KIT | KIT-Bibliothek | Impressum | Datenschutz

Physicochemically-informed continuum level model of a solid electrolyte interphase growth in Li-ion batteries

Zelič, Klemen; Esmaeilpour, Meysam ORCID iD icon 1; Jana, Saibal 2; Mele, Igor; Wenzel, Wolfgang 1; Katrašnik, Tomaž
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Despite extensive research, understanding the SEI’s formation mechanism, structure, and its impact on battery performance remains challenging due to its complexity. To enable model-based design studies and to enhance understanding and prediction of the macroscopically observable consequences of SEI layer on battery performance and safety, continuum models featuring high level of prediction capability are needed. This objective of this paper is to resolve this challenge through an innovative physicochemically-informed continuum level model derived using a scale-bridging methodology, which, for the first time, enables highly consistent transfer of detailed KMC level based governing equations and reactions rates to the physicochemically-informed continuum level model. This was made possible by the innovative methodology relying on identification of rate-limiting reactions, deriving dynamic equations, and implementing dimensionality reduction. The resulting continuum model accurately replicates KMC results and experimental results while significantly reducing computational complexity. Furthermore, it, for the first time, enables distinguishing between ‘bad’, ‘good’, and ‘inorganic’ SEI growth scenarios on the continuum scale, offering valuable insights into electrode/electrolyte interface design. ... mehr

Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 0378-7753
KITopen-ID: 1000177758
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Journal of Power Sources
Verlag Elsevier
Band 627
Seiten 235814
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie

Verlagsausgabe §
DOI: 10.5445/IR/1000177758
Veröffentlicht am 07.01.2025
Seitenaufrufe: 36
seit 07.01.2025
Downloads: 20
seit 09.01.2025
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page