planning of multiple home healthcare service 
provider teams that should visit a given set of patients at their homes according to 
the locations as well as the severity of the condition or the service urgency of the 
patients. On the one hand, Yazır et al. (2023) formulate a MIP mathematical model 
and on the other hand use an adaptive large neighborhood search-based (ALNS) 
metaheuristic algorithm to optimise the planning of the weekly routes of nurses vis-
iting patients located at a scattered geographic area. This is achieved by minimis-
ing the total costs that incorporate e.g. wage costs, charging costs of used vehicles, 
further transfer costs, and the costs of a patient left unserved (Yazır et al. 2023). In 
Li et al. (2021), a MIP mathematical model is used to minimise travel costs, wait-
ing times and maximise patients’ preference satisfaction under constraints on time 
windows, workload and skill requirements to optimise the routing and scheduling of 
home healthcare with consideration of outpatient services. Also, for larger instances 
Li et al. (2021) develop and propose a hybrid GA for the optimisation.

Molenbruch et  al. (2017) uses a Multi-directional local search (MDLS) 
metaheuristic algorithm for optimising operational costs and service quality with 
improved driver schedules for a service provider that conducts demand-responsive 
transportation between patients’ homes and healthcare locations.

In Naesens and Gelders (2009) a data analysis of the IHPT process was con-
ducted to propose process improvements. This led to a partially decentralisation of 
the IHPT organisation (Naesens and Gelders 2009). A quantitative evaluation of 
the redesigned process was not presented in Naesens and Gelders (2009). Haldar 
et al. (2019) investigated the reasons of delayed IHPT cases and the effects towards 
operation theatres’ efficiency. In a qualitative approach data was collected by an 
independent observer and transport cases were labeled delayed, if they arrived later 
than 35  min (Haldar et  al. 2019). Most common reasons for delays included e.g. 
transporter-associated delays during shift changeovers, unavailable lifts or involve-
ment of the pediatric ward (Haldar et al. 2019). The two main effects of IHPT delays 
observed in theatres were routine cases being extended beyond the scheduled time 
(i.e. overrunning of operation theatres) and the cancellation of previously scheduled 
second cases per day (Haldar et al. 2019). With feasible measures like increasing the 
summon times (i.e. summoning the patient telephonically from the pick-up location 
to the operation theatre), sensitisation of transporters and nurses could improve the 
efficiency in operation theatres’ functioning (i.e. more than 6% reduction in delayed 
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arrivals to the operation theatres and a similar reduction in overrunning operation 
theatres) (Haldar et al. 2019). The Hawthorne effect (the fact that the observation 
and documentation of a process can lead to marked differences in performance 
of involved people) is not ruled out in the study (Haldar et al. 2019). Kropp et al. 
(2024) used process mining techniques to analyse the same IHPT dataset used in the 
current study, already carrying out capacity evaluations. Ideas for process redesign 
are developed, but their expected impact is presented qualitatively. The investiga-
tions of Kropp et al. (2024) can be seen as preliminary work, which helped to under-
stand the IHPT process and problems in order to develop the approach of the current 
study.

Kallrath (2005), Séguin et al. (2019), Kuchera and Rohleder (2011), Gopal (2016), 
Maka et al. (2022), Bouabdallah et al. (2013), Turan et al. (2011), Elmbach et al. 
(2015) optimise IHPT by solving mathematical models. Kallrath (2005) solved MIP 
mathematical models, as well as used a branch-and-bound approach, a column enu-
meration approach and (meta-)heuristic algorithms (recommended for larger prob-
lem instances) to optimise IHPT routing and scheduling. Kallrath (2005) proposed 
a general, theoretical framework incorporating the different solution approaches 
mentioned, and also conducted comparative experiments using real-life instances 
from a German hospital to reduce e.g. patient waiting times, transport delays and 
uneven occupancy of transport vehicles. Séguin et al. (2019); Kuchera and Rohleder 
(2011); Gopal (2016) developed a MIP mathematical model to optimise the hourly 
staff planning per day of the week and to reduce completion times of transports or 
patient waiting times. Séguin et  al. (2019) reaches a 16% reduction in daily staff 
capacity. At the same time possible delay minutes of transports per specific hour 
could be mostly decreased between 27% and 71% (in contrast, less active scheduled 
transporters partly led to an increase of up to 58% in possible delay minutes per 
hour) (Séguin et al. 2019). Kuchera and Rohleder (2011) validate their optimisation 
proposal with positive observations of the patient service quality in real operation 
and overall two FTE (Full-Time Equivalent) could be saved through the approach. 
The relative improvement in FTE is not reported in Kuchera and Rohleder (2011). 
Gopal (2016) uses DES to validate that the proposed solution does not adversely 
affect the quality of patient service by evaluating the resulting average time from 
pending to completion of the transports. Depending on the scenario, the approach of 
Gopal (2016) reduced process throughput times by up to 13% (and by up to 25% in 
sub-processes depending on the sub-process). At the same time, between around 1% 
and 8% FTE could be saved, depending on the scenario (Gopal 2016). Maka et al. 
(2022) also propose a MIP mathematical model for an optimised planning of IHPT 
to minimise the total cost of operation. The model helps first select a minimum num-
ber with the best locations as depots from a choice of locations within a hospital and 
then allocate different resources (e.g. wheelchairs, stretchers, oxygen tanks, staff) 
to each depot accordingly (Maka et al. 2022). Bouabdallah et al. (2013) developed 
a MIP mathematical model that minimises the sum of the empty stretcher moves 
between missions in IHPT. Turan et  al. (2011) provides an optimised IHPT plan-
ning for patient routing with fixed randomly generated appointments through solv-
ing a weighted sum mathematical model. Thus, Turan et al. (2011) aim to minimise 
patient transporters’ travel time as well as the patients’ waiting time. Also, aspects 
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like the number of different transporters per patient and empty runs of transporters 
between transportation assignments are considered within the mathematical model 
(Turan et  al. 2011). Compared to firstly optimised schedules regarding minimised 
transporters’ travel time as well as the patients’ waiting time, the patients’ incon-
venience of having to deal with different transporters could further be improved by 
reducing the number of transporters per patient by 27%, but at the cost of around 
12% increased transporter travel times (Turan et al. 2011). Furthermore, Turan et al. 
(2011) indicates, that the developed model has computational limitations and that 
optimised planning of more than 40 transport requests per hour will require the use 
and development of (meta-)heuristic approaches. Elmbach et al. (2015) formulate a 
mathematical model for the scheduling of IHPT with respect to transporters’ ergo-
nomic stress and investigate optimisation solutions through dynamic programming 
(for small instances) and beam search-based heuristic algorithms (for small and 
large instances). The ergonomic liability at the case study hospital could for large 
(real world) instances theoretically be reduced by an average of around 36% (and 
a maximum of around 79%) using the beam search-based heuristic algorithm com-
pared to simple decision rules of a human decision maker (Elmbach et al. 2015).

Beaudry et  al. (2010), Kergosien et  al. (2011), Fröhlich Von Elmbach et  al. 
(2019), Schmid and Doerner (2014), Fiegl and Pontow (2009), Xiao et al. (2022), 
Bärmann et al. (2024), Vancroonenburg et al. (2016), Hanne et al. (2009) use (meta-)
heuristic algorithms to optimise IHPT. Vancroonenburg et al. (2016); Hanne et al. 
(2009) furthermore incorporate DES in their approach. Beaudry et al. (2010); Ker-
gosien et al. (2011); Fröhlich Von Elmbach et al. (2019) use tabu search to optimise 
IHPT routing and scheduling. Waiting times for patients were reduced while using 
fewer vehicles in Beaudry et al. (2010). Through the approach of Kergosien et al. 
(2011) the hospital under investigation was theoretically able to handle 10% more 
requested transports independently and required fewer subcontracted transports 
to conduct all transports, which were furthermore able to meet the suggested time 
windows. Kergosien et  al. (2011) also tested their approach against integer linear 
programming (ILP). Fröhlich Von Elmbach et al. (2019) reach average staff savings 
of about 8% compared to simple decision rules of a human decision maker while 
improving ergonomic liability of transporters. Fröhlich Von Elmbach et al. (2019) 
compare the performance of their tabu search approach furthermore with a MIP 
solver. Schmid and Doerner (2014) developed a hybrid large neighbourhood seach-
based algorithm to optimise IHPT routing and scheduling with respect to resource- 
and client-centered perspectives. For smaller instances exact MIP solutions and for 
larger (real world) instances ten hour runtime MIP solutions are used to compare 
the algorithm’s performance (Schmid and Doerner 2014). Fiegl and Pontow (2009) 
developed a heuristic algorithm based on scheduling and graph theory to maximise 
the possible task throughput in IHPT scheduling. Like this around 17% reduction in 
task flow time could be achieved compared to usual scheduling in a hospital case 
study (Fiegl and Pontow 2009). Xiao et al. (2022) develop and compare a greedy 
and a column generation-based heuristic algorithm to optimise IHPT routing and 
scheduling. The latter integrates furthermore either MIP or GA-based metaheuris-
tics for solving subproblems (Xiao et al. 2022). Bärmann et al. (2024) developed a 
lexicographic branch-and-bound column generation-based approach for optimising 
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IHPT routing and scheduling with respect to transport delays, walked distances of 
transporters between transportation assignments and equal transporter utilisation. 
Performance evaluations in comparison with a standard branch-and-bound column 
search approach, classical column generation-based methods and MIP are fur-
thermore conducted using large instances from two European hospitals  (Bärmann 
et al. 2024). The approach of Bärmann et al. (2024) is also tested against the com-
mercial routing and scheduling software used by the hospitals achieving approxi-
mately 20% improvement in both transport delays and empty runs by transporters. 
Finally (Bärmann et al. 2024) deployed and evaluated their approach in a German 
hospital for 9 months, resulting in promising performance outcomes. Vancroonen-
burg et al. (2016) use a cheapest insertion and a local search heuristic algorithm, as 
well as DES, to optimise the scheduling and assignment of IHPT to transporters. 
Different scenarios were designed and compared to a baseline scenario, using the 
evenly weighted sum of delayed transport time, transporters’ windows of availability 
without carrying out transports, and the total transporters’ travel time carrying out 
assignments (Vancroonenburg et  al. 2016). Through the approach of Vancroonen-
burg et al. (2016) the sum of these three factors could be improved by up to 31% 
depending on parameters like transport request arrival rates and the number of trans-
porters. The process could be even more improved in scenarios where transporters 
are allowed to combine transports (multiple pick-ups in sequence, before perform-
ing deliveries) (Vancroonenburg et al. 2016). Hanne et al. (2009) improved patient 
waiting times in IHPT through different metaheuristic algorithms (GA, etc.) and 
DES that aim to optimise the scheduling and assignment of transports to vehicles or 
transport teams. The approach of Hanne et al. (2009) could theoretically reduce e.g. 
average patient waiting times by around 20% to 26% and average patient travel times 
by around 10%. Furthermore, the approach was deployed and evaluated in practice 
in a German hospital leading to reduced transportation costs of around 20% and at 
the same time contributing to improved patient satisfaction (Hanne et al. 2009).

Meephu et al. (2023) used DES to investigate 20 scenarios with different improve-
ment strategies of IHPT to find the best scenario among these. In the best scenario 
mean patient waiting times could be reduced by around 22% (Meephu et al. 2023).

A hybrid Analytical Hierarchy Process and Artificial Neural Network (AHP-
ANN) model was utilised in Fashoto et  al. (2016) to model the vendor selection 
process for university health centers. The study determined the priority sequence of 
five criteria (service, delivery, cost, risk, quality) and provided data-supported rec-
ommendations for decision-making (Fashoto et al. 2016).

As ANN approaches are effective and efficient in providing a high level of capa-
bility in modeling complex problems (Abiodun et al. 2018), in the following subsec-
tion explicitly ANN approaches for optimising capacity planning in healthcare are 
presented.

2.2 � Artifical neural networks to optimise capacity planning in healthcare

In Rajakumari and Madhunisha (2020) there is no case study conducted but a four 
staged framework to create and use an intelligent and Convolutional Neural Network 
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(CNN) to predict and evaluate improvement options for a Smart Hospital and Patient 
Scheduling System is portrayed on schematic and theoretic level. After the first stage 
(“data preparation”) and the second stage (“process mining analysis”), in the third 
stage (“simulation modeling and evaluation”), a CNN is to be built and reality con-
formity of the model predictions are to be evaluated (Rajakumari and Madhunisha 
2020). In the last stage (“Experiments and decision support”) improvement options 
are to be explored to support decisions with the best option (Rajakumari and Mad-
hunisha 2020).

In Mesabbah et  al. (2019) a framework is proposed to offer an accurate and 
process mining-based auto-generated DES model using healthcare event logs for 
improved resources handling to support complex decision-making processes around 
hospital staff planning. Therein activity durations and next activities within the 
DES model are to be predicted by a Machine Learning (ML) model given different 
patient features and process information (Mesabbah et al. 2019). The ML model is 
not specified and not yet implemented so that no specific case study is investigated 
with the holistic proposed framework in Mesabbah et al. (2019).

Nas and Koyuncu (2019) use a Recurrent Neural Network (RNN) and DES 
approach to optimise the emergency department (ED) capacity planning. With the 
help of RNN predictions of patients’ arrival rates were conducted and used as an 
input parameter for the DES model (Nas and Koyuncu 2019). For further simula-
tion model input, the route of the patients in the ED was extracted from the anal-
ysis of the hospital’s data (Nas and Koyuncu 2019). Treatment and service times 
were determined from observations with the help of the hospital experts (Nas and 
Koyuncu 2019). After conducting simulations, the number of beds could be identi-
fied as one of the process bottlenecks impacting the waiting time of patients at the 
ED (Nas and Koyuncu 2019). Further exemplary simulations helped to find the opti-
mal number of beds and it is highlighted that the simulation part in the study could 
also be replaced using ML methods (Nas and Koyuncu 2019).

To address the high patient demand faced by the Emergency Department (ED) 
during peak hours, Gul and Guneri (2015) utilised an ANN considering different sets 
of variables with the aim of modeling and forecasting the patient ED LOS. However 
in Gul and Guneri (2015) it is mentioned, that there is still room for improvement in 
the accuracy of the prediction results and so far no predictions are presented after 
the modeling phase.

2.3 � Outline of the work

Table 1 summarises the literature on process redesign of organisational healthcare 
processes and Table  2 summarises the literature specifically on process redesign 
of IHPT processes. Some of the found literature give only qualitative optimisation 
ideas. In Andrews et al. (2020), it is already emphasised that automating the deriva-
tion of improvement opportunities in a data-driven way is a future necessity. It can 
be concluded that if there was an optimisation quantitatively approached in the liter-
ature, mostly DES models (Nas and Koyuncu 2019, Antunes et al. 2019, van Hulzen 
et al. 2022, Pourbafrani and van der Aalst 2023, Zhou et al. 2014, Abohamad et al. 
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2017, Gopal 2016, Vancroonenburg et  al. 2016, Hanne et  al. 2009, Meephu et  al. 
2023), mathematical models (Antunes et  al. 2019, Akbari et  al. 2023, Yazır et  al. 
2023, Li et  al. 2021, Molenbruch et  al. 2017, Kallrath 2005, Séguin et  al. 2019, 
Kuchera and Rohleder 2011, Gopal 2016, Maka et  al. 2022, Bouabdallah et  al. 
2013, Turan et al. 2011, Elmbach et al. 2015, Beaudry et al. 2010, Kergosien et al. 
2011, Fröhlich Von Elmbach et al. 2019, Schmid and Doerner 2014, Fiegl and Pon-
tow 2009, Xiao et al. 2022, Bärmann et al. 2024) and (meta-)heuristic algorithms 
(Akbari et al. 2023, Yazır et al. 2023; Li et al. 2021, Molenbruch et al. 2017, Kall-
rath 2005, Elmbach et al. 2015, Beaudry et al. 2010, Kergosien et al. 2011, Fröh-
lich Von Elmbach et al. 2019, Schmid and Doerner 2014, Fiegl and Pontow 2009, 
Xiao et  al. 2022, Bärmann et  al. 2024, Vancroonenburg et  al. 2016, Hanne et  al. 
2009) were developed and used to simulate and evaluate specific scenarios. In Sub-
sect.  2.1 it was already mentioned, that the conformity of simulation models are 
highly dependent on modelers and the provided domain knowledge. The same is 
valid for mathematical models and metaheuristic algorithms. Exactly here, ANNs 
can provide a remedy. Furthermore, Camargo et al. (2021) derived, that ANN mod-
els outperform automatically from process data derived simulation models when 
trained with large logs by comparing the relative accuracy for generating activity 
durations and process control flows. ANNs may be able to learn dependencies that 
cannot be captured by the process discovery algorithms that are the basis of data-
driven process simulation approaches (Camargo et al. 2021). Literature has shown, 
that ANNs are able to model complex behaviour without having to assume certain 
function forms and degrees of non-linearities in advance (Mitrea et al. 2009; Gard-
ner and Dorling 1998).

Like concluded in Dumitru and Maria (2013), West et al. (1997), Salami et al. 
(2016), Izadifar and Abdolahi (2006), Nikzad et al. (2012), Al-Waeli et al. (2019), 
Neto and Fiorelli (2008), ANNs offer superior predictive capabilities over traditional 
statistical or mathematical methods, especially where (non-linear) relationships are 
difficult to capture and describe. If sufficient data involving a wide range of all vari-
ables is available, ANNs are able to model complicated and multi-variable depend-
ent processes (Izadifar and Abdolahi 2006). 

Nas and Koyuncu (2019), Fashoto et  al. (2016), Rajakumari and Madhunisha 
(2020), Mesabbah et al. (2019), Gul and Guneri (2015) already provide investiga-
tions on the usage of ANNs, or more generally of ML approaches, for automatic 
process redesign in healthcare organisation. ANNs can automatically recognise 
interrelationships between different process-relevant entities in the system (Abiodun 
2019; Sharma and Kaur 2013).

The research question is whether the combination of an ANN and a metaheuristic 
algorithm is suitable to use process data to optimise the capacity planning in the 
IHPT through more efficient allocation of resources involved in the process. The 
objective is to investigate if and how the combination of both methods can lead to a 
significant, reliable and comprehensible improvement of the IHPT process. There-
fore, in our approach, we develop a Multilayer Perceptron (MLP), i.e. an ANN, to 
automatically model dependencies between selected attributes within the IHPT 
based on historical data in order to accurately predict delayed cases. Subsequently, 
through the application of a GA, that utilises the MLP to predict effects of resource 
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adaptions, optimises the resource allocation of the involved capacities (e.g. trans-
porters). The validation of the proposed optimisation, that is derived by the GA (see 
Subsect.  4.4), will be given by the achieved performance of the MLP model (see 
Subsect. 4.3). The effectiveness of the GA is also assessed in Subsect. 4.4.3 on the 
basis of a problem with reduced complexity. Thus, the contribution of our paper is to 
show, based on the IHPT process, that optimisations in capacity planning are possi-
ble by combining the two data-based techniques mentioned. In this context, we also 
address how the raw data for the two techniques must be prepared and made availa-
ble. We will use real data to improve and evaluate the predictive performance of our 
MLP models. This goes beyond IHPT literature, that mostly not use real data or only 
use broader statistics of real data to feed instances into simulation or mathematical 
models. So far, only the approaches of Kuchera and Rohleder (2011); Bärmann et al. 
(2024); Hanne et al. (2009) were transferred into practice and tested. Predictive per-
formance is mostly not evaluated in detail in IHPT literature, and if it is, it is almost 
exclusively qualitative. Only (Meephu et al. 2023) investigated differences in mean 
ratings between historical and simulation data by applying the two-sample T-test 
and confidence interval. We will present relevant predictive performance metrics for 
our developed MLP model (see Subsect. 4.3).

Our redesign results will further serve as an input at a tactical or strategical level 
to the IHPT literature addressing the routing and scheduling planning in detail at the 
operational level (see Subsect. 2.1 and also Table 2) with the appropriate instances 
in place. We want to communicate the benefits of redesigning IHPT capacity plan-
ning by combining an ANN and a metaheuristic algorithm in IHPT with exemplary 
techniques recommended in the literature.

3 � Materials and methods

In order to introduce the techniques used in our use case (see Sect. 4), this chapter 
briefly presents general information about MLPs in Subsect. 3.1 and about GA in 
Subsect. 3.2.

3.1 � Multilayer perceptron

The MLP is one type of ANN architectures (feed-forward network) (Gardner and 
Dorling 1998). It is the most common ANN (Guneri and Gumus 2008) and the focus 
of the majority of ANN research (Ncibi et al. 2017). Generally, an ANN is consid-
ered to be a massive parallel combination of simple processing units, also known as 
neurons or nodes, which can acquire knowledge from environment through a learn-
ing process and store the knowledge in its connections (Haykin 1999). It is widely 
utilised in cognitive tasks, such as learning and optimisation (Lawrence and Luedek-
ing 1993).

An MLP specifically consists of an input layer, multiple hidden layers, and an 
output layer (Gardner and Dorling 1998). Figure  2 shows schematically a MLP 
with exemplary inputs and outputs. The input can be numbers, characters, audios, 



Data‑based optimisation of intra‑hospital patient transport…

images, etc. that are decomposed into binary data that can be processed by a com-
puter (Zhu et al. 2023). The output can be e.g. of continuous, binary or categorical 
values, depending on the specific task (Zhu et al. 2023). Each layer consists of neu-
rons or nodes (Gardner and Dorling 1998). With the exception of the input nodes, 
each node within the MLP network represents a neuron that leverages a non-linear 
activation function (Gardner and Dorling 1998). Figure 3 shows schematically the 
perception of a neuron (in the hidden or output layer). A neuron first multiplies each 
of its inputs xi by an associated weight wi, then sums these weighted inputs and adds 
a preset number b called the bias (Zhu et al. 2023; Russell and Norvig 2010). The 
result of this computation is then adjusted by an activation function g(x) (Zhu et al. 
2023; Russell and Norvig 2010). In Fig. 3, the exemplary activation function, and 
one of the most popular, is called Rectified Linear Unit (ReLU) (Zhu et al. 2023; 
Russell and Norvig 2021). There are also other types of non-linear activation func-
tions, e.g. the popular Sigmoid, Tanh or Softplus functions (see Russell and Norvig 
2021 for further information), that can be used to activate the neurons (Zhu et al. 
2023; Russell and Norvig 2021). A general challenge in developing an ANN is that 
there is no good theory for achieving an optimal ANN structure (Russell and Norvig 
2010). There is always a degree of fiddling to achieve the appropriate network struc-
ture for the underlying problem and data (Russell and Norvig 2010).

An MLP does not rely on any prior assumptions about the distribution of the uti-
lised data (Gardner and Dorling 1998). It possesses the capability to model complex 

Fig. 2   Diagram of a MLP-ANN (adopted from Zhu et al. 2023)

Fig. 3   Diagram of a neuron’s perception (adapted from Zhu et al. 2023)



	 T. Kropp et al.

non-linear functions and can be trained to generalise accurately when confronted 
with previously unseen data (Gardner and Dorling 1998). These intrinsic proper-
ties of the MLP make it a compelling substitute against traditional mathematical 
models and serve as a viable choice when selecting among statistical methodologies 
(Gardner and Dorling 1998). Other ANN architectures, such as RNN or CNN, are 
also being successfully used more recently in healthcare prediction tasks on time 
series data (Morid et al. 2021). Comparative investigations of these architectures are 
beyond the scope of this paper, but are recommended for further studies to be con-
ducted in the future (see Sect. 6).

3.2 � Genetic algorithm

Combinatorial optimisation problems can generally be computed through exact 
solving methods or approximate methods (Blum and Roli 2003). In IHPT problems, 
that are usually characterised through complex models, excessively long computa-
tion times for optimisation need to be overcome in order to increase the practical 
implementation and relevance (Klein and Thielen 2024). As exact solving methods 
for complex problems might consume exponential computation time, that is too high 
for practical purposes, approximate methods received more attention in the recent 
years (Blum and Roli 2003). Among these approximate methods, metaheuristic 
algorithms have emerged (Blum and Roli 2003).

GA are search algorithms taking natural genetics and natural selection as role 
models (Goldberg 1989). They belong to the family of metaheuristic algorithms 
used to solve real-life complex problems (e.g. multi-objective problems) and are 
population based (Katoch et al. 2021; Goldberg 1989). This means that they search 
from a population of solutions and use reproduction, crossover and mutation of 
successful solutions (evaluated on the basis of an objective function) to iteratively 
improve performance towards an optimal point or points (Goldberg 1989). Like 
this GA maintain the diversity in population and avoid the solutions getting stuck in 
local optima (Katoch et al. 2021).

The GA outperforms other population-based algorithms, like e.g. more recently 
evolved swarm-intelligence based ones, when the computational budget is high 
(Piotrowski et al. 2017). Swarm-intelligence algorithms are inspired by the collec-
tive behaviour of species such as ants, bees, wasps, etc., and are therefore called 
behaviourally inspired algorithms (Talbi 2009; Janga Reddy and Nagesh Kumar 
2020; Bonabeau et al. 1999). A comparative analysis of different combinatorial opti-
misation methods is not carried out in this paper, but is recommended for further 
studies (see Sect. 6).

The performance (speed of convergence) of a GA can be further improved by 
elitism selection, where the elitist individual or individuals per generation will be 
always propagated to the next generation, regardless of whether or not they would be 
present in the next generation according to normal selection procedure (Katoch et al. 
2021; Jebari and Madiafi 2013). However, elitism selection may lead to a risk of 
convergence to local optima due to decreased genetic diversity within the population 
of solutions (Jebari and Madiafi 2013). By exploiting widely available information 
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GA are applicable to virtually any problem (Goldberg 1989). Since GA are combi-
natorial, they are furthermore suitable for solving discrete or mixed discrete (mix 
of continuous and discrete design variables) optimisation problems, that usually 
require more computational effort (Wu and Chow 1994).

4 � From raw data to capacity optimisation

Figure  4 shows schematically the procedure of our approach. We give general 
information about the underlying raw data of the IHPT process in the investigated 
German hospital in Subsect.  4.1. Subsection  4.2 deals with data preprocessing to 
prepare the data accordingly for the MLP model. Subsection 4.3 presents our MLP 
model development, as well as different validation procedures addressing the pre-
dictive performance of the MLP model. In Subsect. 4.4 the automated optimisation 
of the transport capacities is performed. A GA is applied to reallocate resources so 
that the MLP will predict reduced delayed transport cases and a validation of the 
optimisation performance is furthermore conducted using a simplified problem with 
a more limited solution space. The general aim of our approach is to create better 
conditions for IHPT through optimised capacity planning.

In conducting our research, we have adhered strictly to ethical guidelines and 
data protection standards to ensure the confidentiality and safety of patient and 
transporter information. The data utilised for this study were provided to us in a 
de-identified format, ensuring that individual patients or transporters could not be 
identified. Specifically, transport staff were de-identified through the use of device 
IDs associated with the portable devices, that receive assignments, and no personal 
names were included in our dataset. Furthermore, each patient was assigned a unique 
patient ID that prevented the identification of individuals. No medical diagnoses or 
health conditions were included in the data, as the information was strictly limited to 
logistical information, including e.g. timestamps of various activities, types of trans-
portation vehicle, priorities, or locations (see Subsect. 4.1 for more details) involved 
in the IHPT process. No personal data related to individuals were processed or 
stored in our research database. Furthermore, our research presents only aggregated 
data that do not allow for any conclusions to be drawn about individual transports 

Fig. 4   Procedure of our approach: from raw data to automated resource optimisation
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or individuals. Through these measures, we ensure compliance with applicable 
data protection regulations, maintaining the highest standards of confidentiality 
and integrity in handling healthcare related data. Our approach also eliminates the 
Hawthorne effect (marked differences in the performance of involved people due 
to observation and documentation of a process, see Subsect. 2.1), because an inner 
subset of the information that has been consistently collected over the past few years 
in the IHPT process is utilised.

4.1 � Raw data:general information

In the hospital logistics software system, the IHPT process is logged, and specific 
information is associated with each transport case. Figure  5 visualises the usual 
IHPT process flow. In the hospital, transports take place e.g. from wards to func-
tional areas but also in the opposite direction. There are transports between wards or 
between functional areas, too.

The logged information on the IHPT process is provided by the hospital in the 
form of two CSV files. Both datasets used for our approach encompassed a time-
frame with cases where the first activity occured between January 1, 2019, and June 
30, 2022 (a handful of transport cases had some activities on July 1, 2022 even 
though their first registered activity took place beforehand). This reflects around 
3.5 years of data collection. The selected data focused solely on fully completed 
transports involving patients as the subjects, with no additional specialised services 
provided apart from transportation. One file presents an event log. The event log 
indicates the events, that happened within the IHPT process with corresponding 
activities that occurred during each transport, along with the timestamps indicating 
when each event and corresponding activity took place. Table 3 displays the various 
activities and indicates the number of transport cases in which each activity occurs. 
Additionally, it provides information on the overall frequency of activities, consid-
ering that they may occur multiple times within a single case or not occur at all. 

Fig. 5   Exemplary patient transport in the case study hospital
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In total, there are 2,329,635 events, each with one with an activity, timestamp and 
transport ID (each transport has a unique ID), per row in the event log.

The second file is a master table containing more information on the total of 
256,266 cases, whereas each row represents an individual case, accompanied by 
125 attribute categories that contain case-specific information. Out of these 256,266 
transport cases almost 35% were completed with a delay of ten minutes or more. 
This threshold, above which transports are considered to be significantly delayed, 
was set by hospital process managers. They consider the percentage of delayed 
transports furthermore as critical and therefore there is a need to reduce the number 
of delayed IHPT cases using knowledge from the provided data. Both the event log 
and the master table can be linked via the transport IDs, that are present in both 
tables, and together they provide the raw data that needs to be preprocessed for MLP 
model development. Figure 6 summarises information on the raw data. There exist 
125 case-related attribute categories in the master table for all of the cases. Overall, 
the master table contains 32,033,250 data cells (256,266 cases multiplied by 125 
attribute categories), out of which 5,506,348 cells are empty or lack information 
(NULL/NA values). Figure 6 further classifies the attribute categories and presents 
the average and median number of entries with relevant information for each attrib-
ute category. By subtracting these values from the total of 256,266, the number of 
missing attributes on average or median per category cluster can be determined. Out 
of the 125 attribute categories in the original dataset 37 are related to the corre-
sponding event timestamps (e.g. month, day of the week, calendar week, pre-cal-
culated time differences between process steps). The other 88 attribute categories 
contain further general organisational information that are linked to transport cases 
(e.g. requesting centre, assignment centre, cost centre, last control station, first con-
trol station, priority, pick-up location, target location, pick-up house, arrival house, 
pick-up level, arrival level, pick-up priority, arrival priority, route id, route descrip-
tion, distance, remarks, service provider, operator, tour, type of transport vehicle, 
patient id, pick-up room number, pick-up room, arrival room number, arrival room, 

Table 3   Statistics on all activities (adopted from Kropp et al. (2024))

Activity (German - in System) Activity (English translation) Case count Activity count

Auftrag abgeschlossen Transport completed 256,266 257,205
Auftrag an Endgerät Assignment sent to device 256,266 282,505
Auftrag angenommen Assignment accepted 256,266 262,262
Transport begonnen Transport started 256,266 256,556
Warteliste Kommissionierung Waiting list for dispatching 256,266 302,271
An Abholort Arrival at pick-up location 256,265 257,334
An Ankunftsort Arrival at target location 256,265 256,376
Anforderung Transport request 256,261 317,641
Vorgemerkt Transport is pre-registered 111,906 127,579
Verfall - nicht zugestellt Expiration - not delivered 6,021 9,714
Dispo Transport assignment 145 153
Storniert Transport canceled 33 39
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complaint text, complaint category). Such attribute categories can hold specifically 
valuable information for deeper investigations into the root causes of process issues 
as organisational interrelationships can be revealed from them. However, in our 
use case not all transport cases have consistent information among these attributes 
categories. Among the 88 attribute categories with further organisational informa-
tion, 16 contain no relevant information, while the remaining 72 categories include 
varying degrees of information. Specifically, 45 of these 72 attribute categories are 
completely filled with evaluable information, while the remaining 27 categories are 
inconsistently filled and are therefore only suitable for limited further investigations.

4.2 � Preprocessing the data for MLP model training

For further investigations, the following information becomes particularly relevant 
as it pertains to improved resource planning: planned day of the week (Monday to 
Sunday) of transports as well as the as-planned and as-is starting time (specific to 
the hour between 0 and 23) of transports. In order to make hourly predictions with 
greater detail on a day of the week basis in the future, new attribute categories are 
being created that will be assigned to individual hours within each date and will lat-
terly serve as input data for the MLP model.

Figure 7 shows the data preprocessing approach, using colours to illustrate the 
derivation and processing of specific information from the raw data (upper table) 

Fig. 6   Information on underlying raw data within a data collection period of around 3.5 years
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and its placement in the individual rows of the first step preprocessed table (mid-
dle table). New attribute categories were generated using a self-developed script 
in R, with libraries “data.table” (Barrett et  al. 2024), “dplyr” (Wickham et  al. 
2023) and “lubridate” (Grolemund and Wickham 2011), and Python, with librar-
ies “numpy” (Harris 2020) and “pandas” (The pandas development team 2023; 
McKinney 2010). During the preprocessing ChatGPT (versions 3.5 and 4; https://​
chat.​openai.​com/) was used to search for and explain certain methods of the used 
libraries or R and python functionalities. Thus, the following information is cal-
culated based on the raw data for each hour from January 1, 2019 to July 1, 2022 
(total time span of 30,672 h): 

1.	 “As-planned number of transports in same hour”: Number of transports planned 
for the same date and at the same starting time (specific to the hour between 0 
and 23).

2.	 “Delayed transports according to as-planned hour”: Number of transports planned 
for the same date and at the same starting time (specific to the hour between 0 and 
23) being delayed more than ten minutes.

Fig. 7   Subset of the data preprocessing approach

https://chat.openai.com/
https://chat.openai.com/
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3.	 “Amount of Transporters in same as-is hour (equals unique device IDs)”: Number 
of transporters that are active for the same actual date and at the same actual time 
(specific to the hour between 0 and 23). This information is generated based on 
the timestamp associated with the “Transport started” activity, in conjunction 
with the device ID managed by each transporter.

4.	 “Automatic rate according to as-planned hour”: Automation rate for the same 
planned date and at the same planned time (specific to the hour between 0 and 
23). This rate indicates the extent to which transports scheduled at the same time 
were finally manually or automatically assigned.

Afterwards, rows without information and additionally, the date column are then 
excluded from the training of the MLP model, as the model’s focus is solely on day 
of the week and hour of the day. The lower table of Fig. 7 presents the remaining 
and final preprocessed data (total of 25,662 rows with hourly information) including 
the schematic input and label data used for training and evaluating the MLP model. 
Like this, on average, around 153 samples are available for each hour on each day of 
the week (25,662 samples divided by the product of 7 days of the week times 24 h). 
To avoid the risk of not having enough training data available, we also decided not 
to aim at more granular predictions for days of the week in specific months or calen-
dar weeks. This would require a larger dataset during MLP model development for 
similarly accurate predictions. In addition to the four derived information per day 
of the week and hour (see lower table lower table of Fig. 7), further organisational 
attribute categories from the raw data could be included to make more specific state-
ments. However, the aim of this paper is to show that the use of MLP in combina-
tion with a GA can theoretically achieve optimisations in the planning of transport 
capacities, so that a coarse level of predictions, i.e. for days of the week, is sufficient 
for our purposes.

4.3 � Model developement

The MLP model development is done by using the python libraries “PyTorch” 
(Paszke et al. 2019), “NumPy” (Harris 2020), “pandas” (The pandas development 
team 2023; McKinney 2010) and “scikit-learn” (Pedregosa 2011). Data visualisa-
tions are conducted using the python library “Matplotlib” (Hunter 2007). During the 
development of the MLP model ChatGPT (versions 3.5 and 4) was used to search 
for and explain certain methods of the used libraries or python functionalities.

In order to model the process of the IHPT we utilise an MLP model that is able to 
conduct a regression. With this model we aim to predict the resulting delayed cases 
by specific given input data (see Fig. 7).

4.3.1 � MLP model specifications

The procedure of the MLP (see Subsect. 3.1) model development is shown in Fig. 8. 
Firstly the entire preprocessed dataset (from Subsect.  4.2) is divided into training 
set, validation set and test set, with proportions of 80%, 10%, 10%.
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The mean squared error (MSE) is selected to be the loss function. The MSE, that 
is a commonly used metric for the performance evaluation of regression models, is 
calculated according to equation 1 (Russell and Norvig 2021; Goodfellow 2016).

where m is the number of samples, yi are the actual values and ŷi are the predicted 
values.

For the MLP model we choose one input layer, three hidden layers and one output 
layer. A schematic visualisation of our model is shown in Fig. 9. In our case we have 
5 neurons in the input layer, then 64, 256 and 64 neurons in the hidden layers as well 
as one neuron in the output layer. The hidden layers with their neurons are derived 
through trial-and-error procedures where this setup showed a MSE values compared 

(1)MSE =
1

m

m∑

i=1

(yi − ŷi)
2

Fig. 8   MLP development steps in our approach

Fig. 9   Structure of the developed MLP with one input layer, three hidden layers and one output layer. 
Per layer the number of neurons is indicated. The input data per input neuron and the output data for the 
output neuron is shown
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to other attempted setups. ReLU (see Subsect. 3.1) is chosen as activation function 
(in the hidden layers). Attempts with other activation functions such as Sigmoid, 
Tanh or Softplus showed no significant improvements or deteriorations.

We utilise the Adaptive Moment Estimation (Adam) as optimisation algorithm 
within the MLP training, that was recommended in Nas and Koyuncu (2019) for 
hourly patient arrival data that is characterised by a lot of variation. It is for first-
order gradient-based optimisation of stochastic objective functions based on adap-
tive estimates of lower-order moments (Kingma and Ba 2017). During the training 
process the parameters of the model are updated in 500 epochs. After the parameters 
are updated in each epoch, the validation loss is monitored along with the training 
loss. In order to avoid overfitting, an early-stop method is applied when the valida-
tion loss stops falling. Figure  10 shows for different dataset sizes how the model 
training and validation losses evolve. In comparison with a preprocessed dataset of 
only 2019, a preprocessed dataset of 2019 to 2020 and a preprocessed dataset of 

Fig. 10   Training and validation loss per training epoch for different dataset sizes. The full preprocessed 
dataset showed over the whole training the best results. Through early stopping the MLP model at epoch 
172 is considered the best as training and validation loss are both relatively low
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2019 to 2021, the complete preprocessed dataset from 2019 to June 2022 (derived 
from Subsect. 4.2) shows, as expected, the best results. Through early stopping the 
MLP model at epoch 172 is considered as best fitting model, as training and valida-
tion loss are both relatively and similarly low. Both are at a MSE of around 6.4. We 
use the test dataset, that showed similar loss results as the validation set, to verify 
the generalisation ability of the model. From figure 10 it can be interpreted that the 
inclusion of additional data in the training would further improve the model, as the 
MSE achieved for the training and validation data with more data is in lower ranges. 
Even though the complete dataset of 25,662 samples contains only discrete values as 
delayed transport cases in every single sample, the MLP predicts continuous values. 
However, the fact that our model can handle continuous values both as output and as 
input information is intentional, so that it can also deal with e.g. average scenarios.

4.3.2 � Further MLP validation

Next to MSE we investigate further performance metrics on our model. A perfor-
mance evaluation metric in terms of variance explanation ability of regression mod-
els can be the coefficient of determination R2 (Miles 2014; Ozili 2022; AlDahoul 
2021; Muloiwa et al. 2023). R2 measures in a model how good the variance in the 
actual values yi is explained by the input variables in the set of samples and is shown 
in equation 2 (Miles 2014; Mikut 2008; Muloiwa et al. 2023).

where m is the number of samples, yi are the actual values, ŷi are the predicted 
values, and y is the mean of the actual values yi . Thereby, the improvement of the 
regression estimate of the model is evaluated against the simple mean of the actual 
values in the sample set (Mikut 2008). The values of R2 range usually between 0.0 
(no relationship) and 1.0 (deterministic relationship) (Mikut 2008).

For the performance evaluation of models with multiple input variables there 
exists also a so called adjusted R2 , because in literature an undesired increase in 
R2 could be observed with increasing number of input variables (Miles 2014). The 
adjusted R2 is to be calculated according to equation 3 (Miles 2014).

where R2 is calculated according to equation 2, N is the sample size, and k is the 
number of input variables in the model. The higher R2 is, the better a model is able 
to explain the variance in the actual data (Miles 2014). A model with a R2 of 1.0, 
which is the highest possible value, is able to explain all of the variance in the set 
of samples (Miles 2014). A value of 0.0 (or a negative R2 , that could be theoreti-
cally observed) means that the predictive performance of a model is just as accurate 
(or theoretically even less accurate, if R2 is negative) as the average value of the set 
of samples (Ozili 2022). In science domains, where researchers deal with objects, 

(2)R2 = 1 −

∑m

i=1
(yi − ŷi)

2

∑m

i=1
(yi − y)2

(3)adjusted R2 = 1 −
(1 − R2)(N − 1)

N − k − 1
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molecules, materials, or atoms whose properties are known and whose behaviour are 
predictable and do not change over time, it is reasonable to expect a high R-squared 
in the developed models (Ozili 2022). In models dealing with human behaviour, 
which can change over time, an acceptable value of R2 for a prediction model is 
already considered to be between 0.5 and upwards towards 1.0 (Ozili 2022). The 
mentioned characteristics of or R2 are also valid for adjusted R2 (Ozili 2022). As R2 
underlies linear assumptions, R2 can tend to mislead performance evaluations related 
to non-linear models and should not be used as sole performance metric (Spiess and 
Neumeyer 2010). In Spiess and Neumeyer (2010) it is shown on exemplary non-
linear models in the pharmacological and biochemical domain that using R2 (and 
also adjusted R2 ) could indicate the best performing model in only around 28-43% 
(depending on the underlying experimental noise in the data) of the experimental 
evaluations. Nevertheless, R2 (and also adjusted R2 ) is frequently used in the litera-
ture to evaluate ANNs, and we consider it only as an additional performance metric 
to the MSE from Subsect.  4.3.1 and further metrics that will be presented in this 
subsection.

Figure 11 shows the Confusion Matrix of the MLP Model over the complete data-
set (25,662 samples) from which R2 and adjusted R2 can be derived. Evaluating real 
and predicted delayed cases (continuous values are not rounded for this calculation) 
over the complete dataset results in both a R2 and a adjusted R2 of 0.794 (adjusted 
R2 is slightly lower from the fourth decimal onwards). The performance of the MLP 
model in terms of variance explanation ability is thus in a good range, according to 
the acceptable bounds as per Ozili (2022).

Also, a metric called mean error bias (MEB), can be calculated, according 
to Hernández-Orallo (2013), in equation  4. It indicates whether a model tends to 

Fig. 11   Confusion Matrix of the MLP model. Predicted delayed cases, as the MLP model outputs contin-
uous values, are for simplified visualisation rounded to the nearest integer value (values exactly halfway 
between integer values are rounded to the nearest even value)
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over- or underestimate with its predictions (Hernández-Orallo 2013). For the devel-
oped MLP model the MEB is around −0.056. This indicates that the MLP model 
predictions ŷi only slightly underestimates the actual values yi in the complete data-
set. In contrast, a positive MEB would indicate, that a model tends to overestimate 
with its predictions (Hernández-Orallo 2013). Furthermore, Figure 11 and also MEB 
calculations for dataset subpartitions show that the MLP model tends to underesti-
mate more with its predictions when the values of real delayed cases are in higher 
regions. This may be due to the higher frequency of low values of real delayed cases 
(i.e. a high frequency of actual values yi with a low value) in the dataset that can 
lead to a biased model. For real delayed cases of e.g. zero (see the first row of fig-
ure 11), the MLP model even overestimates slightly with its predictions.

where m is the number of samples, ŷi are the predicted values and yi are the actual 
values.

As we want to reconfigure the capacity planning on a day of the week level, we 
evaluate the performance of our MLP model for average day of the week delayed 
cases predictions. Table 4 compares the average delayed cases per day of the week, 
that occurred in reality, with the delayed cases that are predicted by the MLP model 
using average day of the week input tensors. Depending on the day of the week, the 
total predicted delayed cases deviate more or less from reality, but with an aver-
age relative deviation of around 3.9% per day of the week the predictions of the 
MLP model are within a satisfactory range. Furthermore, the hourly course of the 
predicted delayed cases over the individual days of the week also comes close to 
the original course. In Subsect.  4.4, the example of Monday (see Fig.  14 in Sub-
sect. 4.4) will be shown in more detail along with the optimisation process of capac-
ity planning.

To provide further validation, we adopt the method in Torgo and Ribeiro (2009), 
which introduces the generalisation of precision, recall and F score for regression 
problems. These performance metrics are commonly used in ML classification prob-
lems but can be transferred to regression problems, too Davis and Goadrich (2006); 

(4)MEB =

∑m

i=1
(ŷi − yi)

m

Table 4   Real vs. predicted 
delayed cases for average days 
of the week

Day of the week Avg. real 
delayed 
cases

Avg. predicted 
delayed cases

Relative deviation

Monday 106.1429 107.5983 1.37%
Tuesday 84.4208 81.9533 2.92%
Wednesday 92.3770 86.4243 6.44%
Thursday 77.7650 82.5056 6.10%
Friday 91.6284 87.8406 4.13%
Saturday 15.2033 15.2692 0.43%
Sunday 12.2802 12.9949 5.82%

Avg. 3.89%
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Torgo and Ribeiro (2009). This method has been applied by the authors of Torgo and 
Ribeiro (2009) to evaluate the performance of different ML models in a regression 
problem in the economic domain. The core idea is to divide the data into two cate-
gories, “target events” (the samples which are considered relevant) and “non-events” 
(the samples which are considered not or less relevant) (Torgo and Ribeiro 2009). 
This makes it possible to align performance metrics on the ability of the model to 
make predictions in the relevant ranges (Torgo and Ribeiro 2009). Subsequently, the 
precision, recall and F score can be calculated (Torgo and Ribeiro 2009).

The standard event-driven classification has a positive class, here representing the 
previously defined “target events” and a negative class, here representing the previ-
ously defined “non-events” (Torgo and Ribeiro 2009). Table 5 is a general confusion 
matrix of a classification problem, where the precision and recall of a model can be 
calculated according to equations 5 and 6 (Torgo and Ribeiro 2009; Flach 2003).

where TP stands for True Positive, POS stands for Actual Positive, PPOS stands for 
Predicted Positive (Flach 2003).

Our general goal was to develop a model that allows accurate predictions of 
delayed cases in the common operation of the hospital under investigation.

Therefore, the data is divided into two categories according to the “Delayed 
transports according to as-planned hour”: The first category represents the majority 
of the data, and is designated as the positive class, thus representing the usual opera-
tional behaviour in the hospital. The remaining data is considered as negative class 
(outliers, that occurred rarely in the historical data), which are not relevant for the 
transport capacity planning. A relevance function �() is needed to divide the dataset 
into these two classes (Torgo and Ribeiro 2009). The choice of this relevance func-
tion �() is domain-dependent and not always easy to set (Torgo and Ribeiro 2009). 
In Torgo and Ribeiro (2009), the relevance function �() is defined dependent on the 
ML model label and prediction. In our case, the relevance function is thus dependent 
on the real and predicted “Delayed transports according to as-planned hour” (MLP 
label, see Subsect. 4.2). The mathematical expression of our chosen relevance func-
tion �() , that weights the positive class with 1 (relevant) and the negative class with 
0 (not relevant), is presented in equation 7 (adapted from Torgo and Ribeiro (2009)).

(5)Precision =
TP

POS

(6)Recall =
TP

PPOS

Table 5   Standard Confusion 
matrix of classification problem 
(according to Torgo and Ribeiro 
(2009); Flach (2003))

TP, true positive; FN, false negative; FP, false positive; TN, true 
negative

Predicted positive Predicted 
negative

Actual positive TP FN
Actual negative FP TN
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where tE is the relevance threshold, dependent on the real “Delayed transports 
according to as-planned hour” and Y can be either the real or predicted “Delayed 
transports according to as-planned hour” (Torgo and Ribeiro 2009). By introducing 
this concept of relevance, the regression problem is transformed into a binary clas-
sification problem (Torgo and Ribeiro 2009).

With equation 7, the definition of precision and recall for a regression problem 
are as shown in equations 8 - 9 (Torgo and Ribeiro 2009).

where 𝜙(ŷi) is the relevance function dependent on the predicted “Delayed transports 
according to as-planned hour” and �(yi) is the relevance function dependent on the 
real “Delayed transports according to as-planned hour” (see equation 7) and 𝛼(ŷi, yi) 
is the accuracy of prediction (loss between ŷ and y) defined according to equation 10 
(Torgo and Ribeiro 2009).

where I( ) is a indicator function given 1 if its argument is true and 0 otherwise. It is 
dependent on a tolerance threshold tL that is to be defined and reflects an admissible 
error within a loss function L() (e.g. the absolute or squared deviation). Following 
(Torgo and Ribeiro 2009) the loss function L() is chosen to reflect the absolute devi-
ation between ŷ and y. The definition of the F score is shown in equation 11 (Torgo 
and Ribeiro 2009).

where 0 ≤ � ≤ 1, determines the relative importance of recall to precision (Torgo 
and Ribeiro 2009). For an equal weighting of precision and recall � is chosen to be 
one. For this setup the F score is also known as F1 score (Russell and Norvig 2010; 
Ruiz-Sepúlveda et al. 2009).

Now everything except the relevance threshold tE and the tolerance threshold 
tL are defined. To choose tE we consult Figure 12, that visualizes the cumulative 
frequency of the real “Delayed transports according to as-planned hour”.

The top 4.88% of the data are considered as outliers and mapped to the nega-
tive class, when tE is set to 17. For this tE we calculate the precision with different 
tolerance thresholds tL . Figure 13 shows the results. With increasing tolerance the 

(7)𝜙(Y) =

{
0 if Y ≥ tE
1 if Y < tE

(8)Recall =

∑
𝜙(yi)≤tE

𝛼(ŷi, yi) ⋅ 𝜙(yi)
∑

𝜙(yi)≤tE
𝜙(yi)

(9)Precision =

∑
𝜙(ŷi)≤tE

𝛼(ŷi, yi) ⋅ 𝜙(ŷi)
∑

𝜙(ŷi)≤tE
𝜙(ŷi)

(10)𝛼(ŷ, y) = I(L(ŷ, y) ≤ tL)

(11)F =
(�2 + 1) ⋅ Precision ⋅ Recall

�2 ⋅ Precision + Recall
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positive gradient of the precision decreases. A similar behaviour is observed for 
recall and F1 score.

For example, a tolerance tL of two leads to a precision of around 0.81. This means 
that the MLP model predicts with 81% probability the correct “Delayed transports 
according to as-planned hour” with a tolerance of two delayed transports when outli-
ers of 17 and more delayed transports are not considered. The recall with a tolerance 
tL of two is around 0.83 and F1 score is around 0.82. The reached precision, recall 
and F1 score (and thus indirectly the MSE from Subsect. 4.3.1) of the MLP model 
are rated not yet good enough for practical implementation by the hospital process 
managers. They propose a minimum precision, recall and F1 score of 0.9 with a 
tolerance tL of one. A tolerance of one is argued by the hospital managers because it 
equals a range of two delayed cases (i.e. up to overestimating and underestimating 

Fig. 12   Cumulative distribution of real “Delayed transports according to as-planned hour” in complete 
dataset (25,662 hourly information)

Fig. 13   Relationship of preci-
sion of the MLP model and 
tolerance threshold t

L



Data‑based optimisation of intra‑hospital patient transport…

the real delayed cases by one delayed case), as previous investigations revealed 
that on average a transporter can more or less conduct three transports per hour (it 
takes a transporter 20 min from the acceptance of a transport assignment to trans-
port completion). With this in mind, a tolerance of one around the real amount of 
delayed transports and thus an allowed range of two delayed transports reflects less 
than what could possibly be conducted on time by an additional FTE. From a purely 
economic point of view, a misprediction of the number of delayed transports that 
leads to a range of over- and understaffing of more than 1 FTE (e.g. a tolerance of 
two leads to an allowed range of four delayed cases of the predictions, within a max-
imum of two over and two under the real delayed cases, which is more than what an 
average FTE can handle) is seen as not precise enough for practical implementation 
by the hospital process managers. Our current MLP model reaches only a precision 
of 0.64, a recall of 0.66 and an F1 score of 0.65, when the tolerance tL is set to one. 
Therefore, the MLP model still needs to be improved before it can be used in prac-
tice. Nevertheless, in the following further theoretical capacity planning evaluations 
using our MLP model will be conducted.

Our results show in general, that it is feasible to use precision, recall and F1 score 
to evaluate the performance of regression models. Furthermore, by setting differ-
ent relevance thresholds tE and evaluating the respective performance metrics, it is 
possible to gain a deeper insight into the performance of the model within specific 
regions of interest.

4.4 � Optimising the resource planning

In this subsection the resource planning will be optimised theoretically by adapt-
ing an input tensor so that the output of the MLP model (which reflects the delayed 
cases) will be minimised. As an example the input tensor of a mean Monday will be 
utilised as original tensor (see Fig. 14 left part) that is to be altered to find an optimi-
sation of the delayed cases, that are predicted to occur. Figure 14 (right part) shows 
on the one hand the real delayed cases per hour on an average Monday and also the 
amount of delayed cases per hour that the MLP model predicts based on the original 
tensor. In reality on average there were in total around 106 delayed cases on Mon-
days whereas the MLP predicts a total of around 108 cases. As the total predicted 
delayed cases differs less than 2% from the real delayed cases and as the trend of the 
predictions across all hours apparently corresponds well to reality, the reliability of 
the model to reflect an average Monday is considered good, and an optimisation of 
the input tensor will be carried out in the following.

For the optimisation a GA (see also Subsect. 3.2) is utilised, as it intents to anneal 
points of optima in complex problems. The GA explores the MLP with numerous 
solution attempts involving multiple new combinations of discrete variables in the 
input tensor to finally reach an optimised adaption of the original input tensor (see 
Fig. 14 left part) and lead to an optimisation of the overall predicted delayed cases 
compared to the historical Monday average (see Fig.  14 right part). For this pur-
pose the package “geneticalgorithm” (Solgi 2020) in python was used. Further used 
python libraries are “PyTorch” (Paszke et  al. 2019) and “NumPy” (Harris 2020). 
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Data visualisations are conducted using the python library “Matplotlib” (Hunter 
2007). During the development of the optimisation procedure involving the GA, 
ChatGPT (versions 3.5 and 4) was used to search for and explain certain methods of 
the used libraries or python functionalities.

4.4.1 � Optimising the number of transporters per hour

Initially, the aim is to optimise the number of delayed cases, i.e. minimise them, 
by simply adjusting the number of transporters per hour. To run the GA an objec-
tive function is defined. This function takes an adapted input tensor and calculates 
the objective value according to equation 12. The objective value consists of two 
components: The first part in equation 12 is defined by the sum of the MLP predic-
tions (these reflect the sum of the delayed cases per day of the week, here Monday). 
Secondly there is a constraint part in the objective function, wherein there are con-
straint penalty terms defined according to other desired goals, that are to be reached 
in addition to minimising the delayed cases.

To optimise the number of transporters per hour two constraint penalties are 
defined. The first constraint penalty is determined by computing the difference 
between the sum of the values in the fourth column of the adapted tensor and the 
sum of the values in the fourth column of the original tensor (see equation 13). This 
ensures that the sum of the number of transporters per hour, which are adjusted dur-
ing the optimisation process, does not deviate greatly upwards from the original ten-
sor. If the difference is negative (sum of the number of transporters per hour after 
optimisation is less than before), the penalty is set to zero. If fewer transporters are in 
operation in total and the delayed cases are still minimised, this is considered good, 
but the constraint penalty should not decrease the objective value as minimising the 

Fig. 14   Left: original input tensor with mean values for an average Monday. Right: real and predicted 
(through MLP model) delayed cases per hour on an average Monday
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delayed transports is the main goal. Second, there is a constraint penalty if negative 
delayed cases are predicted by the model (see equation 14).

The meaning of the other variables within the objective function and the con-
straint penalties are defined shown in equations 15 - 21.

where,

with

m is 24 in our case, since there is one row for all hours from 0 to 23 in both the 
adapted input tensor and the original tensor. w1 is set to 3.5 and w2 is set to 150. 
These weighting factors are chosen subjectively to reflect the authors’ view of the 
importance of the constraint penalties. The event log showed, that on average, it 
took a transporter 20 min from the acceptance of a transport assignment to trans-
port completion. Thus, around three transports per hour can be fulfilled on average 
per transporter. A weighting factor w1 of 3.5 expresses that one more transporter 
can be added in the capacity planning if this leads to at least 3.5 less delayed trans-
ports. This is more than what would be possible by conservatively assuming that all 
three average feasible transports would be completed on time by one more trans-
porter in that hour. Thus, in terms of the objective function, the GA will only be 

(12)objective1 =

m∑

i=1

MLP(xi) + w1 ⋅ CP1 + w2 ⋅ CP2

(13)CP1 = ConstraintPenalty1 = max

((
m∑

i=1

(y4
i
) −

m∑

i=1

(z4
i
)

)

, 0.0

)

(14)CP2 = ConstraintPenalty2 = −

(
m∑

i=1

(min(MLP(x
i
), 0.0))

)

(15)m = overall no. of rows in the adapted and original tensor

(16)MLP = Multilayer Perceptron (predicts delayed cases)

(17)x
i
= row i of the adapted tensor

(18)w1 = weighting factor of CP1

(19)w2 = weighting factor of CP2

(20)y
4
i
= element i of column 4 of the adapted tensor

(21)z
4
i
= element i of column 4 of the original tensor
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able to identify a better solution if an additional transporter reduces more than 3.5 
delayed transports in one hour (see CP1 in equation 13). With a value of 150, w2 is 
set large enough to ensure that no delayed cases are predicted by the model (see CP2 
in equation 14).

After the objective function is set, the 24 elements in the fourth column of the 
Monday tensor (see Fig. 14) will be considered as integer variables, that are to be 
optimised by the GA. Possible integer values are set to be between one and 12, as on 
average the active transporters per hour on Mondays were in all hours under eight 
transporters and furthermore for the optimisation it is to be considered that in every 
hour there should be at least one active transporter. The parameters of the GA are set 
through trial-and-error to the following and the procedure of the GA is presented in 
algorithm 1:

•	 ’max_num_iteration’: 2,000,
•	 ’population_size’: 10,000,
•	 ’mutation_probability’: 0.1,
•	 ’elit_ratio’: 0.01,
•	 ’crossover_probability’: 0.5,
•	 ’parents_portion’: 0.3,
•	 ’crossover_type’: ’uniform’,
•	 ’max_iteration_without_improv’: None.

Algorithm 1   GA to minimize the objective value

At each iteration, the objective value is evaluated based on the best found input 
tensor. Overall, the GA aims to optimise the objective function, which includes both 
the MLP model predictions and constraint penalties. The optimisation process itera-
tively updates the input tensor to minimise the objective value by adjusting the ten-
sor values within the specified constraints.

Figure 15 (left part) shows the finally derived input tensor that leads to an opti-
misation. The MLP model predicts with the new tensor a sum of delayed cases for 
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a Monday of around 79 delayed cases. Before optimisation an average Monday was 
predicted to have around 108 delayed cases. At the same time, the 73.6 transporter 
hours were merely redistributed so that the optimised tensor now contains a total of 
73 transporter hours (due to the requirement to use only integer transporter numbers 
per hour). Figure 15 (right part) shows the predicted (through MLP model) delayed 
cases per hour on an average Monday before and after input tensor optimisation 
through the GA. As the sum of transporters, as wanted, stays quite the same, the 
sum of delayed transports as well as the objective function value are minimised. In 
summary, it is theoretically possible to achieve around 27% less delayed transports 
merely by reallocating transport capacities.

4.4.2 � Further resource optimisations

In addition to the transporters per hour, other parameters can also be optimised. 
Therefore, another attempt is made to adjust the input tensor in order to minimise 
delayed cases.

In addition to the number of transporters per hour, now also the automation rate 
may be adjusted every hour, as well as the number of planned transports per hour. 
Regarding automation, the rate should generally always be either exactly 1 or exactly 
0 after being adapted. This is based on the findings from preliminary analyses, that 
showed a mixed operation is inefficient.

The total number of transports to be planned on an average Monday should 
not be lower than the number without tensor adjustment. During the observation 
period, approximately 270 transports were planned on an average Monday. This 
boundary is incorporated in a third constraint penalty enhancing the two men-
tioned constraint penalties of Subsect. 4.4.1. The new objective function, where 

Fig. 15   Left: best found solution for the input tensor with adjusted number of Transporters per hour (see 
Fig. 14 for comparison to the original tensor for an average Monday) leading to less delayed cases. Right: 
predicted (through MLP model) delayed cases per hour on an average Monday before and after input ten-
sor optimisation (see left) through the GA
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the GA aims to optimise three columns of the original tensor, is now given in 
equation 22. The third constraint penalty is defined according to equation 23. The 
meaning of the other variables within the objective function and the constraint 
penalties are defined shown in equations  24 - 26. If the sum of the number of 
planned transports per hour after optimisation is higher than before, the penalty 
is set to zero (see equation  23). If more transports are planned in total and the 
delayed cases are still minimised, this is considered good, but the constraint pen-
alty should not decrease the objective value as minimising the delayed transports 
is the main goal. The weighting w3 of the third constraint penalty is subjectively 
set to 3.5 according to the authors’ view on the importance of the constraint pen-
alty. This means that if one less transport was to be planned per day, this must 
result in at least 3.5 fewer delayed cases. This is about ten times higher than the 
average delayed case decrease of almost 0.35 (due to an average delay rate of 
almost 35% over all transport cases, see Subsect. 4.1) a transport conducted less 
would lead to. Thus, the GA can understand that fewer transports to be planned 
through tensor adjustment are only valid, if this results in a significant (tenfold) 
reduction of delayed cases and thus decrease of the objective value. The other 
variables to be set stay as in Subsect. 4.4.1.

where in addition to equations 13 - 21 from Subsect. 4.4.1,

with

Furthermore only adjustments in the number of planned transports by the GA will 
be allowed between the core operating hours of the hospital (between hours 7 and 
17). Due to the low expected number of transport assignments outside the core oper-
ating hours, adjustments have been excluded in these periods and the values just 
stay as the historical average Monday values. We defined the range for the adjusted 
number of planned transports in the core operating hours to possibly include all inte-
gers from zero to 50. Up to about 32 transports per hour were planned for Mondays 
on average (see Fig. 14 at hour 10). Furthermore, in the historical dataset, just a few 
samples were found, that included over 50 planned transports (the maximum was 
59 planned transports) in a respective hour. So, the range between zero and 50 was 

(22)objective3 =

m∑

i=1

MLP(xi) + w1 ⋅ CP1 + w2 ⋅ CP2 + w3 ⋅ CP3

(23)CP3 = Constraint Penalty3 = max

((
m∑

i=1

(z3
i
) −

m∑

i=1

(y3
i
)

)

, 0.0

)

(24)w3 = weighting factor of CP3

(25)z
3
i
= element i of column 3 of the original tensor

(26)y
3
i
= element i of column 3 of the adapted tensor
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considered meaningful to provide the GA with a sufficient degree of freedom for 
optimisation.

The parameters of the GA stay the same as in Subsect. 4.4.1. Figure 16 (left part) 
shows the finally derived input tensor that leads to an optimisation with adaptions 
in columns three to five in comparison to the original tensor. Figure 16 (right part) 
shows the predicted (through MLP model) delayed cases per hour on an average 
Monday before and after input tensor optimisation through the GA. While the num-
ber of planned transports stays at approximately 270 and the number of transporters 
is at 73, the MLP predicts with the new tensor a sum of delayed cases for a Monday 
of around 63 delayed cases. This reflects a reduction of around 42% in delayed cases 
compared to 108 predicted delayed cases on the historical average Monday (see 
Fig. 14) by reallocating the number of transporters per hour, the number of planned 
transports per hour and the delay rate per hour.

4.4.3 � GA validation

A limited solution space is created to validate the functionality of the GA. The more 
degrees of freedom the GA has, the more exponentially increasing solutions there 
will be in general. Thus we aim to evaluate the performance of the GA with a prob-
lem, where there is a limited, comprehensible number of solutions. In total 100 final 
solutions will be generated by the GA (following the complete procedure from algo-
rithm  1, see Subsect.  4.4.1) and it is analysed how these compare to all possible 
solutions in the limited solution space.

The assumption is, that on an average Monday it is only possible to adjust 
the transporters between the full hours of seven and 16 o’clock (i.e. a total of 
ten hourly slots). A maximum of 60 transporters (73.6 transporter hours on an 

Fig. 16   Left: best found solution for the input tensor with adjusted number of Transporters per hour, 
number of planned transports per hour and delay rate per hour (see Fig. 14 for comparison to the origi-
nal tensor for an average Monday) leading to less delayed cases. Right: predicted (through MLP model) 
delayed cases per hour on an average Monday before and after input tensor optimisation (see left) 
through the GA
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average Monday minus 13.7 transporter hours from the non-adjustable hour slots 
of an average Monday equals 59.9 transporter hours) should then be distributed 
across ten specific chosen slots out of the 24 h on a day. Each slot should have at 
least one transporter and a maximum of 12 transporters (possible integer values 
in the GA are set to be between one and 12 like in Subsect. 4.4.1). In addition, the 
number of transporters from one of these ten slots to the next slot should not dif-
fer by more than two transporters, for example:

•	 A slot that starts with one transporter can have one, two or three transporters in 
the next slot.

•	 A slot that starts with five transporters can have three, four, five, six or seven 
transporters in the next slot, and so on.

An objective function that penalises not meeting these requirements is shown 
in equation 27. In contrast to the objective function from equation 12, see Sub-
sect.  4.4.1, a new penalty CP4 (or “ConstraintPenalty4”, see equation  27 and 
equation 28) is added. Figure 17 visualises the problem and main conditions that 
the GA is facing.

Fig. 17   Problem with limited solutions, that the GA aims to solve. The goal is to minimise the objective 
function
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where in addition to equations 13 - 21 from Subsect. 4.4.1,

with

The weighting w4 of the new constraint penalty CP4 is subjectively set to 150, to 
ensure that the GA does not develop solutions, that allow next hourly time slots to 
differ by more than two transporters and thus lie outside the selected limited solu-
tion space. The weightings w1 and w2 stay as defined in Subsect. 4.4.1.

Firstly, a specially created recursive algorithm is used to try all possible numbers 
of transporters that fulfil the conditions for each slot. The final result, how many 
solutions there are to distribute a maximum of 60 transporters to ten slots, whereby 
the distribution fulfils the specified conditions, is 5,589,997 solutions.

If these 5,589,997 solutions are assessed with the objective function (see equa-
tion 27), the following values of the objective function are obtained:

•	 min 105.0527,
•	 max 396.6024,
•	 average 180.8667,
•	 median 143.2295.

For the solutions in which the total number of transporters is 60, which is also the 
maximum possible, the objective function is always slightly higher than the number 
of delayed transport cases. This is because, according to equation 27, more than the 
original 59.9 transporters are penalised in a solution that is evaluated through the 
objective function. In these instances the objective function is greater than the num-
ber of predicted delayed cases by 0.23 in absolute numbers.

It should be noted that only 69 of these 5,589,997 solutions lead to equal or better 
objective function values than the average Monday with an objective function value 
of 107.5983. The fact that there are so few solutions that lead to any improvement 
at all is partly due to that only integer numbers are allowed, and partly due that the 
difference between two consecutive hours in the transporter numbers must not be 
greater than two, which severely limits the possible improving solutions. The best 
solution with an objective value of 105.0527 is visualised in Figure 18.

Now the GA is used to find an optimised solution for the problem. To evalu-
ate the GA performance, the complete GA procedure (see algorithm 1 from Sub-
sect. 4.4.1) is repeated 100 times and then all generated optimised solutions are 
compared to the 5,589,997 possible solutions. In contrast to the parameters of the 
GA from before (see Subsect. 4.4.1 and 4.4.2), the parameter “population_size” 

(27)objective_limited =

m∑

i=1

MLP(xi) + w1 ⋅ CP1 + w2 ⋅ CP2 + w4 ⋅ CP4

(28)CP4 = Constraint Penalty4 =

16∑

i=8

{
|
|
|
y4
i
− y4

i+1

|
|
|
, if

|
|
|
y4
i
− y4

i+1

|
|
|
> 2

0, otherwise

(29)w4 = weighting factor of CP4
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is decreased from 10,000 to ten to accelerate the 100 independent GA runs, each 
of which goes through 2,000 iterations. A total of 66 unique final solutions were 
generated by the GA within in the 100 final solutions.

In the following the aggregated results of the objective function value of the 
100 final GA solutions are presented:

•	 min 106.5049,
•	 max 117.3433,
•	 average 109.1974,
•	 median 108.1439.

In 33 out of the 100 runs the GA led to improvements in the objective function. 
In the other 67 runs the GA did not lead to an improvement in the objective func-
tion. However, as mentioned before, there are rarely improvement solutions in the 
chosen limited solution space. But still, due to the following reasons the GA per-
forms in a good manner. With a minimum objective function value of 106.5049 
in the 100 runs, the GA was better than 99.99% of all possible solutions. With an 
average objective function value of 109.2 in the 100 runs, the GA was better than 
99.96% of all possible solutions. Even with a maximal objective function value 
of 117.3433 in the 100 runs, the GA was better than 96.94% of all possible solu-
tions. This illustrates the effective functionality of the GA for the limited solution 
space. At this point, the functionality of the GA is considered validated, although 
the performance may deteriorate with a different and, above all, larger solution 
space. However, with an almost infinite number of solutions, which is possible 
depending on the considered problem, the validation is extremely complex and 
time-consuming, which will not be pursued in greater depth at this point. The 
main purpose of this work is to demonstrate the general mode of operation for 

Fig. 18   Left: Input tensor with mean values for an average Monday with adapted no. of transporters in 
ten hours (best solution in limited solution space). Right: Predicted (through MLP model) delayed cases 
per hour on an average Monday before and after inserting the best input tensor (best solution in limited 
solution space, see left)
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combining the MLP model and the GA for optimised IHPT capacity planning, 
and this is hereby confirmed.

5 � Discussions

Table  6 summarises the results of the optimisation procedure. In addition to the 
mean real delayed cases on an average Monday, the predictions of the MLP for an 
average Monday are depicted. Furthermore, the improvements with respect to the 
delayed cases are presented for a sole adjustment of transporters (see also Sub-
sect. 4.4.1) as well as for an adjustment involving transporters, planned transports, 
and automation rates (see also Subsect. 4.4.2).

It is noticeable that the GA reallocates the variables (number of transporters, 
number of planned transports and automation rate per hour) in such a way that many 
delayed cases result in a few hours of the day and few delays occur in the remain-
ing hours (see the last two columns of Table 6). Also, there are partly larger jumps 
in hourly variables, which could be difficult to implement in practice. For example, 
Fig. 16 (left part) from Subsect. 4.4.2 shows that at hour 12 there should be seven 
transports planned, at hour 13 there should be 50 transports planned, at hour 14 
there should be six transports planned and at hour 15 there should be 14 transports 
planned. Also the number of active transporters in the hours seven, eight and nine is 
reallocated to seven, then 12 and then three transporters in Fig. 16 (left part). When 
there are these significant variations in the needed hourly capacity of transporters, 
they may, however, be available for other tasks within the hospital during times 
when they are not engaged in IHPT. Also, whether the transport disposition from 
automatic (“1”) to manual (“0”) and vise versa can be switched on an hourly basis 
(see left part of Fig. 16) is questionable. In general, the GA can produce solutions 
in certain hours that are widely different from the behaviour that the MLP model 
could have encountered during model development with the historical IHPT data, 
and which may therefore lead to questionable predictions. From a practical view, 
further investigations on these scenarios need to be conducted. Nonetheless, the 
mentioned peaks and discrepancies can be leveled out by the implementation of fur-
ther constraints in the objective functions, that the GA aims to optimise. However, 
this does require practical knowledge and would certainly compromise the optimisa-
tion potential.

The chosen example from Subsect. 4.4 can be critically viewed, too. Data from an 
average Monday in a data frame of 3.5 years were used for the original input tensor 
that is to be optimised. Instead, it is also possible to use an average Monday or other 
days of the week from more recent weeks. An average day of the week that is to be 
optimised from a more recent period could be more meaningful for current planning 
than an average day of the week calculated from the past 3.5 years. However, the 
initial task is to determine which historical periods are more reflective of current and 
future periods than the average long-term dataset, thus enabling even better optimi-
sation approaches.

The results presented in Subsect.  4.4 varied more or less in each attempt with 
the GA. The GA identifies improvements, but it is impossible to ascertain that the 
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optimal solution has been reached, as the GA works in a trial-and-error manner and 
can also converge to local optima. However, the presented use case involves a com-
plex problem with multiple optimisation variables. Nevertheless, the GA has shown 
to be computational practical in achieving significant improvements in a complex 
environment characterised by an objective function containing an MLP model for an 
IHPT capacity planning problem. Subsection 4.4.3 furthermore proved for a smaller 
problem instance that the GA performed reliably good.

All in all, the investigations from Subsect.  4.4 have demonstrated, that under 
conditions of consistent or similar quantities of planned transport assignments and 
transporters, resource reallocation through a GA led to a theoretical reduction rang-
ing from 27% to 42% in delayed cases for the example of an average Monday. In 
the same manner, the capacity planning for other days of the week can also be opti-
mised. Comparing these potentials with the IHPT literature included in Sect. 1 and 
2, although mostly different areas in IHPT are subject to improvement in literature, 
we can see that the theoretical improvement potentials of our approach are in the 
higher region. Haldar et al. (2019), Jaroon (2018), Séguin et al. (2019), Kergosien 
et  al. (2011), Fröhlich Von Elmbach et  al. (2019), Fiegl and Pontow (2009), Bär-
mann et al. (2024) reached average IHPT improvements of up to 20%, (Gopal 2016; 
Turan et al. 2011; Elmbach et al. 2015; Vancroonenburg et al. 2016; Hanne et al. 
2009; Meephu et al. 2023) of up to between 21% and 36%. The transferability of the 
potential of our approach to the real world is given by the reached performance of 
the MLP model (see Subsect. 4.3). For average day of the week scenarios and con-
cerning the R2 , the results are in an acceptable region (see Subsect. 4.3.2). Precision, 
recall and F1 score from Subsect. 4.3.2 (and thus indirectly the MSE from 4.3.1) are 
considered not yet good enough for a practical implementation of the MLP model 
by hospital process managers. Different approaches to improving the performance 
of MLP models can be, for example, a model development with more data, but also 
further filtering of outliers or the development of several specialised prediction 
models. One model for core hospital working hours (during the day from Monday 
to Friday) and another model for other hours, which are then trained, validated and 
tested with different datasets.

Also, depending on the chosen weighting factors of the constraint penalties in the 
objective functions and the possible variable ranges that the GA can choose from, as 
defined in Sect. 4.4, the improvement potentials revealed by the GA approach can 
be different. These parameters need to be further discussed and possibly adapted 
with domain experts, also by performing a detailed quantitative sensitivity analysis, 
in order to obtain meaningful improvement ideas for IHPT capacity planning. Fur-
thermore, the effects of a potential implementation in practice should be thoroughly 
evaluated and compared.

In terms of generalisability and transferability, the preprocessing (see Sub-
sect. 4.2) can be similarly carried out at other hospitals without major effort. In total, 
more than 370 hospitals in Germany, Austria, Switzerland, Italy and Sweden use 
the software from which the datasets were extracted within this study. However, the 
MLP input and label information (see figure 7 in Subsect. 4.2) used here can cer-
tainly also be extracted and aggregated from other software systems, as long as simi-
lar information is stored. The MLP training, validation and testing (see Subsect. 4.3) 
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must then be carried out on an individual basis in order to develop an accurately 
functioning MLP model for other hospital environments. Parameters must be set 
and evaluated again like conducted in Subsect. 4.3.1 and 4.3.2. The GA (see Sub-
sect. 4.4) will also be applicable to the newly designed ANN. But its functionality 
should be confirmed again, similar to Subsect. 4.4.3. Furthermore, re-calibrating the 
setup and boundaries of adaptable variables, as well as weights and constraint penal-
ties in the objective functions to be optimised, is needed.

In summary, the approach presented in Sect. 4 can be adapted to different clini-
cal and, more generally, logistical or other environments where capacity planning 
is required. Often only certain parameters need to be adapted. However, the overall 
concept, namely the combination of data preparation, process prediction by an ANN 
and subsequent optimisation by a metaheuristic algorithm to find improved solutions 
for processes, can be quickly applied.

6 � Conclusion and future work

This paper has demonstrated the feasibility of establishing a more efficient resource 
allocation in capacity planning using historical IHPT data. To achieve this, we 
aggregated and preprocessed transport-related raw data (information on 256,266 
transport cases) into hourly-based data (information on 25,662 h) within an observa-
tion period of approximately 3.5 years from January 2019 to mid 2022 (covers actu-
ally 30,672 h, but hours with missing data were filtered out). Therefore the number 
of planned transports, the number of active transporters, and the automation rate of 
transport disposition as well as the number of delayed transports for each hour in the 
observation period are calculated to train a MLP model. While certain performance 
metrics of the developed MLP model are within a range, that needs to be further 
improved for practical implementation, mainly by increasing the volume of training 
data, predictions for hourly delayed cases are already feasible for individual days 
of the week. By incorporating data from additional observation periods, it might 
be possible in the future to achieve predictions that are specific to calendar weeks, 
months, or even specific days in a year. More specific predictions require a more 
extensive data availability so that respective observations can be sufficiently trained 
into the model.

Using a GA, the capacity resources of an average Monday were adjusted in a 
manner that led to a reduction in daily delayed cases, while maintaining a consistent 
sum of planned transports and aggregated number of transporters per hour on a day. 
To achieve this, firstly just the transporters were redistributed throughout the day. In 
a second attempt next to a transporter redistribution also adjustments were made to 
the distribution of planned transports and the automation rate of transport assign-
ment disposition. We have already achieved theoretical improvements with 27% 
to 42% fewer delayed cases in IHPT just by reorganising resources, without adding 
new ones. Here, the combination of a MLP model that can predict delayed cases 
when given specific IHPT process information and a GA that can adapt the input 
information to minimise the predicted delayed cases has proven effective. However, 
there is potential for further improvement both in the performance of the ANN and 
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the use of an appropriate metaheuristic algorithm to reliably find the best solution 
for capacity planning. The practical implementation of the proposed planning is 
pending. As mentioned in Subsect. 2.3, there are no predictive performance metrics 
of IHPT processes in literature, that we could compare our MLP model performance 
to. But our predictive performance metrics for delayed cases in IHPT will serve as a 
benchmark for further research. Moreover, we will continue to develop and compare 
other ANN models for the IHPT process. Filtering the training data when develop-
ing the MLP model can help to create models that are more accurate in certain situ-
ations (e.g. when the number of as-planned transports per hour is relatively high). 
Initial approaches using RNN and CNN architectures on our data (beyond the inves-
tigations of this paper) have also shown slightly improved MSE values, but need to 
be further investigated and compared. Metaheuristic algorithms other than GA, such 
as swarm-intelligence algorithms (see Subsect. 3.2), should also be used to improve 
the reorganisation of IHPT capacity planning and their performance is to be evalu-
ated and compared. If in the future additional hourly attributes of the IHPT process, 
like e.g. transport priorities, pick-up or arrival locations, are incorporated into the 
MLP model training, along with the in our use case incorporated hourly informa-
tion, the MLP model could generate more specific predictions and thus, offering 
more variables for adjustment within optimisation of delayed cases through the GA. 
Possible other attributes, that could be potentially used for the training of a MLP 
as well as solving resource optimisation problems can be found in Subsect.  4.1. 
However, a more extensive data collection is also here a prerequisite, ensuring that 
specific information is recurrently present throughout the MLP training process to 
allow for accurate predictions. Last but not least, the overall improvement poten-
tial for the processes under investigation will certainly vary from one application to 
another and should be examined and compared in a broader scale in order to draw 
reliable, general conclusions.
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