KIT | KIT-Bibliothek | Impressum | Datenschutz

Ordered Vacancy Compound Formation at the Interface of Cu(In,Ga)Se$_2$ Absorber with Sputtered In$_2$ S$_3$ ‐Based Buffers: An Atomic‐Scale Perspective

Cojocaru-Mirédin, Oana ; Hariskos, Dimitrios; Hempel, Wolfram; Kanevce, Ana; Jin, Xiaowei 1; Keutgen, Jens; Raghuwanshi, Mohit; Schneider, Reinhard 1; Scheer, Roland; Gerthsen, Dagmar 1; Witte, Wolfram
1 Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT)

Abstract:

The design of a Cd-free and wider-bandgap buffer layer is stringent for future Cu(In,Ga)Se$_2$ (CIGSe) thin-film solar cell applications. For that, an In$_2$S$_3$ buffer layer alloyed with a limited amount of O (well below 25 mol%) has been proposed as a pertinent alternative solution to CdS or Zn(O,S) buffers. However, the chemical stability of the In$_2$S$_3$/CIGSe heterointerface when O is added is not completely clear. Therefore, in this work, the buffer/absorber interface for a series of sputter-deposited In$_2$S$_3$ buffers with and without O is investigated. It is found that the solar cell with the highest open-circuit voltage is obtained for the O-free In$_2$S$_3$ buffer sputtered at 220 °C. This improved open-circuit voltage could be explained by the presence of a 20 nm-thick ordered vacancy compound (OVC) at the absorber surface. A much thinner OVC layer (5 nm) or even the absence of this layer is found for the cell with In$_2$(O$_{0.25}$S$_{0.75}$)3 buffer layer where O is inserted. The volume fraction of the OVC layer is directly linked with the magnitude of Cu diffusion from the CIGSe surface into the In$_2$(O$_x$S$_{1−x}$)$_3$ buffer layer. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177767
Veröffentlicht am 07.01.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Laboratorium für Elektronenmikroskopie (LEM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 04.12.2024
Sprache Englisch
Identifikator ISSN: 2367-198X
KITopen-ID: 1000177767
Erschienen in Solar RRL
Verlag John Wiley and Sons
Band 8
Heft 23
Seiten Art.-Nr.: 2400574
Vorab online veröffentlicht am 24.11.2024
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page