
Efficient Cross-layer Security against
Advanced Threats in Emerging

Computing Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Jeferson Gonzalez Gomez
aus San Roque, Grecia (Costa Rica)

Tag der mündlichen Prüfung: 19. Dezember 2024
Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruher Institut für Technologie (KIT)
Koreferent: Prof. Dr.-Ing. Felix Freiling, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Hiermit erkläre ich an Eides statt, dass ich die vonmir vorgelegte Arbeit selbst-
ständig verfasst habe, dass ich die verwendeten Quellen, Internet-Quellen und
Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen – die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Jeferson Gonzalez Gomez

Acknowledgements

First of all, I would like to express my sincere gratitude to Prof. Dr.-Ing. Jörg
Henkel for his support and supervision over the past years. Prof. Henkel has
always encouraged me to explore my own research ideas, providing valuable
insights and feedback which allowed me to steer them in the right path. I
would also like to thank Prof. Dr.-Ing. Felix Freiling for kindly agreeing to be
my second referee and providing me with constructive comments for both
the dissertation and the final presentation of my work.

I thank Prof. Dr. Thomas Bläsius for accepting the invitation to be examiner
for my oral defense. Likewise, I am thankful to Prof. Dr. rer. nat. Hannes
Hartenstein and Prof. Dr. Kathrin Gerling for being part of the defense as
members of the doctoral committee.

I am deeply grateful to Dr.-Ing. Lars Bauer for his constant insights, questions
and discussions over my ideas, even and especially when he did not have
to. His support was crucial to help me shape my crazy ideas into proper
scientific contributions. I also would like to thank my colleagues at CES,
past and present, for their friendship and support. Special thanks to Dr.-Ing.
Heba Khdr, Dr.-Ing. Hassan Nassar and Bakr Sikal for their counsel and
collaboration as coauthors in joint publications.

My deepest gratitude goes to my wife, Laura, who has stood next to me with
love and patience over the past years. Lau has always supported me, even
before we decided to move to a different country so I could chase my dream. I
am aware of the sacrifices she has selflessly made for me and I will be forever
grateful for that. I would not be where I am if not for her.

To my family and extended family in Costa Rica, thanks for the constant
support and good wishes.

Jeferson Gonzalez Gomez

5

Abstract

With the rapid advancement of emerging computing systems such as Internet
of Things (IoT), Cloud, and Edge Computing, traditional security measures are
being challenged. This modern setting requires robust and efficient security
frameworks alongside innovative detection mechanisms, leading to a complex
security landscape. Emerging heterogeneous computing environments are
increasingly being deployed. Modern IoT and AI computing systems lever-
age heterogeneous resources such as Graphics Processing Units (GPUs) and
custom hardware accelerators to enhance various applications, e.g., machine
learning and data processing. However, security and privacy concerns persist,
especially with new attack vectors such as side and covert channels. This
dissertation focuses on identifying these new threats and developing efficient
detection mechanisms as well as countermeasures to ensure security with
minimal performance impact on these emerging systems. This dissertation
proposes three main contributions to address these challenges.

As the computing capabilities of emerging systems improve, attackers contin-
uously find new ways to compromise the system. The first contribution deals
with unveiling new attacks on these emerging systems. For this, it includes
four new types of covert channel attacks that leverage different hardware
and software resources in a cross-layer manner. The first attack employs the
temperature of the GPU to leak information. The second technique introduces
an obfuscation mechanism to CPU-based thermal covert channels that defeats
traditional detection techniques. The third attack leverages memory usage to
establish a stealth channel from a virtual machine to a host system. The last
attack exploits a benign hardware accelerator in an FPGA-Multi Processor
System on Chip (MPSoC) for the first time to covertly transmit information
from a Trusted Execution Environment (TEE) to a Normal World operating
system, hence breaking the isolation principle of the TEE.

The first step in addressing these new threats is the detection mechanisms.
Since attacks leverage new resources or actively seek to hide themselves,

i

Abstract

detection techniques need to adapt to the improved threat. The second con-
tribution proposes two detection mechanisms that employ Machine Learning
(ML) techniques. The first detection technique introduces a supervised learn-
ing approach to detect thermal covert channels using CPU performance
information over time as input. The second detection approach is an unsu-
pervised learning-based framework for general anomaly detection used in
the context of dynamic integrity verification and Remote Attestation (RA). In
both approaches, the goal of detecting the threat is complemented by the need
to minimize the associated overhead in the system. The trade-off between
security and performance is a major theme in the contributions.

While the detection techniques for these new attacks have advanced in ad-
dressing the threats, the solution to the problem of potential attackers requires
action. Straightforward solutions that seek to stop the suspicious applications
might either not be feasible or could produce significant service disruption in
the system. The third contribution delves into efficient-yet-effective system-
level approaches to target covert and side channels. The first countermeasure
involves a heuristic-based task migration technique to combat cache-based
side channels. The second targets GPU-based thermal covert channels by
leveraging an improved heuristic for Dynamic Voltage and Frequency Scaling
(DVFS) on both embedded and general-purpose devices. Finally, the third
countermeasure combines DVFS and task migration with both heuristics
and ML algorithms in a holistic and system-informed manner to combat
power-based covert channels efficiently from an energy and performance
perspective.

ii

Zusammenfassung

Mit dem raschen Fortschritt aufstrebender Computersysteme wie Internet
of Things (IoT), Cloud und Edge Computing werden traditionelle Sicher-
heitsmaßnahmen zunehmend herausgefordert. Diese moderne Umgebung
erfordert robuste und effiziente Sicherheitsstrukturen sowie innovative Er-
kennungsmechanismen, was zu einer komplexen Sicherheitslandschaft führt.
Aufstrebende heterogene Rechenumgebungen werden zunehmend einge-
setzt. Moderne IoT- und KI-Computersysteme nutzen heterogene Ressourcen
wie Graphics Processing Units (GPUs) und benutzerdefinierte Hardware-
Beschleuniger, um verschiedene Anwendungen, z.B. maschinelles Lernen
und Datenverarbeitung, zu verbessern. Dennoch bestehen weiterhin Beden-
ken hinsichtlich der Sicherheit und des Datenschutzes, insbesondere durch
neue Angriffsvektoren wie Seitenkanäle und verdeckte Kanäle. Diese Disserta-
tion konzentriert sich darauf, diese neuen Bedrohungen zu identifizieren und
effiziente Erkennungsmechanismen sowie Gegenmaßnahmen zu entwickeln,
um die Sicherheit dieser aufstrebenden Systeme bei minimalen Leistungsein-
bußen zu gewährleisten. Diese Dissertation stellt drei wesentliche Beiträge
zur Bewältigung dieser Herausforderungen vor.

Mit der Verbesserung der Rechenleistung aufstrebender Systeme finden An-
greifer ständig neue Wege, das System zu kompromittieren. Der erste Beitrag
befasst sich mit der Aufdeckung neuer Angriffe auf diese aufstrebenden Sys-
teme. Dazu gehören vier neue Arten von Angriffen durch verdeckte Kanäle,
die verschiedene Hardware- und Software-Ressourcen in einer schichten-
übergreifenden Weise nutzen. Der erste Angriff verwendet die Temperatur
der GPU, um Informationen zu leaken. Die zweite Technik führt einen Ver-
schleierungsmechanismus für CPU-basierte thermische verdeckte Kanäle
ein, der herkömmliche Erkennungstechniken überwindet. Der dritte Angriff
nutzt den Speicherverbrauch, um einen verdeckten Kanal von einer virtuellen
Maschine zu einem Host-System aufzubauen. Der letzte Angriff nutzt zum
ersten Mal einen gutartigen Hardware-Beschleuniger in einem FPGA-MPSoC,
um Informationen verdeckt von einer Trusted Execution Environment (TEE)

iii

Zusammenfassung

an ein Betriebssystem in der normalen Welt zu übertragen, wodurch das
Isolationsprinzip der TEE verletzt wird.

Der erste Schritt zur Bewältigung dieser neuen Bedrohungen besteht in
den Erkennungsmechanismen. Da Angriffe neue Ressourcen nutzen oder
aktiv versuchen, sich zu verbergen, müssen Erkennungstechniken an die
verbesserte Bedrohung angepasst werden. Der zweite Beitrag schlägt zwei
Erkennungsmechanismen vor, die ML-Techniken verwenden. Die erste Er-
kennungstechnik führt einen überwachten Lernansatz ein, um thermische
verdeckte Kanäle durch die Nutzung von CPU-Leistungsinformationen über
die Zeit als Eingabe zu erkennen. Der zweite Erkennungsansatz ist ein auf
unüberwachtem Lernen basierendes Framework zur allgemeinen Anomalie-
erkennung, das im Kontext der dynamischen Integritätsüberprüfung und der
Remote Attestation (RA) verwendet wird. In beiden Ansätzen wird das Ziel
der Bedrohungserkennung durch das Bestreben ergänzt, den damit verbunde-
nen Overhead im System zu minimieren. Der Ausgleich zwischen Sicherheit
und Leistung ist ein zentrales Thema in den Beiträgen.

Während die Erkennungstechniken für diese neuen Angriffe Fortschritte
bei der Bewältigung der Bedrohungen gemacht haben, erfordert die Lösung
des Problems potenzieller Angreifer Maßnahmen. Einfache Lösungen, die
darauf abzielen, verdächtige Anwendungen zu stoppen, sind möglicherweise
nicht praktikabel oder könnten erhebliche Dienstunterbrechungen im System
verursachen. Der dritte Beitrag vertieft sich in effiziente und zugleich effektive
systemweite Ansätze, um verdeckte und Seitenkanäle anzugehen. Die erste
Gegenmaßnahme beinhaltet eine heuristikbasierte Technik zur Migration von
Anwendung, um cachebasierte Seitenkanäle zu bekämpfen. Die zweite zielt
auf GPU-basierte thermische verdeckte Kanäle ab, indem eine verbesserte
Heuristik für Dynamic Voltage and Frequency Scaling (DVFS) sowohl auf
eingebetteten als auch auf allgemeinen Geräten genutzt wird. Schließlich
kombiniert die dritte Gegenmaßnahme DVFS und Migration von Anwendung
mit sowohl Heuristiken als auch ML-Algorithmen in einer ganzheitlichen
und systeminformierten Weise, um auf dem Leistungsverbrauch basierende
verdeckte Kanäle effizient aus einer Energie- und Performance-Aspekte zu
bekämpfen.

iv

Contents

Abstract . i

Zusammenfassung . iii

List of Figures . ix

List of Tables . xiii

List of Publications . xv

Research at the Chair for Embedded Systems xix

1 Introduction . 1
1.1 Side and Covert Channels in Computing Systems 2
1.2 Challenges in Attack Detection 6
1.3 Challenges in Countermeasures 7
1.4 Dissertation Contributions 9
1.5 Dissertation Outline . 12

2 Related Work . 13
2.1 Trusted Execution Environments 13
2.2 Side- and Covert-channel Attacks 14
2.3 Attack Detection Mechanisms 17

2.3.1 Detection of Power-Based Covert Channels 18
2.3.2 Remote Attestation as Run-Time Integrity Verification 19

2.4 Countermeasures to Side and Covert Channels 21
2.4.1 Against Cache Side Channels 22
2.4.2 Against Power-based Covert Channels 23

3 Experimental Framework . 25
3.1 Simulation framework - HotSniper 25

v

Contents

3.2 Real Hardware Platforms . 26
3.2.1 General Personal Computer (PC) 26
3.2.2 Server-range CPU 27
3.2.3 Embedded Devices 27
3.2.4 FPGA-MPSoC . 30

4 New Threats: Attacks Using System Resources 33
4.1 Shared Threat Model . 33
4.2 Novel Contributions . 35
4.3 Obfuscated Short Duration Thermal Covert Channel 36

4.3.1 Motivation . 36
4.3.2 Attack Implementation 36
4.3.3 Experimental Evaluation 38

4.4 GPU-based Thermal Covert Channel 40
4.4.1 Motivation . 40
4.4.2 Attack Implementation 41
4.4.3 Experimental Evaluation 45

4.5 Through Fabric: A Thermal Covert Channel on FPGA-MPSoC
Systems . 49
4.5.1 Motivation . 49
4.5.2 Attack Implementation 50
4.5.3 Experimental Evaluation 55

4.6 MeMoir: A Covert Channel Based on Memory Usage 57
4.6.1 Motivation . 57
4.6.2 Attack Implementation 58
4.6.3 Experimental Evaluation 62

4.7 Summary . 67

5 Smart Detection Of Thermal Covert Channels 69
5.1 Motivational example . 70
5.2 Problem Definition . 71
5.3 Novel Contributions . 71
5.4 Dotecca: Smart Detection of Thermal Covert-channel Attacks 72

5.4.1 Training Data Generation 74
5.4.2 Model Topology Selection 74

5.5 Evaluation . 75
5.5.1 Evaluating the Effectiveness of Dotecca 76
5.5.2 Runtime Overhead 78

5.6 Summary . 79

vi

Contents

6 Lightweight Control Flow Attestation 81
6.1 Motivational Example . 82
6.2 Problem Definition . 84
6.3 Novel Contributions . 85
6.4 LightFAt: Lightweight Control-flow Attestation 86

6.4.1 Target System, Threat Model, and Assumptions . . . 86
6.4.2 Execution Behavior as Normality Indication 87
6.4.3 Attestation Flow . 89
6.4.4 Prover Implementation 90
6.4.5 ML-based Remote Verifier 91
6.4.6 Choosing the Regions of Attestation 93

6.5 Experimental Evaluation . 95
6.5.1 Experimental Setup and Data Collection 95
6.5.2 Effect of Region of Attestation (RoA) placement . . . 96
6.5.3 ML Models Training and Evaluation 96
6.5.4 Overhead . 99

6.6 Summary . 101

7 Mitigation of Cache Side Channels via Task Migration 103
7.1 Motivational example . 104
7.2 Problem Definition . 105
7.3 Novel Contributions . 105
7.4 Threat Model . 106
7.5 Migration Decision . 107
7.6 Dynamic Task Migration Heuristic 109
7.7 Experimental Evaluation . 111

7.7.1 Security analysis . 113
7.7.2 Application Overhead Analysis 116
7.7.3 Security and performance trade-off 120
7.7.4 Comparison against state-of-the-art solutions 121
7.7.5 System Run-time Overhead 121
7.7.6 Power and Energy Overhead 122

7.8 Summary . 123

8 System-informed Mitigation of Covert Channels 125
8.1 Motivational Example . 126
8.2 Problem Definition . 127
8.3 Novel Contributions . 128
8.4 Enabling System and Application Awareness 128

vii

Contents

8.5 Heuristic-Based Mitigation 129
8.6 Machine Learning-Based Mitigation 131

8.6.1 Training Data Generation and Preprocessing 133
8.6.2 Feature Selection and Model Training 134

8.7 Experimental Evaluation . 135
8.7.1 Evaluation Platform 135
8.7.2 Baseline and Naive Policies 136
8.7.3 Covert-channel Mitigation 139
8.7.4 Energy and Performance Penalty 140
8.7.5 Generalization to unseen workloads 144
8.7.6 Runtime Overhead Analysis 146
8.7.7 Machine learning vs. heuristics 147

8.8 Summary . 148

9 Conclusion . 149
9.1 Future Work . 150

Bibliography . 155

viii

List of Figures

1.1 Representation of side- and covert-channel attacks. 3
1.2 Representation of a thermal covert channel. 5
1.3 An overview of the contributions presented in this dissertation . 10

2.1 Representation of the ‘Flush+Reload’ [168] attack. 15
2.2 DFT spectrum of a normal application and a TCC attack. 18
2.3 Executed control-flow graph for the raytrace application 20

3.1 Representation of the base architecture used with the HotSniper
simulator. 26

3.2 Simplified diagram of the NVIDIA Jetson TX2 architecture. Mod-
ified from [162] [55]. 29

4.1 Overview of the shared threat model for the proposed covert-
channel attacks. 34

4.2 High-level block diagram of our new obfuscated short-duration
Thermal Covert Channel (TCC). 38

4.3 Obfuscated attack example over a 2-second window 38
4.4 Accuracy of DFT-based approaches against our new short-duration

attack. 40
4.5 Receiver model for the time-based attack. 43
4.6 Average BER and PER for the GPU TCC under different counter-

measures . 48
4.7 Performance loss on benchmark applications due to 𝛽-based

DVFS countermeasure from [78] on the PC platform (a) and the
Jetson TX2 board (b). 48

4.8 Overview of our new cross-device thermal covert channel on a
TEE-enhanced FPGA-MPSoC. 50

4.9 Overview of the software components of the system 51

ix

List of Figures

4.10 Representation of the channel performance when transmitting a
binary image. The image on the left was sent, the image on the
right was received. 56

4.11 Overview of the new software-controlled memory-usage-based
covert channel . 58

4.12 Overview of the transmitter module 59
4.13 Overview of the receiver module 61
4.14 Visual demonstration of the effectiveness of the software-driven

memory usage covert channel 64
4.15 Memory used signal while sending several packets 66

5.1 DFT spectrums from normal application and different attacks. . 70
5.2 Overview of Dotecca including the design-time training process,

as well as the run-time inference. 73
5.3 Different Neural Network (NN) architectures achieve different

prediction accuracy and inference times. 75
5.4 Prediction accuracy of both models under experiments 1-3. . . . 78
5.5 Prediction accuracy of both models under experiments 4-6. . . . 78

6.1 Overview of the control-flow attack paths on a vulnerable custom
application. 83

6.2 Normal runs and attack runs for the example application are
differentiable in the feature space. 84

6.3 LightFAt working procedure overview 89
6.4 Overview of the ML-based verifier in LightFAt 92
6.5 Example of bad trigger placement for a region of attestation. . . 94
6.6 Effect of RoA placement effect for the raytrace application . . . 97

7.1 Representation of task migration as a countermeasure for cache-
based SCA on a distributed memory architecture. 104

7.2 Effect of the different attacks on AES 113
7.3 Core assignment over time on forced isolation scenario. 116
7.4 Effect of one-time migration on AES performance at 𝑡 = 10𝑚𝑠 . . 117
7.5 Effect of one-time migration on applications from benchmark

suite, performed at 𝑡 = 50ms. 118
7.6 Average slowdown for benchmark applications under the secure

migration heuristic. 119
7.7 Migration heuristic run-time overhead vs. number of cores for

different system utilization percentages. 122

x

List of Figures

8.1 Effect of applying migration and DVFS on the energy and per-
formance (makespan) of the system. 126

8.2 Overview of the orchestration resource management application. 129
8.3 Overview of the ML-based countermeasure techniques. 132
8.4 Overview of the transmitter and receiver malicious applications 137
8.5 Effect of the DVFS countermeasure in the transmission 137
8.6 BER in the transmission due to the countermeasures 139
8.7 Normalized power in the system due to the different counter-

measures on both evaluation platforms. 142
8.8 Performance and energy penalty over the baseline implementa-

tion in the system due to the different countermeasure techniques
on the Jetson TX2 platform. 143

8.9 Performance and energy penalty over the baseline implementa-
tion in the system due to the different countermeasure techniques
on the Jetson Orin platform. 144

8.10 Energy-delay product (EDP) penalty in the system due to the
different countermeasures on both evaluation platforms. 144

xi

List of Tables

3.1 Characteristics of the PC evaluation platform 27
3.2 Key Features of the Server-range Computing Platform 28
3.3 Key Features of the Raspberry Pi 4 Model B Platform 29
3.4 Key Features of the FPGA-MPSoC Platform 31

4.1 Summary of the novel attacks proposed and their features . . . 35
4.2 Evaluation of our proposed short-duration attack 39
4.3 Description of the GPU-based attack settings on the effectiveness

experiment . 46
4.4 BER and PER for different packet sizes for the GPU-based attack

on the evaluation platforms . 47
4.5 Thermal covert channel evaluation metrics 56
4.6 Comparison of Through Fabric with other related works. 57
4.7 Covert channel evaluation results 63
4.8 Effect of background application noise in the memory-based

covert channel . 65
4.9 Metrics for VM-to-host covert channel communication 66

5.1 Different datasets are used to train and test our model 74

6.1 Mutual Information (MI) score for the average IPC and average
cache accesses on different applications 88

6.2 Prediction accuracy for the different applications under the eval-
uated unsupervised learning models using normal, attack, and
benchmark traces . 96

6.3 Performance of the different models 97
6.4 Monitoring overhead on the different applications due to the

attestation scheme. 99
6.5 Execution time for the different unsupervised learning models. . 100
6.6 Prover-side overhead compared to state of the art. 101

xiii

List of Tables

7.1 Cache hierarchy configuration. 112
7.2 Number of migrations and sleep time on full utilization scenario. 120
7.3 Power and energy with and without our proposed policy 123

8.1 Prediction accuracy of different ML algorithms on the validation
dataset . 133

8.2 Average results for the baseline and the different countermeasure
approaches under 50 different workloads on the Jetson TX2 platform141

8.3 Average results for the baseline and the different countermea-
sure approaches under 50 different workloads on the Jetson Orin
Platform . 141

8.4 Results for the different techniques under unseen workloads . . 145
8.5 Average results for the baseline, state-of-the-art, and system-

informed countermeasures under 25 unseen workloads on the
Jetson Orin platform. 146

8.6 Overhead of the different system-informed techniques on the
both evaluation platforms. 147

xiv

List of Publications

The following list enummerates the papers and book chapters published
by the author of this dissertation during the course of his doctoral studies.
Publications [1–7] makemajor contributions to this dissertation, while [8–
12] bring minor contributions.

[1] Jeferson Gonzalez-Gomez, Mohammed Bakr Sikal, Heba Khdr, Lars
Bauer, and Jörg Henkel. “Smart Detection of Obfuscated Thermal
Covert Channel Attacks in Many-core Processors”. In: 2023 60th
ACM/IEEE Design Automation Conference (DAC). 2023, pp. 1–6. doi:
10.1109/DAC56929.2023.10247844.

[2] Jeferson Gonzalez-Gomez, Kevin Cordero-Zuñiga, Lars Bauer, and
Jörg Henkel. “The First Concept and Real-world Deployment of a
GPU-based Thermal Covert Channel: Attack and Countermeasures”.
In: 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2023, pp. 1–6. doi: 10.23919/DATE56975.2023.10137090.

[3] Jeferson Gonzalez-Gomez, Hassan Nassar, Varun Manjunath, Lars
Bauer, and Jörg Henkel. “Through Fabric: A Cross-world Thermal
Covert Channel on TEE-enhanced FPGA-MPSoC Systems”. In: Asia
and South Pacific Design Automation Conference (ASP-DAC). accepted
to appear. 2025.

[4] Jeferson Gonzalez-Gomez, Jose Alejandro Ibarra-Campos, Jesus Yamir
Sandoval-Morales, Lars Bauer, and Jörg Henkel. MeMoir: A Software-
Driven Covert Channel based on Memory Usage. 2024. arXiv: 2409.
13310 [cs.CR]. url: https://arxiv.org/abs/2409.13310.

[5] Jeferson Gonzalez-Gomez, Hassan Nassar, Lars Bauer, and
Jörg Henkel. “LightFAt: Mitigating Control-Flow Explosion via
Lightweight PMU-Based Control-Flow Attestation”. In: 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). 2024, pp. 222–226. doi: 10.1109/HOST55342.2024.10545348.

xv

https://doi.org/10.1109/DAC56929.2023.10247844
https://doi.org/10.23919/DATE56975.2023.10137090
https://arxiv.org/abs/2409.13310
https://arxiv.org/abs/2409.13310
https://arxiv.org/abs/2409.13310
https://doi.org/10.1109/HOST55342.2024.10545348

List of Publications

[6] Jeferson Gonzalez-Gomez, Lars Bauer, and Jörg Henkel. “Cache-Based
Side-Channel Attack Mitigation for Many-Core Distributed Systems
via Dynamic Task Migration”. In: IEEE Transactions on Information
Forensics and Security 18 (2023), pp. 2440–2450. doi: 10.1109/TIFS.
2023.3266630.

[7] Jeferson González-Gómez, Mohammed Bakr Sikal, Heba Khdr, Lars
Bauer, and Jörg Henkel. “Balancing Security and Efficiency: System-
InformedMitigation of Power-Based Covert Channels”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
43.11 (2024), pp. 3395–3406. doi: 10.1109/TCAD.2024.3438999.

[8] Lars Bauer, Jörg Henkel, Timo Hönig, Wolfgang Schröder-Preikschat,
Christian Eichler, Jeferson Gonzalez, Benedict Herzog, Tobias Langer,
Sebastian Maier, Jonas Rabenstein, et al. “Invasive Run-Time Support
System (iRTSS)”. In: Invasive Computing. Ed. by Jürgen Teich, Jörg
Henkel, and Andreas Herkersdorf. Cham: Springer International Pub-
lishing, 2022, pp. 285–305. isbn: 978-3-96147-571-1. doi: 10.25593/
978-3-96147-571-1.

[9] Antonio González-Torres, Mónica Hernández, Jeferson González, Ve-
tria L. Byrd, and Paul Parsons. “Information Visualization as a Method
for Cybersecurity Education”. In: Innovations in Cybersecurity Educa-
tion. Ed. by Kevin Daimi and Guillermo Francia III. Cham: Springer
International Publishing, 2020, pp. 55–70. isbn: 978-3-030-50244-7.
doi: 10.1007/978-3-030-50244-7_4.

[10] Jeferson González-Gómez, Steven Ávila, Jonathan Rojas, Andres
Stephen, Jorge Castro-Godínez, Carlos Salazar-García, Muhammad
Shafique, and Jörg Henkel. “TailoredCore: Generating Application-
Specific RISC-V-based Cores”. In: 2021 IEEE 12th Latin America Sym-
posium on Circuits and System (LASCAS). 2021, pp. 1–4. doi: 10.1109/
LASCAS51355.2021.9459152.

[11] Carlos Salazar-García, Jeferson González-Gómez, Kaleb Alfaro-
Badilla, Ronny García-Ramírez, Renato Rímolo-Donadío, Christos
Strydis, and Alfonso Chacón-Rodríguez. “PlasticNet: A low latency
flexible network architecture for interconnected multi-FPGA sys-
tems”. In: 2020 IEEE 3rd Conference on PhD Research in Microelectron-
ics and Electronics in Latin America (PRIME-LA). 2020, pp. 1–4. doi:
10.1109/PRIME-LA47693.2020.9062749.

xvi

https://doi.org/10.1109/TIFS.2023.3266630
https://doi.org/10.1109/TIFS.2023.3266630
https://doi.org/10.1109/TCAD.2024.3438999
https://doi.org/10.25593/978-3-96147-571-1
https://doi.org/10.25593/978-3-96147-571-1
https://doi.org/10.1007/978-3-030-50244-7_4
https://doi.org/10.1109/LASCAS51355.2021.9459152
https://doi.org/10.1109/LASCAS51355.2021.9459152
https://doi.org/10.1109/PRIME-LA47693.2020.9062749

List of Publications

[12] Carlos Salazar-García, Alfonso Chacón-Rodríguez, Renato Rímolo-
Donadío, Ronny García-Ramírez, David Solórzano-Pacheco, Jeferson
González-Gómez, and Christos Strydis. “A custom interconnection
multi-FPGA framework for distributed processing applications”. In:
2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits
and Systems Design (SBCCI). 2022, pp. 1–6. doi: 10.1109/SBCCI55532.
2022.9893238.

xvii

https://doi.org/10.1109/SBCCI55532.2022.9893238
https://doi.org/10.1109/SBCCI55532.2022.9893238

Research at the Chair for Embedded
Systems

At the Chair for Embedded Systems (CES), the current research addresses fun-
damental challenges in modern computing systems, focusing on non-volatile
memory (NVM), resource management for multicore and embedded architec-
tures, cross-layer security, and reconfigurable computing. The research done
at CES on these areas aims to improve system performance, energy efficiency,
transistor aging, adaptability, and security [14, 70].

Reconfigurable Systems

Reconfigurable computing at CES focuses on creating self-organizing adaptive
systems capable of dynamic resource management. By leveraging hardware-
software co-design principles, CES develops architectures that adjust re-
sources in real time based on application needs [23, 145]. These systems
enable performance optimization, energy savings, and scalability [50, 52],
especially in fields such as approximate computing, where precision can be
compromised in exchange for higher efficiency [24, 72]. This adaptability
also contributes to improving the longevity and robustness of the hardware
in heterogeneous systems.

Resource Management for Multicore and Embedded
Systems

Resource management is key to enhancing the energy efficiency, performance,
and reliability of multicore systems. CES researchers develop dynamic re-
source allocation to balance workloads and manage energy consumption
across heterogeneous cores, addressing power and thermal management [47,

xix

Research at the Chair for Embedded Systems

68], mitigating hardware aging, and optimizing power distribution [69, 98].
CES research proposes techniques to reduce heat-induced degradation and
transistor wear [75, 92], ensuring sustained performance under variable
workloads. They also focus on machine learning for low-resource environ-
ments such as embedded systems and IoT devices, designing lightweight
ML models using model compression, approximate computing, and energy-
efficient inference [48, 133]. These methods enable advanced ML algorithms
on modest hardware.

Non-Volatile Memory (NVM)

NVM research at CES is centered on the development of memory technologies
that retain data without power for emergin applications. CES explores novel
NVM technologies that offer higher density and capacity [71] with low la-
tency and endurance, positioning them as ideal candidates for future memory
hierarchies. In the domain of machine-learning applications, CES has conce-
trating on leveraging the different retention times of the NVM technologies
to improve the performance of complex workloads such as Convulational
Neural Networks (CNNs) [147].

Cross-Layer Security

Cross-layer security is a key focus for CES, addressing vulnerabilities across
the hardware-software stack. Researchers at CES develop techniques to
protect against threats from physical tampering to software attacks. This
includes using cryptographic methods for embedded systems, mitigating
side-channel attacks [117], providing attack-resilient hardware primitives
[116], and implementing attack detection mechanisms [115]. By applying
security techniques across layers, CES aims to enhance system robustness
and reliability in complex computing environments.

This dissertation tackles challenges in cross-layer security, focusing on new
attack vectors and resource-efficient countermeasures. It also integrates
relevant aspects from other CES research areas such as resource management
and machine learning.

xx

1 Introduction

In today’s rapidly evolving digital landscape, robust security and data privacy
are more critical than ever. As technology advances and reliance on digital
systems grows, so do the risks posed by sophisticated cyber threats. These
threats continually adapt, exploiting emerging vulnerabilities and challenging
existing security measures. This highlights the urgent need for advanced
defenses to safeguard sensitive information and maintain system integrity.

A key concern is the exploitation of side channels, where attackers leverage
subtle information leaks from a system’s physical implementation. Cache-
based Side-channel Attack (SCA), for example, exploit timing variations in
cache memory access to extract confidential information, such as secret keys
during cryptographic operations [105]. As modern many-core systems, in-
cluding those in autonomous vehicles [163], high-end computers, GPUs, and
AI accelerators [73], become more prevalent, effective resource management
techniques are crucial. Such techniques aim to optimize system e.g., from
a performance or energy efficiency perspective. Moreover, in the security
domain, such techniques can be leveraged to help mitigate resource-based
attacks, enhancing security without requiring significant hardware or archi-
tectural changes.

In addition to side channels, covert channels represent another pressing
security concern. These channels exploit covert means of communication
between malicious applications, often leveraging system power consumption
to transmit information surreptitiously. For example, power-based covert
channels, or thermal covert channels, modulate power usage to create tem-
perature variations that encode and transmit data. This technique involves
intensive computations on processing elements such as CPUs [109], GPUs
[2], or FPGA-based components [58], which can be exploited to covertly
communicate between malicious applications. As the sophistication of such
threats increases, addressing both side-channel and covert channel vulnera-
bilities in a cross-layer fashion (i.e., considering both software and hardware

1

1 Introduction

mechanisms) becomes essential for maintaining robust security in modern
computing systems.

This dissertation focuses on advancing the field of security by addressing
emerging threats in modern computing systems through the different com-
puting layers. First, it explores new attack vectors that either leverage new
hardware resources (e.g., GPU, memory, and accelerators) or employ sophis-
ticated software-based techniques to evade detection such as obfuscation and
complex modulation. Secondly, this dissertation studies advanced detection
mechanisms designed to identify and mitigate these threats effectively by
employing ML-based approaches. Finally, this dissertation studies efficient
system-level countermeasures tailored to address the detected attack methods
in a diverse range of computing environments. By bridging the gap between
evolving threats and contemporary defense strategies, this work contributes
to enhancing the resilience and security of modern computational systems.

1.1 Side and Covert Channels in Computing
Systems

Side channels and covert channels represent significant security concerns
in modern computing systems, as both exploit unintended information leak-
age to compromise data confidentiality. A simple generalized example of a
side channel and a covert channel attack is depicted in Fig. 1.1. While side
channels (Fig. 1.1a) extract sensitive information through observable physical
phenomena such as timing or power consumption, covert channels (Fig. 1.1b)
establish communication through an stealthy and unintended medium. The
increasing sophistication of these attacks underscores the need for advanced
detection and mitigation strategies, making them critical areas of focus in
ensuring the security of contemporary computing environments.

Although these emerging attacks come in a diverse spectrum of implementa-
tions, the following subsections describe the specific types of attacks which
are addressed in this dissertation.

Side-channel Attacks (SCAs) A SCA is a type of attack that takes advantage
of implementation-specific characteristics of a system or an application. In
such an attack, an adversary tries to exploit physical information leakages,

2

1.1 Side and Covert Channels in Computing Systems

Encryption
Operation

CPU

private data encrypted
data

Alice Bob

Mallory

power, temperature, vibrations...

recovered
key

(a) Side-channel attack.

Decryption
Operation

CPU

encrypted
data

Alice

BobMallory

Alice's private
information

CPU

Transmitter
(malware)

Receiver
(spy)

Alice's private
information

po
w

er
, t

em
pe

ra
tu

re
 ..

.

(b) Covert-channel attack.

Figure 1.1: Representation of side- and covert-channel attacks. In (a) Mallory (attacker) extract’s
Alice private key by analyzing a system leakage e.g., power, temperature, vibrations, etc. In (b)
Mallory (attacker) communicates Alice’s private information (e.g., a private key) to Bob (also
attacker) using an unintended and hidden medium e.g., system power or temperature.

such as temperature [45], power consumption [114], or timing behavior [80],
to obtain secret information from the victim. SCAs are often passive (require
mostly observation) and non-invasive (exploit available information). Due to
this nature, SCAs are hard to detect and they usually do not require special ex-

3

1 Introduction

ecution privileges, thus making it difficult to eliminate them without affecting
performance [67]. All these factors combined make SCAs a dangerous threat
to the security of most current cryptographic hardware systems [150].

Cache-based SCAs are a particular type of attack that exploit the intrinsic
timing nature of cache memories to extract security-critical information
from variations of access time patterns on the target application through
different techniques. In the context of cryptographic security applications
(from now on secure applications), cache-based SCAs seek to obtain secret keys
by analyzing the fine-grained timing behavior of either the secure application
or the adversary itself, using their cache access times and misses patterns
when performing encryption or decryption operations [105].

Covert Channel Attacks A covert channel attack is a means of commu-
nication between two applications or processes that are not permitted to
communicate within a specific system [112]. Recently, covert channel com-
munication has emerged as a significant security threat in modern computing
systems [111]. These channels exploit hidden vulnerabilities in hardware and
software, creating a secret medium for information transfer that is difficult for
regular users to detect [141]. While covert channels can be used for legitimate
purposes, such as safeguarding confidential data, they are often exploited
by attackers to ex-filtrate spied information on systems or spread malicious
software [138].

Among the various types of covert channels, power-based covert channels,
such as thermal covert channels (TCCs), have gained attention for their
stealthiness and potential for significant harm. TCCs utilize temperature
variations in a system’s components to establish hidden communication be-
tween malicious applications. This type of attack has been studied across
various domains, including multi/many-core systems [77, 103, 109], cloud
FPGA environments [58], and embedded systems [35]. In a typical TCC
attack, represented in Fig. 1.2, a compromised application (transmitter) in
an isolated environment encodes sensitive data as temperature fluctuations
through intensive CPU usage, which are then detected by a second appli-
cation, or receiver, located in a nonsecure zone (normal environment). By
interpreting these temperature variations, the receiver can decode the trans-
mitted information, thus establishing a covert communication channel [77,
78].

4

1.1 Side and Covert Channels in Computing Systems

Normal environmentIsolated environment

C0 C1

C2 C3

C4 C5

C6 C7

transmitter receiver

1 0 1

te
m

pe
ra

tu
re

time

Figure 1.2: Representation of a thermal covert channel.

Challenges in attack implementations

Several challenges arise from the attacker’s perspective when targeting new
and emerging computing systems. Since detection and countermeasure tech-
niques must mitigate the new threat, it is relevant to highlight potential
improvements in attack mechanisms.

Challenge: Exploiting new resources With the increase of more power-
ful and specialized computing hardware, such as hardware accelerators for
ML workloads [136], a malicious actor might take advantage of these new
resources to extract private information or steal intellectual property infor-
mation, for example, model features [167]. From the attacker perspective, the
attack vectors must in turn become more complex to match the specialization
of the new resources which might shielded by isolation or virtualization
technologies [134]. The risk associated with the increase of this complexity
is the increased probability of being detected due to the effects produced by
the attacker in the system.

5

1 Introduction

Challenge: Avoid detection Since these new and powerful resources perform
potentially critical operations for the user, attack detection mechanisms must
improve their capabilities to match those of the attacker. From the attacker
perspective, this represents a call to further increase its stealthiness through
techniques such as obfuscation [28] or unpredictable attack patterns, for
example, those in time-of-check to time-to-use attacks [76, 93]. This increase
in stealthiness often results in a decrease in the attack performance in terms
of speed, e.g. lower transmission rates in covert channels or longer attack
periods for side-channel attacks.

1.2 Challenges in Attack Detection

In the context of detecting and mitigating modern security threats, several
critical challenges must be addressed to ensure effective protection, especially
as attackers continually evolve their methods.

Challenge: Attack knowledge One primary challenge is the need for prior
knowledge of potential attacks during the design phase of a detection tech-
nique. Effective detection mechanisms often rely on distinguishing between
normal and abnormal behavior [77, 159], which requires an understanding of
attack patterns. However, at the design stage, it is unlikely that all possible
threats are known, making it difficult to prepare for the full range of potential
attacks. This limitation complicates the development of accurate and compre-
hensive security measures, particularly when attackers might introduce novel
methods such as obfuscation or the use of previously untapped resources
that the system is not initially designed to detect.

Challenge: Application monitoring Another significant challenge arises in
monitoring the dynamic behavior of applications. Continuous monitoring
throughout an application’s execution could obscure an attack if it blends in
with normal operations over an extended period. In contrast, if monitoring
skips certain parts of the execution, attacks occurring in these unmeasured
segments might go undetected e.g., in time-of-check to time-of-use attacks
[93]. Determining the most relevant parts of the application to monitor
becomes a complex task, especially when relying on dynamic behavior as the

6

1.3 Challenges in Countermeasures

basis for threat detection. Moreover, attackers may exploit these monitoring
gaps, making it even more critical to refine detection strategies.

Challenge: System performance vs security Finally, there is a persistent
challenge in balancing security and performance. While monitoring an appli-
cation’s behavior may impose less of a performance burden than traditional
methods such as code instrumentation or control-flow disruption [13], it can
also reduce the accuracy of the security measures. Unlike more deterministic
approaches (e.g., those employing specialized hardware [13, 43, 169]), where
it is straightforward to identify the presence of a threat, the variability in an
application’s behavior on existing real systems can make it difficult to defini-
tively classify actions as either safe or malicious. The key challenge, therefore,
is to develop a security solution that offers high accuracy while minimiz-
ing performance overhead, enabling the protection of complex applications
without compromising their efficiency.

These challenges emphasize the need for innovative approaches capable
of adapting to the ever-changing landscape of security threats in modern
computing environments. As attackers continually refine their techniques,
detection mechanisms must evolve simultaneously to maintain robust and
reliable defense systems.

1.3 Challenges in Countermeasures

When addressing countermeasures for modern security threats, including
both side-channel attacks and covert channels, several key challenges must
be tackled to ensure effective protection considering the underlying platform
architecture and the impact that techniques might have on it in terms of
performance and energy efficiency.

Challenges in mitigating cache-based side-channel attacks

Mitigating cache-based side channels involves addressing two primary chal-
lenges: the trade-off between hardware and software solutions and managing
the associated overhead. Effective countermeasure strategies must navigate

7

1 Introduction

this trade-off to ensure both robust security and efficient system perfor-
mance.

Challenge: Hardware specialization Balancing the need to overcome secu-
rity threats while managing system overhead presents a fundamental chal-
lenge in countermeasure design. Specialized hardware approaches (e.g., cache
randomization [94] or adaptive architectures [21]), can effectively reduce vul-
nerabilities and enhance resilience against attacks. However, these solutions
typically involve substantial modifications to existing system architectures,
which can be costly and complex, making them difficult to implement in
many real-world systems.

Challenge: Software-based overhead In contrast to hardware approaches,
software-based countermeasures (e.g., compiler modifications [39] or oper-
ating system adjustments [108]) offer the advantage of being applicable to
current systems with minimal hardware changes. Yet, these solutions often
come with significant performance overhead, due to factors such as execution
flow alterations or frequent cache flushing.

Consequently, the solution to these challenges lies in finding a balance be-
tween the robust protection offered by hardware modifications and the more
flexible, but potentially more overhead-prone, software-based solutions. Ef-
fective countermeasure strategies must navigate this trade-off to ensure both
robust security and efficient system performance.

Challenges in mitigating power-based covert channels.

Mitigating covert channels, especially those leveraging power consumption
and thermal variations, presents significant challenges. These challenges
primarily revolve around balancing the mitigation efforts with the associated
overheads and addressing the adaptability of attackers. Effective countermea-
sures must be carefully designed to ensure they do not introduce unacceptable
performance or energy overheads, while also being robust enough to prevent
attackers from circumventing them.

8

1.4 Dissertation Contributions

Balancing mitigation and overhead Techniques such as Dynamic Voltage
and Frequency Scaling (DVFS) and noise generation are effective in disrupting
covert communication channels by affecting power consumption and thermal
variations. However, these methods often introduce performance or energy
overheads, which is particularly critical for energy-constrained systems. For
instance, DVFS can lead to significant performance degradation, as it has
been proven to induce performance losses of up to 25% [77] for benchmark
applications. Additionally, the impact on overall system energy consumption
must be carefully considered to ensure the viability of these techniques in
practical applications.

Attack adaptability Attackers can potentially learn to overcome mitigation
strategies by adapting to the noise levels or changing transmission frequencies.
To counter this, more complex solutions, such as employing machine learning,
may be required. However, these advanced strategies can also incur high
overheads. Therefore, it is essential to analyze and develop efficient mitigation
strategies that balance complexity and overhead, ensuring that the solutions
remain effective without imposing excessive burdens on the system.

Overall, the development of effective countermeasures for both side-channel
and covert channel attacks requires balancing security, performance, and
practical implementation considerations. Addressing these challenges in-
volves refining existing techniques and exploring innovative solutions that
can adapt to evolving threat landscapes and diverse system architectures.

1.4 Dissertation Contributions

The contributions of this dissertation are categorized into three main topics:
new attacks, detection techniques, and efficient countermeasures. A high-
level overview of the contributions is depicted in Fig. 1.3, where the different
techniques are represented in a cross-layer manner in the hardware-software
stack. These contributions aim to increase the overall system security by
addressing the challenges described above. In more detailed perspective, the
key contributions are the following.

• Four implementations of new covert channels have been proposed,
which were previously undisclosed by the state-of-the-art. These

9

1 Introduction

include an obfuscated Thermal Covert Channel (TCC), a GPU-based
TCC, a MPSoC FPGA TCC, and a software-driven covert channel
based on memory usage. The new attacks are shown to communicate
information effectively between malicious applications. These new
threats show how isolation-based security mechanisms, such as those
found in TEEs or Virtual Machines (VMs), can be bypassed by attackers,
highlighting the need for improved detection and countermeasure
techniques.

• An ML-based detection technique for TCCs has been developed,
considering traditional attacks, as well as the new obfuscated covert
channel. This approach uses CPU time-series performance information

CountermeasuresDetection Techniques

Attacks

Smart Detection of
Thermal Covert

Channels
(Dotecca)

Lightweight Control-
Flow Attestation

(LightFAt)

Mitigation of Cache
Side-Channels via

Dynamic Task
Migration

Sistem-informed
Mitigation of
Power-based

Covert Channels

Malicious
applications

Secure
applications

H
ar

dw
ar

e-
le

ve
l

A
pp

lic
at

io
n-

le
ve

l
Sy

st
em

-le
ve

l

Obfuscated Thermal
Covert Channel

GPU-based
Thermal Covert

Channel

FPGA-MPSoC
Thermal Covert Channel

(Through Fabric)

Memory-based
Covert Channel

(MeMoir)

DVFS Task MigrationPerformance Counters

CPU GPU
FPGA

MPSoC
Memory Sensors

Other
applications

temperature / usage

Figure 1.3: An overview of the contributions (colored in green) presented in this dissertation.

10

1.4 Dissertation Contributions

to predict whether the execution behavior can be classified as an
attack or a normal trace. A lightweight Neural Network (NN) model is
developed and trained following a supervised learning approach, where
samples for normal executions (benchmark applications), traditional
and new attacks are used. This technique enables the detection of
threats with high accuracy, while inducing minimal overhead in the
system.

• An unsupervised learning-based technique for detecting anomalies in
application execution has been developed. This technique is applied
within the context of RA, where the prover device collects its execution
traces from the CPU’s Performance Monitoring Unit (PMU). These
traces are then sent to the verifier entity as part of the attestation
process. The verifier uses one of three different ML models to classify
the execution trace as either normal or malicious. By leveraging an
unsupervised learning approach, this detection technique models
normal behavior without requiring real attacker traces during training.
Consequently, this approach provides a more formal and generalized
method for detecting new security threats.

• A lightweight heuristic-based task migration technique has been devel-
oped to mitigate cache side-channel attacks. The approach leverages
task migration to prevent cluster co-residency between the potential
attacker and the victim application. This countermeasure relies on
a migration function to trigger the migration process. The function
considers both the performance degradation of the security-critical
task due to the attacker and the shared execution time of the applica-
tion with others on the same cluster. This technique provides a secure
execution scenario for a security-critical application by migrating the
application between CPU clusters while minimizing system overhead.

• A methodology has been developed to mitigate power-based covert
channel attacks using heuristics and ML-based techniques in a system-
informed manner. This approach relies on task migration and DVFS
as the acting mechanisms. The countermeasure leverages system
information, such as CPU and memory performance, to predict the
energy efficiency of various migration scenarios during a potential
attack. The most energy-efficient scenario is then enforced through
task migration, while DVFS is applied to the cluster where the potential

11

1 Introduction

attacker resides to disrupt the CPU power response and interfere with
transmission.

1.5 Dissertation Outline

The following chapter discusses related work on covert and side-channel at-
tacks, as well as countermeasures and threat detection techniques. Chapter 3
introduces the various frameworks used to evaluate the techniques presented
in this dissertation, including both simulation setups and a range of real
computing platforms. Chapters 4 to 8 preset the techniques developed in this
dissertation. Chapter 4 begins by presenting four novel covert channel attacks
on different computing systems. The improved attack detection techniques
are next presented in Chapters 5 and 6. Chapter 5 describes a ML-based attack
detection approach for TCCs, while Chapter 6 presents a generalized execu-
tion anomaly detection technique framed in the context of RA. The proposed
countermeasures to the attacks are presented in Chapters 7 and 8. Chapter 7
describes an heuristic-based task migration approach to mitigate cache-based
side channels by avoiding cluster-level cache co-residency between attacker
and victim. In Chapter 8, a methodology is proposed using heuristics and
ML techniques to efficiently combat power-based covert channels using the
combination of task migration and DVFS. Finally, Chapter 9 concludes this
dissertation and discusses future research directions emerging from it.

12

2 Related Work

In this chapter, the background and related work for side-channel and covert-
channel attacks is presented, including security advances such as trusted
execution environments, detection mechanisms and state-of-the-art counter-
measures.

2.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a secure and tamper-resistant
processing environment, which guarantees the authenticity and integrity of
the system’s dynamic state as well as code and data confidentiality [137].

ARM TrustZone [18] provides hardware support for several TEEs on ARM-
based systems. It ensures an isolated execution context for security-critical
applications by virtually separating the hardware and software resources into
two spaces: the secure world or TEE and the normal world or Rich Execution
Environment (REE) [99, 113], e.g., Linux. This hardware-supported virtual
separation allows computing and memory-shared resources to be private to
each environment, providing the isolation mechanism needed for the TEE.

On the software side, OP-TEE is a TrustZone implementation for Cortex-
A processors. OP-TEE aims at providing isolation from the normal world
applications i.e., Client Applications (CAs) and operating system, as well as
protecting the secure world applications i.e., Trusted Applications (TAs), from
each other [154].

Although the isolation principle of TEEs serves as a good security mechanism
for integrity and confidentially against a wide variety of attacks, it does not
consider covert and side channels in its design [104], which makes it a valid
target for such threats. In the context of Trusted Computing, where TEEs
belong, side and covert channels exploit vulnerable or leaky TAs to steal and

13

2 Related Work

extract private data from the secure isolated world, breaking the fundamental
isolation principle of such technologies.

2.2 Side- and Covert-channel Attacks

In modern computing systems, both side and covert-channel attacks have
emerged as significant threats, capable of compromising data security by
exploiting unintended information leaks. These attacks pose a challenge to
traditional security mechanisms, as they often bypass conventional protec-
tions and exploit subtle vulnerabilities in system architecture. This section
provides a detailed description of these attacks, focusing on cache-based
side-channel attacks (SCAs) and power-based covert channels, including their
specific implementations in various hardware and software environments.

Cache-based Side-channel Attacks

Cache-based SCAs are a particular type of attack that exploit the intrinsic
timing characteristics of cache memories to extract security-critical infor-
mation from variations in access time patterns. These attacks are especially
concerning in the context of cryptographic applications, where they aim to
obtain secret keys by analyzing the timing behavior associated with cache
accesses and misses during encryption or decryption processes [105].

This subsection delves into the fundamentals of cache-based SCAs, exploring
the different types of attacks and the highlighting characteristic features
employed in detection and mitigation.

Cache-based SCAs can be broadly categorized into time- or access-driven
attacks, based on the source of the timing information, whether extracted
from the victim or the attacker.

Time-driven Attacks In time-driven attacks, the adversary triggers a crypto-
graphic operation and measures the victim’s execution time. The motivation
of the attack is that the value of the secret key influences the execution time
of encryption or decryption processes [105]. By manipulating the content

14

2.2 Side- and Covert-channel Attacks

flush
instruction

Shared Cache

Attacker flush
stage

Victim access
stage

Shared Cache

Attacker reload
stage

Shared Cache

victim
accesses

cache line

attacker
measures own

reload time

a a av v v

hit

miss

Figure 2.1: Representation of the ‘Flush+Reload’ [168] attack.

of a shared cache and observing the execution time, the adversary can ex-
tract partial or complete keys. A notable example of this type of attack is
‘Evict+Time’ [124].

Access-driven Attacks Access-driven attacks involve the adversary monitor-
ing their own execution time to determine whether a particular cache line has
been evicted by the victim [119]. The attacker continuously loads a table that
fills the shared cache, and by measuring the time to reload parts of this table
(see Fig. 2.1), they can infer which cache lines were evicted by the victim (i.e.,
where a miss happened). This timing information can then be used to deduce
the secret key, as demonstrated in attacks such as ‘Prime+Probe’ [124] and
‘Flush+Reload’ [168].

Impact on Time and Performance in Cache SCAs Modern adversaries can
often extract private keys from secure applications within seconds to min-
utes [37, 86, 87]. Previous works have shown that during a cache-based
side-channel attack, the shared cache miss rate of a victim (referred from now
on as secure) application increases due to effect of the attacker in the shared
cache, leading to a decrease in performance proportional to the attack’s in-
tensity [29, 37, 157].These performance degradation indicators are crucial for
detecting and mitigating such attacks.

15

2 Related Work

Covert Channels

Covert channels represent another significant security concern, as they enable
hidden communication between processes that are not supposed to exchange
information. These channels exploit vulnerabilities in system resources,
creating clandestine pathways that are challenging to detect and mitigate.
This subsection explores power-based covert channels, including thermal
covert channels, with a focus on their implementation in general computing
systems and FPGA-based environments.

Power-based Covert Channels in General Computing Systems

In power-based covert channels, malicious applications manipulate the power
consumption of a device to communicate information in a stealthy manner.
Although some approaches use power directly for communication, such as
memory [125], CPUs [65], or cross-device communication [62], the most
prevalent power-based covert channels, from a countermeasure perspective,
are Thermal Covert Channels (TCCs). These attacks leverage temperature
variations caused by power changes to facilitate covert communication. As
depicted in Fig. 1.2, in such channels the malicious transmitter application
communicates information from an isolated environment (e.g., a TEE) via
temperature variations due to controlled processing activity (e.g., by dynami-
cally adjusting the CPU load), which are detected by the receiver application
in the regular environment by measuring its own thermal sensor.

Since the early implementations of TCCs on multi-core systems [109], ad-
vances in modulation and encoding mechanisms such as Manchester [22] and
Return to Zero (RZE)[103] have dramatically increased transmission rates,
reaching up to 45 bps with reduced error rates of less than 5% [111].

With the advance in emerging computing systems and technologies, TCCs
have extended to new resources such as 3-D multi-core systems [46], and
SSDs [153]. This is an indication of the ever-increasing capabilities of threats
and their ability to adapt to the new environments.

16

2.3 Attack Detection Mechanisms

Covert Channels in Field Programmable Gate Array (FPGA) Systems

Covert channels have been extensively demonstrated in FPGA-based systems,
with many attacks exploiting the power distribution network in multi-tenant
FPGAs and FPGA-SoCs. These attacks typically target the device’s voltage [57,
60, 63] and frequency [27, 53] to modulate power, achieving high transmis-
sion speeds and low error rates. However, these approaches often rely on
malicious custom hardware modules on the transmitter side, which can be
easily detected or restricted by vendors, or even disabled during runtime [115].
Additionally, the receiver modules in these approaches require extra FPGA
logic, such as time-to-digital converters (TDCs), to measure power changes
in the system.

While most FPGA-based covert channels modulate power, other less common
covert channel approaches in FPGAs use non-conventional methods to mod-
ulate various resources, such as PCIe usage in cloud systems [59] or internal
wiring in multi-tenant FPGA systems [56].

Software-based Covert Channels

Software-based covert channels rely on virtual resources to facilitate com-
munication between malicious applications, making detection particularly
challenging [146]. These channels often exploit OS-level synchronization
mechanisms [146, 172], page caches [64], or TCP sockets for inter-process
communication [49], among others.

Several studies have addressed memory-based covert channels. In [36], the
authors estimate the current temperature of a DRAM module using cell
decay rates, implementing a thermal covert channel with reliability up to
95%. Saileshwar et al. [139] exploits memory contention in shared resource
systems, coordinating memory operation timings between transmitter and
receiver applications to achieve a transfer speed of 1801kB/s.

2.3 Attack Detection Mechanisms

As threats from side-channel attacks and covert channels evolve, detection
mechanisms have become a critical component in maintaining the security

17

2 Related Work

and integrity of computing systems. This section explores two primary
types of detection techniques: power-based covert channel detection and
generalized software anomaly detection, particularly within the context of Re-
mote Attestation (RA). Each technique addresses different aspects of security,
offering complementary strategies to safeguard systems from increasingly
sophisticated attacks.

2.3.1 Detection of Power-Based Covert Channels

Power-based covert channels, such as TCCs, pose a significant threat to multi-
core systems. The improvements in the attack capabilities described above
have imposed challenges on the detection and countermeasure front.

Threshold-based Detection

Early detection methods employed techniques such as Discrete Fourier Trans-
form (DFT) analysis on CPU performancemetrics e.g., Instructions per Second
(IPS) [78]. These methods used simple threshold-based rules to classify be-
havior as either normal or malicious based on the prominent component
magnitudes in Discrete Fourier Transform (DFT) spectrum, as depicted in
Fig. 2.2. While effective for basic attacks, these techniques fail against more
sophisticated, stealthier attacks [159].

(a) Normal application (parsec-bodytrack).

attack

(b) TCC attack.

Figure 2.2: DFT spectrum of a normal application and a TCC attack. Following the approach
from [78], a threshold (𝜌 = 300) is used to different the attack from the normal spectrum.

18

2.3 Attack Detection Mechanisms

Some recent and improved attacker features, such as dynamic frequency
shifts [158] and shorter data encoding times [159] have highlighted the de-
ficiencies of heuristic-based detection and motivated the need for complex
detection approaches.

Machine Learning-based Detection

To overcome the limitations of threshold-based methods, machine learning
approaches have emerged. In particular, neural networks have been applied
to detect covert channel activity by analyzing the shape of the DFT spectrum
of core performance metrics [159]. This technique provides higher accuracy
in identifying compromised cores without relying on static thresholds.

However, as demonstrated in Chapter 5, even state-of-the-artmachine learning-
based detection methods struggle to detect new or evolving attack vectors,
highlighting the need for more robust and adaptive detection strategies.

2.3.2 Remote Attestation as Run-Time Integrity Verification

As systems becomemore interconnected and complex, ensuring their integrity
during runtime is crucial. Remote attestation (RA) serves as a generalized
mechanism (that is, it does not target specific attack types) to verify the
trustworthiness of a system or application by allowing a remote verifier to
assess the state of a tester system. This process is particularly important in
scenarios where the system’s integrity must be assured continuously, such
as in critical infrastructure or high-security environments. This subsection
delves into the mechanisms of RA, highlighting both traditional approaches
and emerging techniques.

Static and Control-Flow Attestation

Static attestation, the earliest form of RA, involves the prover calculating
a cryptographic hash over its code memory or a specified memory range.
This method, while effective, is vulnerable to attacks that exploit the time
between verification checks, leading to potential Time-of-Check to Time-
of-Use (ToCToU) vulnerabilities [93]. To mitigate this, hardware-assisted

19

2 Related Work

solutions have been developed [96] to reduce the attack surface and increase
the reliability of the attestation process.

To address the limitations of static attestation, especially in the context of
ToCToU attacks, runtime attestation has been proposed [171]. This approach
continuously monitors the application, ensuring that its execution adheres
to an expected behavior. The primary case of runtime attestation is Control-
Flow Attestation (CFA) which verifiers that the program’s execution path
matches its intended Control-Flow Graph (CFG). This method traditionally
calculates a sequence of hashes during runtime, with each hash incorporating
the address of the next node in the CFG. However, CFA introduces significant
overhead, particularly in applications with complex control flows, leading to
issues such as control flow explosion [13, 43].

Control Flow Explosion

(a) Raytrace control-flow graph when processing a car (b) Raytrace control-flow
graph when processing a
teapot

Figure 2.3: The executed control-flow graph for the raytrace application (a) for processing the
geometry of a car (b) for processing the geometry of a teapot. The geometry of the car is far
more complex which leads to a very different behavior from the teapot. The control-flow graph
is extracted using the callgrind tool [118].

CFA faces significant challenges when applied to real-world applications due
to the problem of control flow explosion [43, 82]. While most CFA solutions
perform adequately on small, proof-of-concept applications, they struggle
with the complexity and variability found in larger, real-world software. Such
applications often have diverse input dependencies and numerous execution
paths, making it impractical for a verifier to calculate and manage all possible
hash outcomes.

20

2.4 Countermeasures to Side and Covert Channels

Consider the raytrace application from the Splash3 benchmark suite [140]. Fig-
ure 2.3 shows the control-flow tracing of this application using Callgrind [118].
When processing different geometries, such as a car Fig. 2.3a and a teapot
Fig. 2.3b, control flow complexity varies significantly. A traditional verifier
would need to compute the cryptographic hash for every possible execution
path, including all loop iterations. Handling the relatively simple control
flow in Fig. 2.3b might be feasible for a traditional CFA mechanism, but the
complexity in Fig. 2.3a results in an exponential increase in possible paths.
The resulting computational overhead of performing a hash computation at
each node in the CFG renders traditional CFA solutions impractical.

To address control flow explosion, some solutions attempt to simplify the
attestation process by treating loops as single basic blocks, effectively ignoring
the complexity within them [42, 123, 173]. However, this approach leaves
the system vulnerable to attacks that exploit variations in loop execution,
such as changing the number of iterations or inserting malicious code within
loops.

Machine Learning in Remote Attestation

Machine learning (ML) has shown promise in enhancing RA, particularly
in detecting anomalies and malware in complex systems. Most existing
approaches focus on static code analysis [41, 166], while little exploration
has been done to dynamic analysis techniques [25, 164].

ML-based RA, though relatively unexplored, offers the potential to improve
detection accuracy and reduce overhead. For instance, by continuously an-
alyzing system behavior, ML models can detect deviations indicative of an
attack without relying on predefined thresholds, which are often insufficient
for detecting sophisticated or novel attacks [15, 33]. As RA techniques con-
tinue to evolve, integrating ML can provide more robust and adaptive security
mechanisms capable of handling a wide range of threats.

2.4 Countermeasures to Side and Covert Channels

Mitigating side- and covert-channel attacks requires a multifaceted approach
that leverages detection mechanisms and various hardware and system-level

21

2 Related Work

knobs to reduce the impact of these attacks while minimizing performance
overhead. This section explores state-of-the-art countermeasures against
cache side-channel attacks and power-based covert channels, highlighting
their common principles and distinct challenges.

2.4.1 Against Cache Side Channels

This subsection reviews hardware and software-based countermeasures aimed
at increasing resiliency against these attacks.

Hardware-based countermeasures introduce or modify the system architec-
ture to mitigate side-channel vulnerabilities, particularly those targeting
cache memory.

Cache Mapping Randomization An approach to improve resistance against
side channel attacks is randomization of cache mappings, which dynamically
and unpredictably alters the mapping of data in the cache to disrupt the
attacker’s ability to predict cache behavior [94].

Adaptive Architectures and Partitioning Reconfigurable and adaptive cache
architectures have also been proposed to dynamically adjust cache configura-
tions, reducing the accuracy of cache set detection by attackers [21]. Cache
partitioning and coloring techniques further mitigate side channel risks by
varying cache data mapping to minimize conflicts and contention [101].

While these hardware-based solutions offer robust protection with relatively
low overhead, their implementation often necessitates new cache-specific
designs and additional on-chip area, limiting their practicality in real-world
systems.

Software-based countermeasures address side-channel attacks through im-
plementations at the different levels of the software stack such as application,
compiler, and operating system.

22

2.4 Countermeasures to Side and Covert Channels

Application-level Approach At the application level, countermeasures have
addressed the secure reimplementation of the cryptographic algorithms,
which reduces the information leaked to the attacker. Although such so-
lutions [91] might completely avoid attacks, they do not tackle attacks on
existing secure applications. Moreover, the re-implementation of the algo-
rithm is often less efficient than the original version.

Compiler-based Solutions Compiler-based techniques focus on randomizing
execution paths or eliminating key-dependent control flow to obscure side-
channel information [39]. Although these solutions can effectively thwart
specific attacks, they often introduce significant overhead and require custom
compiler development, limiting their applicability in existing systems.

Operating System-level Techniques At the operating system level, tech-
niques such as limiting the precision of time measurements have been pro-
posed to obfuscate timing information, making it harder for attackers to
succeed [108]. However, these approaches can introduce unnecessary de-
lays, affecting system flexibility and performance, especially for applications
relying on accurate measurements for resource management purposes.

Cache flushing is another OS-level strategy used to prevent side-channel
attacks by periodically clearing cache contents [61]. Despite its effectiveness,
this technique can also incur in high overhead, as it disrupts normal cache
operations across the entire system.

VM and Container Migration In cloud computing environments, VM and
container migration strategies have been explored to mitigate side-channel
attacks by physically separating the attacker and victim processes [20, 34, 135,
165]. These approaches, however, are typically designed for cloud systems
with multiple computers and are less applicable to cache-based side-channel
attacks in smaller, single-machine systems.

2.4.2 Against Power-based Covert Channels

This subsection examines the primary countermeasures, focusing on dynamic
voltage and frequency scaling (DVFS) and noise-based approaches.

23

2 Related Work

Noise-based Approaches Noise-based countermeasures introduce artificial
noise into the power signal to interfere with covert channel communica-
tion [132, 158]. While these methods might produce moderate power over-
heads, they have not been thoroughly evaluated in terms of performance
impact. Moreover, noise-based approaches require continuous processing on
the core, which can hinder the performance of other applications. Addition-
ally, they may fail against more sophisticated attacks [77] that are resistant
to frequency-specific noise.

Dynamic Voltage and Frequency Scaling (DVFS) DVFS is a well-established
technique used in various domains for power management and performance
optimization [107, 131, 148], but it has also proven effective in mitigating
power-based covert channels [77, 78]. By adjusting the frequency and volt-
age of processing elements, DVFS disrupts the power and temperature pat-
terns that covert channels rely on, effectively jamming the communication
medium.

However, DVFS can significantly degrade performance, particularly in en-
vironments where attacks are continuous. For instance, simulations have
shown that DVFS can lead to a 25% performance loss in many-core sys-
tems [77]. In embedded systems, the performance degradation can be even
more severe, reaching an average loss of 70% and exceeding 150% for certain
applications (see Section 8.7.4). Despite these drawbacks, DVFS remains the
reference countermeasure due to its direct impact on the power consumption
medium.

24

3 Experimental Framework

In this section, the experimental framework used and developed for the
different contributions of this dissertation is presented. In order to properly
represent the variety of capabilities of modern and emerging computing
devices, both simulation framework and real out-of-the-shelf hardware is
used. The simulation framework employed for some of the contributions
represents high-end many-core systems, while the real hardware brings up
current realistic execution scenarios for embedded, FPGAs and server-like
platforms.

3.1 Simulation framework - HotSniper

Themain simulation framework used in this dissertation isHotSniper [128], an
augmented version of the Sniper [30] simulator. HotSniper is an interval-based
simulator for multi-/many-core systems that allows the modeling of modern
CPU architectures by enabling the configuration of different CPU and system-
level features, such as cache hierarchy and CPU cluster organization.

In addition to the simulation engine, which offers a new open scheduler imple-
mentation, HotSniper comes withMcPAT [97] and HotSpot [79] integration for
both power and temperature estimations, respectively. Additionally,Hotsniper
implements a performance monitoring abstraction with a similar behavior
to a Performance Monitoring Unit (PMU). This abstraction exhibits relevant
CPU and memory execution metrics such as CPU IPS, cache accesses, cache
miss rates, among others. These improvements allow for the implementation
of dynamic resource management techniques such as task migration and
DVFS on complex multithreaded applications.

For all of the simulations performed in this dissertation, the gainestown
architecture is used, which is based on the Intel Xeon X5550 Gainestown
CPU. The base architecture, depicted in Fig. 3.1, includes 16 cores with 64 kB

25

3 Experimental Framework

of L1 cache for each core, 256 kB of L2 cache per cluster and a shared 8MB of
L3.

8 MB
L3

256kB L2

64kB
L1

64kB
L1

64kB
L1

64kB
L1

256kB L2

64kB
L1

64kB
L1

64kB
L1

64kB
L1

256kB L2

64kB
L1

64kB
L1

64kB
L1

64kB
L1

256kB L2

64kB
L1

64kB
L1

64kB
L1

64kB
L1

C0 C1 C2 C3 C4 C5 C6 C7

C8 C9 C10 C11 C12 C13 C14 C15

Figure 3.1: Representation of the base architecture used with the HotSniper simulator.

3.2 Real Hardware Platforms

Although the simulation setup described above might represent a flexible and
configurable system, in real-world applications, the user might face different
and unpredictable scenarios resulting from environmental variables such as
temperature, noise, etc. In order to realistically design security solutions, both
on the attacker and countermeasure front, these dynamic non-idealistic effects
must be considered. To do so, in this dissertation, several real-world hardware
platforms are used as the evaluation framework for the contributions. In the
following subsections, these platforms are further described.

3.2.1 General Personal Computer (PC)

The first real hardware setup to be considered in this dissertation is a generic
personal computer (PC), desktop-style platform. Although such a platform
might not represent emerging systems, it does integrate different computing
elements and modern software and hardware technologies existing in a com-
mon user day-to-day digital interactions, which makes it a perfect target for

26

3.2 Real Hardware Platforms

potential attackers. The technical specifications of the platform are shown in
Table 3.1.

Table 3.1: Characteristics of the PC evaluation platform
Feature Details

CPU Intel Core i9 10850K
Cores and frequency 10 cores @ 3.6GHz
Memory 2x16GB DDR4 @3.6GHz
GPU NVIDIA GeForce RTX2070
GPU cores 2304 CUDA cores @1620 MHz

Operating systems Windows 11
Ubuntu 22.04 (WSL)

3.2.2 Server-range CPU

To represent a multiuser execution scenario with high computing capabilities,
a server-range CPU platform is employed. The features of this platform
are described in Table 3.2. The setup integrates a multi-core AMD Ryzen 7
2700X processor with advanced virtualization support (AMD-V) and robust
security mitigations for recent threats. It features a high-performance adm64
architecture, capable of both 32-bit and 64-bit operation modes, making it
versatile for various workloads. The multi-level cache system and NUMA
architecture enhance processing efficiency. These features make the platform
well-suited for handling concurrent operations in a virtualized, high-demand
server environment.

As a multi-tenant computing framework, this platform effectively represents
an untrusted system, where attackers could exploit vulnerabilities or system
misconfigurations in order to compromise security-critical applications or
steal user private information.

3.2.3 Embedded Devices

In the evaluation of the contributions of this dissertation, three embedded
platforms are used. These platforms include modern embedded multicore
CPUs alongside powerful GPUs, while still providing a constraint computing

27

3 Experimental Framework

Table 3.2: Key Features of the Server-range Computing Platform
Feature Details

CPU Model AMD Ryzen 7 2700X
CPU Modes 32-bit, 64-bit
Physical Address Size 43 bits
Virtual Address Size 48 bits
CPU(s) 16
Cores per Socket 8
Threads per Core 2
CPU Frequency (Max) 3700 MHz
CPU Frequency (Min) 2200 MHz
Cache (L1d) 256 KiB (8 instances)
Cache (L1i) 512 KiB (8 instances)
Cache (L2) 4 MiB (8 instances)
Cache (L3) 16 MiB (2 instances)
Operating System CentOS7

environment for application-specific solutions. The following subsections
further described each of the platforms used, as well as the reasoning for
their consideration in this dissertation.

3.2.3.1 Raspberry Pi 4

The first embedded platform used in this dissertation is the Raspberry Pi
4 Model B [54], which is a compact and powerful single-board computer
commonly used as a primary prototype platform for various applications, in-
cluding multimedia-focused embedded systems, IoT, and educational projects.
The specifications of this board are shown inTable 3.3.

The board was chosen because it represents a simple yet powerful embedded
computing platform with a System on Chip (SoC) suitable for modern em-
bedded devices e.g., those present in IoT environments. In such landscape,
attackers might be able to exploit vulnerabilities in such devices to affect
larger systems or gain access to users’ private information.

28

3.2 Real Hardware Platforms

Table 3.3: Key Features of the Raspberry Pi 4 Model B Platform
Feature Details

CPU Quad-core ARM Cortex-A72 (64-bit) @ 1.5 GHz
GPU Broadcom VideoCore VI, 4K output @ 60Hz
Memory 4 GB LPDDR4 @ 3.2 GHz
GPIO 40-pin GPIO header
Storage microSD card slot for storage
Power Supply 5V via USB-C (min 3A)
Operating System Custom Linux (Buildroot)

3.2.3.2 Jetson TX2 and Orin Nano

In order to represent heterogeneous embedded devices with moderate to high
computing capabilities, two additional boards are used as target platforms
for several experiments. The selected boards exhibit a heterogeneous com-
puting environment with a mixture of clustered CPUs, as well as a moderate
integrated GPU. These platforms are NVIDIA Jetson TX2 and NVIDIA Jetson
Orin Nano.

System Fabric

AXI

CPU1

CPU2

CPU0

CPU4

CPU3

CPU5

ARM Cortex-A57 Denver 2
CPU Cluster

APB
Bridges

128
CUDA
Cores

128
CUDA
Cores

compress
deconpress

Pascal GPU

Memory Fabric and ArbitrationMMU

Memory
Controller

w/ECC

CPU Switch Fabric
(Coherent)

Host Command Buffer and
Synchronization

CSI
Camera

2D
Graphics ... Display

3x heads

Cortex-R5
Boot, Power

Mgmnt.

Figure 3.2: Simplified diagram of the NVIDIA Jetson TX2 architecture. Modified from [162] [55].

29

3 Experimental Framework

From a CPU point of view, the Jetson TX2 platform, shown in Fig. 3.2, is built
on a heterogeneous architecture featuring two distinct clusters. One cluster
houses a Quad-Core ARM Cortex-A57, while the second contains a Dual-
Core NVIDIA Denver 2 64-bit CPU. The Jetson Orin Nano follows a similar
dual-cluster approach, but with more advanced cores: one cluster consists
of a Quad-Core ARM Cortex-A74, while the second cluster features a Dual-
Core ARM Cortex-A74 processor. A key distinction between the two boards
is that the Jetson Orin Nano includes an additional 4MB L3 cache, shared
between both clusters, providing improved data handling and performance
efficiency.

From the GPU perspective, as depicted in Fig. 3.2, the Jetson TX2 is equipped
with an NVIDIA Pascal GPU, featuring 256 CUDA cores @ 1302MHz. In
contrast, the Jetson Orin Nano incorporates a more powerful NVIDIA Ampere
architecture GPU, boasting 1,024 CUDA cores. Both platforms are designed to
handle highly parallelized tasks, making their GPUs attractive for compute-
heavy operations, which could also be a potential target for attackers seeking
to exploit these capabilities.

In general, these boards present a heterogeneous computing scenario, com-
posed of a powerful GPU and clusters of cores with different capabilities that
follow the trend of modern high-end embedded devices such as those in the
automotive or mobile industry.

3.2.4 FPGA-MPSoC

The final evaluation platform is FPGA-MPSoC computing device, which
represents a modern, high-performance platform designed for flexible and
reconfigurable embedded computing. For this, the AMD ZCU102 evaluation
platform is selected [170]. The specifications and features for the framework
are detailed in Table 3.4.

In this platform, the combination of a multi-core ARM processor subsystem
with FPGA fabric provides a robust solution for parallel processing and
hardware acceleration. This hybrid architecture allows developers to optimize
for both general-purpose processing and custom logic, making it ideal for
prototyping in automotive, industrial, and communication systems. In such
scenarios, even under the security mechanisms such as OPTEE, adversaries

30

3.2 Real Hardware Platforms

Table 3.4: Key Features of the FPGA-MPSoC Platform
Feature Details

CPU Subsystem
CPU Cores Quad-core ARM Cortex-A53 @ 1.2 GHz
Real-Time Processors Dual-core ARM Cortex-R5 @ 600 MHz
Memory 4 GB DDR4 (attached to CPU)
GPU Mali-400 MP2
Operating System PetaLinux, OP-TEE

FPGA Subsystem
FPGA Fabric XCZU9EG with 600K system logic cells
DSP Slices 2,520 DSP slices
Memory (FPGA) 512 MB DDR4 attached to FPGA fabric
I/O Pins 328 pins
High-Speed Connectivity 4x SFP+, PCIe Gen3, USB 3.0, SATA
Expansion Options 2x FMC connectors, 16 GTH transceivers

could leverage the heterogeneity and reconfigurability provided by the FPGA
to mount advanced attacks and compromise such critical systems.

31

4 New Threats: Attacks Using
System Resources

Covert channels pose a real threat to model computing systems. As motivated
in chapter 1 and depicted in Fig. 1.1b, malicious actors can take advantage
of system resources, both at the hardware and software level, to exfiltrate
information from secure and isolated environments. In this chapter, we de-
scribe four new mechanisms through which modern attackers can implement
covert channels with high transmission rates.

4.1 Shared Threat Model

To establish a common ground for the new attacks, in this section, we specified
a unified threat model which describes the general capabilities of the attacker,
as well as the assumptions needed for the implementation of the proposed
covert channels.

The basic threat model for all covert-channel attacks presented in this chapter
follows the same principles as other covert channels [38, 113], where a mal-
ware and a spy application communicate with each other in an illegitimate
way.

The malware, or transmitter, is a malicious or colluding application that is
triggered by an unsuspecting user to perform a set of operations on their
behalf. These operations may involve handling sensitive data, such as medical
records or biometric information, or performing security-critical tasks, such
as encryption or decryption on sensitive data. To accomplish this, themalware

This chapter is mainly based on [1–4].

33

4 New Threats: Attacks Using System Resources

Secure/Isolated OS

Transmitter
(malware)

Receiver
(spy)

Trusted/Isolated OS Normal OS

CPU GPU
FPGA

MPSoC Memory

temperature / usage

SensorsH
ar

dw
ar

e
A

pp
lic

at
io

n
O

S

Figure 4.1: Overview of the shared threat model for the proposed covert-channel attacks.

typically runs in a trusted or isolated environment, where it gains access to
private data. In practice, this isolated environment could be a virtual machine
(VM) or a secure operating system, such as Trusted Execution Environment
(TEE). Conversely, the spy, or receiver application, operates in a non-secure
area of the system (e.g., the normal world) as a regular application.

Fig. 4.1 provides an overview of the shared threat model for the proposed
attacks, illustrating how information flows from the transmitter to the receiver
across different computing layers. Once active in the isolated environment,
the transmitter application exploits system resources such as CPU, GPU,
hardware accelerators, or memory to generate a modulated signal based on
its usage, such as temperature variations or resource utilization. The receiver,
running on the normal OS, can then decode this modulated signal by reading
sensors and analyzing relevant resource utilization data accessible through
the operating system.

A real-world example of such attacks is a supply chain attack, where malicious
entities or dishonest vendors intentionally introduce compromised software
into a system. A notable case is the recent xz utils vulnerability [100, 122],
in which an adversary, through an elaborate supply chain attack, inserted

34

4.2 Novel Contributions

a backdoor into the popular open source data-compression library xz utils.
This malicious update nearly made its way into major Linux distributions
before being detected.

4.2 Novel Contributions

In this chapter, we unveil four new covert channels integrating a set of novel
features previously unseen in the state of the art. As an introduction to the
new threats, Table 4.1 presents a summary of covert channels and their novel
characteristics.

Table 4.1: Summary of the novel attacks proposed and their features

Attack Exploited
resource Medium Novel features

Obfuscated
TCC CPU Temperature Avoids detection

GPU-based
TCC GPU Temperature

 First GPU-based attack
 Induces high overhead
under countermeasures

Through
Fabric

FPGA
MPSoC Temperature First FPGA-MPSoC attack

 Breaks isolation (OPTEE)

MeMoir Memory
(RAM) Usage Resilient to noise

 Breaks isolation (Hyper-V)

Considering all the new covert-channel attacks described in this work, the
integrated novel contributions presented in this chapter are the following.

• We present four new covert-channel attacks on different emerging
computing platforms. We show how the data is communicated effec-
tively through these channels with medium-to-high transmission rates
and very low error rates.

• For the Obfuscated Thermal Covert Channel (TCC), we show how
state-of-the-art detection techniques fail at detecting the new threat,
highlighting the need for better approaches.

35

4 New Threats: Attacks Using System Resources

• For the GPU-based TCC, we highlight how the current DVFS-based
countermeasure to TCCs induces a very high overhead in the system,
especially on embedded GPUs.

• For Through Fabric - our FPGA-MPSoC-based TCC, we show for the
first time how the isolation principle on a real TEE (OPTEE) is broken
by the thermal covert channel using a completely benign hardware
accelerator.

• Finally, for MeMoir - our memory-based covert channel, we present
a real use case where the covert channel can be effectively employed
to communicate information outside of an isolated scenario in a VM
(Hyper-V) to host enviroment.

4.3 Obfuscated Short Duration Thermal Covert
Channel

4.3.1 Motivation

Since traditional TCC detection techniques heavily rely on the Discrete
Fourier Transform (DFT) spectrum of either the temperature or performance
(IPS) signal to detect attacks, here we propose a new attack that behaves
like a regular non-attacker application for most of the time, yet it is still able
to transmit information at an acceptable data rate. The attack is obfuscated
since it is intentionally designed to hide its attack nature (i.e., characteristic
spectrum), and it is a short duration attack, because it is only transmitting
information one-fourth of the time compared to a traditional attacker.

4.3.2 Attack Implementation

Figure 4.2 shows a high-level block diagram of our attack and the details are
explained in the following. To encode information on temperature variations,
we employ a compute-intensive kernel (i.e., busy waiting) when transmitting
the bit value 1. When transmitting the bit value 0, we set the attacker core to
an idle state. When transmitting information between the transmitter and
receiver applications, we form packets consisting of a header and actual data

36

4.3 Obfuscated Short Duration Thermal Covert Channel

bits and we employ Hamming [66] as Error Correction Code (ECC) for our
transmission. To fully transmit at least one packet on every transmission and
remain undetected under DFT-based detection techniques, we propose using
small packets (e.g., 10 bits).

As commonly done, we employ a return-to-zero (RZE) line encoding to avoid
temperature accumulations that might interfere with the transmission. To
avoid the effect of low-frequency noise, we use modulation to transmit the
information at higher frequencies. For this, we implemented the on-off keying
(OOK) digital modulation scheme for our attack. After a packet has been
successfully encoded and serialized, the duration control module switches to
the normal application kernel, hence disguising the attack until the waiting
period of 3× of the packet duration has passed. After that, a new packet can
be sent and the process is repeated.

On the receiver end, we first measure the temperature values on the receiver
core and then apply a high-pass filter to remove low frequencies (i.e., less than
30Hz) from the measured signal. After this, we demodulate the signal by com-
paring the relevant frequency components against a pre-established threshold,
which also de-serializes the packet. We use the header of the packet as an
identifier of the actual transmission. When the correct header is received,
the packet is decoded and errors are checked via Hamming ECC. Packets
with a wrong header are discarded (counted as erroneous). If a bidirectional
communication channel is desired between both malicious applications, the
transmitter and receiver employ different headers when sending. This is es-
pecially useful in noisy environments where an acknowledge-based protocol
is needed to establish a robust communication channel.

Figure 4.3 shows a 2-second duration IPS trace of a core executing our obfus-
cated short duration attack. As depicted, the attack transmits information for
the first 500ms. After that, the attacker disguises itself as a normal application,
by performing normal (i.e., non-attack) processing operations.

This similarity between attack and benign application affects the detection
accuracy of state-of-the-art DFT-based detection techniques against our new
attack, as we evaluate in Section 4.3.3.

37

4 New Threats: Attacks Using System Resources

temp

heat

data ECC Header Kernel
(attack)

RZEOOKDuration
control

Kernel (normal)

Filter

ECC

Demodulation

DeserializerHeader

sensor
Receiver

Transmitter

error
data

Figure 4.2: High-level block diagram of our new obfuscated short-duration TCC.

0 500 1,000 1,500 2,000
0

5

10

Transmission

Normal
processing

Time (ms)

IP
S
(×
10

9)

Figure 4.3: Obfuscated short-duration attack example over a 2-second window. The normal
processing section belongs to the attack itself.

4.3.3 Experimental Evaluation

As evaluation framework for our obfuscated attack, we employ the HotSniper
described in Section 3.1.

38

4.3 Obfuscated Short Duration Thermal Covert Channel

To evaluate the effectiveness of the obfuscated short-duration attack, we sent
1000 bits as 10-bit packets at a local transmission rate of 20 bps. Table 4.2
shows the results from this evaluation. After each packet, the attack does
normal processing for 3× of the duration of one packet. Thus, the transmis-
sion rate gets reduced to 5 bps, with the benefit of increased stealth. When
launching the receiver application at a 1-hop distance from the transmitter,
the bit and packet error rate (PER) are very low (i.e., around 1%) showing the
feasibility of the attack.

Table 4.2: Evaluation of our proposed short-duration attack

Packet size
Local

transmission
rate (bps)

Overall
transmission
rate (bps)

BER
(%)

PER
(%)

10 bits 20 5 0.9 1

To validate the stealthiness of our new attack we implemented the main
DFT-based detection solutions from the state of the art and evaluated them
against the new attack, as depicted in Fig. 4.4. The DFT window length for
this experiment was set to 2000 samples, which is consistent with the values
reported in the state of the art [159]. First, following the three-step method
proposed in [77], we utilize around 240, 000 IPS samples evenly split from our
traditional attack and non-attack benchmark dataset to compute a threshold
value for the DFT windows that leads to a high accuracy (around 96 %). Then,
we implemented the detection solution from [159], using our training dataset
consisting of 2, 140, 000 IPS samples distributed in an even split of attack and
benchmark traces. The attack dataset is distributed between traditional and
stealthy attacks. We implemented a 10-node model of two hidden layers
(model C, from Table III in their work). We sought to perform the training
until we got a high accuracy (i.e., greater than 95 %). After the target accuracy
was achieved for both DFT-based approaches, we evaluated them against
traces (circa 384, 000 samples) of our short-duration attack (OA). As shown,
the accuracy for both DFT-based approaches gets degraded when facing our
new attack, which empirically shows the stealthiness of our novel attack as well
as the limitations of DFT-based approaches when dealing with it.

39

4 New Threats: Attacks Using System Resources

Base OA
0

50

100
Pr
ed
ic
tio

n
Ac

cu
ra
cy

(%
)

NN [159] Threshold-based [77]

Figure 4.4: The accuracy of DFT-based solutions in the state-of-the-art (Base) significantly drops
when facing our new short-duration attack (OA).

4.4 GPU-based Thermal Covert Channel

4.4.1 Motivation

In recent years, GPU computing has risen as an efficient way to accelerate
computation in several domains such as high performance, cloud computing,
and ML applications due to its highly parallel nature. With the surge of
GPU-based solutions in these diverse domains, providing security to the GPU
has become more and more critical, especially when it is used on sensitive
data [89]. Given the recent utilization of GPUs in trusted environments [81,
102, 156, 174], we propose to explore the possibility of creating a GPU-based
TCC attack, which has not been proposed so far and constitutes a new attack
vector for which no countermeasures have been analyzed so far.

Although GPU and CPU-based attacks share a similar functioning principle,
several challenges in the attack implementation and countermeasure effects
make the distinction relevant.

Challenges in the attack implementation: On one hand, GPUs are com-
prised of hundreds or thousands of small cores, with typically one thermal
sensor for the whole device. This means that raising the temperature to a
noticeable degree involves a highly parallel computational effort which has to
be high enough to heat the device, but also not too long so that the device can
cool down in a short time. This fact affects the packet size, as temperature
accumulations affect the error rates of the channel as the number of consecu-
tive transmitted bits increases. This is not the case for CPU-based attacks,
as each physical core has its thermal sensor that is leveraged individually.

40

4.4 GPU-based Thermal Covert Channel

As consequence, CPU-based TCCs normally reach transmission rates of up
45 bps with very high frequencies of up to 500Hz for 64-bit packets on a single
core [22, 77]. We discuss more GPU-specific TCC challenges and solutions to
overcome them in Section 4.4.2.

Challenges in the countermeasures: On the other hand, Dynamic Voltage
and Frequency Scaling (DVFS) techniques [78], which are considered the
reference countermeasures to CPU TCCs in the state of the art, work by
reducing the frequency of the CPU involved in the attack. However, due
to the shared nature of the GPU, reducing the GPU frequency without any
further consideration severely affects the execution of other GPU-dependent
applications on the system. The same can be said of other GPU-based coun-
termeasures (which we analyze and expand further in Section 4.4.2.3). Since
the GPU is typically shared for the whole system, the performance loss on
other applications when applying a countermeasure is much greater for GPU-
than for CPU-based TCCs, as our evaluation shows.

4.4.2 Attack Implementation

In our new GPU-based TCC, the transmitter application encodes the binary
data by increasing or decreasing the temperature signal of the GPU. By doing
high parallel processing on the GPU for a certain amount of time 𝑡𝑢𝑝 , the
transmitter can raise the temperature, hence encoding a bit value of 1. When
the attacker needs to transmit a bit value of 0, it sleeps the GPU for an amount
of time 𝑡𝑑𝑜𝑤𝑛 , allowing the temperature to decrease due to the cooling system
(e.g., the fan). The receiver then reads the thermal sensor on the GPU and
proceeds to decode the information.

4.4.2.1 Transmitter

The first step in the design of the transmitter is the processing mechanism to
encode the binary data as temperature fluctuations.

Sending a bit value of 1 requires some sort of processing on the GPU to
raise its temperature. Since GPUs are comprised of hundreds or thousands
of small cores, raising the temperature of the whole device requires a high
enough parallel load, which is not the case for CPU-based attacks as each
physical core in a CPU comes with its thermal sensor. To perform this high

41

4 New Threats: Attacks Using System Resources

parallel processing, we chose to implement a parallel multi-threaded busy
waiting kernel. In this kernel, each thread is constantly querying the state
of a timer, which controls the period of a binary 1, hence heating the GPU.
The number of parallel threads for each computation is extracted empirically
offline for the target platform according to the number of computations it
requires to produce the minimum valid temperature change at the desired
channel transmission rate.

When encoding a bit value of 0 as temperature, we sleep the application for
an amount of time equal to half of the period of the transmission data rate.
Note that during the cooling phase, other (background) applications might
execute on the GPU. This would add some noise to the channel, which is out
of the control of the attacker and it is a challenge for GPU-based attacks. The
interference that background GPU applications could produce on the channel
is an additional design factor for the channel.

To overcome this challenge, we form small packets (e.g., from 8 to 16 bits) com-
prised of a header (used to identify the beginning of a packet and its sender)
and data bits encoded through an error correction code (i.e., Hamming [66])
which helps to improve the reception when in noisy environments. This con-
stitutes another difference over CPU-based TCCs, where the packet size can
be extended while keeping low error rates. We experimentally demonstrate
the need for a small packet size in Section 4.4.3.1. Moreover, to avoid the
effect of temperature accumulation which may affect the actual reception of
packets, we utilize the return-to-zero encoding (RZE) which is commonly
used in TCCs exactly for this particular reason [103]. For our experiments,
we additionally employ on-off-keying (OOK), as a modulation mechanism.

4.4.2.2 Receiver

The receiver application is modeled as a three-stage process, as seen in
Fig. 4.5. As discussed in Section 4.4.2, the transmitted packet is encoded
as the temperature variations on the GPU thermal sensor. Then, as input,
the receiver module takes periodic samples from the thermal sensor of the
GPU. As a general consideration, the chosen sampling frequency needs to
be set to at least double the channel frequency, as per the Nyquist sampling
theorem.

42

4.4 GPU-based Thermal Covert Channel

Filter Deserializer Error Checker

Data Bits Error

Packet

Receiver

Figure 4.5: Receiver model for the time-based attack.

The first stage in the design of the receiver module is a filter, formally de-
scribed in Eq. (4.1). This filter smooths the discrete temperature signal from
the thermal sensor and removes the variations due to the sensor’s precision 𝛿 ,
which may affect the accuracy of reception. If the magnitude of the difference
between the current and the previous temperature sample is greater than
𝛿 , the output of the filter is assigned to the current sample. Otherwise, the
output is assigned to the previous output sample. In the case of modulated
attacks, the output of this filter is then used as an input to a second band-pass
filter that eliminates the non-relevant frequency components.

𝑦 (𝑘) =
{
𝑥 (𝑘), |𝑥 (𝑘) − 𝑦 (𝑘 − 1) | > 𝛿

𝑦 (𝑘 − 1), |𝑥 (𝑘) − 𝑦 (𝑘 − 1) | ≤ 𝛿
(4.1)

The second stage of the receiver module is the de-serializer, depicted as
pseudo-code in Alg. 1. This module continuously performs a comparison
between the current and the previous measurement of the GPU temperature.
When it detects an increase bigger than 𝛿 , it appends a bit value of 1 to the
packet (line 8). If this difference is not detected within the transmission period
(i.e, the inverse of the transmission rate), a timeout signal occurs on a parallel
timer thread (not shown in Alg. 1). When this happens (line 12), the receiver
interprets the sent bit as a 0, appends it to the packet (shown in line 13)
and then restarts the timer thread. This process is repeated until the packet
is successfully de-serialized. After de-serialization, the header of a packet
is checked. Packets composed with a wrong header are discarded. Once a
packet with a correct header has been de-serialized, we decode the data bits
by using the Hamming ECC, which reports whether there were errors in the
received packed.

By using a header of at least two bits (one to indicate the beginning of the
packet and one to identify the sender), both malicious applications can act

43

4 New Threats: Attacks Using System Resources

as transmitter and receiver in an acknowledge-based protocol. By doing
so, the communication becomes more robust, since the receiver can ask the
transmitter to re-send an erroneous packet.

Algorithm 1: Receiver de-serializer for the GPU-based TCC
Input :𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑃𝑈𝑇𝑒𝑚𝑝 , 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 , 𝑝𝑎𝑐𝑘𝑒𝑡𝐵𝑖𝑡𝑠
Output :𝑝𝑎𝑐𝑘𝑒𝑡 , 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟

1 𝑝𝑎𝑐𝑘𝑒𝑡 ← 0;
2 𝑁 ← 0;
3 𝑝𝑟𝑒𝑣𝑇𝑒𝑚𝑝 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑃𝑈𝑇𝑒𝑚𝑝;
4 while 𝑁 ≤ 𝑝𝑎𝑐𝑘𝑒𝑡𝐵𝑖𝑡𝑠 do
5 𝑛𝑒𝑥𝑡𝑇𝑒𝑚𝑝 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐺𝑃𝑈𝑇𝑒𝑚𝑝;
6 𝑑𝑒𝑙𝑡𝑎𝑇𝑒𝑚𝑝 ← 𝑛𝑒𝑥𝑡𝑇𝑒𝑚𝑝 − 𝑝𝑟𝑒𝑣𝑇𝑒𝑚𝑝 ;
7 if 𝑑𝑒𝑙𝑡𝑎𝑇𝑒𝑚𝑝 > 𝛿 then
8 𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑝𝑎𝑐𝑘𝑒𝑡 << 1) | 1;
9 𝑁 ← 𝑁 + 1;

10 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟 ← 1;
11 end
12 else if 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 then
13 𝑝𝑎𝑐𝑘𝑒𝑡 ← (𝑝𝑎𝑐𝑘𝑒𝑡 << 1);
14 𝑁 ← 𝑁 + 1;
15 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟 ← 1;
16 end
17 𝑝𝑟𝑒𝑣𝑇𝑒𝑚𝑝 ← 𝑛𝑒𝑥𝑡𝑇𝑒𝑚𝑝;
18 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟 ← 0;
19 end

4.4.2.3 Analysis of Current Countermeasures

GPU Thermal Noise One of the simplest solutions to thermal covert chan-
nels is the generation of baseband thermal noise. In the context of CPUs, the
baseband thermal noise technique comes from the execution of background
workloads on the CPUs that are suspected to be involved in the channel. By
adding extra processing on those cores, the temperature response deviates
from the expected attack response, making it harder for the receiver to cor-
rectly interpret data. When moving to a GPU domain, this naïve approach
requires further considerations. The first one is the computing required to
raise the temperature for the GPU. As discussed, GPUs consist of hundreds
or thousands of smaller cores, which need to be heated up. This means that
the otherwise innocuous noise translates into a high computing workload

44

4.4 GPU-based Thermal Covert Channel

on the GPU. This noise will be present as constant background affecting
the power of the system and the performance of all other GPU-accelerated
applications. The latter would not be the case for CPUs, as only the cores
involved in the attack are affected. To improve efficiency, approaches in
the state of the art for CPU-based TCCs have suggested frequency-specific
(or narrow-band) noise [158]. By applying background processing at a spe-
cific rate, the computational power and performance impact is reduced over
constant noise.

Similarly to the baseband noise, the GPU-based narrow-band noise requires
a highly parallel computational workload, but it can be executed at a much
higher rate. For high-frequency communication channels in GPU devices, its
efficient implementation becomes a challenge itself, as it is already a challenge
for the CPU-based countermeasure [132]. However, since the GPU is still a
shared resource for all GPU-accelerated applications, the contention for it
creates performance degradation on all other GPU application.

DVFS Dynamically changing the voltage and frequency levels of the CPU
has been shown before as a way to jam CPU-based TCCs as an improvement
over noise-based solutions. In the reference state-of-the-art approach for
CPU-based TCCs [78], authors suggest a periodic DVFS policy that switches
the frequency of the compromised CPU from the highest level to a lower
level every channel period 𝑇 . To establish the frequency values, they employ
a down up rate 𝛽 , computed as the ratio of the time the CPU stays at a low
frequency (𝑡𝑑𝑜𝑤𝑛) and the time that it stays at a high frequency (𝑡𝑢𝑝). Although
this state-of-the-art approach seems to successfully block the attack with a
slight performance degradation on other applications that run on the same
core, when translating this effect to GPU, the performance loss is much bigger
(as it is discussed in Section 4.4.3.2).

4.4.3 Experimental Evaluation

To evaluate the new GPU-based TCC, we perform a series of experiments on
two real-world platforms: the PC described in Section 3.2.1 and the embedded
Jetson TX2 board (Section 3.2.3.2).

The PC represents an execution scenario with a dedicated GPU, while the
Jetson TX2 deploys an embedded GPU. In both platforms, we employ a

45

4 New Threats: Attacks Using System Resources

Table 4.3: Description of the GPU-based attack settings on the effectiveness experiment

Platform Sent bits Encoding Transmission rates
(bps)

PC 24,064 RZE, RZE + OOK 0.68, 1.38
Jetson TX2 4.375, 8.75

sampling rate of 500 Hz. Using these platforms, we proceed to evaluate
our new attack, as well as the expanded countermeasures introduced in
Section 4.4.2.3.

4.4.3.1 Effectiveness of the New GPU-based Attack

To verify the feasibility and effectiveness of our new GPU-based attack, we
launched attacks with different packet sizes and encoding mechanisms, for
both platforms. In this setup, we did not limit the GPU to any application. This
means that the underlying OS and applications use it at any time if needed. In
fact, hardware-accelerated GPU scheduling is enabled for graphical interface
display in the OS. In this experiment, we run attacks with different encoding
and packet sizes, as summarized in Table 4.3. We used an even split of RZE
and OOK encoding. With our new attack we achieved maximum transmission
rates of 1.38 and 8.75 bps for the general computing and embedded platform
respectively. As seen in Table 4.4, this error rate comes with very low BER
and PER for small packets (e.g., less than 2% for our recommended packet
size of 12 bits). Note that as previously discussed, increasing the packet size
(more than 16 bits in our case), decreases the quality of the channel due to
temperature accumulations and background noise.

As a comparison, the first implementation of a CPU-based thermal covert
channel [109] achieved a lower transmission rate of 1.33 bps, with a much
higher BER of 11%. This is a fair comparison, as our GPU-based attack is also
the first implementation of a TCC of its kind.

4.4.3.2 Evaluation of Countermeasures

As a second evaluation, we perform an experiment where we submit our
new GPU-based attack to the extended countermeasures discussed in Sec-
tion 4.4.2.3. First, we evaluate the proposed extended countermeasures them-

46

4.4 GPU-based Thermal Covert Channel

Table 4.4: BER and PER for different packet sizes for the GPU-based attack on the evaluation
platforms

Packet size (bits) BER (%) PER (%)
PC Jetson TX2 PC Jetson TX2

8 0.09 0.25 0.34 0.34
12 0.14 0.29 1.00 1.50
16 0.30 1.15 1.33 4.00
24 1.28 1.73 6.00 9.00
32 4.25 4.82 9.21 14.48

selves in terms of their capacity to block the attack at the maximum trans-
mission frequency. The evaluated countermeasures are baseband (BB) noise,
narrow-band (NB) noise [158], the DVFS approach from [78] using 𝛽 = 1
(low 𝛽 , 50% duty cycle), 𝛽 = 9 (suggested for most of their experiments),
𝛽 = 15.67 (high 𝛽), For the BB noise, we employed the Gaussian kernel from
the Rodinia benchmark [32] as the generator application. For NB noise, we
implemented a parallel Single-Precision A·X Plus Y (SAXPY) operation as
the noise application due to its highly parallel nature and the fact that it
can be toggled fast enough, as discussed in Section 4.4.2.3. As the minimum
frequency, we employed a value of 300MHz. The maximum frequency is the
same value as shown for each platform (Sections 3.2.1 and 3.2.3.2). The error
rate results for running the attack alongside the countermeasures on the both
platforms are depicted in Fig. 4.6.

As it can be seen from the figure, the channel gets severely degraded with
the majority of the extended DVFS and noised-based techniques, as the PER
rises as high as 98% for the high 𝛽 scenario. Note that on the Jetson TX2
platform, for the low 𝛽 scenario (𝛽 = 1), both BER and PER are lower that
any other solution, resulting in about 50% of the packets being unaffected by
the countermeasure.

Finally, to evaluate the overhead of the reference DVFS countermeasure
from the state of the art [78], as it has proven to be more efficient than
the previous noise-based countermeasures. We evaluate the state-of-the-art
DVFS approach for the 𝛽 values mentioned above. To keep consistency with
their work, we use the same metric (i.e., performance loss). To this end,
we used four applications from the Rodinia benchmark as application set:
streamcluster, particlefilter, guassian, and myocyte.

47

4 New Threats: Attacks Using System Resources

BB NB
[158]

𝛽 = 1 𝛽 = 9
[78]

𝛽 = 15
0

50

100

Er
ro
rR

at
e
(%
)

(a) BER.

BB NB
[158]

𝛽 = 1 𝛽 = 9
[78]

𝛽 = 15
0

50

100

PC Jetson TX2

(b) PER.

Figure 4.6: Average Bit Error Rate (BER) (a) and Packet Error Rate (PER) (b) for the GPU-based
attack under the extended countermeasures on the PC platform and the Jetson TX2 board.

𝛽 = 1 𝛽 = 9 𝛽 = 15
0

20

40

60

Pe
rfo

rm
an
ce

Lo
ss

(%
)

(a) PC.

𝛽 = 1 𝛽 = 9 𝛽 = 15
0

200

400

600

(b) Jetson TX2.

Figure 4.7: Performance loss on benchmark applications due to 𝛽-based DVFS countermeasure
from [78] on the PC platform (a) and the Jetson TX2 board (b).

In the experiment, we measure the average execution time of the application
set without any DVFS, and then we measure again applying each one of the
evaluated approaches individually to compute the performance loss due to the
countermeasure. We assume the attacker is present at all times (𝜏 = 0 in [78]).
The results for the performance loss evaluation are depicted in Fig. 4.7. As
it can be seen from the figure, the state-of-the-art technique produces high
performance loss i.e., more than 25% and 200% performance loss on the PC
and Jetson platform accrodingly, using the recommended 𝛽 = 9 value.

An interesting outcome of this experiment is the performance loss on the
embedded Jetson TX2 platform. Firstly, on this platform, the performance

48

4.5 Through Fabric: A Thermal Covert Channel on FPGA-MPSoC Systems

loss from all the countermeasures increases drastically when compared to
the PC platform, reaching almost 300% for the high 𝛽 scenario and around
70% for the lowest 𝛽 . Secondly, although the lowest 𝛽 scenario produces
less performance, when analyzing the bit error rates depicted in Fig. 4.6 (b),
the same countermeasure performs poorly affecting only half of the packets
being sent.

Finally, since most of the attacks and countermeasures on TCCs found in
state of the art have tackled mostly high-end multi-/many-core systems, we
believe more attention should be put into disclosing new TCC embedded
attacks, and (more importantly) proposing new countermeasures tailored for
embedded devices. We see our new GPU-based attack and countermeasure
implementation as a starting point in this direction.

4.5 Through Fabric: A Thermal Covert Channel on
FPGA-MPSoC Systems

4.5.1 Motivation

FPGAs are a prominent component of the computing landscape. With the abil-
ity to change the implemented hardware at run-time, they offer an interesting
option to accelerate a variety of applications. Several systems now include
FPGAs as part of the compute infrastructure alongside the multiprocessor
system-on-a-chip (MPSoC), e.g., Zynq-MPSoCs [170].

Previous works tackled the establishment of covert channels on FPGAs [27,
60, 63]. These works, assume (i) an FPGA-MPSoC running bare metal without
any TEEmechanism existing and (ii) that they are able to implement malicious
hardware for the transmitter and receiver, e.g., ring oscillators. These two
assumptions are, however, not very realistic, as TEE can be easily established
on FPGA-MPSoCs, e.g., OP-TEE [154]. Furthermore, malicious hardware is
easily detected and banned on FPGA-MPSoCs [115]. In contrast to them, our
work establishes a thermal covert channel on FPGA-MPSoCs without these
two assumptions.

49

4 New Threats: Attacks Using System Resources

CPU

CPU

CPU

CPU

Secure
World

Normal
World

Hardware
Accelerator

�

Processing System Programmable Logic

�

Figure 4.8: Overview of our new cross-device thermal covert channel on a TEE-enhanced FPGA-
MPSoC.

4.5.2 Attack Implementation

In a simplified view, the system we target is depicted in Fig. 4.8. A colluding
application (e.g., from a dishonest vendor) running in the secure world uses a
benign AES accelerator from the FPGA, the so-called Programmable Logic
(PL), to transmit messages by modulating the temperature of the PL 1 .
The malicious receiver running in the normal world reads the temperature
sensor of the PL 2 , which is accessible from the normal world, to decode the
messages. In this way, we are able to communicate information between CPUs
executing applications in a cross-world fashion, employing the temperature
of the PL in the FPGA-MPSoC as the means for communication.

4.5.2.1 Software

A simplified overview of the software components of the system is depicted as
a flow in Fig. 4.9. In the normal world, the innocent CA intends to perform a
hardware-accelerated AES decryption on a ciphertext through the decryption
TA, which resides in the secure world. To do so, the innocent CA uses the
OP-TEE client API 1 to invoke the AES decryption TA, unaware of its
malicious nature. In turn, the OP-TEE client API routes the request to the
OP-TEE driver 2 in the Linuxkernel. On the Linux kernel side of the normal
world, the OP-TEE driver then directs the request to the secure monitor 3
on the secure world, which itself handles the communication between worlds

50

4.5 Through Fabric: A Thermal Covert Channel on FPGA-MPSoC Systems

Normal World

Innocent
CA

Receiver
CA

TEE Client
API

Linux Kernel

OP-TEE
driver

AES decryption
TA (Transmitter)

TEE Internal
Core API

OP-TEE OS

Secure Monitor

Secure World

�

�

�

�

�

��

Figure 4.9: Overview of the software components of the system

by routing the request to the OP-TEE Trusted Operating System 4 . Through
the internal API, the OP-TEE OS framework determines the malicious AES
decryption TA as the one being invoked and passes the control to it to handle
the request 5 . Finally, the TA uses the hardware accelerator API 6 to
perform the decryption. In a normal (benign) operation, at this point, the
execution control would return in a reversed path back to the CA with the
ciphertext being decrypted. However, because of its malicious nature, before
returning control, the TA leverages the hardware accelerator again 6 to
encode and leak secret data (e.g., the key or plaintext) by modulating the
temperature of the programmable logic on the FPGA.

Notably, the TA is configured to keep the execution context (instance) after
the sessions ends, using the TA_FLAG_INSTANCE_KEEP
_ALIVE flag [113]. This allows the TA to store, and further leak, private data
after the transaction has finished.

In the normal world, another malicious application (i.e., the receiver CA,
potentially owned by a different user) continually reads the temperature
sensor of the FPGA 7 to detect the beginning of the transmission and
decode the secret being sent by the TA, hence establishing an illegitimate
communication channel between the secure and the normal world.

51

4 New Threats: Attacks Using System Resources

4.5.2.2 Hardware

To demonstrate our attack, we employ an existing hardware accelerator as the
heating mechanism. As Fig. 4.8 shows, the processor residing in the trusted
world is connected to one accelerator on the PL. The connection is done via an
AXI crossbar. We use the benign AES 128 bit decryption engine from [106] as
the accelerator, as it is available as open source and as it is highly parallelized.
The AES engine receives the cipher text and decryption key as input from
the processor and returns the plain text in one clock cycle.

Notably, while a custom and more power hungry hardware accelerator (e.g.,
ring oscillators) would benefit the transmission by heating faster, depending
on the attacker to compromise the hardware or implement their own logic
could be either be impractical or easy to detect. We decided to employ a
completely benign module, with a realistic use case. The selected AES engine
performs a security-related operation, which justifies its use from the secure
world, while also being a tested device provided by an honest vendor.

4.5.2.3 Transmitter

The transmitter module of the attack is implemented within the malicious
decryption TA. Algorithm 2 shows the implementation logic for the trans-
mission. Upon being invoked (5 in Fig. 4.9), the TA performs the normal
(benign) decryption of the ciphertext. However, as a malicious application,
the TA proceeds to leak the newly decrypted plaintext by modulating the
temperature of the FPGA. To do so, it first computes the number of decryp-
tions needed to encode a bit of ‘1’, and the time it requires to wait to encode a
bit of ‘0’, using the desired bit rate and the latency accelerator. Then for each
bit in the secret, the TA performs the extra decryptions for each bit value
that is a ‘1’, or waits for the corresponding time for each bit of ‘0’. Finally,
the application returns the plaintext normally to the calling CA.

In the case of a long secret, in order to avoid suspiciously long decryption de-
lays, the transmitter module can leverage the TA_FLAG_INSTANCE_KEEP_ALIVE
flag, as described in Section 4.5.2.1, to save it, while only leaking a few bytes
at a time per call, especially with short ciphertext decryptions. On further
calls, the attacker can obfuscate the transmission of the rest of the message
by leveraging the decryption of longer ciphertexts.

52

4.5 Through Fabric: A Thermal Covert Channel on FPGA-MPSoC Systems

Algorithm 2: TA transmitter for the TCC
1 Input: 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 : encrypted text from innocent CA
Result: 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 : decrypted text

2 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ← HwAESDecrypt(ciphertext); /* Performs normal

decryption */

3 𝑁 ← 1/(𝑏𝑖𝑡_𝑟𝑎𝑡𝑒 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦_𝑎𝑐𝑐) ; /* Calculate the required number

of decryptions to heat up enough to encode a ‘1’ */

4 𝑡𝑑𝑜𝑤𝑛 ← 1/(2 ∗ 𝑏𝑖𝑡_𝑟𝑎𝑡𝑒);
5 for bit in secret do
6 if 𝑏𝑖𝑡 is 1 then
7 for i = 0 to N-1 do
8 HwAESDecrypt(𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑝𝑢𝑡) ; /* Perform extra

decryptions to increase temperature */

9 else
10 TEE_Wait(𝑡𝑑𝑜𝑤𝑛) ; /* Sleeps to cool down the hardware */

11 return 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ;

4.5.2.4 Receiver

The receiver is implemented as an application running in the normal world.
It performs three simple steps which are shown as the three loops in Alg. 3.
The first step (line 2 to line 5) is to continuously collect the data from the PL
temperature sensor and store it in an array of size 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . This step
as involves only reading data from a register. Once it collected the samples,
it filters out the data to the desired frequency of communication (line 6 to
line 9). The receiver performs this by calculating the Fast Fourier Transform
(FFT) over a moving window and keeping only the bins that correspond to
the frequency of communication.

The final step is to decode the filtered data into the corresponding sent bits
(line 10 to line 21). To achieve this, the receiver applies two criteria: an
absolute value and a gradient. During the moving window corresponding to
each bit, if a value higher than a pre-computed high threshold (𝜌1) is achieved
then a bit value ‘1’ is interpreted. Similarly, if the maximum value is lower
than the pre-computed low threshold (𝜌2) then a bit value ‘0’ is interpreted.
However, when multiple bits of the same value are sent sequentially, then

53

4 New Threats: Attacks Using System Resources

Algorithm 3: Normal world receiver for the TCC
Result:𝑚𝑠𝑔: demodulated message

1 𝑠 ← 0;
2 while 𝑠 < 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
3 𝑡𝑒𝑚𝑝𝑠 [𝑠] ← 𝑟𝑒𝑎𝑑𝑇𝑒𝑚𝑝 () ; /* Get new temperature reading */

4 𝑠𝑙𝑒𝑒𝑝 (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒);
5 i++;
6 𝑁 ← 𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 ; /* Compute number of moving

windows to decode */

7 for i in N do
8 𝑋 ← 𝐹𝐹𝑇 (𝑡𝑒𝑚𝑝𝑠 [𝑖 : 𝑖 +𝑤𝑖𝑛_𝑠𝑖𝑧𝑒]); /* Computes FFT of the

moving window */

9 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [𝑖] ← 𝑋 [𝜔𝑘] ; /* Filter the data at the frequency

index 𝜔𝑘 */

10 for j in N do
11 𝑏𝑖𝑡𝑤 ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 [(𝑗 ∗𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 : 𝑗 ∗𝑤𝑖𝑛_𝑠𝑖𝑧𝑒 +𝑤𝑖𝑛_𝑠𝑖𝑧𝑒] ; /* get

the demodulated bit window */

12 if 𝑚𝑎𝑥 (𝑏𝑖𝑡𝑤) > 𝜌1 then
13 𝑚𝑠𝑔[𝑗] ← 1 ; /* if high absolute change then bit is ‘1’

*/
14 else
15 if 𝑚𝑎𝑥 (𝑏𝑖𝑡𝑤) < 𝜌2 then
16 𝑚𝑠𝑔[𝑗] ← 0 ; /* if low absolute change then bit is

‘0’ */

17 else
18 if |𝑠𝑙𝑜𝑝𝑒 (𝑏𝑖𝑡𝑤) | > 𝛿𝐻 then
19 𝑚𝑠𝑔[𝑗] ← 𝑛𝑜𝑡 (𝑚𝑠𝑔[𝑗 − 1]) ; /* if high absolute

change in slope then bit flipped */

20 else
21 𝑚𝑠𝑔[𝑗] ←𝑚𝑠𝑔[𝑗 − 1] ; /* if low absolute change in

slope then bit stayed the same */

22 return𝑚𝑠𝑔;

the temperature saturates to a value in between. To solve this, we compute
the gradient between two consecutive samples as a moving slope. If the slope

54

4.5 Through Fabric: A Thermal Covert Channel on FPGA-MPSoC Systems

of the readings from the moving window is greater than the pre-compute
threshold for a high slope 𝛿𝐻 , it means that a rapid change of temperature
occurred. Consequently, a bit with value opposite to the previously received
bit is transmitted, so we toggle the value based on the last received bit.
Otherwise, if the slope is low, it means that the same value is received and
no toggling occurs.

To set the thresholds 𝜌1, 𝜌2, and 𝛿𝐻 we use a subset of the sent data and
analyze it. Each bit is sent over a period 𝑇 and an interval of temperature
samples 𝑡 is recorded. We collect the temperature recorded for the ‘1’ bits in
dataset 𝑡1. Similarly, the temperatures for ‘0’ bits are collected in dataset 𝑡0.
The high threshold (𝜌1) is set as 𝜌1 = 𝜇 (𝑚𝑎𝑥 (𝑡1)) − 𝜎 (𝑚𝑎𝑥 (𝑡1)) with 𝜇 being
average and 𝜎 being standard deviation. For the low threshold (𝜌2), we set
it as 𝜌2 = 𝜇 (𝑚𝑎𝑥 (𝑡0)) + 𝜎 (𝑚𝑎𝑥 (𝑡0)). Finally, for the slope threshold 𝛿𝐻 , we
collect 𝑡𝑔 which is the dataset of any bits that are of opposite value than the
previous bit. We then calculate 𝛿𝐻 as 𝛿𝐻 = 𝜇 (𝑚𝑎𝑥 (𝑡𝑔) −𝑚𝑖𝑛(𝑡𝑔))/𝑇 .

4.5.3 Experimental Evaluation

We run our experiments on the ZCU102 evaluation platform decribed in Sec-
tion 3.2.4. The design is implemented using Vivado 2018. The AES accelerator
is open source from [106]. It uses 11k LUTs and the PS to PL AXI interface
uses 3.1k LUTs, at a clock frequency of 100MHz. The normal world operating
system is a custom Linux distribution built using the PetaLinux SDK from
Xilinx.

4.5.3.1 Channel metrics

In order to evaluate the effectiveness of the TCC, we run the compromised
Trusted Application (TA), which performs several consecutive descriptions
using the AES accelerator, in order to send 8, 000 bits encoded in 8-bit packets
on the FPGA-MPSoC board. Table 4.5 shows the result metrics for our new
cross-world thermal covert channel from this experiment including bit error
rate (BER), packet error rate (PER), and transmission rate. As it can be seen,
the channel is effective under the tested scenario, achieving a transmission
rate of 2 bps, which is on par with similar TCCs on non-CPU devices [2,
83]. Moreover, our attack was able to produce very low error rates, in a

55

4 New Threats: Attacks Using System Resources

Figure 4.10: Representation of the channel performance when transmitting a binary image. The
image on the left was sent, the image on the right was received.

similar range to other state-of-the-art approaches for thermal covert channels
(1-11%) [111]. Notably, since the attack is performed within the OP-TEE
environment, its effectiveness shows how the isolation and data confidentially
principles of the TEE have been effectively broken by our attack.

Table 4.5: Thermal covert channel evaluation metrics

Bits Packets Transmission
rate (bps)

BER
(%)

PER
(%)

8000 1000 2 1.9 4.3

To visually represent the performance of the covert communication, we sent a
64𝑥64 pixel binary image with our thermal cover channel. Figure 4.10 shows
the sent and received images from this test. In this experiment, the obtained
BER was less than 2%, which further shows the applicability of the channel.

4.5.3.2 Comparison to state of the art

As mentioned in Section 2.2, other works exploited covert channels on FPGAs
before. However, as Table 4.6 shows, our work is distinct from them in
several ways. First, our work is the first to exploit a temperature-based covert
channel between CPUs using the FPGA. The second distinction is that our
work neither requires special malicious hardware for the transmitter nor for

56

4.6 MeMoir: A Covert Channel Based on Memory Usage

Table 4.6: Comparison to related works. Our work does not need any malicious hardware on the
transmitter or receiver side.

Work
Requires
Mal. (HW)
Transmitter

Requires
Mal. (HW)
Receiver

Covert
Channel

Break
TEE

Our work ✗ ✗ temperature ✓
Ref. [60] ✓ ✓ voltage ✗
Ref. [27] ✓ ✓ frequency ✗
Ref. [63] ✗ ✓ voltage ✗
Ref. [57] ✓ ✓ voltage ✗
Ref. [53] ✗ ✓ frequency ✗
Ref. [59] ✗ ✗ PCIe ✗
Ref. [56] ✓ ✓ inter. wiring ✗

the receiver. Finally, none of the related works showed that they were able to
break TEE on FPGAs.

4.6 MeMoir: A Covert Channel Based on Memory
Usage

4.6.1 Motivation

Several types of covert channels have been implemented in the literature, with
notable recent works on thermal covert channels [2, 78, 159] for hardware-
supported attacks, and OS synchronization mechanisms [49, 146, 172] for
those driven by software. With an increase in covert channel research in
recent years, covert channels have become a threat to emerging computing
systems [111].

In order to unveil a new type of covert channel, this section deals with the
implementationof memory-usage-based threats in a multi-tenant and a VM to
host scenarios. To introduce our new software-based covert channel, Fig. 4.11
shows an overview of the mechanism and actors involved in the attack form
the perspective of a multi-tenant server. In such an attack, the malicious

57

4 New Threats: Attacks Using System Resources

Receiver
Attacker
user

Decoded
information

Memory

Total
Usage

Confidential
information

Transmitter

Victim
user

allocation
de-allocatation

mem
monitoring

Figure 4.11: Overview of the new software-controlled memory-usage-based covert channel

transmitter application, which executes in a target victim user (private) con-
text, has gained access to the unaware victim’s confidential information, and
it seeks to communicate the secret to other users in the system avoiding
obvious direct mechanisms (e.g., shared memory, files, sockets, etc.) which
are normally monitored [113] and hence easy to detect. In order to leak
the secrets in a stealthy manner, as part of our new attack, the transmitter
modulates the memory usage in the system, creating periodic patterns or
memory allocations and de-allocations to encode the ‘1’s and ‘0’s of the mes-
sage. Under a second user’s context (or any other nonvictim zone), a second
malicious application —the receiver— reads the system’s memory usage and
decodes the message being sent. Because the modulated signal (memory
usage) is a virtual resource, it does not necessarily have a physical effect on
the system which makes it hard to detect, especially if its existence is not yet
unveiled.

4.6.2 Attack Implementation

4.6.2.1 Transmitter

This module’s role is to encode and send the target data through the covert
channel. In this context, it is seen as a malicious application with access to
confidential information related to private data.

As seen in Fig. 4.12, the first step consists of converting these data to a binary,
as well as separating them into blocks of 4 bits each. Then, the Hamming
error correction code (ECC) is used in its 4-7 form —taking a 4-bit input and
converting it to a 7-bit ECC encoded output— to minimize information loss

58

4.6 MeMoir: A Covert Channel Based on Memory Usage

Figure 4.12: Overview of the transmitter module

due to the effects of temporal offsets caused by delays in the execution of
memory operations, either by OS processes or other applications.

Furthermore, the data are also separated into packages of a fixed length to
maintain integrity. This way, if a package has more errors than the ECC can
correct (a total of one bit flip in the 4-7 form), it is considered to be incorrect
but may not affect the next packages to be transmitted. We introduce a control
sequence in front of each package in the form of a binary 1 appended to its
most significant bit as a header, which indicates to the receiver that what
follows is the package itself. Therefore, the total length per package is 8
bits.

Each bit is modulated by allocating, writing and freeing memory, using OOK
(on-off keying), where the amplitude of the signal indicates the transmission
of a ‘1’ or a ‘0’. A high amplitude value (i.e., high memory usage), which
represents a ‘1’, can be seen as a rise, and a ’low’ constant flat value (i.e., no
memory used) represents a logical ‘0’ in the signal. This behavior corresponds
to the communication line code RZ (return to zero). Equation (4.2) shows how
a logical ‘1’ is represented, where 𝑡𝑝 is the time it takes to send a pulse, 𝑡ℎ is
the time when the signal rises (i.e., the total memory usage in the system goes
up) and 𝑡𝑙 is the time where the signal returns to its low value (memory usage
is similar to the one before). On the other hand, a ‘0’ would be a constant low
signal of duration 𝑡𝑝 (𝑡𝑝 = 𝑡𝑙).

𝑡𝑝 = 𝑡ℎ + 𝑡𝑙 , (4.2)

To build a pulse, we first need to increase the total system memory usage by
copying a block of data to reserve it in memory and hold it for 𝑡ℎ , equivalent
to 𝑇 /2 where 𝑇 is the total pulse time. Then, the space is freed to lower the

59

4 New Threats: Attacks Using System Resources

signal value once again. A sleep function is used to wait for the next pulse
(low value in the remaining𝑇 /2), depending on whether a ‘1’ or a ‘0’ was sent.
This is done via software through a program written in C++. The pseudocode
algorithm for the transmitter module is shown in Alg. 4.

Algorithm 4: Send Data through the Memory Covert Channel
Input: binaryString
Output: Transmitted Data

1 Initialization:
2 BIT_PULSE_COUNT← 2
3 PACKAGE_BIT_COUNT← 4
4 SIZE_BYTES← 20 × 1024 × 1024
5 REST_MS← 10 ; /* Assuming 𝑡ℎ = 𝑡𝑙 = 10𝑚𝑠 */

6 if binaryString % PACKAGE_BIT_COUNT ≠ 0 then
7 Append zeros to make binaryString divisible by PACKAGE_BIT_COUNT;
8 encodedData = "" ;
9 foreach package of PACKAGE_BIT_COUNT from binaryString do
10 encodedPackage = hamming_codec::encode(package, PACKAGE_BIT_COUNT);
11 encodedPackage = "1" + encodedPackage;
12 encodedData += encodedPackage;

13 Sending the encoded data:
14 foreach bit in encodedData do
15 if bit = 1 then
16 for 𝑖 = 1 to BIT_PULSE_COUNT do
17 for 𝑗 = 1 to SIZE_BYTES do
18 Allocate 𝑝𝐵𝑖𝑔𝐴𝑟𝑟𝑎𝑦 [𝑗] ← 0𝑥𝐴 ; /* Write dummy data to the array

*/

19 Copy 𝑝𝐵𝑖𝑔𝐴𝑟𝑟𝑎𝑦 to another array 𝑝𝐷𝑒𝑠𝑡𝐴𝑟𝑟𝑎𝑦;
20 Free memory of 𝑝𝐵𝑖𝑔𝐴𝑟𝑟𝑎𝑦 and 𝑝𝐷𝑒𝑠𝑡𝐴𝑟𝑟𝑎𝑦;
21 Sleep for 𝑅𝐸𝑆𝑇 _𝑀𝑆 milliseconds;

22 else
23 for 𝑖 = 1 to BIT_PULSE_COUNT do
24 Sleep for 𝑅𝐸𝑆𝑇 _𝑀𝑆 × 2 milliseconds;

25 End of Transmission.

4.6.2.2 Receiver

The receiver keeps track of the memory usage values throughout a period of
time and with these data extracts the information that is being transmitted

60

4.6 MeMoir: A Covert Channel Based on Memory Usage

through the channel. The process implemented as the receiver module is
depicted in Fig. 4.13. First, it samples the total memory usage by reading and

Figure 4.13: Overview of the receiver module

parsing the ‘/proc/meminfo’ file from the Linux OS, which by default does
not require administrator privileges. This value is calculated using Eq. (4.3),
reading the corresponding fields of the file. The sample rate is determined by
the Nyquist theorem, which is set to at least double the channel frequency.

𝑚𝑒𝑚𝑢𝑠𝑒𝑑 =𝑚𝑒𝑚𝑡𝑜𝑡𝑎𝑙 −𝑚𝑒𝑚𝑓 𝑟𝑒𝑒 − 𝑏𝑢𝑓 𝑓 𝑒𝑟𝑠 − 𝑐𝑎𝑐ℎ𝑒 (4.3)

Given that the modulated memory usage signal has a periodic behavior in
which the pulses have a similar duration, we can group the receiver samples
into sets of size 𝑁 . Each group would contain the representation of either a
‘1’ or a ‘0’.

We implement a hybrid demodulation technique in this covert channel, work-
ing with the net total memory usage values over a period of time, as well as
a frequency analysis to process and convert the channel signal to binary data.
Because we know that the first bit (header) in a package is always ‘1’, the
receiver starts by looking for a pattern in the differences between the signal
values that may correspond to the rise and fall of ‘1’ (in the time domain).
Then it is very likely that from the first sample of the control bit, the next
8 × 𝑁 samples contain the transmitted package.

The receiver then takes each set of samples and calculates its DFT spectrum.
Tominimize the effects of low-frequency interference in the signal, we include
a 5th order Butterworth high-pass filter, to be applied before the binary
translation.

61

4 New Threats: Attacks Using System Resources

If the set of samples housed a bit of ‘1’, there will be a peak in amplitude tied
to the frequency where the channel is transmitting, which is related to the
frequency of the pulse used in the modulation process. Whereas, in a DFT
spectrum of a bit of ‘0’, there will be no appreciable peaks in amplitude. This
classification is formalized in Eq. (4.4), where a ‘1’ is tagged as such if its
amplitude 𝐴𝑖 is greater than or equal to a defined threshold 𝐴0 (𝑓𝑡), or as a ‘0’
otherwise.

𝑆𝑖 =

{
1 𝐴𝑖 ≥ 𝐴0 (𝑓𝑡)
0 𝐴𝑖 < 𝐴0 (𝑓𝑡),

(4.4)

Once the package is demodulated in binary form, what is left is to apply the
reverse Hamming code to decode the message.

In practice, this method achieves bit transmission errors less than 5% in our
transmission time, as shown in Section 4.6.3.2, making it very reliable to send
data across the two modules.

4.6.3 Experimental Evaluation

4.6.3.1 Evaluation platforms

Our experiments were carried out on two different platforms: the general-
purpose desktop PC and an embedded Raspberry Pi 4, both described in
Sections 3.2.1 and 3.2.3.1 accordingly.

Both platforms intend to show the feasibility of the attack under different
architectures while also using different transmission speeds. Both devices
implement the transmitter and receivermodules (covert channel) as well as the
countermeasure. The transmitter and countermeasure are C++ applications,
while the receiver module has a sampler monitor stage written in C++ and a
data post-processing stage written in Python.

4.6.3.2 Channel metrics

To evaluate the effectiveness of the attack, we devised two experiments using
the evaluation platforms described above. The summary of these experiments

62

4.6 MeMoir: A Covert Channel Based on Memory Usage

Table 4.7: Covert channel evaluation results

Platform Bits sent Transmission
speed

BER
(%)

PER
(%)

PC 337,952 6.5 0.32 0.71
RPi 4 4096 125 2.23 15.7

can be seen in Table 4.7. First, as the main evaluation for our channel, we
employ the general computing PC platform. In this experiment, we send a
total of 337,952 bits through the channel. This corresponds to 42,244 packages,
each with a length of 8 bits, which include a mixture of ASCII-encoded
messages, random bit strings, and images with different types of encoding
schemes. Our new software-driven covert-channel attack operates at a net
speed of 6.25 bits per second (bps) with a frequency of 25Hz on this platform.
The memory block that the transmitter reserves and releases to build the pulse
is 20MB in size. Samples of total memory used by the computer, calculating
it like shown in Eq. (4.3), are logged every 1 ms.

As depicted, the average bit error rate (BER) and the packet error rate (PER)
were below 0. 5% and 1%, respectively, with many individual messages
achieving perfect transmission (0% error rates). This indicates a high reliability
of this new covert attack for the leaking of confidential user data in a real
setting at a reasonable transmission speed.

To visually demonstrate how secret information can be sent through the
covert channel, we tested encoded images in various formats, as seen in
Fig. 4.14. This shows that even if the error rate may not be 0% in all cases,
what these images represent and their details can be easily interpreted by a
potential malicious agent.

As a second experiment, to demonstrate how the attack can be implemented
in a hardware-independent way, we use the embedded Raspberry Pi 4 as the
target. Here, we transmit 4096 bits at a much faster channel transmission
frequency to show the versatility of the attack. Although the packet error rate
is higher due to increased speed, the bit error rate remains very low. More
importantly, no changes were required from the original PC implementation,
which shows how this new software-based covert channel does not depend
on specific hardware components.

63

4 New Threats: Attacks Using System Resources

Figure 4.14: Visual demonstration of the effectiveness of the software-driven memory usage
covert channel

4.6.3.3 Covert channel under background noise

In order to evaluate the effect of other background applications (and O.S) in
the channel, we devise an experiment where we run applications benchmark
from the Phoronix Suite alongside our covert channel in the PC platform.
The results of this experiment can be seen in Table Table 4.8. As shown,
even when the different applications execute producing multiple background
memory accesses, the covert channel is able to effectively communicate all
the packets with a very low error rate of less than 5%. These results confirm
the robustness of the channel even when transmitted under a realistic noise
background from the operating system and other applications.

64

4.6 MeMoir: A Covert Channel Based on Memory Usage

Table 4.8: Effect of background application noise in the memory-based covert channel

Test application Packets
sent

BER
(%)

PER
(%)

lighthouse_chorus_cachebench 222 0.11 0.90
lighthouse_vp (1080p video) 56 0.00 0.00
lighthouse_vp4k (4k video) 56 2.68 3.57
lighthouse_vp4k_2 56 0.45 3.57
lighthouse_vp4k_3 56 0.00 0.00
sg_game (Left 4 Dead 2) 76 0.00 0.00
lh_game (Left 4 Dead 2) 280 0.80 2.86
lh_br_game (Left 4 Dead 2) 316 1.11 4.43

TOTAL / AVERAGE % 1118 0.64 1.92

4.6.3.4 Real use case: VM to host communication through MeMoir in a
Hyper-V environment

To evaluate the effectiveness of our memory-based covert-channel attack in a
real scenario, we conducted an experiment utilizing a virtualized environment
with Windows Subsystem for Linux 2 (WSL 2) running on a Windows 11
host, on the PC platform described in Section 3.2.1

WSL 2, a compatibility layer for running Linux binaries on Windows, lever-
ages a full Linux kernel within a lightweight virtual machine managed by
Microsoft’s Hyper-V [110]. Hyper-V’s robust virtualization infrastructure
enables WSL 2 to dynamically allocate and deallocate memory based on the
workload within the virtual machine. This dynamic memory management
feature is crucial to our covert channel, as it allows the memory usage of
the WSL 2 VM to fluctuate in response to specific actions taken by processes
inside the Linux environment. By monitoring these fluctuations in memory
usage from the Windows 11 host, we can infer the transmitted information.

In our experimental setup for this real use case, the memory-based covert
channel operated by carefully orchestrating memory usage patterns inside the
WSL 2 instance, employing a nonreturn-to-zero encoding, where an increase
(Δ) in the memory usage corresponds to the enconding of a bit of a ‘1’, while a
constant memory usage corresponds to an enconding of a ‘0’. These patterns
were designed to create detectable changes in the memory metrics observed
from the host system. The memory usage of the virtualized environment is

65

4 New Threats: Attacks Using System Resources

done via the vmmemWSL process in the host system, which is responsible
for managing the WSL 2 virtual machine. This monitoring was performed
at a high frequency (that is, 50 Hz) to capture subtle changes in memory
allocation and deallocation. To better visualize the applied encoding, Fig. 4.15
shows the memory usage of the VM for three packets at a transmission rate
of 5 bits per second (bps). As it can be further extracted from the figure, a
threshold (𝛿) of about 25MB on the Δ memory usage signal, is sufficient to
differentiate between ‘1’ and ‘0’ on the receiver’s side.

11

Figure 4.15: Memory usage signal (top) and processed memory Δ (bottom) measured from the
host machine’s vmmemWSL process when transmitting three 8-bit packets: b’10101010 (0xAA),
b’10011101 (0x9D) and b’11111111 (0xFF), at a transmission rate of 5 bps.

Table 4.9: Metrics for VM-to-host covert channel communication
Bits sent Packets Bit rate (bps) BER (%) PER (%)
8,000 1,000 5 1.05 3.70

In order to further validate the VM-to-host covert channel, we performed
an experiment where we sent 1,000 8-bit packets from the VM to the host

66

4.7 Summary

environment, at a local transmission rate of 5 bits per second (bps). The
results of this experiment can be seen in Table 4.9. As depicted, the very
low bit and error rates from this experiment (i.e., less than 5%) highlight the
feasibility of our memory-based covert channel under a realistic use case,
by leveraging dynamic memory allocation features inherent in WSL 2 and
Microsotf’s Hyper-V to facilitate covert communication channels.

4.7 Summary

In this chapter, we have presented four new implementations of covert-
channel attacks on emerging systems that exploit new computer resources
and obfuscation techniques to communicate information with medium to
high transmission rates in unintended ways from a cross-layer perspective.

On modern CPUs, we have shown how obfuscated short-duration attacks
can effectively transmit information through a TCC while bypassing the
state-of-the-art DFT-based detection mechanisms, which implies the need for
better detection techniques. This outcome is the motivation for the improved
detection approach proposed in chapter 5.

In GPU-based computing systems, both in general and in embedded com-
puting, we presented a TCC for the first time that leverages the parallel
capacities of the device to mount a covert channel. Moreover, in such systems,
we have shown how current countermeasures, especially those based on
DVFS produce a significant performance overhead when applied to the GPU
domain.

For FPGA-MPSoC systems, we unveil a TCC that for the first time exploits the
reconfigurability capacity of the FPGA fabric to extract sensitive information
from inside a TEE (i.e.,OPTEE) through the modulation of the temperature of
a benign hardware accelerator. This attack shows how the isolation principle
of OPTEE can by broken with such an attack.

Finally, for MeMoir - our memory-based covert channel, we have demon-
strated for the first time how information from an isolated and virtualized
environment (i.e., Hyper-V WSL2) can be communicated to the host system
by leveraging memory allocation and de-allocation patterns.

67

5 Smart Detection Of Thermal
Covert Channels

Since the first study on TCC for multi-core systems, back in [109], analyzing
the thermal behavior of a suspecting core has been used in one way or
another to identify attackers. Solutions for TCC detection first employed the
thermal sensor information to identify an attack [78], using the DFT combined
with a threshold-based frequency scanning on each core. Though effective,
the thermal sensor measurements were not sufficient to pinpoint the exact
attacking cores, since the temperature variations would also be noticeable in
nearby processing cores, due to heat dissipation. To solve this problem, in [77],
the authors proposed to employ the core’s IPS performance information as
a clear indication for the attacking physical core. This approach, however,
still employed threshold-based detection, which exhibits several limitations
when dealing with so-called stealthy attacks [159]. Unlike traditional attacks,
these stealthy attacks are able to circumvent threshold-based detection by
reducing the heat-up time when encoding a bit of 1, similar to pulse-width
modulation.

To overcome the limitations of threshold-based approaches, a ML solution
[159] was then proposed. In particular, a NN model is trained on collected
DFT windows of IPS traces from different attacks and benchmark applications.
Using the shape of the DFT data as input to the model, this solution solves
the problem of threshold dependency in previous approaches. However, as
we explain in the following motivational example and as we show in our
evaluation in Section 5.5, relying upon the DFT technique as input to detection
mechanisms is not always sufficient to detect the obfuscated short duration

This chapter is mainly based on [1].

69

5 Smart Detection Of Thermal Covert Channels

Figure 5.1: DFT spectrum of a two second long Instructions per Second (IPS) trace from a) parsec-
bodytrack benchmark application, b) traditional attack, c) stealthy attack from [159] and d) our
novel short duration attack.

attacks (described in Section 4.3), where the attack transmits information for
a short period and then stops for another time interval.

5.1 Motivational example

To highlight the limitation of state-of-the-art DFT-based detection techniques,
Fig. 5.1 shows the frequency spectrum of IPS traces from cores executing
different attacks and a benchmark application from PARSEC [26]. In Fig. 5.1 a),
we depict the spectrum of the benchmark application, while in Fig. 5.1 b) we
show the spectrum from a traditional attack. Here, as the majority of previous
works in the state-of-the-art have done, a threshold of 𝜌1 = 300 can be used to

70

5.2 Problem Definition

distinguish the benchmark application from the attack. However, as shown in
Fig. 5.1 c) and d), this threshold does not work for stealthy attacks [159] and
our obfuscated short-duration attacks described in Section 4.3, as the relevant
frequency components are below 𝜌1. A naive solution to this problem would
be to lower the threshold to 𝜌2 = 200 to capture those attacks. However,
the benign benchmark application in Fig. 5.1 a) would be misclassified as
an attack. From the example, we can see how a simple threshold over the
DFT window, which is employed by the majority of state-of-the-art solutions,
cannot distinguish the diverse TCC attacks types from benign applications.

5.2 Problem Definition

As just described, traditional threshold-based approaches for detecting TCCs
fail when facing new threats. This problem has been noticed in a recent
work [159], where Wang et al. proposed a machine learning solution that
leverages the shape of the DFT (side-lobes depicted in Fig. 5.1 b) and c)) as
features of an attack to improve the detection accuracy over the threshold-
based solutions in the state of the art. However, as shown in Fig. 5.1 d),
these side-lobes are not distinguishable in the DFT spectrum of our proposed
obfuscated short-duration attacks. Moreover, the spectrum of the short-
duration attack is more similar in its shape to the benchmark application
(Fig. 5.1 a) than to any of the other attacks. This similarity leads to low
detection accuracy levels for DFT-based solutions, as we demonstrate in
Section 4.3.3.

This example brings the observation that the frequency-based detection
techniques are not sufficient to detect the new threat. Hence, an improved
approach should smartly leverage the behavior of the offending application
over time to detect the new threats.

5.3 Novel Contributions

As we show throughout this chapter, by employing a smart time-domain-
based detection scheme, we overcome the limitation of the DFT-based detec-
tion, outperforming the state-of-the-art approaches. Our novel contributions
are the following:

71

5 Smart Detection Of Thermal Covert Channels

• We show how DFT-based state-of-the-art TCC detection solutions
are vulnerable to the obfuscated short-duration attacks described in
Section 4.3.

• We present Dotecca: the first smart detection technique that can detect
both, our new obfuscated short-duration attacks and state-of-the-art
attacks. It is smart in the sense that it is an ML-based approach that
uses short windows of time-domain measurements to quickly detect a
series of diverse attacks (i.e., traditional, stealthy, and obfuscated short
duration attacks) with higher accuracy and lower overhead compared
to the state of the art.

5.4 Dotecca: Smart Detection of Thermal
Covert-channel Attacks

As motivated in Section 5.1 and further demonstrated in Section 4.3.3, the
DFT-based approaches can be inaccurate when dealing with short-duration
TCCs. From this analysis, we have identified several challenges, which guide
the design of our smart detection of TCC attacks: Dotecca. As discussed in
Section 5.1, using frequency analysis to classify attackers is not sufficient to
accurately detect all the diversity of attacks, especially those of short duration.
To overcome this challenge, Dotecca switches to the time domain, by
utilizing windows of time-domain measurements, where the periodic nature
of the attack is perceptible and distinguishable from normal applications.

Moreover, in short-duration attacks, the adversary can communicate infor-
mation by employing shorter-size packets. If a detection mechanism employs
a large window size, the time that it takes to sample the long window could
be large enough to allow the communication of several short packets. This
means that, even if the attack is detected, by employing a large window
on the detector side, an attacker might still be successful in leaking critical
information. To overcome this challenge, Dotecca employs short-duration
windows, which allows to detect the attacker faster while reducing the
amount of possible information leakage before its detection.

Any solution that tackles many-core systems should be able to identify the
core that executes the attack. Therefore, sensor data (IPS, temperature etc.)
needs to be sampled from every core. Since a centralized mechanism, where

72

5.4 Dotecca: Smart Detection of Thermal Covert-channel Attacks

HotSniper

IPS Traces

TAs
SAs

B
en

ch
m

ar
k

A
pp

s
(P

A
R

SE
C

 +
 S

P
LA

SH
2)

t0 … t99

Training/Test
Data

C0

...
Cn

Design-Time Run-Time

NN Model

Core IPS
Sampling

Window
(100 samples)

Attack

No attack

Figure 5.2:Overview ofDotecca including the design-time training process, as well as the run-time
inference.

all required processing is performed on a single core, would not scale with
an increasing number of cores, Dotecca uses a distributed core-level de-
tection mechanism, where every core samples, stores, and analyses its own
sensor data to quickly detect attackers without losing efficiency when scaling
to many-cores.

Figure 5.2 shows an overview of Dotecca. At design time, we train a classifi-
cation NN model to effectively predict if a set of time-domain performance
readings (window) contain a TCC attack, using traces from benchmark appli-
cations as well as from traditional attacks (TAs) and stealthy attacks (SAs). At
runtime, our technique invokes the NN model periodically (i.e., every 100ms)
to predict whether a core is running a malicious transmitter application.

Dotecca is designed as a distributed core-level detection policy that can be
used to detect not only the presence of an attack in the system but also the
location of the attacker, i.e., the core on which the transmitter is running.
This enables the design of less invasive and more localized countermeasures
that can act at the level of the core hosting the malicious application, hence
minimizing the accumulated overhead on the system.

73

5 Smart Detection Of Thermal Covert Channels

Table 5.1: Different datasets are used to train and test our model
Model Description
BA Non-attack benchmark applications
TA Traditional TCC attacks
SA Stealthy attacks [159]
OA Our obfuscated short-duration attacks

5.4.1 Training Data Generation

To generate training data for our model, we first run multiple simulations1 of
TCC attacks and non-attack benchmark applications from PARSEC [26] and
SPLASH-2 [161], and we record their IPS over time. From these simulation
traces, we extract multiple windows of 100ms sampled at a 1 kHz frequency,
i.e., 100 samples. Since a window of 100 samples at 1 kHz would hold at least
two periods of a very low-frequency attack (i.e., 30Hz), we chose 100ms as
our detection epoch. Such a short window allows us to quickly detect and
react to potential attacks, including our new obfuscated short-duration attack
from Section 4.3. Windows are then labeled either with 1 or 0, depending on
whether they represent an attack or not. Thus, the features of our classifica-
tion model are the 100 IPS values, representing the sample window, and the
prediction label determines whether or not the window corresponds to an
attack. This window extraction process is repeated for non-attack benchmark
applications (BA) and for three types of attacks: traditional (TA), stealthy (SA)
and our new obfuscated short-duration attacks (OA), as shown in Table 5.1.
All of them employ a variety of transmission frequencies ranging from 30Hz
to 400Hz.

5.4.2 Model Topology Selection

Following the supervised learning methodology, we use the training data
generated in the previous step to train and test our model at design time. We
start by building a preliminary NN model with 5 hidden layers (32 neurons
each) with ReLU activation and one output layer (1 neuron) with sigmoid
activation. We combine the four datasets generated previously into one

1 The simulation setup is detailed in Section 5.5.

74

5.5 Evaluation

(2,10) (2,24) (2,32) (3,32) (4,32) (5,32)

98

99

100

Model Topology (# of layers, # of neurons per layer)Pr
ed
ic
tio

n
Ac

cu
ra
cy

(%
)

10
12
14
16

In
fe
re
nc
e
Ti
m
e
(μ
s)

Prediction Accuracy Inference Time

Figure 5.3: Different NN architectures achieve different prediction accuracy and inference times.

balanced dataset, where both attacks and non-attacks are represented equally
i.e., 50/50 split. We randomly select 75 % of the dataset for training and 25%
for testing the model. The training of the NN is monitored with early stopping
to halt the training once the model converges and once the accuracy stops
improving on a validation set, representing 10 % of the training dataset. This
preliminary test shows that the NN can achieve a high accuracy of more than
99 % and an inference time of 16.3 μs. Since this model will be used at runtime,
it is crucial that it is as lightweight as possible. Therefore, we perform a Neural
Architecture Search (NAS) to explore the impact of using different network
topologies on prediction accuracy and inference overhead. The results of this
experiment are shown in Fig. 5.3. We observe that the prediction accuracy
only marginally improves with topologies of more than 2 hidden layers while
incurring an extra inference overhead of more than 35 %. Therefore, we select
a NN model consisting of 2 hidden dense layers (32 neurons each) that can
achieve a prediction accuracy of 99 % while maintaining a low overhead of
12.8 μs.

5.5 Evaluation

We run simulations on theHotSniper described in Section 3.1. Cores follow the
Xeon X5550 Gainestown model with 64 kB of L1 cache and 256 kB of L2 cache.
The defaultHotSpot cooling parameters are used with an ambient temperature
of 45 ◦C. For the non-attack simulations, we use 15 multi-threaded applica-
tions from two benchmark suites PARSEC and SPLASH-2, with simmedium
and large input sizes. These applications are: blackscholes, bodytrack, stream-

75

5 Smart Detection Of Thermal Covert Channels

cluster, swaptions, x264, cholesky, fft, fmm, lu.cont, lu.ncont, radiosity, radix,
raytrace, water.sqn and water.sp. They are run with different numbers of
threads and at different Voltage/frequency (V/f) levels. In HotSniper, we
sample the IPS (from an internal performance counter structure) and the
temperature signal at a rate of 1 kHz. The resolution of the thermal sensor
in the simulator is 0.1 °C, which is similar to modern implementations [126].
As for the different attacker types (i.e., traditional, stealthy, and obfuscated
short duration) we collect their traces from multiple simulations at different
attack transmission frequencies from 30Hz to 350Hz, with core frequencies
varying from 1GHz to 4GHz.

5.5.1 Evaluating the Effectiveness of Dotecca

To further evaluate the effectiveness of our time-based detection model by
itself and in comparison with the DFT-based approach, we conduct the fol-
lowing experiments (summarized in Figs. 5.4 and 5.5) while keeping the same
architectures for both our NN and the model from [159] and keeping the
same DFT window size of 2000 samples.

Experiments 1–3: We train our model, Dotecca, and our implementation
of the state-of-the-art solution using the traditional attacks (TA) and non-
attack benchmark applications (BA) datasets. When using a split of 75 %
of the data for training, and 25% for validation, both models obtained a
relatively high accuracy of more than 92% (Exp1). Then, we evaluated the
same models against traces from the stealthy attack (SA), which were unseen
during training (Exp2). Here the our model maintains a high accuracy of
96.33 %, while the DFT-based solution had a significant accuracy drop. Finally,
we employed the samemodels to evaluate them against unseen traces from our
new short duration attack (SA) exclusively (Exp3). Once again our solution
kept a high accuracy of 95.73 %, while the DFT-based approach shows a
reduced accuracy again. Altogether, our time-based Dotecca model is capable
of generalizing to unseen attacks, when trained only with the traditional
attacks, while the DFT-based solution fails to do so.

Experiment 4: We combine the TA, SA and BA datasets, train both models
with 75% of the data, and use the remaining 25% for testing. The results
of this experiment show that Dotecca and our implementation of the model
from [159] are both able to predict traditional and stealthy attacks with a very
similar accuracy of more than 97 %. This means that Dotecca is as effective as

76

5.5 Evaluation

state-of-the-art DFT-based detection techniques when dealing with traditional
attacks.

Experiment 5: We combine the TA, SA and BA datasets, use them to train
the two models, and then test them on the new obfuscated short-duration OA
dataset that were unseen during training. The results of this experiment show
an interesting trend. Our model detects the new obfuscated short-duration
attacks with an accuracy of 97.5 %, while the accuracy of the model from [159]
drastically dropped to only 18 %, as it was shown in Fig. 4.4. Our model was
therefore able to effectively generalize to the unseen new attack variant, while
the DFT-based approach failed to identify it.

Experiment 6: We combine the TA, SA, BA, and 50% of OA datasets, use
them to train the two models, and then test them on the remaining 50% of
the OA dataset. The results of this experiment show that Dotecca detects the
short-duration attacks with an accuracy as high as 99 %. Although the new
attacks have been seen during training this time, the DFT-based approach
struggles to reach the previously achieved high accuracy of 97.2 % and rather
stagnates at 80.7 %.

Experiment 7: We evaluate the state-of-the-art model as in Experiment 6,
but using different window sizes for the DFT. We tested window sizes of 3000,
1000 and 500 samples. Our results show that the detection accuracy of the
model actually degrades (60.32 %, 73,82 %, and 55.82 %, respectively). This
shows that the size of the DFT window is not the factor why the frequency-
domain approach has a reduced accuracy and it confirms that the literature-
recommended window size of 2000 samples[159] is a good choice.

As it can be seen from our comprehensive experiments, when dealing with
obfuscated short duration attacks, the state-of-the-art approaches exhibit
a reduced detection accuracy. Although the attack is still present in the
windows used for the DFT, its periodic behavior is overshadowed by the
normal processing part. Since state-of-the-art solutions employ the shape of
the DFT (i.e., peaks and side-lobes) as indication of the attack, it is expected
that this non-traditional spectrum is miss-classified as a normal application,
because for the most part, the attacker behaves like one. However, since the
transmission and the normal processing segments of the attack occur at a
different time, the periodic behavior of the attack can not be hidden in the time
domain. Moreover, since the transmission segment of the attack is essentially
similar to traditional and stealthy attacks, our time-domain model is able to
easily generalize to such attacks even when they are unseen during training.

77

5 Smart Detection Of Thermal Covert Channels

Exp1 Exp2 Exp3
0

50

100
Pr
ed
ic
tio

n
Ac

cu
ra
cy

(%
)

Dotecca DFT-based [159]

Figure 5.4: Exp 1 - Both models are trained and evaluated with trad. attacks (TA) and benchmark
applications (BA). Exp 2 - Models trained with BA and TA, evaluated against stealthy attacks.
Exp 3 - Models trained with BA and TA, evaluated against our obfs. attack (OA). Dotecca is able
to generalize with high accuracy to unseen attacks, when trained only with TA and BA, while
the DFT-based approach fails to do so.

Exp4 Exp5 Exp6
0

50

100

Pr
ed
ic
tio

n
Ac

cu
ra
cy

(%
)

Dotecca DFT-based [159]

Figure 5.5: Exp 4 - Both models are trained and evaluated with trad. attacks (TA), stealthy attacks
(SA) and benchmark applications (BA). Exp 5 - Models are trained with TA, SA and BA, evaluated
against our obsf. attack (OA). Exp 6 - Models are trained and evaluated with TA, SA, BA and
OA. The time domain analysis allows a highly accurate prediction of all types of TCC attacks,
while the DFT-based approach struggles to maintain this standard when exposed to our novel
obfuscated short-duration attack.

This suggests that new potential attacks with periodic behavior are very
likely to be detected by Dotecca. The combination of these factors contribute
to the high detection accuracy achieved by Dotecca and its improvement over
the DFT-based state-of-the-art solutions.

5.5.2 Runtime Overhead

To estimate the overhead produced by Dotecca, both in the data collection
and inference processes, we implemented our NN model as an application. As

78

5.6 Summary

detailed in Section 5.4, Dotecca first records the IPS of the core over the 100ms
window duration and then passes this data to the NN to predict whether the
core is exhibiting an attack or not. This two-step process requires a total over-
head of 12.8 μs on our target platform running at 2GHz, which corresponds
to an overhead of 0.013% of the execution time of normal applications. As
a comparison, the DFT-based approach from [159] requires about 450 μs to
perform the DFT plus an inference time of 50 μs for a CPU running at 2GHz.
Note that although our model has more neurons in its hidden layers, we are
able to outperform the inference time of the state-of-the-art solution by using
a much smaller input to the NN. Moreover, their reported total overhead
corresponds to 0.187% of the execution time of normal applications. This
means that by avoiding the DFT computation, Dotecca reduces the overhead
by more than 14× compared to the state-of-the-art solution.

5.6 Summary

In this chapter, we have shown how conventional and more recent DFT-based
techniques for TCC attack detection struggle when facing new varieties
of attacks. To this end, we further show how the new attack described in
Section 4.3 remain undetected even under advanced DFT-based state-of-
the-art detection approaches, reducing their detection accuracy to about
18%. To overcome the limitations of DFT-based detection schemes found
in the state of the art, we proposed Dotecca: a new smart machine-learning-
based detection technique. By switching to short windows of time-domain
measurements as input for our NN model, we were able to detect traditional,
stealthy, and obfuscated attacks with an accuracy of 99% , while inducing a
minimal overhead in the system of 0.013% of the execution time of normal
applications. This overhead is 14× smaller than the one produced by the
state-of-the-art counterpart. Overall, we have shown how our advanced
detection technique remains very effective at identifying new threats at a
very low cost in terms of system overhead.

79

6 Lightweight Control Flow
Attestation

In today’s computing environment, trust is a fundamental element. As
devices become more interconnected to collaborate and communicate across
various computing applications, including artificial intelligence, edge process-
ing, and industrial automation [96, 155], they share sensitive data. Moreover,
the operation of one device may be influenced by the computational results of
others. Therefore, to prevent any harmful activities from remote computing
entities, it is crucial to establish trust.

Remote Attestation (RA) facilitates the creation of trust between two comput-
ing parties. For example, in a cloud computing context, users delegate their
data computation and processing to the cloud. In such a scenario, RA ensures
that the computation is not compromised and operates as expected [40, 96,
144, 151]. In this situation, RA operates between a verifier (the user) and a
prover (the remote computing device). Typically, RA is initiated by a request
from the verifier to the prover, following a challenge-response protocol. The
verifier issues a challenge to the prover, who then computes a cryptographic
hash over a specific system aspect in response to the challenge. This is done
to verify its normal operation using its known information about the prover
(e.g., expected memory contents, valid control flow paths, etc.).

As a security technique, RA can be classified into two types: static and dy-
namic. In the context of static RA, the primary objective is to ascertain the
integrity of the code memory and to verify that the binaries being executed
have not been tampered with. This is typically achieved by employing state-
of-the-art methods that compute a cryptographic hash over a specific range
of code memory [96]. To counteract replay attacks, where an attacker might

This chapter is mainly based on [5].

81

6 Lightweight Control Flow Attestation

record the value of a previous attestation and resend it, an initial value is con-
catenated with the memory range. This ensures that two separate attestation
requests for the same memory range yield two distinct responses.

However, static attestation is not equipped to tackle all potential attacks.
Therefore, dynamic attestation of the control flow, also known as Control-
Flow Attestation (CFA) is implemented [13, 88, 96]. CFA is designed to
thwart various control-flow hijack attacks where an attacker may attempt
to manipulate the control flow to expose sensitive data or execute malicious
code. The standard method to perform CFA involves calculating a sequence
of cryptography hash values over the different nodes executed in the Control-
Flow Graph (CFG) [13]. While this sequence of hashes would effectively
capture any deviation from the control flow, the process of calculating a
hash value for each executed node of the code can lead to a significant
overhead. This overhead can result in an increase in the execution time
by hundreds to thousands of times for applications with complex control
flow [127]. Consequently, there is a critical need for a lightweight solution
for enabling an efficient CFA. To address this need, we introduce our solution,
referred to as LightFAt: a novel lightweight control flow attestation scheme
powered by unsupervised machine learning.

6.1 Motivational Example

To introduce the key idea behind our novel attestation scheme, we devised
an experiment to analyze how monitoring an executing application on the
prover side, through the CPU’s PMU, can be used as an attestation response
to classify normal from abnormal behavior on the remote verifier side.

First, we created an IoT-based application on the prover that monitors user-
sensitive data (e.g., blood pressure, heart beat, electrocardiograms, etc.), de-
picted as an overview in Fig. 6.1. This application works as follows: After an
initialization stage (𝑁1), the application enters a sampling stage (𝑁2) reading
samples from local sensors. In this stage, the application first reads a configu-
ration file (“config.txt”) containing the user-defined monitoring parameters.
Then, the application writes the content of the file to a buffer and sets the
monitoring parameters accordingly, before sampling data from the sensors.
After the sampling, the application enters a low-pass filtering stage (𝑁3) to
reduce the noise in the samples. When the filtering is done, the user’s private

82

6.1 Motivational Example

N1

N2

N3

N4

N5

Nx

N6

(i)

(ii)

�call init();

�call sample(“config.txt”);

�call filter();

�call encrypt();

�call save();

�exit;
�injected code

regular path
control-flow attack path:

(i) code injection
(ii) node skipping

control-flow vulnerability

Figure 6.1: Overview of the control-flow attack paths on a vulnerable custom application.

data samples are encrypted (𝑁4) and then saved to a file (𝑁5), before exiting
(𝑁6).

However, 𝑁2 of the application exhibits a buffer overflow vulnerability, be-
cause the content of the input file is written directly into the buffer without
any size checking. This can be exploited by an attacker through a crafted
payload written in the file to (𝑖) deviate the control flow of the application and
execute arbitrary code or (𝑖𝑖) perform node-skipping (e.g., to leak sensitive
information by skipping an encryption step).

In order to characterize the execution behavior of the application under
normal and attack scenarios, we sought run-time features that represent both
computation and memory intensity during an execution interval. For this,
we selected the average Instructions per Cycle (IPC) as the measurement
of computation, and the average number of memory accesses (collected at
the L1 cache) as a measurement for memory intensity. We measure the
average IPC and L1 cache accesses from multiple runs of the application
under normal and attack executions, both for node skipping and control
flow deviations. Figure 6.2 shows the average IPC and cache accesses, as a

83

6 Lightweight Control Flow Attestation

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

Avg. IPC

Av
g.

Ca
ch
e
Ac

ce
ss
es

(×
10

6)
Normal
Attack

Figure 6.2: Normal runs and attack runs for the example application are differentiable in the
feature space.

feature space, extracted from the processor’s PMU for the different runs. As
shown, the normal execution and the attack executions are differentiable.
This means that these features of the IoT-based application as a prover
can potentially be used by a remote verifier to identify abnormal
executions caused by control-flow deviations in RA protocol. The validity
of these characteristics as normality indicators are further confirmed with
multiple real-world applications in Section 6.4.2.

6.2 Problem Definition

Several challenges arise when integrating the application’s dynamic behavior
into an attestation context. First, such a solution might require knowledge of
the attacks at design time of the application in order to produce a method to
differentiate between normal and abnormal traces. However, at design time,
the designer of the application would not know about the possible attacks or
vulnerabilities (otherwise, the attestation tasks would become trivial). This
means that producing enough abnormal traces to represent the diversity
of possible attacks might not be feasible at all. Moreover, using a simple
threshold heuristic to separate normal from abnormal behavior might not be
possible without properly describing all attacks.

84

6.3 Novel Contributions

The second challenge is how to monitor the application. If monitoring is done
throughout the execution of the application, the attack part of the dynamic
execution might be hidden within the normal part. On the other side, if
some parts are skipped, attacks might occur on the unmeasured part, and the
attack would go undetected. This means that choosing relevant regions of
attestation becomes a bigger challenge when using the execution information
as the attestation mechanism.

The third challenge is the trade-off between security and performance. While
monitoring the application (instead of computing hash chains) might have a
much lower performance impact on the application, the security is potentially
reduced. The hash-based solutions are 100% accurate since the attestation
response either matches with the expected computed value or does not match.
However, the dynamic behavior of an application running on a real system can
never be exactly the same, so there might be cases where it is hard to classify
whether an observed behavior is or is not due to an attack. The challenge
then resides in how to provide a good security mechanism (i.e., achieve a high
accuracy) while achieving a very low and feasible overhead, which can allow
the CFA of complex applications in a real-world scenario. Notably, the state-
of-the-art hash based solutions without specialized hardware support are
impractical in such complex applications due to these high overheads [127].

We focused on these challenges in our design process for LightFAt: a novel
unsupervised ML-based attestation solution using the dynamic behavior of
the application as an indicator of abnormal or malicious execution due to
control-flow deviations.

6.3 Novel Contributions

In this chapter, we significantly extend the initial observations from our
previous work [5]. As such, here we present the following contributions:

• We are the first to propose employing execution readings from the
CPU’s PMU, such as IPC and L1 cache accesses, as indicators of nor-
mality in a CFA scheme. We present an analysis and quantitative
validation utilizing the execution features as indicators for normality
in the execution of an application set in Section 6.4.2.

85

6 Lightweight Control Flow Attestation

• We devise a general methodology to identify relevant Regions of At-
testation (RoAs) to be used in our approach (Section 6.4.6), especially
in cases of complex applications, where a single RoA might not be
sufficient to properly assert the integrity of the application.

• We propose a novel unsupervised ML-based solution to control-flow
attestation, which greatly reduces the overhead on the prover’s side
when compared to traditional solutions. We evaluated three unsuper-
vised learning models: One-class Support Vector Machine (OSVM),
Local Outlier Factor (LOF), and Isolation Forest (IFO). For the latter, as
an outlier detection mechanism, we implemented a synthetic anomaly
generation (Section 6.4.5), which helps to represent abnormal behavior
in the models without the need for real abnormal traces.

• We present an exhaustive evaluation of our lightweight attestation
scheme, by including both benchmark and real-world vulnerable ap-
plications. Moreover, we perform a quantitative comparison against
three other state-of-the-art approaches, which shows the benefits of
our lightweight attestation technique (Section 6.5.4.3).

6.4 LightFAt: Lightweight Control-flow Attestation

6.4.1 Target System, Threat Model, and Assumptions

Current devices, even in the cyberphysical domain, have become increasingly
advanced and do not usually run bare metal applications anymore. Modern
systems such as Raspberry Pi and MPSoC FPGAs are capable of running a
fully functional operating system (OS), which adds further complexity to the
system and the computation running on it. LightFAt targets such kinds of
modern OS-based platforms. Our solution leverages the existing CPU’s PMU,
commonly available in modern architectures for such systems [149], in order
to gather the execution metrics of the applications running in the system.

The targeted threat model for our approach has the same assumptions used
by the state-of-the-art for CFA [13, 42, 43, 173]. We assume that the attacker
wants to hijack the control flow through code injection or reuse, by exploiting
a software vulnerability. Moreover, the attacker will not change the code
memory content, as we assume that LightFAt will run orthogonal to static

86

6.4 LightFAt: Lightweight Control-flow Attestation

attestation, which would catch any tampering with the memory code. We
also assume the OS on the prover side is trusted and therefore our deployed
attestation service is trusted as well. Additionally, we assume a remote verifier
to be trusted. The verifier starts the attestation process and checks the validity
of the attestation response.

Unlike other hardware-assisted attestation schemes, LightFAt does not require
or assume any additional special hardware, i.e., it can be deployed on existing
systems without further hardware modifications. Note that since we focus
on the attestation scheme itself for a single device, IoT Swarm attestation [17,
31], physical attacks [19, 85], and restoring the state of the verifier [84] are
all out of scope for this work.

6.4.2 Execution Behavior as Normality Indication

As we showed in our motivational example in Section 6.1, the IPC and L1
cache access features could serve as indications of an abnormal execution
of the exemplary application. Two critical questions may arise from the
motivation example.

Why did we choose these features?

Firstly, it is commonly used in application benchmarking and profiling to cat-
egorize applications into compute-bound and memory-bound [142]. Since we
want our solution to be effective for any application, we should consider both
types. To represent memory intensiveness, we selected the most memory-
related general metric we could measure in the system, which is the total
number of memory accesses over a period of time. Since all memory accesses
are L1 accesses, we measure and use this value as a proxy to characterize
the memory-bound behavior. For the compute-bound behavior, naturally, we
chose the IPC.

Another reason we chose these two metrics is that IPC alone or memory
accesses alone might not accurately describe the behavior of an application.
This is because although IPCmetric could also implicitly contain partial effects
of the memory accesses, i.e., IPC might be lowered down by many memory
accesses, this is not exclusively the case, as some compute instructions are
more complex and take more time than others. Thus, the combination of
both features is needed in order to retrieve enough information for such an
application task.

87

6 Lightweight Control Flow Attestation

Table 6.1: MI score for the average IPC and average cache accesses on different applications
App MI: 𝜇IPC (𝜇Cache) App MI: 𝜇IPC (𝜇Cache)

custom 0.570 (0.694) tinyexr 0.693 (0.693)
pcf2bdf 0.691 (0.693) radiosity 0.640 (0.640)
raytrace 0.601 (0.605) water-nsq 0.592 (0.657)
fmm 0.636 (0.614)

How do we know they can be used as normality indicators?

While the motivation example shown in Section 6.1 serves as an initial con-
firmation that these features are good indicators of normality, we further
explore this observation for a bigger application set, using the Mutual In-
formation (MI) score as a quantitative indicator of the validity of these two
features.

For this purpose, we tested seven applications including the exemplary appli-
cation described in Section 6.1, two real-world vulnerable applications, and
four benchmark applications. The real-world applications used are pcf2bdf
and tinyexr, which contain a confirmed vulnerability listed by NIST [120,
121]. As an attack for these applications, we employ the provided proof of
concept payloads, found in their corresponding issue report in their code
repositories. For the four benchmark applications, we also employ fmm,
water-nsq, raytrace, and radiosity applications from the Splash3 benchmark
suite [140]. Although the latter does not present any known vulnerabilities,
we create emulated attacks on them, similar to the attacks from the other
real-world applications, which divert the control flow by either skipping
nodes in the CFG or executing external code. For normal executions, we
use several different input files and run the applications with diverse system
loads.

To evaluate the validity of the features, we compute the MI score for each
one of them, using normal and attack traces. In this case, the MI score gives
an estimation of how much information about the normality of the set can
be obtained from any individual feature. As we have two classes in our data
(i.e., normal and abnormal) that can be represented by one bit, the highest
MI score between one feature and the classified data is ‘1’ according to the
Shannon entropy of probability distributions [90]. As depicted in Table 6.1,
the MI score remains higher than 0.5 for all the applications, which means

88

6.4 LightFAt: Lightweight Control-flow Attestation

that the features are indeed relevant to the classification problem since each
feature brings more than 50% of the information about the normality of
the data. Moreover, the scores are consistently high for all the applications,
which suggests robustness and generality. Overall, the obtained MI scores
show strong evidence supporting the relevance and validity of the features
as indicators of normality in our technique.

6.4.3 Attestation Flow

Monitoring
service

Attestation
service

� RoA start

�IPC, cache
accesses traces

Performance
counters

� prediction

Challenge
generation

ML model

Remote
verifier

Prover

Application

�challenge

�response

�RoA
ID

LightFAt+

Figure 6.3: LightFAt working procedure overview

LightFAt follows the steps of a regular RA scheme. As depicted in Fig. 6.3, our
attestation flow starts with the challenge 1 that is generated on the verifier
side. The challenge is received on the prover side by a trusted attestation
service, which translates the challenge into a Region of Attestation (RoA).
The RoA specifies the starting point and length of the monitoring for the
performance (IPC) and cache accesses metrics. Since complex applications
might include several RoAs, the attestation service specifies an RoA identifier
(ID) 2 , so the application knows which specific region is under attestation.
After receiving the RoA ID, the application executes normally until it reaches
the RoA. When the RoA is reached, the application indicates the start of the
RoA by generating a signal 3 to a trusted monitoring service. This service
reads the performance counter information from the application process
and all its corresponding threads. When the length of the RoA is reached,

89

6 Lightweight Control Flow Attestation

the monitoring service returns the IPC and cache access traces 4 for the
duration of the RoA to the attestation service. Then, the attestation service
signs the collected traces and sends them back to the verifier as the attestation
response 5 . The response signature is checked by the verifier to ensure
it is untainted, and then the IPC and cache access information is passed to
an unsupervised ML-based model, which emits the final verification as a
prediction result 6 .

Note that LightFAt requires the code to be instrumented to add the triggers for
the RoAs. This instrumentation can be done either by the application designer
on the code level or the binary level by the verifier using a similar solution
to [13, 123]. For the purposes of implementation and further evaluation, we
build our solution to work on a Linux-based system.

In the following sections, we detail the implementation of the main compo-
nents of LightFAt both on the prover and the verifier side.

6.4.4 Prover Implementation

On the prover side, LightFAt mainly consists of three components: the attes-
tation service, the monitoring service, and the RoA instrumentation of the
application.

Attestation Service

As previously described, the attestation service starts the attestation process
on the prover side by generating the RoA identifier. We implemented this
service as a C++ application. Depending on the challenge received from the
verifier entity, the attestation service issues a POSIX signal to the application.
The signal number directly corresponds to a specific RoA. Note that this
gives us up to 32 different possible RoAs, which should be enough for most
applications since the regions should cover large sections of execution. If
more regions are required, the indication can be easily implemented through
one single signal synchronization combined with a shared medium (e.g., a
file), where the region ID is stored.

After the traces have been collected, the attestation service packs the data
and signs the response with a key only known by the verifier. For all our
evaluations, the collected data from a single attestation procedure consists of

90

6.4 LightFAt: Lightweight Control-flow Attestation

no more than 1, 000 single-precision floating-point samples (i.e., a maximum
of 4 kB of actual data).

Application Instrumentation

In order to carry out our execution behavioral attestation, we instrument the
application code. First, we add a small asynchronous signal handler module
that gets triggered upon the reception of the RoA ID from the attestation
service. Within this signal handler, we enable a flag corresponding to the
region that must be attested and return control to the application. When
the application enters the designated RoA, we trigger the start of RoA by
issuing a SIGUSR1 POSIX signal to the monitoring process. As far as the
application goes, no additional modifications are required. Notably, the added
instrumentation is small and mostly focused on synchronization and signal
issuing.

Monitoring Service

The monitoring service is a background running application that reads the
performance counter information from the target application. Upon receiving
the ‘start of RoA’ signal from the application code, the service measures IPC
and L1 cache accesses periodically every 1ms. To this end, we employ the
Linux perf tool [44] to gather the samples from the target’s process id and all
its child processes, using a sampling duration of a maximum of 500ms per
RoA. When the sampling finishes, the monitoring service sends the data to
the attestation service through a private secure file.

6.4.5 ML-based Remote Verifier

On the remote verifier side, the main component of our solution is the ML-
based classifier that decides whether the attestation response data (i.e., the
IPC and cache accesses information) corresponds to a normal or an abnormal
execution.

When designing an ML-based solution to classify between two or more
categories, one of the main challenges is the possible lack of adversarial data
for the model training process. In our case, collecting the normal data traces
is rather straightforward, as it only requires measuring the executions in
different RoAs. However, abnormal traces are harder to get.

91

6 Lightweight Control Flow Attestation

Prover

Application

Monitoring
service

Design-Time Run-Time

Synth.
anomaly
generation

Data set

normal
traces IPC

cache

abnormal
traces

IPC
cache

Pre-processing

ML models

attestation
response

prediction

normal abnormal

Figure 6.4: Overview of the ML-based verifier in LightFAt

First, since application designers often struggle to identify vulnerabilities in
their own code (otherwise, they would have fixed them), modeling an attack
on an potential and identified vulnerability to gather abnormal samples on
their own code is not an easy task. Second, even if an attack is modeled,
collecting abnormal samples on a particular application can hardly reflect all
possible abnormal executions, since the dynamic behaviors of an attacker or
abnormality are unpredictable and attack strategies are vast. To deal with
this challenge, we chose to use the unsupervised learning technique, where
models are fitted with mostly normal (unlabeled) execution traces, avoiding
the need for an attack model or implementation.

For comparison purposes, we use two types of unsupervised learning clas-
sifiers: novelty detection and outlier detection. For the novelty detection
technique, we propose to use the OSVM and LOF approaches, which do not
require training samples from abnormal traces. This means that the
models only learn the normal behaviors, rather than relying on the knowledge
of any particular attack beforehand. As for the outlier detection, we use the
IFO model. This outlier detection technique requires a small percentage of
abnormal data for training purposes. In order to apply the method, similar
to other anomaly detection approaches [143, 160], we augment the normal
data with semi-random synthetic anomalies (𝑋), which correspond to 10% of
the normal samples. These synthetic anomalies represent variations from the

92

6.4 LightFAt: Lightweight Control-flow Attestation

original application. They are randomly generated within a region of up to
five standard deviations (𝜎) outside of the normal traces (𝑋), that is:

𝑋 ∈ [
min(𝑋) − 5𝜎, min(𝑋)] ∪ [

max(𝑋), max(𝑋) + 5𝜎]
The proposed ML-based remote attestation model from the verifier perspec-
tive can be seen as a two-phase process, as depicted in Fig. 6.4. At design time,
we compute the average IPC and cache access window traces from runs of
the application’s RoA and create a training dataset of normal execution traces
extracted from the monitoring service on the prover for a specific RoA. For
the outlier detection models, this dataset is expanded with 10% of synthetic
anomalies as previously described. Note that for the design of the verifier, no
real attack traces are needed. However, to evaluate the model, as we show in
more detail in Section 6.5.3, we created real attacks on vulnerable applications
to validate the effectiveness of our solution.

At runtime, once the model has been trained, LightFAt gets the attestation
response, computes the average for IPC and cache accesses within the RoA,
and feeds both features to the model to obtain the final prediction.

6.4.6 Choosing the Regions of Attestation

LightFAt works upon triggers of RoAs. One application can have multiple
RoAs for which the verifier might send the challenge. Choosing the beginning
of a RoA is not as trivial as it might first seem. To better understand this, an
example is shown in Fig. 6.5. It shows a part of a program’s CFG where a
trigger for RoA has to be included. 𝑁2 is a node where a condition is evaluated.
Based on the decision it would take either Path A or Path B. Path Awill execute
𝑁4 then 𝑁3 then 𝑁5, while Path B will execute 𝑁3 before 𝑁4, and lastly 𝑁5.
Suppose that 𝑁3 is an infected node where an attack is executed. If the trigger
for the RoA is added at 𝑁4, but Path B is taken, it will go undetected. However,
if the trigger is added at the latest to 𝑁2, any attack on 𝑁3 will be detected.
Hence, when specifying the RoAs, special attention needs to be put to where
the triggers are exactly added.

In a general case, we propose the following methodology for selecting
RoA points in our solution:

93

6 Lightweight Control Flow Attestation

N1

N3

N2 N5

N4

Common Path

Normal Node

Infected Node Path B

Bad Trigger Node

Path A
Good Trigger Node

Figure 6.5: Example of bad trigger placement for a region of attestation.

• Notice the normal execution time of the application. This could mean
the whole execution or a single iteration for periodic applications.
If the execution time is relatively short (i.e., at most in the order of
seconds) then one single RoA triggered at the beginning of the program
works for our attestation scheme.

• If the execution time is not short, then multiple RoAs should be placed.
From our observations and experiments, one RoA at the initialization,
and then one additional RoA per complex function of a group of func-
tions with a similar duration as the previous step should be placed.
In that case, the verifier would need to issue a different challenge for
each RoA, as we described in Section 6.4.3.

• To select the specific trigger point in a multi-RoA scenario, we suggest
computing a call graph of the application for different inputs, using
available tools such as Valgrind [118]. Based on the observation of
the graph, the common functions or nodes where the application most
frequently goes through in its executions before producing major
diversions (e.g., 𝑁2 in the above example) are good candidates for RoA
trigger points.

94

6.5 Experimental Evaluation

Although multiple RoAs may require frequent attestations, the resulting
overhead in our solution is negligible, as will be demonstrated in Section 6.5.4.
We further show the effect of proper RoA placement in Section 6.5.2.

6.5 Experimental Evaluation

6.5.1 Experimental Setup and Data Collection

To evaluate LightFAt, we use monitor traces from running applications on
the platform described in Section 3.2.2. Overall, we use the same application
set described in Section 6.4.2.

First, we use the vulnerable custom application explained in Section 6.1,
which reflects an IoT node behavior that reads sensor data, encrypts it, and
saves it for further processing. We exploit the buffer overflow vulnerability
to perform both control-flow hijack attacks shown in Fig. 6.1.

Second, we use two applications (pcf2bdf and tinyexr) with real vulnerabilities
listed as described in Section 6.4.2.

Finally, we use four applications (Raytrace, Radiosity, FMM, Water-nsq) from
the Splash3 benchmark. While these four applications do not have real vulner-
abilities, in order to show that our solution works on a diversity of workloads,
we emulate attacks on them similar to the attacks from the other vulnerable
applications. We chose these benchmark applications with a variety of work-
loads to emulate the behavior of applications with dependency on inputs
and have the potential of showing control-flow explosion as discussed in
Section 2.3.2. To further increase the diversity in the executions we change
around 30 different parameters and inputs for each of them. We instrument
each application on the code level with triggers for the RoAs. The triggers
for the RoAs are placed based on the explanation from Section 6.4.6. The
monitoring for each RoA runs for 300ms with a monitoring rate of 1ms.
We run each of the seven applications 1500 times with different inputs and
parameters to get the different possible behaviors and all the possible variants
of the control-flow explosion. We then run them another 1500 times but
with attacks implemented. We collect the IPC and cache access traces for the
chosen RoAs to feed them to the unsupervised classifiers.

95

6 Lightweight Control Flow Attestation

For the training of the models, we use the scikit-learn Python library [129].
For execution time and overhead evaluation, we use a laptop machine with a
1.60GHz Intel i5-8250U CPU with 4GB RAM.

6.5.2 Effect of RoA placement

To further show the importance of the RoA placement, we test the effect of the
definition of RoAs on the raytrace application from the Splash3 benchmark.
We define two RoAs, one with a good placement of the trigger, following the
methodology as stated in Section 6.4.6, and the other with a bad placement
of the trigger, i.e., at an input-dependent node in the CFG as depicted in
Fig. 6.5. Figure 6.6 shows the results of this test. For good placement, it can
be seen from the top figure that the attack traces are indeed separated from
the normal traces in the feature space. In contrast, the bottom part of Fig. 6.6
shows that, while some samples are separated in the feature space when
choosing a bad placement there is a large overlap between the attack traces
and the normal traces in the feature space. This overlapping would make it
impossible for any classifier to perform correctly.

6.5.3 ML Models Training and Evaluation

6.5.3.1 Training

Table 6.2: Prediction accuracy for the different applications under the evaluated unsupervised
learning models using normal, attack, and benchmark traces

Application
Models

One-Class SVM Local Outlier Factor Isolation Forest
Accuracy
attack (%)

Accuracy
benchmark (%)

Accuracy
attack (%)

Accuracy
benchmark (%)

Accuracy
attack (%)

Accuracy
benchmark (%)

custom 96.82 99.02 95.62 98.23 98.81 98.97
pcf2bdf 98.27 95.59 99.49 95.10 96.96 91.64
tinyexr 98.05 97.20 98.58 98.69 99.67 98.65
radiosity 96.04 96.02 98.59 96.36 96.68 96.62
raytrace 95.10 90.49 96.54 92.85 98.85 89.37
water-nsq 96.53 91.86 97.36 92.16 93.98 96.70

fmm 94.40 91.67 92.97 96.27 93.56 98.08

For the purposes of training the unsupervised learning classifiers, we employ
a dataset consisting of normal traces from our application set. As described

96

6.5 Experimental Evaluation

0 1 2 3 4
0

2

4

6

Avg. IPC

Av
g.

Ca
ch
e
Ac

ce
ss
es

(×
10

6)

Normal
Attack

(a) Good placement of RoA.

0 1 2 3 4
0

2

4

6

Avg. IPC

Av
g.

Ca
ch
e
Ac

ce
ss
es

(×
10

6)

Normal
Attack

(b) Bad placement of RoA.

Figure 6.6: Normal and attack runs for raytrace are differentiable in the feature space for a good
RoA (a), but overlap when a bad RoA is chosen (b)

Table 6.3: Average false negative rate (FNR), false positive rate (FPR), recall, precision and F1
scores for the different models when evaluating against normal, attack, and benchmark traces.

Score
(%)

Model
OSVM LOF IFO

Attack Benchmark Attack Benchmark Attack Benchmark
FNR 1.10 4.89 1.18 4.28 1.74 3.96
FPR 6.85 6.28 5.61 5.49 4.90 6.18
Recall 98.90 95.11 98.82 95.72 98.26 96.04
Precision 95.30 98.49 96.40 99.13 96.84 98.58
F1 97.03 96.71 97.57 97.36 97.52 97.26

97

6 Lightweight Control Flow Attestation

above, each application is run 1500 times with a variety of inputs. For each
run, we collect over 100 individual samples of both IPC and L1 cache accesses
from the PMU. Collectively, the total dataset of normal execution traces
contains over 2000000 samples.

The training of the ML classifiers is done differently according to the approach
as described in Section 6.4.5. For the novelty detection technique (i.e., OSVM),
we solely employ a randomly selected set of 50% of the applications’ normal
execution traces from our dataset, as the model does not require a repre-
sentation of abnormal samples. On the other hand, for the outlier detection
techniques (i.e., LOF, IFO), we employ the same set of normal execution traces
as used on the OSVM model, plus a set of synthetic anomalies corresponding
to a 10% of the normal traces, in order to represent abnormal samples as
required by these techniques.

6.5.3.2 Model Validation

To validate our models, we use two different test sets; the first is a mix
between the remaining 50% of the traces of the normal runs from the dataset
and an equivalent number of attack traces chosen randomly, and the second
is a mix of the remaining traces of the normal runs and an equivalent number
of other benchmark traces chosen randomly. The first test set ensures that
the attacks are differentiable from normal execution. The second test set
reflects the fact that application designers will not necessarily have an idea
about which attacks would be used against the application and they would
only be able to evaluate the trained model against random runs of other
applications.

Table 6.2 shows the accuracy of the different trained models when evaluating
against normal, attack, and abnormal benchmark traces. In general, all of the
models achieve high accuracy of more than 92% when dealing with attacks.
When evaluating against benchmark traces, themodels exhibit lower accuracy,
due to the diversity of the traces and possible random similarities with the
normal behavior. Nonetheless, the accuracy remains higher than 90% for
OSVM and LOF for all the applications.

Although the accuracy gives a general idea of how well a model would
perform, we do not rely solely on it. To better evaluate the effectiveness of
the models, we measure the false positive rate (FPR), false negative rate (FNR),

98

6.5 Experimental Evaluation

Table 6.4: Monitoring overhead on the different applications due to the attestation scheme.
Application Overhead (%) Application Overhead (%)

custom 1.265 pcf2bdf 9.781
tinyexr 2.374 raytrace 5.957
radiosity 2.100 water-nsq 8.221
fmm 1.940

recall, precision, and F1 scores. Table 6.3 shows the average scores for the
three models when using our test sets. As can be seen from the table, the FNR
(i.e., the ratio of attack traces being misclassified as normal) is very low for all
models. Although the FPR is higher than the FNR, the ratio is still less than
7% on average for all models. Moreover, as a security mechanism, LightFAt
prioritizes minimizing the number of attacks that are misclassified as normal,
as this could have potentially grave consequences for the systems, which is
not the case for false positives. Notably, once again, due to the variability of
the benchmark traces, the FNR is higher for the benchmark traces than for
the attack traces. Despite this, the three models perform well, as confirmed
by the high precision, recall, and F1 scores.

6.5.4 Overhead

We perform the overhead evaluation of LightFAt both on the prover and on
the verifier side. The prover overhead is dominated by the monitoring service.
On the verifier’s side, the overhead is the result of the model execution. In the
following, we evaluate the overhead of both sides of the attestation process.

6.5.4.1 Prover-side Overhead

Most of the lightweight RA solutions focus on reducing the overhead on
the prover side as it may affect the normal operation of the target system.
Table 6.4 shows the overhead on the prover side for LightFAt. Our overhead
is always below 10% with an average of approximately 5%, which is minimal,
especially compared to state-of-the-art solutions (see Section 6.5.4.3).

99

6 Lightweight Control Flow Attestation

Table 6.5: Execution time for the different unsupervised learning models.

Model Pre-processing
time (𝜇s)

Prediction
time (𝜇s)

Total
(𝜇s)

One-Class SVM 0.991 1.828 2.819
Local Outlier Factor 0.991 2.335 3.326
Isolation Forest 0.991 3.107 4.098

6.5.4.2 Execution Time of the ML models

Table 6.5 shows the execution time for each model on the verifier side. This
execution time has two components. The first is pre-processing, where the
features are extracted from the raw IPC and L1 cache accesses data. This has
the same time of around 1 𝜇s for all three classifiers as we are using the same
feature computation for all of them. The other component is inference time,
which is the time needed by the model to classify the traces as normal or
abnormal. The three classifiers require minimal overhead in the range of 2 𝜇s
to 3 𝜇s. This is especially noticeable when compared with other control-flow
attestation schemes in the state-of-the-art, where the verifier is expected to
emulate all possible hash calculation sequences from all possible control-flow
paths [13, 95]. Instead, LightFAt is lightweight on the verifier side and it does
not require any pre-computed CFGs.

6.5.4.3 State-of-the-art Comparison

Table 6.6 shows the average overhead on the prover side for LightFAt com-
pared to the solutions from the state-of-the-art. Notably, both C-FLAT [13]
and Tiny-CFA [123] evaluate their solution using simple applications without
complex control flow. The solution from [127] evaluates against applications
with complex control flow that might suffer from control flow explosion
and hence produces much higher overheads. As shown, LightFAt has the
lowest overhead, even when compared to the approaches dealing with simple
applications (≈ 50× less). Moreover, other low-overhead solutions such as
Lo-FAt [43] or LiteHAX [42] require special hardware for hash computations
and tracking loop information. In contrast, our solution does not require
additional hardware, as it relies on already existing performance counter
registers commonly found in modern architectures [149].

100

6.6 Summary

Table 6.6: Prover-side overhead compared to state of the art. The overheads for Tiny-CFA and
C-FLAT are based on the experiments reported in [123], which test the overhead for a simple
application with execution time in the range of milliseconds. The overhead for LightFAt and
ref. [127] is based on a variety of applications some with more complex control flow (CF).

Overhead Tiny-CFA [123] C-FLAT [13] Ref. [127] LightFAt
Simple CF 1.50× 1.76× 3.2× 1.01×
Complex CF N.A. N.A. 1000× 1.1×

To the best of our knowledge, no state-of-the-art solution reports the overhead
on the verifier side. Traditional solutions assume a verifier with unconstrained
computing power that is capable of the pre-computation or run-time emula-
tion of a possibly large CFG and its corresponding hash chain computation
for a specific challenge. We assume this computation/emulation to be rather
long, especially for very large CFGs. Our solution, in contrast, takes less than
10𝜇s to produce a verdict even on a not-high-end system, regardless of the
complexity of the CFG. We believe this fact could be leveraged to produce
real-time actions to a failed attestation, which could potentially avoid system
damage or information leakage.

6.6 Summary

In this chapter, we presented LightFAt: an unsupervised ML-based attesta-
tion scheme that leverages IPC and cache access execution traces from an
attestation region to predict whether the attestation response corresponds to
normal or abnormal execution. Our unsupervised learning approach manages
to separate between normal and abnormal traces at run-time, without the
need for actual malicious samples in the training process. On the prover’s
side LightFAt requires small code instrumentation mainly to trigger the mon-
itoring of the performance counter information while producing a minimal
overhead of less than 10% for the evaluated application set. This overhead
is approximately 50× less than existing approaches using simple control-
flow applications, and at least 100× less than other control-flow attestation
schemes for simple workloads in the state of the art. On the verifier side,
we have shown how three different unsupervised ML models present a high
prediction accuracy of over 90%, with low false positive and false negative

101

6 Lightweight Control Flow Attestation

rates. Moreover, the inference time is low, with a maximum of less than 5𝜇s,
allowing the detection of abnormalities and their possible countermeasure
in real-time without the need for big pre-computed control-flow graphs or
extensive hash computation chains, as is the case for other state-of-the-art
solutions.

102

7 Mitigation of Cache Side
Channels via Task Migration

Cache-based Side-channel Attacks (SCAs) are a particular type of attack that
exploit the intrinsic timing nature of cache memories to extract security-
critical information from variations of access time patterns on the target
application through different techniques. In the context of cryptographic
security applications (from now on secure applications), cache-based SCAs
seek to obtain the secret key by analyzing the timing behavior of either the
adversary or the secure application, using their cache access times and misses
patterns when performing encryption or decryption operations [105].

With the rise of modern many-core-based domain-specific system-on-chip
solutions in fields such as autonomous vehicles [163], high-end heteroge-
neous computers, graphic processing units, or AI accelerators [73], resource
management techniques have become a key factor to accomplish high ef-
ficiency and performance. Due to the scalability degree of these systems
and the variety of shared resources, secure applications, such as AES or RSA
implementations, running on many-core systems, face potentially bigger
threats from resource-based attacks, such as cache-based side-channel at-
tacks. Resource management techniques are a powerful tool that can help to
detect, mitigate, and overcome those threats without the need for hardware
or architectural-dependent alterations.

103

7 Mitigation of Cache Side Channels via Task Migration

Cluster 0
Core 0 Core 1
Attacker Secure App
L1 Cache L1 Cache

L2 Cache

Cluster 1
Core 2 Core 3
App 1

L1 Cache L1 Cache

L2 Cache

(a) Ongoing cache-based SCA due to co-residency.

Cluster 0
Core 0 Core 1
Attacker
L1 Cache L1 Cache

L2 Cache

Cluster 1
Core 2 Core 3
App 1 Secure App

L1 Cache L1 Cache

L2 Cache

(b) Co-residency avoided via task migration.

Figure 7.1: Representation of task migration as a countermeasure for cache-based SCA on a
distributed memory architecture.

7.1 Motivational example

As an example of how a resource management mechanism can act as a coun-
termeasure to cache-based SCAs, consider the distributed memory system
depicted in Fig. 7.1. The basic processing element is a core that contains its
private instruction and data L1 cache. A cluster is a group of cores that share
one or more cache levels (e.g., L2/L3) with each other. Clusters do not share
cache memory with each other. This model is similar to the AMD “Zen 3”
micro-architecture implemented in many commercial devices [16, 51]. The
system shown in Fig. 7.1 represents a four-core system with two clusters, two
cores per cluster, and two individual L2 cache memories; one shared between
cores 0 and 1, and the other shared between cores 2 and 3.

In the modeled system in Fig. 7.1a, a secure application is executing on core 1.
On core 0, an adversary is performing a cache-based SCA against the secure

This chapter is mainly based on [6].

104

7.2 Problem Definition

application exploting the cache co-residency between the two applications.
In this type of system, the operating system/resource manager can avoid the
attack by applying dynamic task migration. In Fig. 7.1b, we depict a scenario
where the secure application is migrated to core 3, which is no longer sharing
an L2 with the attacker, hence making it impossible for the adversary to ever
succeed.

7.2 Problem Definition

Although simplistic, the above example demonstrates the principle of dy-
namic task migration as a countermeasure to SCAs. By eliminating the
co-residency between potential attacker and the security application, the
attack is completely avoided.

However, since the constant migrations can produce adverse effects on the
system, a more complex solution should address the following questions:

• When should the resource manager apply a migration to a secure
application?

• To which core/cluster can the secure application be safely migrated?

• How to avoid an attack even if migration is not possible due to full
utilization?

• What is the potential impact on the system and other applications due
to the countermeasure?

In this chapter, we address the challenges associated with these questions,
in order to produce an efficient countermeasure to cache side channels by
leveraging task migration as the acting mechanism to mitigate the attack.

7.3 Novel Contributions

In this chapter, we present a novel approach to cache-based side-channel-
attack mitigation on many-core systems. With the aid of a smart dynamic
task migration heuristic, we show how to ensure a secure execution scenario

105

7 Mitigation of Cache Side Channels via Task Migration

for security-critical applications residing with potential attackers, as well as
non-secure applications. Our main contributions are:

• We present the first use of dynamic task migration as an operating
system level resource-management approach to specifically mitigate
cache-based side-channel attacks on distributed systems. One of the
main advantages of our approach, besides being the first of its kind, is
that it does not require additional hardware, architectural, or compiler
support, while keeping a very low overhead in the system, compared
to other software-based approaches from the state of the art.

• We offer a resource-management-based mechanism to provide a secure
execution for an application when migrations are not possible (e.g.,
under a full utilization scenario).

7.4 Threat Model

Our threat model assumes that the attacker has the capacity of measuring
either its own or the secure application’s execution time, which is the norm
for cache-based side-channel attacks. Similarly, for a successfully attack, the
adversary needs to be executing in the same cluster as the secure application,
sharing a cache level. Hence, it may have the ability to trigger the secure
application execution, but this is not a requirement for our solution. The
adversary does not have or require any administrator privileges.

As a model for the attacker in all our evaluations, we base our implementation
on the ‘Prime+Probe’ and ‘Evict+Time’ access-driven attacks from [124].
Specifically, we implement the ‘eviction’ step, where the attacker fills the
shared cache with its own data, producing misses on the victim application
on its subsequent execution. Since we focus on the effect that that attacker
has on the victim application’s performance and not on the effectiveness of
the attack, we do not implement the key extraction step. Moreover, since the
key extraction happens after the secure application has finished its execution
(i.e., offline for the purposes of the secure application), it is not relevant to
our solution.

Note that a real-world attack requires application-specific knowledge (e.g.,
T-table address for AES, or a concrete address of a library’s function), as well
OS support, which is not necessarily available in a simulation environment.

106

7.5 Migration Decision

Since the attacker implementation may vary significantly from one victim
and platform to another, we extend our model to represent this diversity of
attacks considering the impact that the attack has on the dynamic behavior
(i.e., cache misses) of the victim due to the eviction. To this end, we present
the following scenarios that will be used both in the development of the
solution and its evaluation:

• Fast: A fast and strong attack that focuses on all cache lines simultane-
ously (i.e., 100 % of the Last-level Cache (LLC)), causing many misses
on the target application, proportionally affecting its performance.
On this scenario, a possible detection measure could easily notice the
change in the secure application’s performance.

• Slow: A slow attack that focuses on much less cache lines at the
same time (i.e., 25 % of the LLC), causing low, or almost undetectable,
performance degradation on a secure application. Here, because the
degradation is not detectable, the countermeasure requires to consider
another factor: time. Since the adversary is slower, by tracking the time
that both the attacker and the secure application share on the same
cache, the countermeasure could act before an attack is successful.

• Intermediate: An intermediate-strength adversary is one that focuses
on attacking a moderate number of cache lines (i.e., 50 % of the LLC),
making it faster than the slow attack, but slower and harder to detect
than a fast attack. Due to the intermediate nature, a threshold-based
performance monitoring technique might not be able to notice the
attack. Similarly, a maximum shared time condition might also fail
to avoid the attack, since it could succeed before the time limit is
reached. On this mixed scenario, a combination of both, performance
degradation and shared time, could help to avoid such adversary.

7.5 Migration Decision

To determine the moment for migration due to a possible attack, we propose a
migration function𝑚𝑓 that ponders two factors: performance degradation and
time. As described in Section 2.2, a secure application under a cache-based
SCA experiences performance degradation, which is especially noticeable
under a high-intensity fast attack, as described on Section 7.4.

107

7 Mitigation of Cache Side Channels via Task Migration

We refer to performance as Instructions per Cycle (IPC), measured from the
CPU-internal performance counters. The performance degradation then is
computed in Eq. (7.1) as the difference between the original application’s
performance running in isolation (𝐼𝑃𝐶𝑖𝑠𝑜𝑙) and its current performance. This
difference is then amplified by a constant factor 𝛼 . Since the values are
normalized, the migration function is designed to reach a value of 1 to trigger
a migration. As shown in Eq. (7.2), 𝛼 can therefore be obtained as the inverse
of the difference between the application’s performance in isolation and its
minimum accepted value.

𝑚𝑓 = 𝛼 ∗ (𝐼𝑃𝐶𝑖𝑠𝑜𝑙 − 𝐼𝑃𝐶) +
𝑡𝑠ℎ𝑎𝑟𝑒𝑑

𝑡𝑠𝑚𝑎𝑥

(7.1)

𝛼 =
1

(𝐼𝑃𝐶𝑖𝑠𝑜𝑙 − 𝐼𝑃𝐶𝑚𝑖𝑛) (7.2)

On the other hand, a less intensive slower attack might not produce a de-
tectable effect on the secure application’s performance. To cover against such
attacks, we consider an additional factor in the migration function: time.
As described in Section 2.2, successful cache-based SCAs require a certain
amount of time (i.e., from seconds to minutes) in which the adversary shares
the victim’s cache. In Eq. (7.1), this shared time is computed as the fraction of
the current shared time between secure and non-secure applications (𝑡𝑠ℎ𝑎𝑟𝑒𝑑)
and the maximum tolerated shared time (𝑡𝑠𝑚𝑎𝑥). Based on the observation
from that most existing attack implementations require seconds to extract
the key [86, 87], a 𝑡𝑠𝑚𝑎𝑥 in the order of tens or hundreds of milliseconds
would suffice to tackle a fast adversary. It is worth noticing that a smaller
𝑡𝑠𝑚𝑎𝑥 would increase the resiliency against fast attackers, but this would lead
to more migrations, which would negatively impact secure and non-secure
application’s performance.

Because the migration function is composed of two main factors (which have
been normalized to reach a maximum value of 1), it is designed to trigger the
migration when either of those factors reaches its maximum. Additionally, by
adding both factors, we can trigger a migration when their combination also
reaches 1. This is meant as a way to catch an intermediate strength attacker,
which may not ever reach 1 in the IPC factor of the migration function,
but when adding the second factor (time) the migration will happen sooner
because of the combination. When adding both factors this way, attacks

108

7.6 Dynamic Task Migration Heuristic

with intermediate intensity can be covered. Although none of the individual
factors might be enough to trigger a migration, their sum will add up to
trigger a migration early enough to prevent a successful attack.

7.6 Dynamic Task Migration Heuristic

Once the migration decision has been made for the secure application, the
resource manager must ensure a new secure execution scenario for the appli-
cation. Our proposed algorithm, which is shown as pseudo-code in Alg. 5,
seeks to meet this requirement. As seen in the figure, at the beginning of
the periodic scheduling call, we evaluate the migration function (𝑚𝑓 , see
Eq. (7.1)). If its output its greater than one, we must apply the migration
heuristic.

To do this, the algorithm first tries to find a free core on an empty cluster to
which the secure application should be moved. If that happens, as depicted
in the figure, we select the first core from that cluster and migrate the secure
application to it. If there are no empty clusters, the next step is to find a cluster
with at least one free core and whose running threads have not exceeded the
maximum allowed shared time restriction between the secure application
and other non-secure applications (𝑡𝑠𝑚𝑎𝑥 in the flowchart). Since there could
be multiple attackers, even on different clusters, this condition is checked
to avoid migrating into a cluster with a possible attacker on it. If we find a
core this way, then we migrate the secure application to it. Otherwise, the
algorithm tries to produce a forced isolation execution (lines 19 to 40 from
Alg. 5) for the secure application, by creating an empty cluster or ensuring a
cluster without non-secure applications on it, to which to migrate. To do so,
our heuristic first checks that there are enough free resources for all other non-
secure applications from the cluster executing the least number of threads.
If there are enough resources, each one of those non-secure applications is
migrated and the secure application is migrated to that cluster. This is done to
minimize the number of migrations and reduce the impact on performance. If
it is not possible to produce a secure execution via migration (e.g., there are no
available resources to reallocate applications), then an alternative mechanism
is invoked, as seen in line 42. Section 7.6 shows a detailed description of this
countermeasure.

109

7 Mitigation of Cache Side Channels via Task Migration

Algorithm 5: High-level pseudo-code representation of migration algo-
rithm
input :𝑆𝑒𝑐𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 , 𝑁𝑜𝑛𝑆𝑒𝑐𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 , 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠

1 forall 𝑖 ∈ 𝑆𝑒𝑐𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
2 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ←− find_cluster(EMPTY);
3 if 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≠ ∅ then
4 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ←− core 0 of 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ;
5 𝑑𝑜𝑛𝑒 ←− true;
6 else
7 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← find_cluster(𝑡𝑠 𝑗 < 𝑡𝑠𝑚𝑎𝑥 , ∀ 𝑗);
8 if 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≠ ∅ & 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑖) then
9 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ←− find_core(𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟);

10 if 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ≠ ∅ then
11 𝑑𝑜𝑛𝑒 ←− true;
12 end
13 end
14 end
15 if 𝑑𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒 then
16 migrate 𝑖 −→ 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ;
17 else
18 𝑑𝑜𝑛𝑒 ←− true;
19 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ←− find_cluster(LEAST_THREADS);
20 forall 𝑗 ∈ 𝑁𝑜𝑛𝑆𝑒𝑐𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 on 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 do
21 if 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠 ≠ ∅ then
22 𝑑𝑜𝑛𝑒 ←− 𝑓 𝑎𝑙𝑠𝑒 ;
23 for 𝑐 ∈ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠 do
24 if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐) ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑖) & 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐) ≠ 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 then
25 𝐶 𝑗 ←− 𝑐 ;
26 𝑑𝑜𝑛𝑒 ←− 𝑡𝑟𝑢𝑒 ;
27 end
28 end
29 else
30 𝑑𝑜𝑛𝑒 ←− 𝑓 𝑎𝑙𝑠𝑒 ;
31 end
32 end
33 if 𝑑𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒 then
34 forall 𝑗 ∈ 𝑁𝑜𝑛𝑆𝑒𝑐𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠 on 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 do
35 migrate 𝑗 −→ 𝐶 𝑗 ;
36 end
37 if 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑖) then
38 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ←− core 0 of 𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ;
39 migrate 𝑖 −→ 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ;
40 end
41 else
42 apply_alternative_mechanism() ;
43 end
44 end
45 end

110

7.7 Experimental Evaluation

Secure Execution on Full Utilization

When no secure scenario can be found due to full utilization, then an addi-
tional countermeasure is invoked to prevent a possible attack. The goal of this
countermeasure is to create an isolation scenario for the secure application.
Since there are no available resources left, the only way of ensuring this
isolation is by choosing a cluster for the secure application and move all
other applications on that cluster. A problem arises here, since there are no
resources left where to move these applications. To solve this problem we
implemented a sleep queue, which holds applications temporally while no
resources can be found for them.

To ensure a secure execution, the resource manager first finds the cluster
with the least amount of threads and puts each of its non-secure threads
on the sleep queue, before moving the secure application to that cluster.
With the sleep queue, additional logic is added to our migration heuristic. In
each scheduling interval, as shown in Alg. 6, the resource manager checks
the sleep queue to assign sleeping threads to free cores. As shown from
lines 2 to 8, if free cores are found on a cluster where no secure application is
running, a sleeping thread is assigned to that core. Otherwise, a thread from
a different cluster is put to the end of the sleep queue (line 9), and the original
thread takes its place (lines 10 to 12). Thus, the secure application’s execution
is never affected and the potential attack is avoided. As a consequence of
this alternative, the performance of other non-secure applications might be
affected, but fairness is ensured by applying a round-robin scheduling on
which thread to send to sleep.

7.7 Experimental Evaluation

The experimental evaluation uses the setup described for the HotSniper
Simulator in Section 3.1 with minor modifications. We extended the open
scheduler from to support the cluster concept and to implement our migration
function and main algorithm. As for the open scheduler, we use a scheduling
interval of 10ms. For all the experiments described below, we use a modified
version of the Xeon X5550 Gainestown model. To simulate a distributed
system, we modified the gainestown model in Sniper to include a distributed
L2 and L3 cache for each cluster on the system, while keeping the default

111

7 Mitigation of Cache Side Channels via Task Migration

Algorithm 6: High-level pseudo-code representation of the additional
countermeasure
input :𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠 , 𝑆𝑙𝑒𝑒𝑝𝑄𝑢𝑒𝑢𝑒

1 for 𝑗 ∈ 𝑆𝑙𝑒𝑒𝑝𝑄𝑢𝑒𝑢𝑒 do
2 if 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠 ≠ ∅ then
3 for 𝑐 ∈ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑜𝑟𝑒𝑠 do
4 if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐) ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑖) then
5 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ←− 𝑐 ;
6 end
7 end
8 else
9 𝑡 ←− next_nonsecure_thread_round_robin();

10 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ←− core(𝑡);
11 sleep (𝑡);
12 assign 𝑗 −→ 𝑛𝑒𝑤_𝑐𝑜𝑟𝑒 ;
13 end
14 end

private L1 cache per core. The configuration of the cache hierarchy is shown
in Table 7.1. Unless otherwise specified, we work with a baseline platform of
64 cores, distributed evenly as 4 cores per cluster.

Table 7.1: Cache hierarchy configuration.
Parameter L1 L2 L3
associativity 8-way 8-way 16-way
size 32 kB 256 kB 8MB
block size 64 B 64 B 64 B
data access time 4 cycles 8 cycles 30 cycles
tag access time 1 3 10 cycles
shared cores 1 4 4
write back time 0 0 50 cycles

For all the tests, we use an 𝛼-value of 8.5 in the migration function, which is
computed according to Eq. (7.2), using an minimum accepted IPC value of
approximately 85% of the isolation performance.

As discussed in Section 7.5, a higher 𝛼 might work better against faster attacks,
but it also may produce a larger number of migrations, affecting the overall
performance. Unless otherwise specified, we settle to a 𝑡𝑠𝑚𝑎𝑥 base value of
120ms, which is less than it takes for most modern attacks to extract the
key without any previous interaction with the application, as described in

112

7.7 Experimental Evaluation

0 5 10 15 20 25 30
0

0.5

1

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛

Time (ms)

N
or

m
al

iz
ed

IP
C

M
ig

.f
un

ct
io

n
𝑚

𝑓
IPC Migration function 𝑚 𝑓

(a) Fast attack.

0 10 20 30 40 50 60 70
0

0.5

1
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛

Time (ms)

IPC 𝑚 𝑓 𝑡𝑠ℎ𝑎𝑟𝑒𝑑/𝑡𝑠𝑚𝑎𝑥

(b) Slow attack.

0 10 20 30 40 50
0

0.5

1

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛

Time (ms)

IPC 𝑚 𝑓 𝑡𝑠ℎ𝑎𝑟𝑒𝑑/𝑡𝑠𝑚𝑎𝑥

(c) Intermediate attack.

Figure 7.2: Effect on the normalized performance, shared time ratio, and migration function
output for AES under the fast, slow and intermediate attack scenarios, launched at 𝑡 =10ms.

Section 2.2. We discuss this trade-off between security and performance
further down in Section 7.7.3.

7.7.1 Security analysis

The first part of our evaluation method consists of the security analysis of
our proposed solution. We construct several cache-based side-channel attack
scenarios against a secure application. The secure application used for all
scenarios is the OpenSSL 1.1.1k [152] implementation of AES with a 128-bit
key. Throughout all our experiments, we launch the secure application and
the attacker sequentially, to highlight the impact of the attack itself on the
secure application’s performance and shared time before and after the attack
is launched. Although they are launched sequentially, both applications run
concurrently, since in practice both applications must execute at the same
time for the attack to succeed.

Migration due to performance loss

In the first scenario, we model a fast attacker, described in Section 7.5, which
fills the L2 cache with its data to force a higher miss rate on the secure
application. To measure the performance degradation and its migration
function’s impact (see Eq. (7.1)), we start executing the AES application on
cluster 1 at 𝑡=0ms. Then, at 𝑡=10ms we launch the aggressive attacker on the
same cluster. As shown in Fig. 7.2a, right after the attacker is launched, the
normalized performance (i.e., current performance divided by the maximum
achievable performance) of our secure application decreases. The output from
the migration function (𝑚𝑓) increases, reacting to the reduced performance.

113

7 Mitigation of Cache Side Channels via Task Migration

When𝑚𝑓 is greater or equal to 1, the migration of the secure application
is triggered. After the secure application has been migrated to a different
cluster, its performance returns to its original value. When the migration
happens, the attack is avoided since the attacker and the secure application
are on a different cluster and no longer share the cache.

Migration due to maximum shared time violation

In a second scenario, we model a slower attack, which seeks to avoid detection
by reducing its intensity. An attacker with this behavior, although requiring
more time to extract the sensitive information, would not affect the secure
application’s performance significantly. Since our solution contemplates
the shared time between secure and non-secure applications, our migration
function will trigger a migration when the maximum allowed shared time
(𝑡𝑠𝑚𝑎𝑥) is reached. For this experiment, we set 𝑡𝑠𝑚𝑎𝑥 to 50ms, which is within
the range discussed in Section 7.6. Fig. 7.2b shows the results of an example
of this attack type. As before, we launch the attack at 𝑡=10ms, but due to
its low intensity, the effect on the secure application’s performance over
time is almost undetectable, besides from the slight decrease right after its
launch, which is not sufficient (𝑚𝑓 ≈ 0.1) to trigger a migration. Nevertheless,
the output from the migration function keeps increasing because of the
accumulated shared time. At 𝑡=60ms, when 𝑡𝑠ℎ𝑎𝑟𝑒𝑑/𝑡𝑠𝑚𝑎𝑥 becomes 1, the
secure application is migrated to a new cluster thus avoiding the potential
attacker.

From these results we can extract that under our solution, the secure appli-
cation will never share a cluster with a potential attacker for more than the
allowed shared time, which means that the slow attacks are avoided.

Migration due to mixed factors

For a third scenario, we considered the intermediate-strength attacker de-
scribed in Section 7.5, which is moderately fast but not aggressive. If our
migration function would consider performance and time as separated condi-
tions, then the intermediate-strength attacker might extract the secure key
in less time than 𝑡𝑠𝑚𝑎𝑥 . While doing so, the secure application’s performance
is not affected enough to trigger a simple threshold condition. Therefore, by
adding both factors we cover such attacker. In Fig. 7.2c, we show an example
of this type of attack. For this experiment, we kept 𝑡𝑠𝑚𝑎𝑥 to 50ms. Similar
to the other scenarios, the attacker is launched at 𝑡=10ms, but it is not until
𝑡=40ms when the combined results of performance loss and shared time

114

7.7 Experimental Evaluation

fraction trigger the migration condition. Otherwise, this would just happen
at 𝑡=60ms, when the 𝑡𝑠𝑚𝑎𝑥 limit would be reached as shown in Fig. 7.2b. After
40ms, the performance returns to a normal level, because the application is
now running on a different cluster.

As the attacker and the victim are running on a different cluster, the attack
has been avoided.

Forced Isolation

The fourth scenario corresponds to the forced isolation, described in Sec-
tion 7.6, which happens when the secure application cannot be migrated to
any cluster. This scenario is depicted in Fig. 7.3. In this experiment, we run a
total of 12 applications alongside a secure application (AES128). Any of these
12 applications can be considered a potential attacker. In the figure, applica-
tions that are not relevant to the isolation process (i.e., those who are never
migrated) are marked as background. Here, these background applications
are used to force migration of the secure application when the maximum
shared time is expired. In this experiment, we launch our secure application
at 𝑡=10ms on cluster 0, core 3, with a 𝑡𝑠𝑚𝑎𝑥 of 10ms. We chose this small
value to trigger a force isolation scenario quicker, in order to illustrate the
principle. After 10ms, due to expired time shared with the background appli-
cations, the secure application is migrated to a different cluster. This process
repeats every 10ms until there are no available clusters to which to migrate.
This happens at 𝑡=50ms, on cluster 1. At this time, our algorithm enforces
isolation by migrating all other applications from this cluster (apps 5, 6, and
7) to cores on other clusters. As the secure application is now on isolation,
any potential attack has been avoided.

Detection policy and false-positives

The proposed migration function serves as a detection-like mechanism for
fast, slow, and intermediate adversaries, as described above. As such, could it
be susceptible to false positives? Would a non-attacker memory-intensive
application have a big enough degradation on the secure application’s per-
formance to trigger a false-positive migration? In our solution that would
certainly be the case. Nonetheless, this scenario is much less critical in secu-
rity terms than a false-negative (i.e., a real attacker that does not trigger the
migration function by performance degradation means), which we fully avoid.
A migration due to false-positive mainly affects the secure application’s per-
formance, which will recover quickly after the migration occurs, preserving

115

7 Mitigation of Cache Side Channels via Task Migration

0 20 40 60
0

5

10

15

𝑐𝑙𝑢𝑠𝑡𝑒𝑟0

𝑐𝑙𝑢𝑠𝑡𝑒𝑟1

𝑐𝑙𝑢𝑠𝑡𝑒𝑟2

𝑐𝑙𝑢𝑠𝑡𝑒𝑟3

𝑓 𝑜𝑟𝑐𝑒𝑑

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛

Time (ms)

Co
re

AES128 app 5 app 6 app 7 background

Figure 7.3: Core assignment over time on forced isolation scenario.

the overall system performance. On the other hand, false-negatives, that do
exist on other detection solutions, would allow the attack to happen. Since our
approach is a security-first solution, we prioritize avoiding all false-negatives
at the cost of allowing some false-positives.

7.7.2 Application Overhead Analysis

In this chapter, we analyze the effect of the migration policy on the perfor-
mance of both secure and benchmark applications.

Migration Overhead

For secure application, we perform an experiment where we use the OpenSSL
1.1.1k implementation of AES and apply a one time migration to it. The migra-
tion moves the AES application from core 0 on cluster 0, to core 4 on cluster
1, so that it gets a different L1/L2 cache on the new cluster. Fig. 7.4 shows
the result of this one time migration. For the purposes of this experiment, we
perform an unconditional migration at 𝑡 = 10𝑚𝑠 . As it can be seen from the
figure, the performance decreases as expected for the next sampling interval,
but it quickly recovers its original average value after less than 100𝜇s. Con-

116

7.7 Experimental Evaluation

9.9 9.95 10 10.05 10.1 10.15

0.85

0.9

0.95

1

Time (ms)

N
or
m
al
iz
ed

IP
C

Figure 7.4: Effect of one-time migration on AES performance at 𝑡 = 10𝑚𝑠 .

sidering that our scheduling interval is 10ms, this shows that the migration
has no significant effect on the secure application’s performance.

In order to measure the migration effect of non-secure applications, we
devised an experiment where we apply a one-time migration to 6 randomly
selected applications from PARSEC2 and SPLASH2 suites. For this purpose,
we configure a 64 core platform, with 4 cores per cluster. Each application
is launched on isolation at 𝑡 = 0𝑚𝑠 on a different cluster. Results from this
experiment are shown in Fig. 7.5. In this test, we apply the one time migration
at 𝑡 = 50𝑚𝑠 , which moves each application to a different cluster, replicating
our forced isolation scenario described on Section 7.7.1. As expected, the
normalized performance of all applications decreases due to the migration.
Although the recovery is not as fast as the AES example, all the applications
get their original average performance after 400𝜇𝑠 . Considering that this
value is much smaller than our scheduling interval, and the fact this scenario
does not happen as frequently, it can be determined that the migration has
no overall significant effect on non-secure applications’ performance.

Realistic execution

To evaluate the performance impact of our solution in a realistic execution, we
devised an experiment where we run 12 applications from the PARSEC2 [26]
and SPLASH2 [161] benchmarks, alongside the AES128 secure application.
We configured the Sniper simulator with two different systems. The high
utilization scenario uses 16 cores and is configured such that the total number

117

7 Mitigation of Cache Side Channels via Task Migration

49.4 49.6 49.8 50 50.2 50.4 50.6
0.7

0.8

0.9

1

Time (ms)

N
or
m
al
iz
ed

IP
C

splash2-lu.ncont parsec-canneal
parsec-fluidanimate splash2-radix

parsec-x264 splash2-raytrace

Figure 7.5: Effect of one-time migration on applications from benchmark suite, performed at
𝑡 = 50ms.

of threads exceeds the number of cores. In themedium utilization scenario, we
use 32 cores and the number of threads is lower than that. We set the arrival
time for each benchmark application to a random time between 0 and 100ms.
This window is shorter than the required execution time of any individual
application. This means that applications run simultaneously, while also
experiencing the dynamic effect of other applications arriving in the system.
The slowdown of the applications due to our migration heuristic is shown
in Fig. 7.6. As it is depicted, the performance loss is less than 10% (1.09× of
execution time) on all tested applications, with an average of 1.6 %.

As it was mentioned on Section 7.6, when the system is at full utilization,
non-secure applications are migrated or put on a sleep queue. For the high
utilization scenario depicted in Fig. 7.6, the maximum number of migrations
and sleep time for each application is shown in Table 7.2. As it can be seen,
all applications experience migrations and/or sleeps during its execution.
Additionally, no non-secure application gets migrated or slept significantly
more times than other, thus showing how fairness is ensured. The parsec-

118

7.7 Experimental Evaluation

ae
s

lu
.n
co
nt

bo
dy

tra
ck

fm
m

ch
ol
es
ky

ra
di
os
ity fft

flu
id
an
im

at
e

ra
di
x

x2
64

ra
yt
ra
ce

bl
ac
ks
ch
ol
es

ba
rn
es

0.9

0.95

1

1.05

1.1
1.09×

Applications

Av
er
ag
e
Sl
ow

do
w
n

System utilization High Medium

Figure 7.6: Average slowdown for benchmark applications under the secure migration heuristic
for different utilization scenarios. Note that a slowdown ≥ 1 means a performance decrease.

blackscholes benchmark, which is the one with the highest slowdown, is also
the one being migrated the most from all non-secure applications, which
explains its behavior. It is worth noticing that the performance degradation is
not exclusively linked to an application’s own migration, as migrating other
memory-intensive applications to the same cluster, will also contribute to
negative effects on performance due to on-cluster memory contention.

Interestingly, some applications benefit from the migration policy in terms of
performance, mostly for the medium utilization scenario. Since our migration
policy focuses on migrating the secure application first, it gets migrated
likely to an empty cluster. As new applications arrive, some of the threads
might end-up executing in the same cluster as the secure application, which
consecutively will trigger a migration on the secure application. As the
migration keeps moving the secure application through the clusters, cores
are being freed from these clusters. On lower utilization, these cores are
likely not used anymore by other applications, relaxing the local cluster
utilization which favors performance. On the full utilization scenario, it is
more likely that the freed cores will be used again, since there are much
more threads than the total number of cores in the system. This can explain

119

7 Mitigation of Cache Side Channels via Task Migration

Table 7.2: Number of migrations and sleep time on full utilization scenario.
Applicaton Nr. of Migrations Sleep time (ms)
aes 4 0
splash2-lu.ncont 0 10
parsec-bodytrack 1 30
splash2-fmm 0 20
splash2-cholesky 1 10
splash2-radiosity 1 20
splash2-fft 0 20
parsec-fluidanimate 1 30
splash2-radix 0 10
parsec-x264 1 20
splash2-raytrace 1 10
parsec-blackscholes 3 10
splash2-barnes 2 10

why, on high utilization, the performance of all benchmark application is
always decreased. As for the AES secure application, although being the one
migrated the most, its performance is not negatively affected by the policy.
On the contrary, once isolation has been ensured, the application continues
the execution without any interference on its cluster, which explains its
performance improvement.

7.7.3 Security and performance trade-off

As it was described in the security analysis, our migration heuristic is rather
conservative in terms of co-residing applications. Since a migration will
inevitably happen because of the shared time of the secure application and
other co-residing apps, a potential attacker will be greatly mitigated, which is
the goal of our solution. Although a slower attacker might be able to extract a
small part of the sensitive information from the secure application before the
migration occurs, this time is kept significantly small in our solution (𝑡𝑠ℎ𝑎𝑟𝑒𝑑
in the order of 100ms) and could be reduced even further. As mentioned
before, a faster attacker, like the one shown in Fig. 7.2a, will cause a bigger
degradation in the secure application’s IPC, triggering the migration much
faster than 𝑡𝑠ℎ𝑎𝑟𝑒𝑑 . Moreover, with our policy, the attacker will not be able to
further execute in the same cluster as the secure application, making it harder

120

7.7 Experimental Evaluation

to complete the attack. The cost for these decisions is the overhead that our
solution might cause in other applications, especially in a high-utilization
system, where migration happens often for said applications. However, as
our realistic scenario evaluation clearly shows, we keep the overhead very
low (i.e., less than 10%) even for both medium and full utilization scenarios.

7.7.4 Comparison against state-of-the-art solutions

We compare our solution against three different state-of-the-art software-
based countermeasures.The compiler-based solution from [39] produces an
overhead ranging from 1.25× to 2.1× on the secure application, and up to
almost 8× on a benchmark application. The cache flushing technique from
[61] produces a maximum overhead of 15 % on the Apache benchmark. On the
operating system level, the work from [108] produces a slowdown of 29 % on
the same type of applications we use. Being on the operating system level and
using the same type of applications make this solution a reference candidate
to compare our results. As it can be seen, with a maximum overhead of 9 %,
our solution outperforms the three different techniques from the state of the
art, while mitigating the attacker on different scenarios.

7.7.5 System Run-time Overhead

Our solution introduces a periodic run-time overhead when executing the mi-
gration heuristic for every scheduling interval. This execution time depends
on the system utilization, number of cores (𝑛), and number of clusters (𝑚).
The worst case for the execution happens on full utilization, where all cores
are occupied by threads. In that scenario, the selection of the new migration
core for each thread (line 25 in Alg. 5) gets executed the most times (i.e., 𝑛×𝑚
times). This implies a time complexity of 𝑂 (𝑛2) if the number of clusters and
cores is approximately the same. In a more realistic case, where𝑚 ≈ 𝑙𝑜𝑔2 (𝑛),
the corresponding complexity is 𝑂 (𝑛𝑙𝑜𝑔(𝑛)).
To further evaluate this overhead, we run Algs. 5 and 6 as a single applica-
tion that executes both sequentially one after the other. This represents a
pessimistic scenario where the additional countermeasure is always executed.
In this experiment, we keep the number of cores per cluster constant, but
measure the overhead for a different number of cores in the system. The

121

7 Mitigation of Cache Side Channels via Task Migration

20 40 60
800

850

900

950

1,000

Number of Cores

Ti
m
e
(𝜇
𝑠)

System utilization
25%
50%
75%
100%

Figure 7.7: Migration heuristic run-time overhead vs. number of cores for different system
utilization percentages.

reasoning behind this is that the outer loops in Alg. 5 mainly depend on the
number of threads (secure and non-secure) which in turn depends on the
total number of used cores, regardless to which cluster they belong.

The number of cores per cluster affects the find_cluster methods, since as-
suming a constant number of cores, more cores per cluster implies fewer
total clusters, making these functions take less time to execute. On the other
hand, fewer cores per cluster mean more clusters, which would affect these
methods more. However, as a cluster-based architecture relies on clusters of
cores, there will always be much more total cores than clusters, making the
former number more impactful than the latter. Fig. 7.7 shows the results of
this experiment. In the figure, the utilization represents the percentage of the
cores used by the applications. Even for the worst scenario of 64 cores with
100% utilization, the overhead time is kept as low as less than 1ms, which
represents a small fraction of the scheduling interval.

7.7.6 Power and Energy Overhead

As a final evaluation, we measure the effect our solution has on the power and
energy of the system. To this end, we run the same full utilization scenario
described in Section 7.7.2 and measure the total average core power and

122

7.8 Summary

execution time. We show the results from this experiment in Table III. As
can be seen from the table, when executing our policy, we achieved a slightly
reduced power, at the cost of a slightly higher execution time. Ultimately, this
translates into an overall small increase in energy usage of 160𝑚𝐽 (0.23%).
This means that our solution does not produce a significant power or energy
overhead in the system.

Table 7.3: Power and energy with and without our proposed policy

Configuration Execution time
(ms)

Power
(W)

Energy
(J)

Without policy 2608 26.96 70.31
With policy 2620 26.90 70.47

7.8 Summary

In this chapter, we introduced a novel cache-based side-channel attack miti-
gation strategy using dynamic task migration. Our policy prevents secure
applications from sharing cache levels with potential slow or intermediate-
strength attackers beyond 𝑡𝑠𝑚𝑎𝑥 , triggering migration when necessary. This
ensures protection against such attacks. For faster attackers, early migration
is initiated due to performance drops, preventing attacks. Our security-first
approach avoids false negatives but allows for some false positives. Through
analysis, we demonstrated secure execution for critical applications under
our migration heuristic. Additionally, we proposed a resource management
mechanism to prevent attacks when migration is not feasible due to high
system utilization. The average performance overhead is minimal, with a
worst-case 9 % slowdown during high utilization, outperforming current coun-
termeasures. The migration heuristic incurs less than 1ms execution time
overhead in a fully utilized 64-core system.

123

8 System-informed Mitigation of
Covert Channels

In order to mitigate the threat of TCCs, and power-based covert channels
in general, several detection and countermeasure techniques have recently
emerged [1, 77, 78, 158, 159], especially for general-computing devices. Even
in such platforms, the challenge of such techniques resides in effectively
detecting and mitigating the attack while reducing the performance impact
on the system.

In the countermeasure domain for such channels, DVFS has been proposed
[77, 78], as the default mechanism to tackle the attack. By dynamically
switching between high and low frequencies for the processing device, the
countermeasure technique affects the power consumption of the device and
the system, and hence directly interferes with the covert communication.
However, as it has been shown, reducing the frequency of the CPUs affects the
performance of applications executing there. Current countermeasures do not
consider the system information in the techniques, which can significantly
affect its energy consumption and performance. For a many-core system, for
example, when the attack is present at all times, the performance loss for a
benchmark application set due to the countermeasure has been known to
reach up to 25% [77], whereas the effect on the energy on the system due to
the countermeasure has not properly been evaluated in the state of the art.

While energy efficiency might not be the most relevant metric for general-
purpose computing platforms, for modern energy-constraint embedded sys-
tems it is a critical factor, hence in this chapter we target our work to such
devices.

This chapter is mainly based on [7].

125

8 System-informed Mitigation of Covert Channels

8.1 Motivational Example

Figure 8.1 shows different scenarios for an application set executed on an
NVIDIA Jetson TX2 embedded board, detailed in Section 3.2.3.2. As shown,
the device has two CPU clusters: an ARMCPU cluster with a Quad-Core ARM
Cortex-A57, and a Dual-Core NVIDIA Denver 2 cluster. As initial state, five
applications from the SPEC2006 [74] benchmark suite and a malicious thermal
covert-channel transmitter (named “tcc") are executed on the system. Shortly
after beginning the execution, the malicious application’s core is detected,
using a proven detection technique (e.g., [1, 159]). As a countermeasure, we
first apply DVFS to the core where the malicious application executes, as it is
the state-of-the-art countermeasure technique [77]. Because of the clustering,
the DVFS technique is applied to the whole ARM cluster, producing high
performance and energy penalties in the system since all other applications
executing in the same cluster are affected.

Figure 8.1: Effect of applying migration and DVFS on the energy and performance (makespan) of
the system.

126

8.2 Problem Definition

In order to show how this overhead can be reduced, we depict an alternative
scenario, where we arbitrary migrate the malicious application from an ARM
core to a Denver core, by dynamically exchanging the cores where omnetpp
and tcc are executing, before applying DVFS. Because the offending applica-
tion is now on the Denver cluster, we apply DVFS on that cluster, therefore
affecting only one other application. By doing so, we are able to massively
reduce the energy and performance overhead in the system.

As it is shown, while this arbitrary decision is able to reduce the overhead
penalties in comparison to blindly applying DVFS, the performance and
energy penalties are still significant.

In this chapter, we focus on the challenge of mitigating power-based attacks
in an energy-efficient manner. We seek to highlight this problem, which has
not been done properly for embedded devices, and address it by including
information about the system as input to the countermeasure itself. We
propose the use of system-informed techniques based on the combination of
DVFS and dynamic task migration to mitigate power-based covert channels.
By doing so, we are able to reduce the energy and performance penalties of
the countermeasures on the real platform, while still mitigating the attack.

8.2 Problem Definition

As previously discussed in the motivational example in Fig. 8.1, blindly ap-
plying DVFS to mitigate power-based covert channels, as done in the state of
the art, can lead to high performance and energy penalties in the rest of the
system. In a real setup, the dynamic state of the system (i.e., type of applica-
tions, CPUs’ frequencies, system load, etc.,) creates a complex environment
where the ideal execution scenario for the current application set is not easy
to predict. To tackle this problem, we intend to introduce system information
into the covert-channel migration strategies by combining task migration
with DVFS. Each mitigation strategy attempts to address the following chal-
lenge at runtime: Once an attacker is detected, what is the best state the system
should transition into (enforced by task migration) before applying DVFS, such
that energy efficiency is maximized while the attack is mitigated?

127

8 System-informed Mitigation of Covert Channels

In the following sections, we show the design and implementation consid-
erations for our proposed techniques, which seek to address exactly this
challenge.

8.3 Novel Contributions

The contributions presented in this chapter are the following:

• We propose for the first time the use of system-informed techniques
as countermeasures for power-based covert channels.

• We devise new countermeasures to power-based covert channels from
the heuristics and ML domain that combine for the first time DVFS
and dynamic task migration to tackle the attack.

• We deploy both our proposed countermeasures and the state-of-the-
art DVFS approach on two real embedded platforms. Our extensive
evaluation demonstrates how our techniques mitigate the attack while
significantly reducing both energy and performance penalties.

8.4 Enabling System and Application Awareness

As previously introduced, in this chapter we propose system-informed tech-
niques to mitigate power-based covert channels through the combination
of DVFS and dynamic task migration. To support the techniques, we imple-
mented a resource management orchestration application. This orchestration
application, depicted as an overview in Fig. 8.2, is in charge of generating the
experiment parameters (e.g., workloads and initial mapping configurations),
launching the applications, periodically monitoring the system metrics, se-
lecting the countermeasure policy, and finally enforcing the technique by
migrating the applications and applying cluster-level DVFS where required
by the countermeasure technique.

For the application set, we generate random workloads consisting of com-
binations of applications from the SPEC2006 benchmark and a functional
power-based covert-channel transmitter in a one-application-per-core man-
ner. Moreover, our monitoring tool periodically gathers execution metrics

128

8.5 Heuristic-Based Mitigation

SPEC2006
Benchmark suite Workload

generation
Transmitter

(tcc)

Monitoringperf

Performance
Monitoring Unit

Power sensor
(VDD rail)

IPS, cache
info

Po
w

er

Experiment
configuration

Workload
execution

Countermeasure
DVFS Migration

Sy
st

em

Figure 8.2: Overview of the orchestration resource management application.

from the system, CPUs, and cache, such as IPS, cache accesses, cache misses,
and system power every 100 ms. We use perf [130] as the back-end mecha-
nism to collect the performance counters’ information (both CPU and cache).
For the platform’s power, we read the board’s power sensor accessible through
Linux the file system.

8.5 Heuristic-Based Mitigation

To reduce the overhead in the system due to an uninformed countermeasure,
we propose a simple but effective technique that considers the performance
of the cores to decide an efficient application mapping at runtime.

Our Worst Performing Cluster - Best Performing Core (WPCBPC) heuristic
follows the principle of reducing the effect of performance penalty due to
DVFS. It does so by moving the attacker application first to the cluster that
has the worst performance. Then within that cluster, it selects the most
performing core as the candidate for migration before enforcing the new
application mapping dynamically in the next scheduling epoch. The full
pseudo-algorithm for this technique is shown in Alg. 7. In the algorithm, we

129

8 System-informed Mitigation of Covert Channels

Algorithm 7: Our WPCBPC Heuristic
1 Input: 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑜𝑟𝑒 , 𝑐𝑢𝑟𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔

Result: 𝑛𝑒𝑤_𝑚𝑎𝑝𝑝𝑖𝑛𝑔: New application mapping configuration
2 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0_𝑐𝑜𝑟𝑒𝑠 ← {0, 3, 4, 5};
3 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1_𝑐𝑜𝑟𝑒𝑠 ← {1, 2};
4 𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟0← 0;
5 𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟1← 0;
6 𝑎𝑙𝑙_𝐼𝑃𝑆 ← {};
7 for core in 𝑎𝑙𝑙_𝑐𝑜𝑟𝑒𝑠 do
8 𝑎𝑙𝑙_𝐼𝑃𝑆 .push(getIPS(core)) ; /* Gets the performance for each

core */

9 for core in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0_𝑐𝑜𝑟𝑒𝑠 do
10 𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟0.push(𝑎𝑙𝑙_𝐼𝑃𝑆 [𝑐𝑜𝑟𝑒]) ; /* Performance for Cluster 0

*/

11 for core in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1_𝑐𝑜𝑟𝑒𝑠 do
12 𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟1.push(𝑎𝑙𝑙_𝐼𝑃𝑆 [𝑐𝑜𝑟𝑒]); /* Performance for Cluster 1

*/

13 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1_𝑐𝑜𝑟𝑒𝑠;
14 if average(𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟0) < average(𝐼𝑃𝑆_𝑐𝑙𝑢𝑠𝑡𝑒𝑟1) then
15 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0_𝑐𝑜𝑟𝑒𝑠 ;
16 𝑚𝑎𝑥 ← 0;
17 𝑐𝑖𝑑 ← −1;
18 for core in 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 do
19 if 𝑎𝑙𝑙_𝐼𝑃𝑆 [𝑐𝑜𝑟𝑒] > 𝑚𝑎𝑥 then
20 𝑚𝑎𝑥 ← 𝑎𝑙𝑙_𝐼𝑃𝑆 [𝑐𝑜𝑟𝑒];
21 𝑐𝑖𝑑 ← 𝑐𝑜𝑟𝑒 ; /* Finds the best performing core */

22 𝑛𝑒𝑤_𝑚𝑎𝑝𝑝𝑖𝑛𝑔← 𝑐𝑢𝑟𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔;
23 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑝𝑝 ← 𝑐𝑢𝑟𝑟_𝑚𝑎𝑝 [𝑐𝑖𝑑];
24 𝑛𝑒𝑤_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑜𝑟𝑒] =𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑝𝑝 ;
25 𝑛𝑒𝑤_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑐𝑖𝑑] = 𝑐𝑢𝑟𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑜𝑟𝑒];
26 return 𝑛𝑒𝑤_𝑚𝑎𝑝𝑝𝑖𝑛𝑔;

first collect the performance information (IPS) from each core (lines 7 to 12).
Then we identify the worst-performing cluster, by comparing the averages of
the accumulated IPS (lines 13 to 15) over the last second of execution. The

130

8.6 Machine Learning-Based Mitigation

reason for selecting the worst-performing cluster as the host to the potential
attacker is that the application of the subsequent DVFS policy will affect
the overall performance the least. To further enforce this, we then select
the best-performing core from that cluster (i.e., the core with the highest
IPS over the last second of execution) as the final candidate to which the
malicious application should be migrated (lines 18 to 21). In this way, the
best-performing application from the soon-to-be-affected cluster will not
be affected by the performance penalty due to DVFS. Finally, we create the
new mapping configuration in the system (lines 22 to 25) where the cores
belonging to the attacker and the best performing application on the candidate
cluster have been exchanged.

8.6 Machine Learning-Based Mitigation

To further explore other system-informed techniques, in this section, we
introduce some machine learning-based countermeasures to power-based
covert channels. Through different supervised ML algorithms, we seek for
our models to learn the behavior of the system when mitigating the attack,
and predict the best possible task migration scenarios at run-time. Instead
of relying on heuristics, this approach attempts to quantify the impact of
different mitigation strategies on the overall energy efficiency of the system.

Fig. 8.3 shows a high-level overview of our ML-based mitigation. Our ap-
proach follows a four-step process both for design and runtime. First, at
design time, the process starts by generating a random workload from the
SPEC2006 benchmark suite plus the malicious application, as an initial map-
ping 1 . Then we start the execution of the workload and wait for a random
delay (i.e., between 1 and 10 seconds) before starting the monitoring 2
to encounter different execution phases for the applications. After that, we
collect the performance (IPS) for each core, cache misses and accesses, and
system power information periodically every 100 ms for a window of 1 s.
When the collecting period expires, we create a new random mapping for the
current workload and then apply DVFS to the cluster to which the malicious
application will be moved 3 . Then we set the new core’s affinity to each
application, which enforces the dynamic task migration to the workload
following the new mapping. Finally, we again collect the statistics for the

131

8 System-informed Mitigation of Covert Channels

workload under the new mapping configuration 4 . In addition to the men-
tioned metrics, we compute the energy efficiency (Instructions per Joule)
obtained as a consequence of the migration and DVFS for the new mapping
configuration. We repeated this process more than 5000 times, collecting
over 180 individual data points per iteration. With the obtained metrics for
all the iterations, we form a training dataset where each row contains a rep-
resentation of the original mapping, its statistics, the representation of the
new mapping, the new statistics, and the obtained energy efficiency. This
dataset is then used to train the MLmodels we employ for the countermeasure
technique.

Initial
Mapping

Performance
Counters

Monitoring

New Random
 Mapping
+ DVFS

Performance
Counters

Monitoring

Dataset

Instructions per
second
Cache accesses
Cache misses

Instructions per
second
Cache accesses
Cache misses
Power

1 2 3 4

Efficiency
(IPJ)

Mapping
Information Statistics New Statistics Efficiency

(IPJ)
Mapping

Information Statistics New Statistics Efficiency
(IPJ)

Mapping
Information Statistics New Statistics Efficiency

(IPJ)
Mapping

Information Statistics New Statistics Efficiency
(IPJ)

Mapping
Information Statistics

New
Mapping

Information
New Statistics

Initial
Mapping

Performance
Counters

Monitoring
Instructions per
second
Cache accesses
Cache misses

5 6 7 8
Mapping

Efficiency
Prediction

Task
Migration
+ DVFS

ML
Model

Design Time

Run Time

Figure 8.3: Overview of the ML-based countermeasure techniques.

At runtime, our techniques are applied in a continuous process which starts
from an initial running mapping configuration 5 . Then, we accumulate
and collect the execution metrics over the most recent second of execution

132

8.6 Machine Learning-Based Mitigation

Table 8.1: Prediction accuracy of different ML algorithms on the validation dataset

Regression Model RMSE (109) R2 Score MAE (109)

Linear 0.47 0.76 0.31
Ridge 0.49 0.73 0.32
Lasso 0.58 0.63 0.39
Elastic Net 0.53 0.69 0.34
K-Nearest Neighbors 0.49 0.73 0.30
Decision Trees 0.64 0.54 0.38
Random Forest 0.45 0.77 0.26
Neural Network 0.45 0.76 0.29
XGBoost 0.31 0.89 0.19

6 . After that, for each possible nonredundant mapping variation, we call
the ML model to predict energy efficiency 7 . It is important to note that in
order to reduce the number of possible mapping predictions, we ignore map-
ping variants where all applications would reside in the same cluster but in
different cores. Although technically different, these are redundant mappings
in the sense that all applications are set to execute within the same DVFS
domain, and the DVFS action would affect the same applications in the same
manner. After the prediction of energy efficiency for all possible mappings
is performed, we select the new mapping variant that produces the highest
efficiency value as the new mapping configuration for the system. Finally,
we enforce this new mapping configuration by applying task migration and
then DVFS to the cluster where the malicious application is set to execute 8 .
This process is then repeated until the workload finishes the execution.

The following subsections describe in more detail each one of the steps
involved in the design and implementation of the ML-based techniques.

8.6.1 Training Data Generation and Preprocessing

Following the steps depicted in the design-time phase of Fig. 8.3, we generate
a dataset of ∼1M data points. The dataset first undergoes standardization and
scaling in order to adjust the distribution of each feature to have a mean of
zero and a standard deviation of one, thereby enhancing the model’s ability
to converge during training. The scaling parameters are saved for usage at

133

8 System-informed Mitigation of Covert Channels

runtime. Finally, we perform a random split of 80% / 20% training / testing of
the dataset to prepare for the model training phase.

8.6.2 Feature Selection and Model Training

The problem at hand is a regression problem that can be solved with various
machine learning algorithms, e.g., decision trees, random forests, neural
networks, etc., where the label is set as the energy efficiency of the system
after migration. Therefore, we first train different regressors from the scikit-
learn Python library [129] with their default parameters using the raw dataset
in order to identify the most promising algorithm for this specific problem.
Table 8.1 shows the Root-mean-square Error (RMSE), R2 and Mean-absolute
Error (MAE) scores achieved by the different models, with the eXtreme
Gradient Boosting (XGBoost), Random Forest and NN models outperforming
the other regressors. We then focus on training optimized models with each
of the three selected algorithms as follows.

The XGBoost model is used for implicit feature selection during learning, iden-
tifying key features through its tree-building process and calculating a gain
metric reflecting each feature’s contribution to predictive accuracy. Higher
values signify greater importance and correlation with the efficiency label.
To refine feature selection, grid search hyperparameter tuning is performed,
leveraging the GridSearch library from scikit-learn. Hyperparameters include
estimators (up to 300), tree depth (up to 9), learning rate, subsample ratio, and
column sample by tree. Exploration results in shortlisted features for each
core: cache accesses/misses, retired instructions, encoded application IDs,
and system energy efficiency before migration. The per-core feature grouping
is crucial, as it guides the model to learn the individual characteristics of the
core as part of its cluster. The final XGBoost model with 10 estimators and
tree depth of 6 achieves high prediction accuracy with MAE and RMSE scores
of barely 0.19 × 109 and 0.31 × 109.
Based on the feature importance insights obtained from training the XGBoost
model, the same list of features is maintained for training the acNN model.
The search for the model topology, including the depth and breadth of layers,
is performed using the Keras Tuner. The non-linear ReLU activation function
is incorporated in each hidden layer to introduce non-linearity and the Adam
optimizer is used to effectively manage back-propagation and the learning
rate during training. The final obtained NN model consists of 3 hidden layers

134

8.7 Experimental Evaluation

with 32, 32, and 16 neurons. Though slightly less accurate than the XGBoost
model, the NN model also achieved a very high prediction accuracy of the
energy efficiency label, with MAE and RMSE scores of 0.29×109 and 0.45×109,
respectively.

Finally, with the same list of features as the two previous models, we train
a Random Forest model, by using GridSearch to explore a search space of
parameters, including the number of trees in the forest and the maximum
depth of each tree. The final model, which uses 100 trees, achieves a slightly
higher prediction accuracy compared to the NN model, with MAE and RMSE
scores of 0.26 × 109 and 0.45 × 109, respectively.

8.7 Experimental Evaluation

8.7.1 Evaluation Platform

For our evaluation, we conducted experiments on two real-world commercial
embedded boards: the NVIDIA Jetson TX2 and NVIDIA Jetson Orin Nano
described in Section 3.2.3.2.

Both platforms run Ubuntu as the operating system (18.04.6 LTS on the
Jetson TX2 and 20.04.6 LTS on Jetson Orin). Notably, while the different
experiments are undergoing no other application is executing besides normal
OS operation. Furthermore, we set the power management governor of the
boards to “userspace", which avoids system-controlled changes in the CPUs’
frequencies. Additionally, we restore the frequency level of the cores to the
maximum value before executing each workload.

8.7.1.1 Benchmark Application set

As the application set for our experiments, we use two benchmark suites.
First, for training the ML-based models and general evaluation purposes, we
employed 18 applications from the SPEC2006 benchmark suite, all using the
intermediate (i.e., the so-called “train") input size from the suite. The set
includes applications both from the integer and floating point benchmarks.
The full list is the following: gcc, milc, bzip2, sphinx3, astar, lbm, bwaves,
mcf, zeusmp, namd, h264ref, gobmk, povray, gromacs, cactusADM, omnetpp,

135

8 System-informed Mitigation of Covert Channels

hmmer, and leslie3d. The remaining applications from the SPEC2006 suite
were not used due to compilation or execution errors on the board. As
a second application suite, we employ the full set (i.e., apps and kernels)
from the PARSEC 2 benchmark [26], using the simlarge input size. These
applications are exclusively used for evaluation purposes i,e., they not used
for any training and hence are unseen to the techniques. In Section 8.7.5
we employ these applications to show how our proposed system-informed
techniques can perform well independently of the application characteristics
with which where they were trained.

8.7.1.2 Malicious application

The overview for both malicious transmitter and receiver applications is
shown in Fig. 8.4. The malicious transmitter is a C++ functional covert-
channel application that modulates the power of the system to transmit
information. Similar to other power-based covert channels [46, 78, 103], we
employ encoding and modulation mechanisms such as return-to-zero and
on-off-keying on the transmission. When encoding a bit of 1, the application
continuously performs a compute-intensive kernel that increases the power
consumption of the system. It consists of floating-point operations (i.e.,
square-root) combined with a busy-waiting loop. For a bit of 0, the malicious
transmitter sleeps to reduce the power consumption.

To evaluate the communication, we implement a simple off-line receiver
which upon saving the power measurements from the sensors, filters them
and then decodes and de-serializes the bits employing a threshold-based
approach as done on other approaches (e.g., [78]). For the purposes of the
evaluation, the channel frequency is set around 15 Hz. Due to modulation,
the transmission speed of the channel is approximately 2.67 bits per second,
which is in the normal range for power-based covert channels (e.g., thermal
covert channels [2, 109]). As we show further in Section 8.7.3 when no
countermeasure is present in the system, the channel can communicate
information reliably with low error rates (i.e., less than 5%).

8.7.2 Baseline and Naive Policies

As a baseline for comparison with our proposed techniques, we implement
the state-of-the-art DVFS technique from [77] (called simply “DVFS” in our

136

8.7 Experimental Evaluation

Transmitter

Receiver

data

power

Serialization

Modulation

Encoding

Filter Demodulation

Deserialization

power
sensor

data

error

Figure 8.4: Overview of the transmitter and receiver malicious applications

0 1 2 3 4

2,000

2,200

2,400

Time (ms)

Po
w
er

(m
W
)

No countermeasure DVFS

Figure 8.5: Power signal of the Jetson TX2 platform during the transmission of a packet of 0xb5
with no countermeasure and while applying DVFS to the attacking core

experiments). This technique periodically toggles the frequency level of
the CPUs from the highest value to a random low value, and vice versa, to
manipulate the power of the system and interfere with the attack. In our
experiments, the high-value frequency is the maximum allowed frequency

137

8 System-informed Mitigation of Covert Channels

for the boards (i.e., 2000 MHz for the TX2 and 1500 MHz for the Orin). As
low frequencies, we employ the four lowest levels available in the boards
(345 MHz, 500 MHz, 652 MHz, and 806 MHz for the TX2 and 115 MHz,
192 MHz, 268 MHz, and 345 MHz for the Orin). We employ a 𝛽 value of
9, as used in [77]. In our setup, this means that while DVFS is applied, the
affected cores execute at the high frequency for 0.25ms and then at the lower
frequency for 2.25 ms. To further visualize the effect of the DVFS on the
malicious transmitter application, in Fig. 8.5 we show the power signal from
the Jetson TX2 platform for the transmission of a packet of 0𝑥𝑏5 without the
countermeasure and while the DVFS countermeasure is active. As can be
seen in the figure, the signal is significantly affected by changes in power.
We properly evaluate the transmission error rates produced by the different
countermeasure techniques in Section 8.7.3.

Furthermore, besides evaluating our system-information countermeasures,
we develop two extra naive approaches and one semi-informed technique
for comparison purposes. These approaches do not consider the system
information explicitly but rather apply a fixed action.

The two naive techniques are FC0 (Fixed Core on Cluster 0) and FC1 (Fixed
Core on Cluster 1). In the FC0 approach, we always migrate the malicious ap-
plication to the first core within the 4-processor cluster. In the FC1 technique,
we move it to the first core within the 2-processor cluster. Additionally, in our
evaluation we include an extra heuristic. This straightforward semi-informed
heuristc, which we name Worst-Performing Core (WPC), finds the core with
the lowest IPS value and assigns the attacking application to that core re-
gardless of the cluster organization. For these three additional policies, when
other applications are executing in the newly selected core for the malicious
application, we exchange the applications’ cores so that the policy is always
followed in the same manner as our WPCBPC heuristic. After the migration
happens, we apply DVFS to the affected cluster to mitigate the attack.

All the experiments that follow include the state-of-the-art DVFS approach
[77], the naive techniques, and our system-informed approaches for compari-
son purposes.

138

8.7 Experimental Evaluation

Ba
se

D
VF

S[
77
]

FC
1

FC
0

W
PC

W
PC

BP
C

N
N RF

XG
B

0
50

10
0

Techniques

Bi
tE

rr
or

Ra
te

(%
)

Figure 8.6: Bit error rate (BER) for the transmitter attack with no countermeasure applied (Base)
and with each one of the evaluated countermeasure techniques on the Jetson TX2 platform.

8.7.3 Covert-channel Mitigation

In this first experiment, we evaluate the effectiveness of the different coun-
termeasure techniques to mitigate the attack by affecting the transmission.
To do so, we sent a total of 800 bits as 8-bit packets using the malicious
transmitter. We implement a simple receiver that reads the power of the
system and decodes the information being transmitted.

Figure 8.6 shows the results from this experiment. When no countermeasure
is active (Base), the bit error rate (BER) from the transmission is very low
(e.g., less than 5%). However, once the countermeasures are active, the BER
increases drastically. Because of the transition to low frequencies in the DVFS,
the power of the system tends to decrease, as seen in Fig. 8.5. This means
that most of the bits of 1 would be interpreted as 0 while the bits of 0 are
likely interpreted correctly. For a transmission with a balanced quantity of
1’s and 0’s, the expected error rate due to the countermeasure is then 50%. As
seen in the figure, this is exactly the case for all of the techniques. Ultimately,
this experiment shows that all the proposed countermeasures are effective
for mitigating power-based covert channels.

139

8 System-informed Mitigation of Covert Channels

8.7.4 Energy and Performance Penalty

In order to evaluate the energy and performance penalty of the different
countermeasure techniques we devised an experiment where we generated
50 randomworkloads from the application set. After the workload generation,
we simultaneously run the applications alongside the malicious transmit-
ter application. The transmitter application executes at all times until the
workload finishes. To replicate the behavior of a covert-channel detector, we
wait for a period of 1 s after the workload is launched, before triggering the
countermeasure technique. Then, we continue to apply the countermeasure
until the full workload has finished the execution. This process is repeated
for all the countermeasure techniques: the state-of-the-art DVFS approach
(DVFS), Fixed Core on Cluster 0 (FC0), Fixed Core on Cluster 1 (FC1), Worst
Performing Core (WPC), Worst Performing Cluster - Best Performing Core
(WPCBPC), Neural Network (NN), Random Forest (RF), and XGBoost (XGB).
Notably, to keep fairness, all techniques are evaluated with the same workload
set. The orchestration of the experiment and corresponding monitoring is
done by the resource management application, as described in Section 8.4. To
reduce the effects of cached data in the experiments, we run all the workloads
with one technique before moving to the next technique. The workloads are
executed in the same order for all techniques. Additionally, we add delay of
about 5 seconds between each workload to let the system return to a semi-idle
state before a new execution.

Tables 8.2 and 8.3 show the averaged metrics obtained from the experiment
for the baseline (no countermeasure applied) and all the different techniques
on the two evaluation platforms. As a metric for performance, we report the
average execution time of the whole workload from the moment we launch
all the applications (done simultaneously) until the last application finishes
its execution (i.e., makespan).

We measure the average power consumption of each run. Then, we com-
pute the energy and Energy-delay Product (EDP), as a measurement of the
efficiency of the system. Notably, since the resource management orchestra-
tion application executes in the system concurrently with the workload the
overhead in the system due to techniques is already included as part of the
obtained metrics.

From the tables, it is clear that all the countermeasures affect negatively the
energy and performance of the system. It is important to notice that this

140

8.7 Experimental Evaluation

Table 8.2: Average results for the baseline and the different countermeasure approaches under
50 different workloads on the Jetson TX2 platform

ApproachMetric Baseline DVFS[77] FC0 FC1 NN RF WPC WPCBPC XGB
Makespan (s) 210.12 358.63 407.7 284.81 280.47 301.26 282.51 269.38 268.03
Power (mW) 4999 4098 4009 4564 4609 4631 4489 4705 4759
Energy (J) 1050.48 1469.8 1634.64 1300.03 1292.63 1395.23 1268.32 1267.36 1275.63
EDP (Js) 220,727.79 527,116.38 666,442.94 370,260.59 362,544.76 420,326.52 358,313.13 341,403.66 341,909.21

effect is expected as it is the cost of mitigating the attack. Notably, the power
in the system due to countermeasures is overall reduced, as it can also be
seen in Fig. 8.7. From the normalized power, it would seem as if the state-of-
the-art DVFS and FC0 are the best approaches. This again is a product of the
frequency reduction due to the DVFS mechanism. However, as our further
results show, from an energy and performance point of view the case is exactly
the opposite. As our following results indicate, the power consumption of
the system while the countermeasure is active is not an indication of the
efficiency of the system, especially considering the performance penalty.

Table 8.3: Average results for the baseline and the different countermeasure approaches under
50 different workloads on the Jetson Orin Platform

ApproachMetric Baseline DVFS[77] FC0 FC1 NN RF WPC WPCBPC XGB
Makespan (s) 183.36 296.83 418.89 234.44 239.8 191.26 291.76 184.92 213.22
Power (mW) 4960 4640 4368 4816 4918 5067 4723 5030 5080
Energy (J) 909.48 1377.2 1829.84 1129.08 1179.23 969.17 1377.87 930.22 1083.14
EDP (Js) 166,761.97 408,794.91 766,500.5 264,702.49 282,778.99 185,364.16 402,006.12 172,015.89 230,947.23

To better dissect and analyze the impact on the system’s efficiency due to
the countermeasures, we plot the performance and energy penalty for both
platforms in Figs. 8.8 and 8.9. As can be seen, the state-of-the-art DVFS coun-
termeasure has a high overhead of about 70% for the Jetson TX2 and about
62% for the Jetson Orin. This is a significant difference over the reported 25%
for general purpose multi-core system [77]. This means that the performance
penalty due to DVFS countermeasure is significantly higher on an embedded
system. This is an interesting effect that has not been reported before this
work.

141

8 System-informed Mitigation of Covert Channels

D
VF

S[
77
]

FC
1

FC
0

W
PC

W
PC

BP
C

N
N RF

XG
B

0
0.
5

1
1.
5

Techniques

N
or
m
al
iz
ed

Po
w
er

Jetson TX Jetson Orin

Figure 8.7: Normalized power in the system due to the different countermeasures on both
evaluation platforms.

Moreover, the FC0 technique has the worst performance and energy penalty
in both platforms. This outcome can be expected since this approach forces
the DVFS to be applied to the bigger cluster, which consistently affects more
cores (and applications) at all times when applying DVFS. On the other hand,
the naive FC1 technique effectively reduces the performance and energy
penalties when compared to the simple DVFS approach by affecting fewer
cores.

More importantly, our system-informed approaches reduce the performance
penalty by up to 40% and up to 60% for the Jetson TX2 and Orin respectively,
when compared to the state-of-the-art technique. From an energy perspective,
our system-informed techniques reduce the penalty due to the DVFS state-
of-the-art countermeasure by about 20% in the Jetson TX2 and up to 50% in
the Jetson Orin. Moreover, when combining the effect of both energy and
performance in EDP form, as can be seen in Fig. 8.10, it is clear that system-
informed approaches are generally more energy-efficient than the reference
and their naive counterparts. At their best, these techniques managed to
reduce the EDP penalty by up to 84% and 142% for the TX2 and Orin boards
respectively when compared to the simple state-of-the-art DVFS technique.
Our other ML-based techniques slightly reduced EDP compared to XGB on

142

8.7 Experimental Evaluation

the TX2 platform, while RF outperformed XGB on the Orin board. On the
TX2, NN reduced the penalty by about 70% and RF by 48% compared to
the state-of-the-art DVFS technique. Although RF showed better prediction
accuracy at design time (Table 8.1), it was less efficient due to its irregular
memory access, increasing energy demand. Conversely, NN’s structured
memory access conserved energy. This shows how policy execution can alter
expected behavior. Thus, RF’s accuracy advantage was diminished, leading to
longer makespan and higher energy consumption compared to NN. Despite
this, our system-informed approach still outperforms the state-of-the-art
approach.

Interestingly, on the Jetson Orin board, RF outperforms NN as expected by
the training. In fact, as Fig. 8.9 shows, RF and WPCBPC manage to produce at
most 4% performance and 7% energy penalties in the system, which is a major
improvement when compared to the state-of-the-art technique. In fact, this
penalty is close to insignificant on this board, when compared to the the case
when no countermeasure is applied. We believe several factors contribute to
this outcome. First, the Jetson Orin board features a unified 4MB L3 cache,
which reduces the effect of the intense and irregular memory accesses the
RF techniques had on the TX2 platform, which lacks an L3 cache. Moreover,
the Orin board’s homogeneous, modern, and more powerful CPUs further
enhance performance, helping to achieve the expected results.

D
VF

S[
77
]

FC
1

FC
0

W
PC

W
PC

BP
C

N
N RF

XG
B

0
50

10
0

71

36

94

34
2833

43

28
40

24

56

21 2123
33

21

Techniques

Pe
na
lty

(%
)

Performance
Energy

Figure 8.8: Performance and energy penalty over the baseline implementation in the system due
to the different countermeasure techniques on the Jetson TX2 platform.

143

8 System-informed Mitigation of Covert Channels

D
VF

S[
77
]

FC
1

FC
0

N
N RF

W
PC

W
PC

BP
C

XG
B

0
50

10
0

62

28

128

31

4

59

1
16

51

24

101

30

7

52

2
19

Techniques

Pe
na
lty

(%
)

Performance
Energy

Figure 8.9: Performance and energy penalty over the baseline implementation in the system due
to the different countermeasure techniques on the Jetson Orin platform.

D
VF

S[
77
]

FC
1

FC
0

W
PC

W
PC

BP
C

N
N RF

XG
B

0
10
0

20
0

30
0

40
0

139

68

202

62 5564
90

55

145

59

360

70

11

141

3
38

Techniques

ED
P
Pe
na
lty

(%
) Jetson TX2

Jetson Orin

Figure 8.10: Energy-delay product (EDP) penalty in the system due to the different countermea-
sures on both evaluation platforms.

8.7.5 Generalization to unseen workloads

While our proposed system-informed heuristics are inherently application-
agnostic (i.e., no application feature is considered in the migration logic), that

144

8.7 Experimental Evaluation

Table 8.4:Average results for the baseline, state-of-the-art, and system-informed countermeasures
under 25 unseen workloads on the Jetson TX2 platform.

ApproachMetric Baseline DVFS[77] NN RF WPC WPCBPC XGB
Makespan (s) 60.34 113.87 86.98 99.66 86.22 79.06 79.06
Power (mW) 4820 3707 4186 4091 4212 4250 4409
Energy (J) 290.83 422.08 364.09 407.75 363.13 336.02 348.61
EDP (Js) 17,548.89 48,062.73 31,668.36 40,636.06 31,309.16 26,566.06 27,560.82

might not necessarily be the case for the ML-based approaches. While we
do not use features from the applications themselves as input to ML-models,
since they are trained with execution traces from the SPEC2006 application
set, it could be the case that the models are biased towards certain application
behavior (e.g., memory or compute intensiveness).

In order to show the generality and the effectiveness of our ML-based tech-
niques under a wider diversity of applications, we devised an experiment
where we ran 25 completely new workloads, where each workload is fully
comprised of apps never seen during training from the PARSEC 2 benchmark.
In each one of these new workloads, all applications are selected randomly
from the PARSEC 2 full application list. Additionally, we have ensured that
each application from the set appears at least in one workload. The results
from this test for both evaluation platforms can be seen in Tables 8.4 and 8.5.

For comparison purposes, we evaluate the baseline, the state-of-the-art ap-
proach and the system-informed countermeasure techniques. As shown for
both platforms, even though new applications were unseen to the ML models
during training, they still achieve a very good performance, which is consis-
tent with our main experiments shown in Tables 8.2 and 8.3. Furthermore,
as shown in Table 8.5, XGB has delivered the best performance out of the
evaluated countermeasure techniques, surpassing even the WPCBPC heuris-
tic in the Jetson Orin platform. This means that the ML-based techniques
are not only able to successfully generalize to unseen applications, but can
actually leverage the new workload characteristics to overperform the other
approaches.

145

8 System-informed Mitigation of Covert Channels

Table 8.5:Average results for the baseline, state-of-the-art, and system-informed countermeasures
under 25 unseen workloads on the Jetson Orin platform.

ApproachMetric Baseline DVFS[77] NN RF WPC WPCBPC XGB
Makespan (s) 69.64 125.48 119.2 108.98 117.55 99.7 97.15
Power (mW) 4550 4263 4323 4396 4354 4381 4447
Energy (J) 316.87 534.95 515.26 479.06 511.8 436.78 431.99
EDP (Js) 22,066.8 67,125.85 61,419.26 52,207.57 60,162.34 43,546.54 41,967.37

8.7.6 Runtime Overhead Analysis

Asmentioned in Section 8.7.4, the overhead that each technique induces in the
system from a performance and energy point of view is already included in the
final result depicted in Table 8.2, as the resource management orchestration
application runs in the system alongside the workload for all the experiments.
Moreover, the actual cost of task migration in the applications themselves is
also included already in the reported metrics.

Nonetheless, in this section, we provide a more detailed analysis on the
part the overhead produced in the system by each of the system-informed
techniques. We omit the overhead of the naive approaches (i.e., DVFS, FC0,
and FC1) as no processing is needed in the selection of new mapping to be
enforced by task migration. Table 8.6 shows the overhead of the system-
informed techniques. As can be seen, the overhead due to the heuristics is
significantly lower than the ML-based approaches since the computation
needed to select the cluster and core needed for the migration is rather
simple for both WPC and WPCBPC, and it only needs to be executed once
at each acting epoch (of 1 second). The ML-based approaches, on the other
hand, are called to predict the efficiency for each possible non-redundant
mapping confirmation. For the configuration of our evaluation platforms,
this represents a maximum of 15 non-redundant mapping configurations to
be evaluated. The number reported in Table 8.6 is the accumulated overhead
of the ML-base techniques for all calls. This means that in the worst case, the
overhead of the techniques is rather small at about 128 ms. As a final remark,
it should be noted that even though the heuristic approaches have much less
overhead than the ML techniques, XGB is able to surpass the heuristics in
terms of performance for the workloads as seen in Tables 8.2 and 8.5. In other
words, the overhead difference between both approaches is balanced by the

146

8.7 Experimental Evaluation

improvement the XGB technique produces in the workload, which is in the
end the relevant metric to compare both approaches on this platform.

Table 8.6:Overhead of the different system-informed techniques on the both evaluation platforms.

Overhead (ms)Platform NN RF WPC WPCBPC XGB
Jetson TX2 128.64 30.37 0.02 0.12 49.09
Jetson Orin 78.57 113.91 0.02 0.02 19.52

8.7.7 Machine learning vs. heuristics

As our experimental evaluation has shown, our system-informed approaches
are effective at mitigating the attack while reducing the energy and perfor-
mance penalty on the system.

While presenting techniques from both machine learning and heuristics do-
mains, our intention in this chapter is not to indicate one best technique
between the different approaches. On the contrary, as our results show, both
approaches exhibit quite similar performance (the difference in EDP penalty
in our main experiment between WPCBPC and XGB is less than 0.2%). We
seek to show how both traditional and ML-based policies can effectively serve
the purpose of an efficient countermeasure. Both approaches have advan-
tages and disadvantages when used for this purpose. Both the WPC and our
WPCBPC heuristics have low complexity and are very fast, as depicted in
Table 8.6. These heuristics focus on optimizing performance, by reducing
the negative effect of the DVFS mechanism. However, by only using IPS this
approach does not consider the efficiency of the full system due to the current
execution scenario. When dealing with diverse workloads, specially in a
potentially more complex system (e.g., many-core), this information might
not be sufficient to produce optimal results. The ML-based approaches, on
the other hand, have a greater overhead when compared to the heuristics,
but as just discussed in Section 8.7.6 they compensate for this overhead by
producing efficient execution scenarios. Moreover, the ML-based approach
utilizes execution features to learn the behavior of the system, even hidden
or non-measurable parameters. This means that with enough training, the

147

8 System-informed Mitigation of Covert Channels

approaches can be extended and adapted to perform well under diverse execu-
tion scenarios. Indeed, as we have demonstrated exactly this in Section 8.7.5,
where the ML techniques were successfully able to generalize correctly to the
new application set. Moreover, under this new execution scenario, the XGB
model managed to outperform the best heuristic for the Jetson Orin board,
showing the potential advantage of the ML approach vs the implemented
heuristics.

By providing countermeasures from both heuristics and machine learning
domains we presented two successful avenues to the problem of mitigating
power-based covert channels in an efficient manner, Regardless of their
domain, our system-informed techniques were able to defeat the state-of-the-
art countermeasure, proving to be the better solution to the problem.

8.8 Summary

In this chapter, we have highlighted the performance and energy impact
of traditional DVFS-based countermeasures to power-based covert chan-
nels on embedded systems. We have shown how the state-of-the-art DVFS
method can produce up to 70% performance penalty on an embedded plat-
form when the attack is present at all times, which differs greatly from the
reported penalty for general-purpose multi-/many-core systems. Moreover,
we have proposed different techniques from the heuristic and machine learn-
ing domain that, for the first time, combine dynamic task migration and
DVFS to mitigate such attacks in an efficient and system-informed manner,
significantly reducing both energy and performance penalties. From our
experimentation on the commercial NVIDIA Jetson TX2 and Jetson Orin
embedded platforms, we were able to successfully reduce the EDP penalty
due to the state-of-the-art DVFS-only countermeasure by more than 84% and
142% respectively, proving that our system-informed techniques are a better
approach to power-based covert-channel mitigation.

148

9 Conclusion

In this dissertation, a series of novel contributions aimed at disclosing and
mitigating advanced threats in emerging computing systems were presented,
with a particular focus on cross-layer security solutions against side- and
covert-channel attacks. By exploring both heuristic and machine learning
(ML) approaches, it was demonstrated how system-informed methodologies
can effectively enhance security while maintaining performance and energy
efficiency.

New covert-channel attack vectors were introduced in Chapter 4, where
weaknesses in existing security models, particularly in embedded and hetero-
geneous computing environments, were identified. It was shown that these
advanced attacks can compromise system integrity without being detected
by traditional methods, highlighting the need for new defensive strategies.

In Chapters 5 and 6, ML-based detection mechanisms were introduced. In
Chapter 5, a supervised learning framework was developed, utilizing CPU
time-series performance data to predict covert-channel attacks. Chapter 6
explored an unsupervised learning approach within the context of Remote
Attestation (RA) to detect anomalies in system execution. Both approaches
were validated experimentally, showing significant improvements in threat
detection accuracy while maintaining minimal system overhead.

The defensive mechanisms proposed in this dissertation (Chapters 7 and 8)
revolved around two primary countermeasure strategies: task migration and
DVFS. These techniques were evaluated on both simulation and real-world
platforms, demonstrating their effectiveness. In Chapter 7, task migration
techniques successfully mitigated cache side-channel attacks by preventing
cluster co-residency between attacker and victim processes in simulated
environments. Meanwhile, the combination of task migration and DVFS
strategies in Chapter 8 effectively countered power-based covert channels
by dynamically mapping applications to clusters and modulating the CPU
frequency to disrupt covert communications on real hardware.

149

9 Conclusion

Overall, this research demonstrated two key findings. First, it highlighted
how advanced threats can exploit computing resources in increasingly so-
phisticated ways, posing significant security risks. Second, it showed that
cross-layer security solutions, when informed by system context and en-
hanced with machine learning techniques, are highly effective in detecting
and mitigating these threats in modern computing systems.

9.1 Future Work

While this dissertation provides a strong foundation for addressing new
threats in emerging computing systems from a cross-layer perspective, several
avenues for future research can stem from the presented work.

Enhanced Detection Techniques and New Attack Vectors The detection meth-
ods described in Chapters 5 and 6, while robust, may need to be adapted
to different computing environments and emerging threats targeting those
environments. Specifically, integrating more advanced ML techniques such
as reinforced and federated learning, where decentralized models may enable
larger systems to detect emerging threats more rapidly and efficiently. These
techniques would allow distributed systems to share knowledge of potential
attacks without compromising the confidentiality of individual nodes.

Furthermore, new computational paradigms are likely to introduce additional
attack vectors. Future research should focus on developing cross-layer secu-
rity solutions tailored to these environments. For instance, attacks targeting
the data privacy of federated learning in edge computing systems should be
mitigated through decentralized, lightweight security measures.

Optimization of the Security-Performance Trade-off One of the key chal-
lenges highlighted through this dissertation is the balance between security
and performance, especially with respect to countermeasure implementation.
Further work is needed to refine this trade-off, particularly in systems with
stringent energy and latency constraints. Novel optimization algorithms that
dynamically adjust security mechanisms in real time could be explored to
enhance both security and performance.

150

9.1 Future Work

Similarly, while the experimental results in this dissertation were performed
on different computing platforms, further research should aim to generalize
these approaches to even a wider range of platforms, especially those with
hard resource constraints. In such systems, restricted access to runtime
system information (e.g., performance counters) might limit the capabilities
of the defensive strategies.

Additionally, the application of these techniques in cloud and multi-tenant
environments should be explored to further validate their scalability and
effectiveness.

Cross-layer Integration with Emerging Technologies As highlighted in this
dissertation, the intersection of security with emerging technologies such as
AI accelerators, blockchain, and 5G/6G networks offers rich opportunities for
future exploration. Research into how cross-layer security techniques can
be integrated into these emerging domains will be critical for ensuring their
resilience against advanced threats.

151

List of Abbreviations

CA Client Application

CFA Control-Flow Attestation

CFG Control-Flow Graph

DFT Discrete Fourier Transform

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correction Code

EDP Energy-delay Product

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

IFO Isolation Forest

IoT Internet of Things

IPC Instructions per Cycle

IPS Instructions per Second

LLC Last-level Cache

LOF Local Outlier Factor

MAE Mean-absolute Error

MI Mutual Information

ML Machine Learning

MPSoC Multi Processor System on Chip

NN Neural Network

153

9

NVM Non-Volatile Memory

OSVM One-class Support Vector Machine

PMU Performance Monitoring Unit

RA Remote Attestation

REE Rich Execution Environment

RMSE Root-mean-square Error

RoA Region of Attestation

SCA Side-channel Attack

SoC System on Chip

TA Trusted Application

TCC Thermal Covert Channel

TEE Trusted Execution Environment

V/f Voltage/frequency

VM Virtual Machine

XGBoost eXtreme Gradient Boosting

154

Bibliography

[1] Jeferson Gonzalez-Gomez, Mohammed Bakr Sikal, Heba Khdr, Lars
Bauer, and Jörg Henkel. “Smart Detection of Obfuscated Thermal
Covert Channel Attacks in Many-core Processors”. In: 2023 60th
ACM/IEEE Design Automation Conference (DAC). 2023, pp. 1–6. doi:
10.1109/DAC56929.2023.10247844.

[2] Jeferson Gonzalez-Gomez, Kevin Cordero-Zuñiga, Lars Bauer, and
Jörg Henkel. “The First Concept and Real-world Deployment of a
GPU-based Thermal Covert Channel: Attack and Countermeasures”.
In: 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2023, pp. 1–6. doi: 10.23919/DATE56975.2023.10137090.

[3] Jeferson Gonzalez-Gomez, Hassan Nassar, Varun Manjunath, Lars
Bauer, and Jörg Henkel. “Through Fabric: A Cross-world Thermal
Covert Channel on TEE-enhanced FPGA-MPSoC Systems”. In: Asia
and South Pacific Design Automation Conference (ASP-DAC). accepted
to appear. 2025.

[4] Jeferson Gonzalez-Gomez, Jose Alejandro Ibarra-Campos, Jesus Yamir
Sandoval-Morales, Lars Bauer, and Jörg Henkel. MeMoir: A Software-
Driven Covert Channel based on Memory Usage. 2024. arXiv: 2409.
13310 [cs.CR]. url: https://arxiv.org/abs/2409.13310.

[5] Jeferson Gonzalez-Gomez, Hassan Nassar, Lars Bauer, and
Jörg Henkel. “LightFAt: Mitigating Control-Flow Explosion via
Lightweight PMU-Based Control-Flow Attestation”. In: 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). 2024, pp. 222–226. doi: 10.1109/HOST55342.2024.10545348.

[6] Jeferson Gonzalez-Gomez, Lars Bauer, and Jörg Henkel. “Cache-Based
Side-Channel Attack Mitigation for Many-Core Distributed Systems
via Dynamic Task Migration”. In: IEEE Transactions on Information
Forensics and Security 18 (2023), pp. 2440–2450. doi: 10.1109/TIFS.
2023.3266630.

155

https://doi.org/10.1109/DAC56929.2023.10247844
https://doi.org/10.23919/DATE56975.2023.10137090
https://arxiv.org/abs/2409.13310
https://arxiv.org/abs/2409.13310
https://arxiv.org/abs/2409.13310
https://doi.org/10.1109/HOST55342.2024.10545348
https://doi.org/10.1109/TIFS.2023.3266630
https://doi.org/10.1109/TIFS.2023.3266630

9 Bibliography

[7] Jeferson González-Gómez, Mohammed Bakr Sikal, Heba Khdr, Lars
Bauer, and Jörg Henkel. “Balancing Security and Efficiency: System-
InformedMitigation of Power-Based Covert Channels”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
43.11 (2024), pp. 3395–3406. doi: 10.1109/TCAD.2024.3438999.

[8] Lars Bauer, Jörg Henkel, Timo Hönig, Wolfgang Schröder-Preikschat,
Christian Eichler, Jeferson Gonzalez, Benedict Herzog, Tobias Langer,
Sebastian Maier, Jonas Rabenstein, et al. “Invasive Run-Time Support
System (iRTSS)”. In: Invasive Computing. Ed. by Jürgen Teich, Jörg
Henkel, and Andreas Herkersdorf. Cham: Springer International Pub-
lishing, 2022, pp. 285–305. isbn: 978-3-96147-571-1. doi: 10.25593/
978-3-96147-571-1.

[9] Antonio González-Torres, Mónica Hernández, Jeferson González, Ve-
tria L. Byrd, and Paul Parsons. “Information Visualization as a Method
for Cybersecurity Education”. In: Innovations in Cybersecurity Educa-
tion. Ed. by Kevin Daimi and Guillermo Francia III. Cham: Springer
International Publishing, 2020, pp. 55–70. isbn: 978-3-030-50244-7.
doi: 10.1007/978-3-030-50244-7_4.

[10] Jeferson González-Gómez, Steven Ávila, Jonathan Rojas, Andres
Stephen, Jorge Castro-Godínez, Carlos Salazar-García, Muhammad
Shafique, and Jörg Henkel. “TailoredCore: Generating Application-
Specific RISC-V-based Cores”. In: 2021 IEEE 12th Latin America Sym-
posium on Circuits and System (LASCAS). 2021, pp. 1–4. doi: 10.1109/
LASCAS51355.2021.9459152.

[11] Carlos Salazar-García, Jeferson González-Gómez, Kaleb Alfaro-
Badilla, Ronny García-Ramírez, Renato Rímolo-Donadío, Christos
Strydis, and Alfonso Chacón-Rodríguez. “PlasticNet: A low latency
flexible network architecture for interconnected multi-FPGA sys-
tems”. In: 2020 IEEE 3rd Conference on PhD Research in Microelectron-
ics and Electronics in Latin America (PRIME-LA). 2020, pp. 1–4. doi:
10.1109/PRIME-LA47693.2020.9062749.

[12] Carlos Salazar-García, Alfonso Chacón-Rodríguez, Renato Rímolo-
Donadío, Ronny García-Ramírez, David Solórzano-Pacheco, Jeferson
González-Gómez, and Christos Strydis. “A custom interconnection
multi-FPGA framework for distributed processing applications”. In:
2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits

156

https://doi.org/10.1109/TCAD.2024.3438999
https://doi.org/10.25593/978-3-96147-571-1
https://doi.org/10.25593/978-3-96147-571-1
https://doi.org/10.1007/978-3-030-50244-7_4
https://doi.org/10.1109/LASCAS51355.2021.9459152
https://doi.org/10.1109/LASCAS51355.2021.9459152
https://doi.org/10.1109/PRIME-LA47693.2020.9062749

9 Bibliography

and Systems Design (SBCCI). 2022, pp. 1–6. doi: 10.1109/SBCCI55532.
2022.9893238.

[13] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, ThomasNyman,
Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. “C-FLAT:
Control-Flow Attestation for Embedded Systems Software”. In: Conf.
on Computer and Communications Security. 2016.

[14] Mohammad Abdullah Al Faruque, Thomas Ebi, and Jorg Henkel.
“Configurable links for runtime adaptive on-chip communication”.
In: 2009 Design, Automation & Test in Europe Conference & Exhibition.
2009, pp. 256–261. doi: 10.1109/DATE.2009.5090667.

[15] Toqeer Ali, Roslan Ismail, Shahrulniza Musa, Mohammad Nauman,
and Sohail Khan. “Design and implementation of an attestation pro-
tocol for measured dynamic behavior”. In: The Journal of Supercom-
puting 74.11 (2018).

[16] AMD "Zen 3" Core Architecture. 2020. url: https://www.amd.com/en/
technologies/zen-core-3.

[17] Mahmoud Ammar and Bruno Crispo. “WISE: A Lightweight Intelli-
gent Swarm Attestation Scheme for the Internet of Things”. In: ACM
Trans. Internet Things 1.3 (2020).

[18] ARM. TrustZone for Cortex-A. 04.09.23. 2023. url: https://www.arm.
com/technologies/trustzone-for-cortex-a.

[19] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad Reza Sadeghi,
Matthias Schunter, Gene Tsudik, and Christian Wachsmann. “SEDA:
Scalable embedded device attestation”. In: Conf. on Computer and
Communications Security. 2015.

[20] Mohamed Azab and Mohamed Eltoweissy. “MIGRATE: Towards a
Lightweight Moving-Target Defense Against Cloud Side-Channels”.
In: 2016 Security and Privacy Workshops (SPW). 2016, pp. 96–103. doi:
10.1109/SPW.2016.28.

[21] Sahan Bandara and Michel A. Kinsy. “Adaptive Caches as a Defense
Mechanism Against Cache Side-Channel Attacks”. In:Works. on At-
tacks and Solut. in Hardware Security Workshop. 2019, pp. 55–64.

[22] Davide B. Bartolini, Philipp Miedl, and Lothar Thiele. “On the Capac-
ity of Thermal Covert Channels in Multicores”. In: European Confer-
ence on Computer Systems (EuroSys). 2016. isbn: 9781450342407.

157

https://doi.org/10.1109/SBCCI55532.2022.9893238
https://doi.org/10.1109/SBCCI55532.2022.9893238
https://doi.org/10.1109/DATE.2009.5090667
https://www.amd.com/en/technologies/zen-core-3
https://www.amd.com/en/technologies/zen-core-3
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://doi.org/10.1109/SPW.2016.28

9 Bibliography

[23] Lars Bauer, Muhammad Shafique, and Jörg Henkel. “Run-time in-
struction set selection in a transmutable embedded processor”. In:
Proceedings of the 45th Annual Design Automation Conference. DAC
’08. Anaheim, California: Association for Computing Machinery, 2008,
pp. 56–61. isbn: 9781605581156. doi: 10.1145/1391469.1391486. url:
https://doi.org/10.1145/1391469.1391486.

[24] Lars Bauer, Muhammad Shafique, and Jörg Henkel. “Run-time in-
struction set selection in a transmutable embedded processor”. In:
Proceedings of the 45th Annual Design Automation Conference. DAC
’08. Anaheim, California: Association for Computing Machinery, 2008,
pp. 56–61. isbn: 9781605581156. doi: 10.1145/1391469.1391486. url:
https://doi.org/10.1145/1391469.1391486.

[25] Omar Bawazeer, Tarek Helmy, and Suheer Al-hadhrami. “Malware
Detection Using Machine Learning Algorithms Based on Hardware
Performance Counters: Analysis and Simulation”. In: Journal of
Physics: Conference Series 1962.1 (July 2021), p. 012010. doi: 10.1088/
1742-6596/1962/1/012010.

[26] Christian Bienia and Kai Li. “Parsec 2.0: A new benchmark suite for
chip-multiprocessors”. In: Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation. Vol. 2011. 2009, p. 37.

[27] Lilian Bossuet and Carlos Andres Lara-Nino. “Advanced Covert-
Channels in Modern SoCs”. In: HOST. 2023.

[28] Kenneth Brezinski and Ken Ferens. “Metamorphic Malware and Ob-
fuscation: A Survey of Techniques, Variants, and Generation Kits”.
In: Security and Communication Networks 2023.1 (2023), p. 8227751.
doi: https://doi.org/10.1155/2023/8227751.

[29] Samira Briongos, Pedro Malagón, José L. Risco-Martín, and José M.
Moya. “Modeling Side-Channel Cache Attacks on AES”. In: Summer
Computer Simulation Conference. 2016.

[30] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper: Ex-
ploring the Level of Abstraction for Scalable and Accurate Parallel
Multi-Core Simulations”. In: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC). Nov. 2011,
52:1–52:12.

[31] Xavier Carpent, Karim El Defrawy, Norrathep Rattanavipanon, and
Gene Tsudik. “Lightweight swarm attestation: A tale of two LISA-s”.
In: Asia Conference on Computer and Communications Security. 2017.

158

https://doi.org/10.1145/1391469.1391486
https://doi.org/10.1145/1391469.1391486
https://doi.org/10.1145/1391469.1391486
https://doi.org/10.1145/1391469.1391486
https://doi.org/10.1088/1742-6596/1962/1/012010
https://doi.org/10.1088/1742-6596/1962/1/012010
https://doi.org/https://doi.org/10.1155/2023/8227751

9 Bibliography

[32] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. “Rodinia: A benchmark
suite for heterogeneous computing”. In: International Symp. on Work-
load Characterization (IISWC). 2009.

[33] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz
Koushanfar. “DeepAttest: An End-to-End Attestation Framework for
Deep Neural Networks”. In: International Symposium on Computer
Architecture (ISCA). IEEE, 2019.

[34] Ji Ming Chen, Shi Chen, Xiang Wang, Lin Lin, and Li Wang. “A Vir-
tual Machine Migration Strategy Based on the Relevance of Services
against Side-Channel Attacks”. In: Security and Communication Net-
works 2021 (2021). issn: 19390122. doi: 10.1155/2021/2729949.

[35] S. Chen, W. Xiong, Y. Xu, B. Li, and J. Szefer. “Thermal Covert Chan-
nels Leveraging Package-on-Package DRAM”. In: IEEE Int. Conf. on
Trust, Security and Privacy In Computing and Com./IEEE Int. Conf. on
Big Data Science and Eng. (TrustCom/BigDataSE). 2019, pp. 319–326.

[36] Shuai Chen, Wenjie Xiong, Yehan Xu, Bing Li, and Jakub Szefer. “Ther-
mal Covert Channels Leveraging Package-on-Package DRAM”. In:
2019 18th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/13th IEEE International Confer-
ence On Big Data Science And Engineering (TrustCom/BigDataSE). 2019,
pp. 319–326. doi: 10.1109/TrustCom/BigDataSE.2019.00050.

[37] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. “Real Time Detec-
tion of Cache-Based Side-Channel Attacks Using Hardware Perfor-
mance Counters”. In: Appl. Soft Comput. 49.C (Dec. 2016), pp. 1162–
1174.

[38] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-
Hoon Lee, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn . “Prime +
Count: Novel Cross-World Covert Channels on ARM TrustZone”. In:
Annual Computer Security Applications Conference. 2018.

[39] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz. “Thwarting cache side-channel attacks through dy-
namic software diversity.” In: NDSS. 2015, pp. 8–11.

[40] Karim El Defrawy, Aurélien Francillon, Daniele Perito, and Gene
Tsudik. “SMART: Secure and Minimal Architecture for (Establishing
a Dynamic) Root of Trust”. In: Network & Distributed System Security
Symposium. 2012.

159

https://doi.org/10.1155/2021/2729949
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00050

9 Bibliography

[41] Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio,
Alessandro Armando, and Fabio Roli. “Adversarial EXEmples: A Sur-
vey and Experimental Evaluation of Practical Attacks on Machine
Learning for Windows Malware Detection”. In: ACM Trans. Priv. Se-
cur. 24.4 (Sept. 2021). issn: 2471-2566. doi: 10.1145/3473039. url:
https://doi.org/10.1145/3473039.

[42] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza
Sadeghi. “LiteHAX: Lightweight Hardware-Assisted Attestation of
Program Execution”. In: Int. Conf. on Computer-Aided Design. 2018.

[43] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd,
Lucas Davi, Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi.
“LO-FAT: Low-Overhead control Flow ATtestation in hardware”. In:
Design Automation Conf. 2017.

[44] Developer Guide. 6-9.3. Red Hat Enterprise Linux. 2017.
[45] Somdip Dey, Amit Kumar Singh, and Klaus McDonald-Maier. “Ther-

malAttackNet: Are CNNs Making It Easy to Perform Temperature
Side-Channel Attack in Mobile Edge Devices?” In: Future Internet 13.6
(2021). issn: 1999-5903.

[46] Krithika Dhananjay, Vasilis F Pavlidis, Ayse K Coskun, and Emre
Salman. “High bandwidth thermal covert channel in 3-d-integrated
multicore processors”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 30.11 (2022), pp. 1654–1667.

[47] Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel.
“TAPE: thermal-aware agent-based power economy for multi/many-
core architectures”. In: Proceedings of the 2009 International Con-
ference on Computer-Aided Design. ICCAD ’09. San Jose, Califor-
nia: Association for Computing Machinery, 2009, pp. 302–309. isbn:
9781605588001. doi: 10.1145/1687399.1687457. url: https://doi.
org/10.1145/1687399.1687457.

[48] Thomas Ebi, David Kramer, Wolfgang Karl, and Jörg Henkel. “Eco-
nomic learning for thermal-aware power budgeting in many-core
architectures”. In: Proceedings of the Seventh IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’11. Taipei, Taiwan: Association for Computing Machin-
ery, 2011, pp. 189–196. isbn: 9781450307154. doi: 10.1145/2039370.
2039401.

160

https://doi.org/10.1145/3473039
https://doi.org/10.1145/3473039
https://doi.org/10.1145/1687399.1687457
https://doi.org/10.1145/1687399.1687457
https://doi.org/10.1145/1687399.1687457
https://doi.org/10.1145/2039370.2039401
https://doi.org/10.1145/2039370.2039401

9 Bibliography

[49] Dmitry Efanov and Pavel Roschin. “The Port-in-Use Covert Channel
Attack”. In: Biologically Inspired Cognitive Architectures (BICA) for
Young Scientists. Ed. by Alexei V. Samsonovich and Valentin V. Klimov.
Cham: Springer International Publishing, 2018, pp. 239–244. isbn: 978-
3-319-63940-6.

[50] R. Ernst, J. Henkel, and T. Benner. “Hardware-software cosynthesis
for microcontrollers”. In: IEEE Design & Test of Computers 10.4 (1993),
pp. 64–75. doi: 10.1109/54.245964.

[51] Mark Evers, Leslie Barnes, and Mike Clark. “Next Generation “Zen 3”
Core”. In: 2021 IEEE Hot Chips 33 Symposium (HCS). 2021, pp. 1–32.
doi: 10.1109/HCS52781.2021.9567108.

[52] MohammadAbdullah Al Faruque, Thomas Ebi, and Jorg Henkel. “Run-
time adaptive on-chip communication scheme”. In: 2007 IEEE/ACM
International Conference on Computer-Aided Design. 2007, pp. 26–31.
doi: 10.1109/ICCAD.2007.4397239.

[53] Anis Fellah-Touta, Lilian Bossuet, and Carlos Andres Lara-Nino.
“Combined Internal Attacks on SoC-FPGAs: Breaking AES with Re-
mote Power Analysis and Frequency-based Covert Channels”. In:
EuroS&PW. 2023.

[54] Raspberry Pi Foundation. Raspberry Pi 4 Model B Specifications. Ac-
cessed: 2024-09-11. 2023. url: https : / / www . raspberrypi . com /
products/raspberry-pi-4-model-b/specifications/.

[55] Franklin, Dustin. NVIDIA Jetson TX2 Delivers Twice the Intelligence
to the Edge. https://developer.nvidia.com/blog/jetson- tx2-
delivers-twice-intelligence-edge/. Online; accessed 26 March
2024. 2017.

[56] Ilias Giechaskiel, Ken Eguro, and Kasper B. Rasmussen. “Leakier
Wires: Exploiting FPGA Long Wires for Covert- and Side-Channel
Attacks”. In: ACM TRETS (2019).

[57] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. “Reading Be-
tween the Dies: Cross-SLR Covert Channels on Multi-Tenant Cloud
FPGAs”. In: ICCD. 2019.

[58] Ilias Giechaskiel, Kasper Bonne Rasmussen, and Jakub Szefer .
“𝐶3APSULe: Cross-FPGA covert-channel attacks through power sup-
ply unit leakage”. In: 2020 IEEE Symposium on Security and Privacy
(SP). IEEE. 2020, pp. 1728–1741.

161

https://doi.org/10.1109/54.245964
https://doi.org/10.1109/HCS52781.2021.9567108
https://doi.org/10.1109/ICCAD.2007.4397239
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge/
https://developer.nvidia.com/blog/jetson-tx2-delivers-twice-intelligence-edge/

9 Bibliography

[59] Ilias Giechaskiel, Shanquan Tian, and Jakub Szefer. “Cross-VMCovert-
and Side-Channel Attacks in Cloud FPGAs”. In: ACM TRETS (2022).

[60] Dennis R. E. Gnad, Cong Dang Khoa Nguyen, Syed Hashim Gillani,
andMehdi B. Tahoori. “Voltage-Based Covert Channels Using FPGAs”.
In: ACM TODAES (2021).

[61] Michael Godfrey and Mohammad Zulkernine. “Preventing cache-
based side-channel attacks in a cloud environment”. In: Transactions
on Cloud Computing 2.4 (2014), pp. 395–408.

[62] Mathieu Gross, Robert Kunzelmann, and Georg Sigl. CPU to FPGA
Power Covert Channel in FPGA-SoCs. Cryptology ePrint Archive, Paper
2023/429. https://eprint.iacr.org/2023/429. 2023. url: https:
//eprint.iacr.org/2023/429.

[63] Mathieu Gross, Robert Kunzelmann, and Georg Sigl. CPU to FPGA
Power Covert Channel in FPGA-SoCs. Cryptology ePrint Archive, Paper
2023/429. 2023.

[64] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Tra-
chtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. “Page
Cache Attacks”. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’19. London, United
Kingdom: Association for Computing Machinery, 2019, pp. 167–180.
isbn: 9781450367479. doi: 10.1145/3319535.3339809. url: https:
//doi.org/10.1145/3319535.3339809.

[65] Jawad Haj-Yahya, Lois Orosa, Jeremie S. Kim, Juan Gómez Luna,
A. Giray Yağlıkçı, Mohammed Alser, Ivan Puddu, and Onur Mutlu.
“IChannels: Exploiting Current Management Mechanisms to Create
Covert Channels in Modern Processors”. In: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).
2021, pp. 985–998. doi: 10.1109/ISCA52012.2021.00081.

[66] R. W. Hamming. “Error detecting and error correcting codes”. In: The
Bell System Technical Journal 29.2 (1950), pp. 147–160. doi: 10.1002/
j.1538-7305.1950.tb00463.x.

[67] Zecheng He and Ruby B. Lee. “How Secure is Your Cache against
Side-Channel Attacks?” In: Int. Symp. on Microarch. 2017, pp. 341–353.

162

https://eprint.iacr.org/2023/429
https://eprint.iacr.org/2023/429
https://eprint.iacr.org/2023/429
https://doi.org/10.1145/3319535.3339809
https://doi.org/10.1145/3319535.3339809
https://doi.org/10.1145/3319535.3339809
https://doi.org/10.1109/ISCA52012.2021.00081
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

9 Bibliography

[68] J. Henkel. “A low power hardware/software partitioning approach
for core-based embedded systems”. In: Proceedings 1999 Design Au-
tomation Conference (Cat. No. 99CH36361). 1999, pp. 122–127. doi:
10.1109/DAC.1999.781296.

[69] J. Henkel and Yanbing Li. “Energy-conscious HW/SW-partitioning
of embedded systems: a case study on an MPEG-2 encoder”. In: Pro-
ceedings of the Sixth International Workshop on Hardware/Software
Codesign. (CODES/CASHE’98). 1998, pp. 23–27. doi: 10.1109/HSC.
1998.666233.

[70] J. Henkel, W. Wolf, and S. Chakradhar. “On-chip networks: a scalable,
communication-centric embedded system design paradigm”. In: 17th
International Conference on VLSI Design. Proceedings. 2004, pp. 845–
851. doi: 10.1109/ICVD.2004.1261037.

[71] Jorg Henkel et al. “Special Session - Non-Volatile Memories: Chal-
lenges and Opportunities for Embedded System Architectures with
Focus on Machine Learning Applications”. In: Proceedings of the Inter-
national Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems. CASES ’23 Companion. Hamburg, Germany: Associa-
tion for Computing Machinery, 2024, pp. 11–20. isbn: 9798400702907.
doi: 10.1145/3607889.3609088.

[72] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, ThomasWild, Michael
Hübner, Ravi Kumar Pujari, Artjom Grudnitsky, Jan Heisswolf, Au-
rang Zaib, Benjamin Vogel, Vahid Lari, and Sebastian Kobbe. “Invasive
manycore architectures”. In: 17th Asia and South Pacific Design Au-
tomation Conference. 2012, pp. 193–200. doi: 10.1109/ASPDAC.2012.
6164944.

[73] John L. Hennessy and David A. Patterson. “A New Golden Age for
Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pp. 48–
60.

[74] John L Henning. “SPEC CPU2006 benchmark descriptions”. In: ACM
SIGARCH Computer Architecture News 34.4 (2006), pp. 1–17.

[75] D. Herrmann, J. Henkel, and R. Ernst. “An approach to the adaptation
of estimated cost parameters in the COSYMA system”. In: Third Inter-
national Workshop on Hardware/Software Codesign. 1994, pp. 100–107.
doi: 10.1109/HSC.1994.336718.

163

https://doi.org/10.1109/DAC.1999.781296
https://doi.org/10.1109/HSC.1998.666233
https://doi.org/10.1109/HSC.1998.666233
https://doi.org/10.1109/ICVD.2004.1261037
https://doi.org/10.1145/3607889.3609088
https://doi.org/10.1109/ASPDAC.2012.6164944
https://doi.org/10.1109/ASPDAC.2012.6164944
https://doi.org/10.1109/HSC.1994.336718

9 Bibliography

[76] Stefan Hristozov, Moritz Wettermann, and Manuel Huber. “A TOC-
TOU Attack on DICE Attestation”. In: Proceedings of the Twelfth ACM
Conference on Data and Application Security and Privacy. CODASPY
’22. Baltimore, MD, USA: Association for Computing Machinery, 2022,
pp. 226–235. isbn: 9781450392204. doi: 10.1145/3508398.3511507.

[77] Hengli Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh,
Mei Yang, and Letian Huang. “Detection of and Countermeasure
Against Thermal Covert Channel in Many-Core Systems”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41.2 (2022), pp. 252–265.

[78] Hengli Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh,
Mei Yang, and Letian Huang. “On Countermeasures against the Ther-
mal Covert Channel Attacks Targeting Many-Core Systems”. In: De-
sign Automation Conference (DAC). 2020. isbn: 9781450367257.

[79] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankara-
narayanan, Kevin Skadron, and Mircea R Stan. “HotSpot: A Compact
Thermal Modeling Methodology for Early-Stage VLSI Design”. In:
IEEE Trans. Very Large Scale Integration (VLSI) Systems 14.5 (2006),
pp. 501–513. doi: 10.1109/TVLSI.2006.876103.

[80] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Timing
Side Channel Attacks against Kernel Space ASLR”. In: Symposium on
Security and Privacy. 2013, pp. 191–205.

[81] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christo-
pher J Rossbach, and Emmett Witchel. “Telekine: Secure Computing
with Cloud GPUs”. In: USENIX Symp. on Networked Systems Design
and Implementation (NSDI). 2020.

[82] Dongdong Huo, Yu Wang, Chao Liu, Mingxuan Li, Yazhe Wang, and
Zhen Xu. “LAPE: A Lightweight Attestation of Program Execution
Scheme for Bare-Metal Systems”. In: (HPCC/SmartCity/DSS). 2020.

[83] Taras Iakymchuk, Maciej Nikodem, and Krzysztof Kepa.
“Temperature-based covert channel in FPGA systems”. In: Re-
CoSoC. 2011.

[84] Ahmad Ibrahim, Ahmad Reza Sadeghi, and Gene Tsudik. “HEALED:
HEaling & Attestation for Low-End Embedded Devices”. In: Lecture
Notes in Computer Science (2019).

164

https://doi.org/10.1145/3508398.3511507
https://doi.org/10.1109/TVLSI.2006.876103

9 Bibliography

[85] Ahmad Ibrahim, Ahmad Reza Sadeghi, Shaza Zeitouni, and Gene
Tsudik. “DARPA: Device attestation resilient to physical attacks”. In:
Conf. on Security and Privacy in Wireless and Mobile Networks. 2016.

[86] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A Shared
Cache Attack That Works across Cores and Defies VM Sandboxing –
and Its Application to AES”. In: Symposium on Security and Privacy.
2015, pp. 591–604.

[87] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a Minute! A fast, Cross-VM Attack on AES”. In: Research
in Attacks, Intrusions and Defenses. 2014, pp. 299–319.

[88] Roslan Ismail, Toqeer Ali Syed, and Shahrulniza Musa. “Design and
Implementation of an Efficient Framework for Behaviour Attesta-
tion Using N-Call Slides”. In: Int. Conf. on Ubiquitous Information
Management and Comm. 2014.

[89] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. “Heterogeneous Isolated Execution for Commodity
GPUs”. In: International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). 2019, pp. 455–
468. isbn: 9781450362405.

[90] Guy Jumarie. Relative information. Springer, 1990.
[91] Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack Resis-

tant AES-GCM”. In: Cryptographic Hardware and Embedded Systems.
Ed. by Christophe Clavier and Kris Gaj. 2009, pp. 1–17.

[92] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-
Preikschat, and Jörg Henkel. “DistRM: distributed resource manage-
ment for on-chip many-core systems”. In: Proceedings of the Sev-
enth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. CODES+ISSS ’11. Taipei, Taiwan:
Association for Computing Machinery, 2011, pp. 119–128. isbn:
9781450307154. doi: 10.1145/2039370.2039392.

[93] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. “A
Practical Attestation Protocol for Autonomous Embedded Systems”.
In: European Symp. on Security and Privacy. 2019.

165

https://doi.org/10.1145/2039370.2039392

9 Bibliography

[94] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou.
“Hardware-software integrated approaches to defend against soft-
ware cache-based side channel attacks”. In: Int. Symp. on High Perf.
Computer Arch. 2009, pp. 393–404.

[95] Joonho Kong, Farinaz Koushanfar, Praveen K. Pendyala, Ahmad-Reza
Sadeghi, and Christian Wachsmann. “PUFatt: Embedded platform
attestation based on novel processor-based PUFs”. In: Design Automa-
tion Conf. 2014.

[96] Boyu Kuang, Anmin Fu, Willy Susilo, Shui Yu, and Yansong Gao. “A
survey of remote attestation in Internet of Things: Attacks, counter-
measures, and prospects”. In: Computers & Security 112 (2022).

[97] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. “The McPAT Framework for Multicore
and Manycore Architectures: Simultaneously Modeling Power, Area,
and Timing”. In: ACM Trans. Arch. and Code Opt. (TACO) (2013). doi:
10.1145/2445572.2445577.

[98] Yanbing Li and J. Henkel. “A framework for estimating and mini-
mizing energy dissipation of embedded HW/SW systems”. In: Pro-
ceedings 1998 Design and Automation Conference. 35th DAC. (Cat.
No.98CH36175). 1998, pp. 188–193. doi: 10.1109/DAC.1998.724464.

[99] Christian Lindenmeier, Jan Gruber, and Felix Freiling. “InvesTEE: A
TEE-supported Framework for Lawful Remote Forensic Investiga-
tions”. In: Digital Threats (July 2024). doi: 10.1145/3680294. url:
https://doi.org/10.1145/3680294.

[100] Mario Lins, René Mayrhofer, Michael Roland, Daniel Hofer, and Mar-
tin Schwaighofer. On the critical path to implant backdoors and the
effectiveness of potential mitigation techniques: Early learnings from
XZ. 2024. arXiv: 2404.08987 [cs.CR].

[101] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
“Last-Level Cache Side-Channel Attacks are Practical”. In: Symposium
on Security and Privacy. 2015, pp. 605–622.

[102] Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani Srivastava.
“SecDeep: Secure and Performant On-Device Deep Learning Inference
Framework for Mobile and IoT Devices”. In: International Conference
on Internet-of-Things Design and Implementation (IoTDI). 2021, pp. 67–
79. isbn: 9781450383547.

166

https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1109/DAC.1998.724464
https://doi.org/10.1145/3680294
https://doi.org/10.1145/3680294
https://arxiv.org/abs/2404.08987

9 Bibliography

[103] Zijun Long, Xiaohang Wang, Yingtao Jiang, Guofeng Cui, Li Zhang,
and Terrence Mak. “Improving the efficiency of thermal covert chan-
nels in multi-/many-core systems”. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE). Apr. 2018, pp. 1459–1464.

[104] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. “A
Survey of Microarchitectural Side-Channel Vulnerabilities, Attacks,
and Defenses in Cryptography”. In: ACM Computing Surveys (2021).

[105] Yangdi Lyu and Prabhat Mishra. “A Survey of Side-Channel Attacks
onCaches andCountermeasures”. In: Journal of Hardware and Systems
Security 2.1 (Mar. 2018), pp. 33–50.

[106] Pieter Maene and Ingrid Verbauwhede. “Single-Cycle Implementa-
tions of Block Ciphers”. In: Lightweight Cryptography for Security and
Privacy. 2016.

[107] Theodoros Marinakis, Shivam Kundan, and Iraklis Anagnostopoulos.
“Meeting Power Constraints While Mitigating Contention on Clus-
tered Multiprocessor System”. In: IEEE Embedded Systems Letters 12.3
(2020), pp. 99–102. doi: 10.1109/LES.2019.2956990.

[108] Robert Martin, John Demme, and Simha Sethumadhavan. “TimeWarp:
Rethinking timekeeping and performance monitoring mechanisms
to mitigate side-channel attacks”. In: Int. Symp. on Computer Arch.
(ISCA). 2012, pp. 118–129.

[109] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Chris-
tian Müller, Lothar Thiele, and Srdjan Capkun. “Thermal Covert
Channels on Multi-Core Platforms”. In: USENIX Conference on Secu-
rity Symposium (SEC). 2015, pp. 865–880. isbn: 9781931971232.

[110] Microsoft. Hyper-V Overview. https://learn.microsoft.com/en-
us/windows-server/virtualization/hyper-v/hyper-v-overview.
Accessed: 2024-09-11. 2023.

[111] Ivan Miketic, Krithika Dhananjay, and Emre Salman. “Covert Chan-
nel Communication as an Emerging Security Threat in 2.5D/3D Inte-
grated Systems”. In: Sensors (2023).

[112] J. Millen. “20 Years of Covert Channel Modeling and Analysis”. In:
Symposium on Security and Privacy. May 1999, pp. 113–114.

167

https://doi.org/10.1109/LES.2019.2956990
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview

9 Bibliography

[113] Nimish Mishra, Anirban Chakraborty, Urbi Chatterjee, and Debdeep
Mukhopadhyay. “Time’s a Thief of Memory”. In: Smart Card Research
and Advanced Applications. Ed. by Ileana Buhan and Tobias Schneider.
2023.

[114] Amir Moradi. “Side-Channel Leakage through Static Power”. In: Cryp-
tographic Hardware and Embedded Systems. Ed. by Lejla Batina and
Matthew Robshaw. 2014, pp. 562–579.

[115] Hassan Nassar, Hanna AlZughbi, Dennis Gnad, Lars Bauer, Mehdi
Tahoori, and Jörg Henkel. “LoopBreaker: Disabling Interconnects to
Mitigate Voltage-Based Attacks in Multi-Tenant FPGAs”. In: ICCAD.
2021.

[116] Hassan Nassar, Lars Bauer, and Jörg Henkel. “CaPUF: Cascaded PUF
Structure for Machine Learning Resiliency”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41.11 (2022),
pp. 4349–4360. doi: 10.1109/TCAD.2022.3197539.

[117] Hassan Nassar, Simon Pankner, Lars Bauer, and Jörg Henkel. “Late
Breaking Results: Configurable Ring Oscillators as a Side-Channel
Countermeasure”. In: 2023 60th ACM/IEEE Design Automation Confer-
ence (DAC). 2023, pp. 1–2. doi: 10.1109/DAC56929.2023.10247786.

[118] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation”. In: SIGPLAN Not.
42.6 (2007).

[119] Michael Neve and Jean-Pierre Seifert. “Advances on Access-Driven
Cache Attacks on AES”. In: Selected Areas in Cryptography. Ed. by
Eli Biham and Amr M. Youssef. 2007, pp. 147–162.

[120] NIST. CVE-2022-23319 Detail. July 2022. url: https://nvd.nist.gov/
vuln/detail/CVE-2022-23319.

[121] NIST. CVE-2022-38529 Detail. Sept. 2022. url: https://nvd.nist.
gov/vuln/detail/CVE-2022-38529.

[122] NIST. CVE-2024-3094 Detail. Mar. 2024. url: https://nvd.nist.gov/
vuln/detail/CVE-2024-3094.

[123] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik.
“Tiny-CFA: A minimalistic approach for control-flow attestation us-
ing verified proofs of execution”. In: arXiv preprint arXiv:2011.07400
(2020).

168

https://doi.org/10.1109/TCAD.2022.3197539
https://doi.org/10.1109/DAC56929.2023.10247786
https://nvd.nist.gov/vuln/detail/CVE-2022-23319
https://nvd.nist.gov/vuln/detail/CVE-2022-23319
https://nvd.nist.gov/vuln/detail/CVE-2022-38529
https://nvd.nist.gov/vuln/detail/CVE-2022-38529
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094

9 Bibliography

[124] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and
Countermeasures: The Case of AES”. In: Topics in Cryptology. 2006,
pp. 1–20.

[125] Thales Bandiera Paiva, Javier Navaridas, and Routo Terada. “Robust
covert channels based on DRAM power consumption”. In: Information
Security: 22nd International Conference, ISC 2019, New York City, NY,
USA, September 16–18, 2019, Proceedings 22. Springer. 2019, pp. 319–
338.

[126] Sining Pan and Kofi AA Makinwa. “A 0.25 mm 2-Resistor-Based
Temperature Sensor With an Inaccuracy of 0.12° C (3𝜎) From- 55° C to
125° C”. In: IEEE Journal of Solid-State Circuits 53.12 (2018), pp. 3347–
3355.

[127] Dimitrios Papamartzivanos, Sofia Anna Menesidou, Panagiotis Gou-
vas, and Thanassis Giannetsos. “Towards Efficient Control-FlowAttes-
tation with Software-Assisted Multi-level Execution Tracing”. In: Int.
Mediterranean Conf. on Communications and Networking (MeditCom).
2021.

[128] Anuj Pathania and Jörg Henkel. “HotSniper: Sniper-Based Toolchain
for Many-Core Thermal Simulations in Open Systems”. In: IEEE Em-
bedded Systems Letters 11.2 (2019), pp. 54–57.

[129] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011).

[130] perf: Linux profiling with performance counters. June 2009. url: https:
//perf.wiki.kernel.org/index.php/Main_Page.

[131] Behnaz Pourmohseni, Stefan Wildermann, Fedor Smirnov, Paul E.
Meyer, and Jürgen Teich. “Task Migration Policy for Thermal-Aware
Dynamic Performance Optimization in Many-Core Systems”. In: IEEE
Access 10 (2022), pp. 33787–33802. doi: 10 . 1109 / ACCESS . 2022 .
3162617.

[132] Parisa Rahimi, Amit Kumar Singh, and Xiaohang Wang. “Selective
Noise Based Power-Efficient and Effective Countermeasure against
Thermal Covert Channel Attacks in Multi-Core Systems”. In: Journal
of Low Power Electronics and Applications 12.2 (2022). issn: 2079-9268.
doi: 10.3390/jlpea12020025.

169

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1109/ACCESS.2022.3162617
https://doi.org/10.1109/ACCESS.2022.3162617
https://doi.org/10.3390/jlpea12020025

9 Bibliography

[133] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z. Pan, Mari-
lynWolf, and JörgHenkel. “MLCAD: A Survey of Research inMachine
Learning for CAD Keynote Paper”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41.10 (2022), pp. 3162–
3181. doi: 10.1109/TCAD.2021.3124762.

[134] Jonas Röckl, Mykolai Protsenko, Monika Huber, Tilo Müller, and
Felix C. Freiling. “Advanced System Resiliency Based on Virtual-
ization Techniques for IoT Devices”. In: Proceedings of the 37th An-
nual Computer Security Applications Conference. ACSAC ’21. Virtual
Event, USA: Association for Computing Machinery, 2021, pp. 455–467.
isbn: 9781450385794. doi: 10.1145/3485832.3485836. url: https:
//doi.org/10.1145/3485832.3485836.

[135] Chinmayee Rout, Srinivas Sethi, J Chandrakanta Badajena, and
Ramesh Kumar Sahoo. “Secure Virtual Machine Allocation for Pre-
vention of Side Channel Attacks in Cloud Computing”. In: 2022 Inter-
national Conference on Intelligent Controller and Computing for Smart
Power (ICICCSP). 2022, pp. 1–6. doi: 10.1109/ICICCSP53532.2022.
9862404.

[136] Enrico Russo, Maurizio Palesi, Salvatore Monteleone, Davide Patti,
Andrea Mineo, Giuseppe Ascia, and Vincenzo Catania. “DNN Model
Compression for IoT Domain-Specific Hardware Accelerators”. In:
IEEE Internet of Things Journal 9.9 (2022), pp. 6650–6662. doi: 10.
1109/JIOT.2021.3111723.

[137] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
“Trusted Execution Environment: What It is, and What It is Not”. In:
2015 IEEE Trustcom/BigDataSE/ISPA. 2015.

[138] Aditya Kumar Sahu andMonalisa Sahu. “Digital image steganography
and steganalysis: A journey of the past three decades”. In: Open
Computer Science 10 (Oct. 2020), pp. 1–47. doi: 10.1515/comp-2020-
0136.

[139] Gururaj Saileshwar, Christopher W. Fletcher, and Moinuddin K.
Qureshi. “Streamline: a fast, flushless cache covert-channel attack by
enabling asynchronous collusion”. In: ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (2021).

170

https://doi.org/10.1109/TCAD.2021.3124762
https://doi.org/10.1145/3485832.3485836
https://doi.org/10.1145/3485832.3485836
https://doi.org/10.1145/3485832.3485836
https://doi.org/10.1109/ICICCSP53532.2022.9862404
https://doi.org/10.1109/ICICCSP53532.2022.9862404
https://doi.org/10.1109/JIOT.2021.3111723
https://doi.org/10.1109/JIOT.2021.3111723
https://doi.org/10.1515/comp-2020-0136
https://doi.org/10.1515/comp-2020-0136

9 Bibliography

[140] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.
“Splash-3: A properly synchronized benchmark suite for contempo-
rary research”. In: Int. Symp. on Performance Analysis of Systems and
SW (ISPASS). 2016.

[141] Nitish Salwan, Sandeep Singh, Suket Arora, and Amarpreet Singh.
“An Insight to Covert Channels”. In: CoRR abs/1306.2252 (2013). arXiv:
1306.2252. url: http://arxiv.org/abs/1306.2252.

[142] Steve Scargall. “Profiling and Performance”. In: Programming Persis-
tent Memory: A Comprehensive Guide for Developers. Berkeley, CA:
Apress, 2020, pp. 295–312. isbn: 978-1-4842-4932-1. doi: 10.1007/978-
1-4842-4932-1_15.

[143] Hannah M. Schlüter, Jeremy Tan, Benjamin Hou, and Bernhard Kainz.
“Natural Synthetic Anomalies for Self-supervised Anomaly Detection
and Localization”. In: Computer Vision – ECCV. Ed. by Shai Avidan,
Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and
Tal Hassner. Springer Nature Switzerland, 2022.

[144] Steffen Schulz, Ahmad-Reza Sadeghi, and Christian Wachsmann.
“Short Paper: Lightweight Remote Attestation Using Physical Func-
tions”. In: Conf. on Wireless Network Security. 2011.

[145] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel.
“A low latency generic accuracy configurable adder”. In: Proceedings
of the 52nd Annual Design Automation Conference. DAC ’15. San Fran-
cisco, California: Association for Computing Machinery, 2015. isbn:
9781450335201. doi: 10.1145/2744769.2744778.

[146] Chaoqun Shen, Jiliang Zhang, and Gang Qu. MES-Attacks: Software-
Controlled Covert Channels based on Mutual Exclusion and Synchro-
nization. 2022. arXiv: 2211.11855 [cs.AR].

[147] Lokesh Siddhu, Hassan Nassar, Lars Bauer, Christian Hakert, Nils
Hölscher, Jian-Jia Chen, and Joerg Henkel. “Swift-CNN: Leveraging
PCM Memory’s Fast Write Mode to Accelerate CNNs”. In: IEEE Em-
bedded Systems Letters 15.4 (2023), pp. 234–237. doi: 10.1109/LES.
2023.3298742.

[148] Mohammed Bakr Sikal, Heba Khdr, Martin Rapp, and Jörg Henkel.
“Machine Learning-based Thermally-Safe Cache Contention Mitiga-
tion in Clustered Manycores”. In: 2023 60th ACM/IEEE Design Au-
tomation Conference (DAC). 2023, pp. 1–6. doi: 10.1109/DAC56929.
2023.10247708.

171

https://arxiv.org/abs/1306.2252
http://arxiv.org/abs/1306.2252
https://doi.org/10.1007/978-1-4842-4932-1_15
https://doi.org/10.1007/978-1-4842-4932-1_15
https://doi.org/10.1145/2744769.2744778
https://arxiv.org/abs/2211.11855
https://doi.org/10.1109/LES.2023.3298742
https://doi.org/10.1109/LES.2023.3298742
https://doi.org/10.1109/DAC56929.2023.10247708
https://doi.org/10.1109/DAC56929.2023.10247708

9 Bibliography

[149] Matt Spisak. “Hardware-Assisted Rootkits: Abusing Performance
Counters on the ARM and x86 Architectures”. In: Workshop on Offen-
sive Technologies. 2016.

[150] François-Xavier Standaert. “Introduction to Side-Channel Attacks”.
In: Secure Integrated Circuits and Systems. Ed. by Ingrid M.R. Ver-
bauwhede. Springer US, 2010, pp. 27–42.

[151] Toqeer Ali Syed, Roslan Ismail, Shahrulniza Musa, Mohammad Nau-
man, and Sohail Khan. “A Sense of Others: Behavioral Attestation of
UNIX Processes on Remote Platforms”. In: Int. Conf. on Ubiquitous
Inform. Management and Comm. 2012.

[152] The OpenSSL Project. “OpenSSL: The Open Source toolkit for
SSL/TLS”. www.openssl.org.

[153] Theodoros Trochatos, Anthony Etim, and Jakub Szefer. “Security eval-
uation of thermal covert-channels on SmartSSDs”. In: arXiv preprint
arXiv:2305.09115 (2023).

[154] TrustedFirmware. About OP-TEE. 04.09.23. url: https : / / optee .
readthedocs.io/en/latest/general/about.html.

[155] Furkan Turan and Ingrid Verbauwhede. “Propagating Trusted Exe-
cution through Mutual Attestation”. In:Workshop on System SW for
Trusted Exec. 2019.

[156] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. “Graviton: Trusted
Execution Environments on GPUs”. In: USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI). Oct. 2018, pp. 681–696.
isbn: 978-1-939133-08-3.

[157] Han Wang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, Tinoosh
Mohsenin, and Houman Homayoun. “Comprehensive Evaluation of
Machine Learning Countermeasures for Detecting Microarchitectural
Side-Channel Attacks”. In: Proceedings of the 2020 on Great Lakes
Symposium on VLSI. ACM, 2020, pp. 181–186.

[158] Jiachen Wang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh,
Letian Huang, and Mei Yang. “Combating Enhanced Thermal Covert
Channel in Multi-/Many-Core Systems With Channel-Aware Jam-
ming”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39.11 (2020), pp. 3276–3287.

172

www.openssl.org
https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/general/about.html

9 Bibliography

[159] Xiaohang Wang, Hengli Huang, Ruolin Chen, Yingtao Jiang, Amit
Kumar Singh, Mei Yang, and Letian Huang. “Detection of Thermal
Covert Channel Attacks Based on Classification of Components of
the Thermal Signal Features”. In: IEEE Transactions on Computers
(2022), pp. 1–14. doi: 10.1109/TC.2022.3189578.

[160] Brett Weinger, Jinoh Kim, Alex Sim, Makiya Nakashima, Nour
Moustafa, and K. John Wu. “Enhancing IoT anomaly detection per-
formance for federated learning”. In: Digital Communications and
Networks 8.3 (2022).

[161] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. “The SPLASH-2 Programs: Characterization
and Methodological Considerations”. In: Int. Symp. on Computer Arch.
1995, pp. 24–36.

[162] Ran Wu, Xinmin Guo, Jian Du, and Junbao Li. “Accelerating Neural
Network Inference on FPGA-Based Platforms—A Survey”. In: Electron-
ics 10.9 (2021). issn: 2079-9292. doi: 10.3390/electronics10091025.
url: https://www.mdpi.com/2079-9292/10/9/1025.

[163] Kai Xiong, Supeng Leng, Chongwen Huang, Chau Yuen, and Yong
Liang Guan. “Intelligent Task Offloading for Heterogeneous V2X
Communications”. In: IEEE Transactions on Intelligent Transportation
Systems 22.4 (2021), pp. 2226–2238. doi: 10.1109/TITS.2020.3015210.

[164] Zhixing Xu, Sayak Ray, Pramod Subramanyan, and Sharad Malik.
“Malware detection using machine learning based analysis of virtual
memory access patterns”. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. 2017, pp. 169–174. doi: 10.
23919/DATE.2017.7926977.

[165] Chao Yang, Yunfei Guo, Hongchao Hu,Wenyan Liu, and YawenWang.
“An effective and scalable VM migration strategy to mitigate cross-
VM side-channel attacks in cloud”. In: China Communications 16.4
(2019), pp. 151–171. doi: 10.12676/j.cc.2019.04.012.

[166] Manzhi Yang and Qiaoyan Wen. “Detecting android malware by ap-
plying classification techniques on images patterns”. In: 2017 IEEE 2nd
International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA). 2017, pp. 344–347. doi: 10.1109/ICCCBDA.2017.7951936.

173

https://doi.org/10.1109/TC.2022.3189578
https://doi.org/10.3390/electronics10091025
https://www.mdpi.com/2079-9292/10/9/1025
https://doi.org/10.1109/TITS.2020.3015210
https://doi.org/10.23919/DATE.2017.7926977
https://doi.org/10.23919/DATE.2017.7926977
https://doi.org/10.12676/j.cc.2019.04.012
https://doi.org/10.1109/ICCCBDA.2017.7951936

9 Bibliography

[167] Ruikang Yang, Jianfeng Ma, Junying Zhang, Saru Kumari, Sachin
Kumar, and Joel J. P. C. Rodrigues. “Practical Feature Inference Attack
in Vertical Federated Learning During Prediction in Artificial Internet
of Things”. In: IEEE Internet of Things Journal 11.1 (2024), pp. 5–16.

[168] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security
Symposium. Aug. 2014, pp. 719–732.

[169] Raz Ben Yehuda, Michael Kiperberg, and Nezer Jacob Zaidenberg.
“Nanovised Control Flow Attestation”. In: Applied Sciences 12.5 (2022).

[170] ZCU102 Evaluation Board User Guide. Xilinx. 2023.
[171] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ah-

mad Ibrahim, Yier Jin, and Ahmad Reza Sadeghi. “ATRIUM: Runtime
attestation resilient undermemory attacks”. In: Int. Conf. on Computer-
Aided Design (2017).

[172] Jiliang Zhang, Chaoqun Shen, and Gang Qu. “Mex+Sync: Software
Covert Channels Exploiting Mutual Exclusion and Synchronization”.
In: TCAD (2023), pp. 1–1. doi: 10.1109/TCAD.2023.3291669.

[173] Yumei Zhang, Xinzhi Liu, Cong Sun, Dongrui Zeng, Gang Tan, Xiao
Kan, and Siqi Ma. “ReCFA: Resilient Control-Flow Attestation”. In:
Computer Sec. Appl. Conf. 2021.

[174] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng
Cao, Lutan Zhao, Fengkai Yuan, Peinan Li, Zhongpu Wang,
Boyan Zhao, et al. “Enabling privacy-preserving, compute-and data-
intensive computing using heterogeneous trusted execution environ-
ment”. In: arXiv preprint arXiv:1904.04782 (2019).

174

https://doi.org/10.1109/TCAD.2023.3291669

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Publications
	Research at the Chair for Embedded Systems
	Introduction
	Side and Covert Channels in Computing Systems
	Challenges in Attack Detection
	Challenges in Countermeasures
	Dissertation Contributions
	Dissertation Outline

	Related Work
	Trusted Execution Environments
	Side- and Covert-channel Attacks
	Attack Detection Mechanisms
	Detection of Power-Based Covert Channels
	Remote Attestation as Run-Time Integrity Verification

	Countermeasures to Side and Covert Channels
	Against Cache Side Channels
	Against Power-based Covert Channels

	Experimental Framework
	Simulation framework - HotSniper
	Real Hardware Platforms
	General Personal Computer (PC)
	Server-range CPU
	Embedded Devices
	FPGA-MPSoC

	New Threats: Attacks Using System Resources
	Shared Threat Model
	Novel Contributions
	Obfuscated Short Duration Thermal Covert Channel
	Motivation
	Attack Implementation
	Experimental Evaluation

	GPU-based Thermal Covert Channel
	Motivation
	Attack Implementation
	Experimental Evaluation

	Through Fabric: A Thermal Covert Channel on FPGA-MPSoC Systems
	Motivation
	Attack Implementation
	Experimental Evaluation

	MeMoir: A Covert Channel Based on Memory Usage
	Motivation
	Attack Implementation
	Experimental Evaluation

	Summary

	Smart Detection Of Thermal Covert Channels
	Motivational example
	Problem Definition
	Novel Contributions
	Dotecca: Smart Detection of Thermal Covert-channel Attacks
	Training Data Generation
	Model Topology Selection

	Evaluation
	Evaluating the Effectiveness of Dotecca
	Runtime Overhead

	Summary

	Lightweight Control Flow Attestation
	Motivational Example
	Problem Definition
	Novel Contributions
	LightFAt: Lightweight Control-flow Attestation
	Target System, Threat Model, and Assumptions
	Execution Behavior as Normality Indication
	Attestation Flow
	Prover Implementation
	ML-based Remote Verifier
	Choosing the Regions of Attestation

	Experimental Evaluation
	Experimental Setup and Data Collection
	Effect of RoA placement
	ML Models Training and Evaluation
	Overhead

	Summary

	Mitigation of Cache Side Channels via Task Migration
	Motivational example
	Problem Definition
	Novel Contributions
	Threat Model
	Migration Decision
	Dynamic Task Migration Heuristic
	Experimental Evaluation
	Security analysis
	Application Overhead Analysis
	Security and performance trade-off
	Comparison against state-of-the-art solutions
	System Run-time Overhead
	Power and Energy Overhead

	Summary

	System-informed Mitigation of Covert Channels
	Motivational Example
	Problem Definition
	Novel Contributions
	Enabling System and Application Awareness
	Heuristic-Based Mitigation
	Machine Learning-Based Mitigation
	Training Data Generation and Preprocessing
	Feature Selection and Model Training

	Experimental Evaluation
	Evaluation Platform
	Baseline and Naive Policies
	Covert-channel Mitigation
	Energy and Performance Penalty
	Generalization to unseen workloads
	Runtime Overhead Analysis
	Machine learning vs. heuristics

	Summary

	Conclusion
	Future Work

	Bibliography

